
Chiplet-Package Co-Design For 2.5D Systems

Using Standard ASIC CAD Tools
MD Arafat Kabir, Yarui Peng

Computer Science and Computer Engineering Department

University of Arkansas, Fayetteville, AR, US

Abstract—Chiplet integration using 2.5D packaging is gaining popular-

ity nowadays which enables several interesting features like heterogeneous

integration and drop-in design method. In the traditional die-by-die ap-

proach of designing a 2.5D system, each chiplet is designed independently
without any knowledge of the package RDLs. In this paper, we propose

a Chip-Package Co-Design flow for implementing 2.5D systems using

existing commercial chip design tools. Our flow encompasses 2.5D-aware
partitioning suitable for SoC design, Chip-Package Floorplanning, and

post-design analysis and verification of the entire 2.5D system. We also

designed our own package planners to route RDL layers on top of chiplet

layers. We use an ARM Cortex-M0 SoC system to illustrate our flow and
compare analysis results with a monolithic 2D implementation of the same

system. We also compare two different 2.5D implementations of the same

SoC system following the drop-in approach. Alongside the traditional die-
by-die approach, our holistic flow enables design efficiency and flexibility

with accurate cross-boundary parasitic extraction and design verification.

Keywords—2.5D Design, Chip-Package Co-Design, Redistribution
Layer Planning, Package Design, Track Assignment.

I. INTRODUCTION

In the current industry approach of designing 2.5D systems, all

functional circuit blocks are designed independently in their own

design environments and then mounted on the package RDLs as

a complete system [1]. The design and planning of the package

are also performed independently with very little knowledge of the

circuit blocks it houses [1, 2]. The analysis and optimization of both

chiplets and the package are conducted separately [1] in the current

design flow. For system reliability and signal integrity, accurate timing

and power analyses of the entire system are essential. Though it

is possible to perform the whole system analysis using the profiles

of individual chiplet and package, it cannot accurately consider the

interactions among tightly-connected components.

The die-by-die design flow is currently the most practical approach

that leverages 2.5D integration technology. Using this flow, a designer

can achieve the shortest possible design time using off-the-shelf

chiplets to implement a 2.5D system. Fig. 1(a) shows the traditional

die-by-die design flow for 2.5D systems. In this flow, chiplets and

the package never actually interact with each other until after they

are fabricated and assembled. All steps of design and optimization

are performed independently in their own environments. However,

it is not the best flow to design a complete system that can achieve

maximum performance with highest reliability and analysis accuracy.

While designing a complete system for 2.5D integration, to obtain

the best partition, the partitioning steps need to be aware of the

redistribution layers (RDL) of the 2.5D package. To optimize the

floorplan and routing for RDLs, the planner may need to make small

modifications to the chiplet pin arrangements. The optimization steps

of an individual chiplet also need to consider package routing as

well as the other chiplets. In short, to extract the best performance

This material is based upon work supported by the National Science
Foundation under Grant No. 1755981. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the author(s) and
do not necessarily reflect the views of the National Science Foundation.

Fig. 1. The traditional Die-by-Die design flow of a 2.5D system versus our
proposed holistic approach with standard ASIC tools

out of the system, optimizations in each design step need to be

performed in a holistic [3] way rather than optimizing individual

parts independently without taking into account rest of the system.

In this paper, we propose a design flow that incorporates the

features required to achieve the Chip-Package Co-Design goals in

2.5D integration technology leveraging the industry-standard chip

design tools. Fig. 1(b) shows the overall steps of our proposed flow.

In this flow, we design the 2.5D package together with the chiplets

in the same design environment of the existing commercial chip

design tools. This enables exchanging design information between

the chiplets and the package during the optimization steps, which

is essential to achieve the co-design goals. To illustrate our design

flow, we use an ARM Cortex-M0 based simple SoC system and a

modified Nangate45nm PDK that can handle the chiplets and package

routing layers together in a chip design environment. First, we present

some of existing partitioning schemes compatible with 2.5D package

and the results applying these schemes in our example system. Next,

we discuss challenges in the floorplanning stage of a 2.5D system

and demonstrate our algorithms and in-house tools to perform RDL

planning and routing within the chip design environment. Further, we

present the rest of the physical design steps of the individual chiplets

and the package. Our flow supports the drop-in design approach

enabled by 2.5D integration, which we illustrate by designing two

versions of the same SoC system with different memory sizes. In the

results section, we present comparisons between the 2.5D system with

a monolithic 2D implementation of the same system and between the

two versions of the 2.5D system designed using the drop-in approach.

