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1. Introduction

By noting the rapid growing trend of “pure prediction algo-
rithms,” Professor Efron compares and bridges the statistics of
the 20th Century (estimation and attribution) to that of the
current fast growing development of the 21st Century (pre-
diction). The outstanding discussion offers many deep-rooted
insights and comments. As did his forward thinking article
on Fisher’s influence on modern statistics (Efron 1998), which
helped shape many recent developments on statistical inference
(including our own work on confidence distribution (Singh,
Xie, and Strawderman 2005; Xie and Singh 2013)), this equally
inspiring article by Professor Efron will certainly galvanize
many contemporary and powerful developments for modern
statistics and for the foundations of data science.

In this note, we echo and also provide additional support to
two important points made by Professor Efron: (1) prediction
is “an easier task than either attribution or estimation”; (2) the
IID assumption (e.g. random splitting of training and testing
datasets) is crucial in the current developments on predic-
tions, but we also need to do more for the case when the IID
assumption is not met. Based on our own research, we provide
additional evidence to support these discussions. We discover
that prediction has a homeostasis property andworks well under
the IID setting even if the learning model used is completely
wrong. We also highlight the importance of having a good
modeling and inference practice: a good learning model with
good estimation is important to improve prediction efficiency
in the IID case and it becomes essential to maintain validity
in the non-IID case. The message remains: we still need to
make effort to build a good learning model and estimation
algorithm in prediction, even if prediction is an easier task than
estimation.

From the outset, we would like to point out that it is not a
straw-man argument to consider non-IID testing data. On the
contrary, such data are prevalent in data science. In addition
to those examples provided by Professor Efron that showed
“drift,” we can easily imagine non-IID examples in many typical
applications. For instance, a predictive algorithm is trained on
a database of patient medical records and we would like to
predict potential outcomes of a treatment for a new patient with
more severe symptoms than what the average patient shows.
The new patient with more severe symptoms is not a typical
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IID draw from the general patient population. Similarly, in the
finance sector, one is often interested in predicting the financial
performance of a particular company. If a predictive model is
trained on all institutes, then the testing data (of the specific
company of interest) are unlikely IID draws from the same
general population of the training data. The limitation of the IID
assumption, in our opinion, has hampered our efforts to fully
take advantage of fast-developingmachine learningmethodolo-
gies (e.g., deep neural network model, tree based methods, etc.)
in many real-world applications.

Our discussions in this note are based on a so-called confor-

mal prediction procedure, an attractive new prediction frame-

work that is error (or model) distribution free (see, e.g., Vovk,

Gammerman, and Shafer 2005; Shafer and Vovk 2008). We

discover a homeostasis phenomenon that the expected bias

caused by using a wrong model can largely be offset by the

corresponding negatively shifted predictive errors under the IID

setting. Thus, the predictive conclusion is always valid even

if the model used to train the data is completely wrong. This

robustness result clearly supports the claim that prediction is an

easier task than modeling and estimation. However, the use of

a wrong training (learning) model has at least two undesirable

impacts on prediction: (a) a prediction based on a wrong model

typically produces much wider predictive intervals than those

based on a correct model; (b) although the IID case enjoys a

nice homeostatic cancellation of bias (in fittedmodel) and shifts

(in associated predictive errors) when using a wrong learning

model, in the non-IID case this cancellation is often no longer

effective, resulting in invalid predictions. The use of a correct

learningmodel can helpmitigate and sometimes solve the prob-

lem of invalid prediction for non-IID (e.g., drifted or individual-

specific) testing data.

Section 2 reviews a conformal predictive procedure and

shows that the prediction is valid under the IID setting, even if

the learningmodel is completely wrong. Section 3 is a numerical

study using a neural network model to demonstrate the impact

of a wrong learning model and estimation on prediction in

both the IID and non-IID cases. Section 4 is a concluding

remark. A more detailed discussion, including an introduction

of predictive curve (to represent predictive intervals of all levels)

and an elaborated study of linear models, is in Xie and Zheng

(2020).
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2. Prediction, Testing Data, and LearningModels

As in Equation (6.4) of Professor Efron’s article, we assume that
a training (observed) dataset of size n, say, Dobs = {(xi, yi), i =

1, . . . , n} is available, where (xi, yi), i = 1, . . . , n, are IID random
samples from an unknown population F . For a given xnew, we
would like to predict what ynew would be.We first use the typical
assumption that (xnew, ynew) is also an IID draw from F . Later
we relax this requirement and only assume that ynew|xnew relates
to xnew the same way as yi|xi relates to xi, but xnew follows a
marginal distribution that is different from that of xi.