We claim the following contributions: (1) A new flow to design

chiplets and the package of 2.5D systems together using existing

commercial chip design tools taking into account the impacts of

package layers on system performance; (2) A new strategy to perform

the floorplanning and routing of the package and pin placement of

978-1-7281-4123-7/20/$31.00 © 2020 IEEE

Fig. 2. System architecture of the ARM Cortex-M0-based example design.

the chiplets that reduces package routing issues without affecting

chiplet floorplans significantly; (3) A new parastic extraction and

STA analysis flow with the entire 2.5D system, chiplets and package

together; (4) A comparison between two 2.5D systems designed

validating the our drop-in approach taking into account the key factors

needed for optimization of the entire system. To our best knowledge,

there exists no tool flow that places and routes chiplets and package

of 2.5D systems together using commercial chip design tools.

II. DESIGN AND TECHNOLOGY SETTINGS

A. System Architecture

As a proof of concept, we design a simple microcontroller system

based on ARM Cortex-M0 core using our design flow. Fig. 2 shows

the system architecture of the example design. This SoC consists of

16KB RAM and other common peripheral devices. The processor

core is connected to the rest of the system through an AHB bus. The

AHB bus connects the processor to a system controller, two low-

latency GPIO modules, a ROM table, an address decoder, the memory

interface, and a subsystem of APB peripheral and APB infrastructure.

The APB subsystem consists of a watchdog timer, two simple timers,

one dualtimer, and three UART modules. The 16KB memory system

is divided into four banks of 4KB each. Each memory bank is again

subdivided into four memory blocks of 1KB each. Such breakdown

of the memory system is intentional to add flexibility during the

partition stage. We use OpenRAM [4] memory compiler to compile

the 1KB memory modules with one-byte word size.

B. Technology Settings

We use Nangate45nm as our Process Design Kit in the physical

design of the chiplets and the monolithic 2D chip. We are using

up to metal7 for chiplet routing. For package design, we modify

the top three layers of Nangate45nm PDK to simulate the attributes

of 2.5D package redistribution layers. Table I shows our settings

for the top routing layers. The layer via7 corresponds to the micro

bumps connecting the chiplets to the package top layer named RDL1.

The layer RDL3 corresponds to the bottom redistribution layer of

the package, where the C4 bumps will be attached. The package

redistribution layers are illustrated in Fig. 3.

C. Reference 2D Design

Before moving on to 2.5D system design flow, we design a

monolithic 2D version of our example system as a reference design.

Traditional chip design flow is very mature and existing commercial

IC design tools make it very straight forward. When the system

architecture is ready, Gate Level Netlists are generated by the

synthesis tool. We use Synopsys Design Compiler to perform the

synthesis. Then this gate-level netlist is imported into the chip design

Fig. 3. Package redistribution layer stack

TABLE I
TECHNOLOGY PARAMETERS OF ROUTING LAYERS

M6 via6 M7 via7 RDL1 viar1 RDL2 viar2 RDL3

Height 2.28 3.08 3.9 7.5 12.5 17.5 22.5 27.5 32.5
Thickness 0.8 0.82 3.6 5 5 5 5 5 5
Width 0.4 0.4 2 5 10 10 10 10 10
Spacing 0.4 0.44 2 10 10 20 10 20 10

environment for performing physical design. We use Cadence Innovus

to perform the Physical design of the chip. In the floorplanning stage,

at first we allocate an area for the large modules like memory macros.