For notation convenience, we consider (xnew, ynew) as the
(n + 1)th observation and introduce the index n + 1, with
xn+1 = xnew and yn+1 as a potential value of the unobserved
ynew. Unless specified otherwise, the index “n + 1” and index
“new” are exchangeable throughout the note.

2.1. Conformal Prediction InferenceWith Quantified

Confidence Levels

The conformal prediction method has attracted increasing
attention in learning communities in recent years (see, e.g.,
Vovk, Gammerman, and Shafer 2005; Shafer andVovk 2008; Lei
et al. 2018; Barber et al. 2019a, 2019b). The idea is straightfor-
ward. To make a prediction of the unknown ynew given xn+1 =

xnew, we examine a potential value yn+1, and see how “confor-
mal” the pair (xn+1, yn+1) is among the observed n pairs of IID
data points (xi, yi), i = 1, . . . , n. The higher the “conformality,”
the more likely ynew takes the potential value yn+1. Frequently, a
learning model, say yi ∼ μ(xi) for i = 1 . . . , n, n + 1, is used to
assist prediction. However, the learning model is not essential.
As wewill see later, even ifμ(·) is totally wrong or does not exist,
a conformal prediction can still provide us a valid prediction, as
long as the IID assumption holds.

To be specific, this note employs a conformal prediction
procedure known as the Jackknife-plusmethod (see, e.g., Barber
et al. 2019b). Consider a combined collection of both the train-
ing and testing data but with the unknown ynew replaced by a
potential value yn+1:A = Dobs ∪ {(xnew, yn+1)} = {(xi, yi), i =

1, . . . , n, n + 1}. We define conformal residuals

Rij = yi − ŷ
−(i,j)
i , for i �= j and i, j = 1, . . . , n, n + 1,

where ŷ
−(i,j)
i is the prediction of yi based on the leave-two-out

dataset A−(i,j) = A − {(xi, yi), (xj, yj)}. If a working model
μ(·) is used, for instance, the model is first fit based on the
leave-two-out datasetA−(i,j) and the point prediction is set to be

ŷ
−(i,j)
i = μ̂(xi;A

−(i,j)), where μ̂(·;A−(i,j)) is the fitted (trained)

model usingA−(i,j).
For each given yn+1 (a potential value of ynew), we define

Qn(yn+1) =
1

n

n
∑

i=1

1{Rn+1,i≥Ri,n+1}, (1)

which relates to the degree of “conformity” of the residual values

Rn+1,i = yn+1 − ŷ
−(i,n+1)
n+1 among the conformal residuals

Ri,n+1 = yi − ŷ
−(i,n+1)
i , i = 1, . . . , n. (Here, Ri,n+1 are in

fact the leave-one-out residuals of using the training dataset
Dobs.) If Qn(yn+1) ≈ 1

2 , then Rn+1,i is around the middle of

the training data residuals Ri,n+1 and thus “most conformal.”
WhenQn(yn+1) ≈ 0 or ≈ 1, Rn+1,i is at the extreme ends of the
training data residuals Ri,n+1 and thus “least conformal.” This
intuition leads us to define a conformal predictive interval of
ynew as

Cα =
{

y : Qn(y) ≥
α

2

}

⋂

{

y : 1 − Qn(y) ≥
α

2

}

=

[

q α
2

(

{ŷ
−(i,n+1)
n+1 + Ri,n+1}

n
i=1

)

,

q1− α
2

(

{ŷ
−(i,n+1)
n+1 + Ri,n+1}

n
i=1

)

]

, (2)

where qα

(

{ai}
n
i=1

)

is the αth quantile of a1, . . . , an. The interval
(2) is a variant version of the Jackknife-plus predictive interval
proposed by Barber et al. (2019b) in which Ri,n+1 is replaced by

|Ri,n+1| = |yi − ŷ
−(i,n+1)
i | instead. The following proposition

states that, under the IID assumption, Cα defined in (2) is a
predictive set for ynew with guaranteed level-(1 − 2α).

Proposition 1. If (xi, yi), (xnew, ynew)
iid
∼ F , for i = 1, . . . , n, then

P
(

ynew ∈ Cα

)

≥ 1 − 2α.

A proof of the proposition can be found in Xie and Zheng
(2020), which holds for a finite n. Barber et al. (2019b) pointed
out empirically intervals like Cα have a typical coverage rate of
1 − α. In the rest of the note, we treat Cα as an approximate
level-(1 − α) predictive interval.