Then we perform the floorplanning of the standard logic modules. The

next step is to design the power delivery network of the system. In this

step, power and ground wires are routed around and across the chip

core, macro blocks and other modules as needed. In the standard cell

placement stage, the logic cells are assigned their physical location

by the placement tool based on the floorplan and the connectivity

among the cells. The next step is the time design and optimization

of the system which includes pre-CTS timing optimizations, Clock

Tree Synthesis (CTS) and post-CTS timing optimizations. Then the

design is ready to be routed. We use the routing tool of Cadence

Innovus to perform the chip routing. After routing, post-routing

timing optimizations are performed. Finally, filler cells and metal

fills are inserted to cover the empty space of the chip. When the

design is complete, Design Rule Checks (DRC) are performed to

make sure that the chip is designed following the foundry specified

rules. This concludes the physical design steps. The next step is to

perform analysis of the system to ensure the signal integrity and

reliability of the system. We use Synopsys StarRC to perform the

parasitics extraction and Synopsys PrimeTime to perform the timing

and power analysis of the chip. Fig. 7(d) shows the finished 2D

design.

D. Proposed 2.5D Design Flow

Our proposed design flow is demonstrated in Fig. 1(b). Synthesis

step is the same as the traditional 2D flow which generates the

gate-level netlists. Then the partitioner takes the gate level netlists

and the partitioning scheme settings to generate the chiplet netlists

which fulfill the scheme requirements. The next step is to prepare

the floorplans for the package and the chiplets. We perform the

floorplanning of the package and chiplets together in the same design

environment within a chip design tool. The design environment takes

in the chiplet netlists and the modified PDK that includes the package

layers. We perform the floorplanning and pin assignments of the

chiplets and the package in a way that reduces the impacts of

package routing on system performance. At the end of this step we

get the package floorplan, chiplet floorplans, timing budgets and the

connectivity among the chiplets. Then the package and the chiplets

are routed and optimized individually. The physical design flow of

the chiplets is exactly the same as that of the traditional 2D flow.

After standard cell placement and routing if a chiplet passes the

Design Rule Checks, it is ready to be integrated with the rest of

the system. The Design Assemble step takes all the chiplets and the

package design to assemble the whole system. With the entire system

in place, we extract the parasitics, considering the interactions among

the routing layers across the chiplets and the package. Finally, the

analysis step takes in the netlist and parasitics information of the
assembled system to perform the full system analysis.

III. PARTITION

After performing synthesis of the system, it needs to be partitioned
into chiplets [1]. In 2.5D packaging, chiplets are interconnected
through package wires. This introduces some new factors in the
partitioning problem not present in the partitioning stage of the
monolithic 2D technology. While performing partition, these factors
need to be considered carefully as the overall system performance is
highly dependent on them.

In general, the main objective of the partition problem is to
minimize the cut size among the partitions keeping a specified area
balance. However, the min-cut solution may not be the best solution
for 2.5D system performance. A larger cutsize may be preferred to
a slower system. While performing the partition, we need to avoid
cutting the critical paths as much as possible without exceeding
the number of interconnects each chiplet can accommodate. Better
results might be obtained if the architecture is designed keeping
package layers in mind. However, the partitioner needs to account for
package RDL wires while exploring solutions that might be obtained
through making minor changes (e.g. resizing buffers) in the partition
netlists. To understand the impact of partition on 2.5D systems, we
study some of the existing partition schemes compatible with this
integration technology. As our example design is a small SoC system,
we partition the system into two chiplets. The result of our study is
shown in Table II.

Balanced Partition: The first partition scheme that we study aims
at achieving minimum cut size keeping a good area balance. To imple-
ment this scheme, we use hMetis [5] and FLARE [6] as partitioning
algorithms. While hMetis is purely a k-way hypergraph partitioning
algorithm, being a performance-driven partitioner, FLARE takes into
account the local and global interconnect delays during performing
the partition. This difference is reflected in Table II. For both the
partitions, hMetis has a lower pin count compared to FLARE.
However, FLARE requires less number of buffer cells and also
consumes less power and takes less area to achieve the same speed
of operation compared to hMetis.

Memory vs. Logic Partition: The next scheme is based on
the natural boundary between memory and logic. We keep all the
standard logic cells in one partition and all the memory macros
in the other partition. From Table II we can see that the memory
partition consists of almost 90% of the total area. This scheme is
a good example of 2.5D integration because it takes advantage of
the heterogeneity between the memory and logic implementation
technologies. Among all the partition schemes, we are able to achieve
the highest speed of operation in this scheme for our example
design. However, the number of pins for the logic partition cannot
be accommodated due to the small area. Moreover, it requires the
second-highest number of buffer cells among all the schemes to
achieve that speed.

Architecture-Aware Partition: In the last partition scheme, we
try to utilize the knowledge of the system architecture to come up
with a reasonable partition. In this scheme, one of the partitions
contains half the memory macros with all logic cells while the other
partition contains the rest half of memory macros. The first partition
can be considered as the core system while the other partition can be
considered as a memory extension of the core system. This scheme
gives a good area balance and a reasonable pin count for both
partitions. However, it requires the highest number of buffer cells
and the total area to achieve the same speed of operation as the
balanced partition schemes.

TABLE II
COMPARISON OF PARTITION SCHEMES

Paritition Scheme hMetis FLARE Mem/Logic Arch-Aware
Max Frequency 300 MHz 300 MHz 333 MHz 300 MHz
Power 6.19 mW 6.17 mW 6.73 mW 6.13 mW
No. of Buffers 2,152 1,907 2,383 2,521
Cell Area (µm2) 274,450 273,944 275,726 275,902
Area Balance 49.4/50.6 49.8/50.2 89.7/10.3 55.2/44.8
Pin Count 257/313 374/370 191/228 141/110

We select the Architecture Aware Partition scheme for implement-
ing using our design flow because the sizes of both partitions are
large enough to accommodate their pins.

IV. CHIP-PACKAGE FLOORPLANNING

Traditionally, floorplans of package and chiplets are prepared
independently. However, the best floorplans for individual chiplets,
without any knowledge and consideration of the RDLs, might have
pin configurations that create package routing congestions and long
package wires due to detours and unequal bus wire delays between
the chiplets. All of these deteriorate system performance. In this
step of our flow, we try to design the package floorplan, chiplet
pin configurations, and their connectivity together in a way that
minimizes all of the aforementioned package-routing-related issues
without significantly affecting the floorplans of individual chiplets.
Note that the chiplet pin configurations generated applying our
strategy do not disregard the flexibility and parallelism of independent
chiplet design. The pin configurations just describe the connectivity
between the chiplet pins locations. The actual signal assignment can
be performed during the placement and routing stage of individual
chiplets if necessary.

In this step, first we need to determine the chiplet dimensions and
pin arrangement. Pin arrangement information includes the number
of rows and columns in the pin array, pin pitch, pin dimensions,
and physical pin locations in the chiplet. When these parameters are
determined and fixed for all the chiplets, RDL planning can start.
We code an RDL planner program that implements our strategy of
Chip-Package floorplanning. The RDL planner takes in the chiplet
netlists and technology information to generate package floorplan and
interconnect routing, chiplet footprints, and connectivity information
among chiplet pins. When floorplanning and signal assignment of a
chiplet is finished, the planner can map the signals of the pins of
the planned chiplet to pins of other chiplets using this connectivity
information. At present, it can perform signal mapping only if one
of the two chiplets has already finished signal assignment to all of
its pins and the other chiplet has not been assigned signal to any of
its pins. Our interconnect routing and chiplet connection strategy is
described in the latter part of this section.

A. RDL Planning

In our RDL planning stage, we consider two chiplets at a time.
For the sake of illustration, we assume a cut-line between the two
chiplets, perpendicular and across l RDLs as shown in Fig. 4. If there
are n connections between these two chiplets, it requires total n tracks
across l RDLs crossing the cut-line to route all the connected pins
between these chiplets. These n tracks occupy the least routing area
if we arrange them uniformly in l layers using the minimum track
width and spacing. In our strategy, before assigning signals to chiplet
pins, we first route all the pins of a chiplet to their nearest available
tracks crossing the cut-line using the shortest possible wire. Then
we determine a relative position between the chiplets that produces
sufficient overlap of these tracks for connecting n pins. Finally, we

Fig. 4. Illustration of the RDL planner strategy. (a) Rejected floorplan
while finding the relative location (b) Selected solution that satisfies the pin
connectivity requirement

connect the pins of the two chiplets which are routed to the same

track crossing the cut-line. The unconnected pins of the chiplets are

assigned the package I/O signal and are routed during the package

routing stage. Algorithm 1 describes our RLD planning strategy.