Note that the function Qn(y) defined in (1) is in essence a
predictive distribution function of ynew (see, e.g., Shen, Liu, and
Xie 2018; Vovk et al. 2019). The corresponding predictive curve
of ynew is

PVn(y) = 2min{Qn(y), 1 − Qn(y)}.

Clearly, Cα = {y : PVn(y) ≥ α}. A plot of predictive curve
function PVn(y) provides a full picture of conformal predictive
intervals of all levels. Analogous to that of confidence distri-
bution and Birnbaum’s confidence curve, predictive function
Qn(y) has a confidence interpretation as the p-value function
of the one-sided test H0 : ynew = y versus H1 : ynew ≤ y, and
the predictive curve PV(y) has the same implementation for the
corresponding two sided test (see. e.g., Xie and Zheng 2020, sec.
2.2). A formal definition of conformal predictive function is in
Vovk et al. (2019).

A striking result is that Proposition 1 holds, even if the
learning model μ(·) used to obtain the prediction is com-
pletely wrong, as long as the IID assumption holds. This robust
property against model misspecification is highly touted in the
machine learning community. It gives support to the sentiment
of using “black box” algorithms where the role of model fitting
is reduced to an afterthought, although we will also provide
arguments to counter this sentiment.

2.2. IID Versus Non-IID: Efficiency and Validity Under a

WrongModel

Although the validity of prediction is robust against wrong
learning models in the IID case, there is no free lunch. The
predictive intervals obtained under a wrong model are typically
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wider. For instance, suppose that the true model is y = μ0(x)+

ε, but a wrong model y = μ1(x) + e is used. Since y =

μ0(x) + ε = μ1(x) + {μ0(x) − μ1(x)} + ε, we have e =

{μ0(x) − μ1(x)} + ε. So, when ε is independent of x, var(e) =

var({μ0(x) − μ1(x)}) + var(ε) ≥ var(ε) and the equality holds
only whenμ1(x) = μ0(x). Thus, the error term e under a wrong
model has a larger variance than the error term ε under the true
model. The larger the variance var({μ0(x) − μ1(x)}) is (i.e., the
more discrepant μ1(x) and μ0(x) are), the larger the variance
of the error term e is. A larger error translates to less accurate
estimation and prediction. See also Proposition 2 of Xie and
Zheng (2020) for a formal statement regarding the predictive
interval lengths in linear models.

We have an explanation why a conformal predictive algo-
rithm can still provide valid prediction even under a totally
wrong learning model in the IID case. Specifically, when we
use a wrong model μ1(x), the corresponding point predic-
tor will be biased by the magnitude of μ1(xnew) − μ0(xnew),
but at the same time the error term e absorbs the bias and
produces residuals with a shift by the magnitude of μ0(xi) −

μ1(xi) = −{μ1(xi) − μ0(xi)}. In the conformal predic-
tive interval (2), the quantiles of residuals are added back to
the point prediction to form the interval bounds. If the IID
assumption holds, the bias is offset by the shift. See also Xie
and Zheng (2020) in which an explicit mathematical expres-
sion of this cancellation in linear models is derived. Along
with greater residual variance, the offsetting ensures the valid-
ity of the conformal prediction in the IID case. We call this
tendency of self-balance to maintain validity a homeostasis
phenomenon.

The IID assumption is a crucial condition to ensure the
validity of a prediction under a wrong model. If the IID
assumption does not hold for the testing data, the prediction
based on a wrong learning model (or a correct model but a
wrong parameter estimation) is often invalid with large errors,
as we see in our case studies. We think this IID assumption
also explains why deep neural network and other machine
learning methods work so well in academic research settings
(where random split of data into training and testing sets is
a common practice) but fail to produce “killer applications”
to make predictions for a given patient or company whose
xnew are often not close to the center of the training data.
The good news is that, if we use a correct model for training
and can get good model estimates, it is still possible to get a
valid prediction for a specific xnew. Modeling and estimation

remain relevant and often crucial for prediction in both IID and
non-IID cases.

3. Case Study: Prediction Under Neural Network

Models

We use a neural network model and a simulation study to
provide an empirical support for our discussion. In the current
neural network development, model fitting algorithms do not
pay much attention to correctly estimate the model param-
eters. We find that the estimation of model parameters also
plays an important role in prediction, in addition to a cor-
rect model specification.