Fig. 4 illustrates this strategy for connecting four pins (n = 4)

between the chiplets using only one RDL (l = 1). The dashed white

lines show the available tracks crossing the cut-line and the thick lines

connected to the chiplets show the assigned tracks to the chiplet pins.

At first, Chiplet-A and Chiplet-B pins are routed to the nearest tracks

crossing the cut-line. Next, while finding the relative position between

the chiplets, the floorplans similar to Fig. 4(a) are rejected as it does

not have sufficient track overlap for four connections. Finally, among

two viable solutions, we arbitrarily pick the floorplan in Fig. 4(b)

which supports the required number of connections between the

chiplets. And then we define connectivity between pin A2 of Chiplet-

A and pin B1 of Chiplet-B because they are routed to the same track.

Similarly, pins A3, A4, and A5 of Chiplet-A will be connected to pins

B2, B3, and B4 of Chiplet-B, respectively. The pin A1 of Chiplet-A,

which is not connected to any other chiplets, can be used for package

I/Os.

So far, our RDL planner can handle only one-to-one pin connec-

tions between two chiplets. More sophisticated planning like clock

tree synthesis of the package, power distribution network design of

the entire system, etc. should be performed in this step. However,

our planner cannot handle those tasks at the moment of writing this

paper.

B. Track Assignment

Assignment of the cut-line crossing tracks to the chiplet pins is

performed in two steps: (1) Pin routing to the chiplet boundary

and (2) Track assignment to these boundary locations. Lines 8-14

of Algorithm 1 describes our track assignment strategy. Before a

pin can be routed to a pin of another chiplet it needs to cross its

chiplet boundary. In the first step, we bring as many internal pins

as we can to the chiplet boundary using all the RDL routing tracks

crossing the boundary. We name the boundary locations where the

pins are routed to as “Boundary Points.” Next, we assign tracks to

these Boundary Points in the Track assignment step. For each chiplet,

track assignment is performed following a greedy strategy where the

Boundary Points closest to the cut-line is assigned its nearest track

first. As a result, in the order of track assignment, the Boundary Points

on the side facing the cut-line comes first, then the Boundary Points

on the sides perpendicular to the cut-line come in the increasing order

Fig. 5. Track assignment result for a chiplet with 12×6 pin array, two package
routing layers, and pin pitch of two tracks

of their distances from the cut-line and the Boundary Points on the

side of the chiplet opposite to the cut-line comes the last.

Fig. 5 shows the Track Assignment result for a chiplet with 72

pins. The pins are arranged in a grid of 12 rows and 6 columns with

a pin pitch of two tracks. There are two RDLs available for routing

the chiplet pins. The solid lines connected to the pins show the route

to the Boundary Points and the horizontal dashed lines show the RDL

tracks crossing the cut-line. At first, the pins on the side nearest to

the cut-line are routed to the Boundary Points of that side using both

the routing layers. Then, the pins on the sides perpendicular to the

cut-line are routed to the Boundary Points on those sides. The rest

of the pins are routed to the Boundary Points on the side opposite to

the cut-line. Boundary Points of the opposite side is least preferred

because of the detours needed to reach the cut-line. After routing all

the pins to the Boundary Points, tracks are assigned to them in the

increasing order of their distance from the cut-line. The vertical short

dashed lines show the track assignment of the Boundary Points that

cannot be directly connected to the package routing tracks.

Algorithm 1: RDL Planning Algorithm

1 Input: Chiplet netlists and PDK

2 Output: RDL Floorplan and Routing Script

3 Calculate area required for the chiplets

4 Generate pin array according to pin pitch and chiplet area

5 Draw a cut-line between the chiplets

6 sideOrder = [near cut-line, top, bottom, opposite side]

7 layerOrder = [RDL layers from bottom to top]

8 foreach Chiplet do

9 foreach s in sideOrder do

10 foreach l in layerOrder do

11 Route pins to the Boundary Points of s on l

12 bpOrder = sort(Boundary Points, key=dist. from cut-line)

13 foreach bp in bpOrder do

14 Assign the nearest available track to bp

15 while Floorplan not valid do

16 Floorplan = New relative position of the chiplets

17 Check if Floorplan is valid for connecting the chiplets

18 Create TCL script for pin assignment and RDL routing

19 Return Floorplan and Routing Script

Fig. 6. Chiplets layouts for 2.5D integration

V. PLACEMENT AND ROUTING

After the Package floorplan, Chiplet pin configurations and connec-

tivity information are ready, the placement and routing of individual

chiplet and package can be performed using any commercial chip

design environment that supports hierarchical design flow. We use

Cadence Innovus to perform the placement and routing. In our flow,

At first, we load the whole system, including the package, into the

design environment. During the partition stage, in the netlist, each

chiplet is defined as an individual module. So, these modules appear

as regular 2D modules in the design environment. Then we define

the chiplet modules as partitions using the same steps of defining

partitions in 2D design flow. When the package floorplan and chiplet

pin configurations are prepared according to the plan generated by

the RDL planner, each chiplet can be designed independently. When

the chiplet designs are completed, their interface timing models can

be extracted. The package design can be performed either using the

extracted models or the entire chiplet designs into consideration.

However, because of the differences in the chip and package routing

techniques, currently we are not using the chip routing tools to route

the package. Rather, we are using the routing generated by our RDL

planner for connecting the chiplets and manual routing for package

I/O pins.

A. Hierarchical Splitting

At first, we set up the chip design environment with the PDK

containing both chip and package routing layers. Then we load the

partitioned gate-level netlists in this design environment. We prepare

the package floorplan as generated by the RDL planner. Then we

perform trial route to determine the signal assignment to the chiplet

pin locations. We define a routing blockage in the package region

outside the chiplets, so that the router uses only the package routing

layers (RDL1, RDL2, and RDL3 in our design) outside the chiplets

while performing the trial route. In 2D chip design tools, pins are

assigned on the boundary of the partitions based on trial route.

From this pin assignment result and the connectivity information

generated by the RDL planner, we determine the signal assignment

for the chiplet pins. Because of this co-planning, we can get a

pin configuration for the chiplets, which minimizes package routing

issues without affecting the chiplet floorplans significantly. Then we

derive the time budget for the chiplets which takes into account the

routing through the package layers. Finally, we commit the partitions

(chiplets) and push them down for individual physical design. After

this step, all the chiplets can be designed independently in their own

design environments.

B. Chiplet Placement and Routing

In this step, each chiplet is designed and optimized as a single chip

using 2D design techniques. The floorplan can be adjusted as required

as long as the pin configuration remains the same as determined in

the Floorplanning stage. After fixing the final floorplan, we perform

power distribution network design of the chiplets. When PDN design

Fig. 7. Design layouts of the 2.5D systems and the monolithic 2D design.
(a) Assembled 2.5D system with extended memory, (b) zoom-in shot of the
assembled 2.5D system, (c) assembled core-only system, and (d) monolithic
2D reference design.

is done, we use the placement tool to perform the cell placement.

Then we perform the time design steps which include clock tree

synthesis and timing optimization of the chiplet. We run the routing

tool to finish the signal routing and then perform the post-route timing

optimizations. Lastly, we add filler cells and metal fills to finish the

design. Fig. 6 shows the routing of the two chiplets in our design.

As mentioned in Section III, we are using the Architecture Aware

partition scheme. The chiplet in Fig. 6(a) is the Core System partition

with the logic blocks and 8KB of memory and the chiplet in Fig. 6(b)

is the Extended Memory partition with extra 8KB memory. We design

one system with the Core chiplet only and another system with both

the chiplets using our design flow.

C. Package Routing

When the chiplet designs are complete, we can extract their

interface timing models which can be used while performing the

routing and optimizations of the package. Because of the differences

in the package and chip routing techniques, IC routing tools cannot

produce good routing for the package routing layers. Based on the

strategy explained in Section IV, Our RDL planner can generate

routing scripts for commercial tools like Cadence Innovus. We are

using this generated script to complete the connections between

the chiplets pins. Currently, our RDL planner cannot handle the

techniques like clock tree synthesis, 45-degree routing, etc. which

can be applied while performing the package routing. After inter-

chiplet routing is done, we are manually routing the rest of the I/O

pins of the chiplets to the package I/O pads. Fig. 7(a),(c) shows the

package routing of the two 2.5D systems we designed. For power and

ground connection, power and ground planes can be created which

are not used in our design.

D. Design Assemble

After chiplets are designed, DRC is performed on each chiplet

separately in the same way as in the traditional 2D flow. DRC of

the package is also performed before integrating it with chiplets.

TABLE III
COUPLING CAPACITANCES (IN FF) BETWEEN ROUTING LAYERS

M1-M5 M6 M7 RDL1 RDL2 RDL3

M1-M5 3625 479.1 22.52 58.16 9.889 7.547
M6 479.1 533.7 84.89 101.1 11.62 10.85
M7 22.52 84.89 26.68 14.84 1.739 1.663
RDL1 58.16 101.1 14.84 297.1 1009 41.49
RDL2 9.889 11.62 1.739 1009 297.4 1076
RDL3 7.547 10.85 1.663 41.49 1076 513.1

Using clean-DRC chiplets, the entire system is assembled in the

chip design environment with the modified PDK in the same way

partitions are assembled in the 2D design flow. At this stage, using

the drop-in approach we design two 2.5D systems with the chiplets.

The same package is designed to host both chiplets. In one system

we just include the Core chiplet that has only 8KB of memory and

can perform all the tasks within this memory capacity. The other

system with both the chiplets has 16KB memory which is suitable

for memory-intensive applications. Our design flow supports this

drop-in design approach enabled by 2.5D integration technology.

Fig. 7(c) shows the Core Chiplet Only system, and Fig. 7(a) shows

the assembled memory extended system. Fig. 7(b) shows a zoomed-

in view of the assembled system, which clearly shows the wires from

the chiplet and package together. The horizontal wires marked M1

are Core Chiplet wires that are connecting the power and ground

rails of the cell rows to the metal6 wire marked as M6. The M6

wire is a part of the power ring around the chiplet core. The RDL3

wire is a package wire connecting one of the package I/O pads with

a Core Chiplet pin. After this design-assemble step, we can use the

chip extraction tools to capture parasitics of the whole system and

perform analysis to determine the system performance and reliability.

VI. HOLISTIC ANALYSES RESULTS

Industry-standard flow uses FEM tools to perform package ex-

traction with S-parameters to determine package signal and power

integrity. However, in our flow, both package and chiplets are in the

same design environment after the design assemble stage. Therefore,

we can extract the distributed parasitic netlist of the entire chip-

package system, which is the key to more accurate and reliable

signal integrity analysis. We extract the parasitics with coupling ca-

pacitances from the assembled system using StarRC from Synopsys.

Table III shows the extraction result. For readability, we lumped the

coupling capacitances among layers M1-M5 in one column and one

row. The columns for RDL1, RDL2, and RDL3 show the coupling

capacitance between package layers and chiplet layers. The coupling

of package layers with M7 is low because of a less number of wires

on M7. However, there exists significant coupling with the wires on

M6, which is captured in the parasitics extraction process.

We use the extracted parasitics information to perform timing and

power analysis with Synopsys PrimeTime. Then we compare the

results with the monolithic 2D implementation of the system shown

in Fig. 7(d). This comparison is shown in Table IV. Though this

small SoC is chosen to illustrate the flow, we can still get some

important information from the comparison. The timing analysis

result considers the impact of RDLs and so for the 2.5D system

the highest system frequency we achieve is 245 MHz which is much

worse compared to the maximum frequency (333 MHz) for the 2D

implementation. To achieve this performance target, a large number of

buffers are needed. As a result, the cell count of the Core Chiplet Only

is almost double the cell count of the entire 2D die. The overall silicon

area and chip wire length in both implementations are comparable.

However, the power number for 2D die is greater than that of the

chiplets of 2.5D system because of the higher system frequency.

TABLE IV
COMPARISON OF DIE/CHIPLET ANALYSIS RESULTS

Chip Design 2D Die Core Chiplet Ext. Mem Chiplet

Standard Cells# 35,904 51,733 11,531
Total Wirelength 412.99 mm 350.89 mm 40.143 mm
Die Size (µm×µm) 550×550 390×590 350×470
System Frequency 333 MHz 245 MHz
Chip Power 10.6 mW 7.751 mW 0.194 mW

TABLE V
COMPARISON BETWEEN THREE IMPLEMENTATIONS OF THE EXAMPLE

SYSTEM IN 2D/2.5D TECHNOLOGY

System Design Core-Only System Core with Extra Memory

Chip-Package Cap 120.786 fF 217.409 fF
Max Frequency 300 MHz 245 MHz
System Power 9.578 mW 8.26 mW
Pakacage wirelength 35.41 mm 94.03 mm
Package Size 1.3 mm × 1.15 mm

Moreover, this table illustrates that the design and optimization steps

performed using the existing chip design tools have taken into account

the impact of the RDLs. And that is the main goal we want to achieve

with this flow. Table V shows the comparison between these two

2.5D systems. The Chip-Package coupling capacitance is larger for

the extended system because of more package wires. The critical

timing path for the extended system is between the core and memory

chiplets. In the absence of the extra memory chiplet, we could achieve

a higher system frequency for the Core-Only system.

VII. CONCLUSIONS AND FUTURE WORK

In this paper, we presented our flow to design chip and package

together using existing commercial chip design tools for 2.5D inte-

gration. As a proof of concept, we designed a very simple and small

system using our design flow. Our analysis results show a number

of design issues that our flow can address while the traditional flow

cannot. One of these is to co-optimize chiplets and package floorplan

and routing. We present an RDL planning and routing algorithm to

solve this problem. Results show that our design flow is compatible

with all standard ASIC CAD tools, but able to consider chiplet

and package altogether during physical design, parasitic extraction,

timing and power analysis. Further, our flow also supports the drop-in

approach, enabling design flexibility with efficient chiplet integration.

In future work, more sophisticated algorithms and techniques will be

studied to support clock tree synthesis, non-manhattan routing, and

one-to-many routing on package layers.

REFERENCES

[1] J. Kim, G. Murali, H. Park et al., “Architecture, Chip, and Package Co-
design Flow for 2.5D IC Design Enabling Heterogeneous IP Reuse,” in
Proceedings of the 56th Annual Design Automation Conference 2019, ser.
DAC ’19. New York, NY, USA: ACM, 2019, pp. 178:1–178:6.

[2] W. Liu, Min-Sheng Chang, and T. Wang, “Floorplanning and sig-
nal assignment for silicon interposer-based 3D ICs,” in 2014 51st

ACM/EDAC/IEEE Design Automation Conference (DAC), June 2014, pp.
1–6.

[3] Y. Peng, T. Song, D. Petranovic, and S. K. Lim, “Parasitic Extraction
for Heterogeneous Face-to-Face Bonded 3-D ICs,” IEEE Transactions on

Components, Packaging and Manufacturing Technology, vol. 7, no. 6, pp.
912–924, June 2017.

[4] M. R. Guthaus, J. E. Stine, S. Ataei et al., “OpenRAM: An Open-source
Memory Compiler,” in Proceedings of the 35th International Conference

on Computer-Aided Design, ser. ICCAD ’16. New York, NY, USA:
ACM, 2016, pp. 93:1–93:6.

[5] G. Karypis and V. Kumar, “Multilevel k-way Hypergraph Partitioning,”
VLSI Design, vol. 11, no. 3, pp. 285–300, 2000.

[6] Jason, J. Cong, S. K. Lim, and C. Wu, “Performance Driven Multi-level
and Multiway Partitioning with Retiming,” in Proceedings of the 37th

Annual Design Automation Conference, ser. DAC ’00. New York, NY,
USA: ACM, 2000, pp. 274–279.