Example 1. Suppose our training data (yi, xi), i = 1, . . . , n, are
IID samples from the model

yi = μ0(xi) + εi

= max
{

0,max{0, zi1 + zi2} − max{0,wi}
}

+ εi,

εi
iid
∼ N(0, σ 2), (3)

where xi = (zi1, zi2,wi)
T iid

∼ N(μx,�x) and εi and xi are
independent. Here, μx = (0, 0, 0)T , the (k, k′)-element of �x

is 0.5|k−k′|/2, for k, k′ ∈ {1, 2, 3}, σ 2 = 1 and n = 300. Model
(3) is in fact a neural network model (with a diagram presented
in Figure 1(a)) and we can re-express μ0(xi) as

μ0(xi) = f
(

A2f (A1xi)
)

. (4)

Here, f (x) = max(x, 0) is the ReLU activate function, and

A1 =

(

a
(1)
11 a

(1)
12 a

(1)
13

a
(1)
21 a

(1)
22 a

(1)
23

)

andA2 =
(

a
(2)
1 , a

(2)
2

)

are themodel

parameters. Corresponding to (3), the true model parameter

values are a
(1)
11 = a

(1)
12 = a

(1)
23 = 1, a

(1)
13 = a

(1)
21 = a

(1)
22 = 0

and (a
(2)
1 , a

(2)
2 ) = (1,−1). In our analysis, we assume that we

know the model form (4) but do not know the values of model
parameters A1 and A2.

For the testing data, we consider two scenarios: (i) [IID case]

xnew
iid
∼ N(μx,�x) and, given xnew, (xnew, ynew) follows (3); (ii)

[Non-IID case] the marginal distribution xnew
iid
∼ (T1,T2,T3)

and, given xnew, (xnew, ynew) follows (3). Here, T1,T2,T3 are
iid random variables from the t-distribution with degrees of
freedom 3 and non-centrality parameter 1.

Figure 1. Diagrams of four neural network models: (a) true μ0(·); (b) partial μ1(·); and (c, d) over-parameterized μ2(·) and μ3(·) of (20 nodes in each layer) × L layers,
with L = 20 and 100, respectively.
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Table 1. Mean square error of each parameter in μ0 (training data n = 300;
repetition = 10).

MSE a11 a12 a13 a21 a22 a23 b1 b2

Opt-MSE 0.07 0.059 0.31 0.154 0.109 0.124 0.06 0.101
Neuralnet 4.87 5.9 1.53 1.14 2.23 2.08 4.87 0.84

In addition to (a) the true model μ0(·), four wrong learning
models are considered:

(b) μ1(xi) = f (Bzi) (partially correct neural network

model, missing wi);

(c) μ2(xi) = f
(

C20f (C19 · · · f (C1x))
)

(deep neural network model with 20 layers);

(d) μ3(xi) = f
(

D100f (D99 · · · f (D1x))
)

(deep neural network model with 100 layers);

(e) μ4(xi) = η0 (without any covariates),

where zi = (zi1, zi2)
T , B = (b1, b2), C1,D1 ∈ R

20×3,
C20,D100 ∈ R

1×20, and Ci,Dj ∈ R
20×20, 2 ≤ i ≤

19, 2 ≤ j ≤ 99. In our analysis, the neural network
models μ0(·) - μ3(·) are fit using the neuralnet package
(cran.r-project.org/web/packages/neuralnet/).

The Neuralnet package is an off-the-shelf machine learning
algorithm. Its emphasis is on learning and not onmodel param-
eter estimation. Even under the true model μ0(·), the estimates
of model parameters from Neuralnet are not very accurate (see
Table 1). In the table, “Opt-MSE” refers to a code that we wrote
by directly minimizing MSE =

∑n
j=1(yj − μ0(xj))

2, which
can be implemented when the neural network is small. The
calculation in the table is based on 20 repeated runs, each with
a training dataset of size n = 300 from model (3).

Reported in Table 2 are the coverage rate and average interval
length of predictive intervals computed under 10 = 5 × 2 set-
tings with five different learning models μk(·), k = 0, 1, . . . , 4,
and in two scenarios. The analysis is repeated for 10 times
with 10 simulated training datasets from model (3). We use 10
repetitions and not a greater number, because it takes a long
time to fit a neural network model. However, for each of the
10 training datasets, 20 pairs of (ynew, xnew) are used. So, for
the reported values, each is computed using 10 × 20 = 200
pairs of (ynew, xnew). For the true neural network model μ0(·),
Opt-MSE is also used to fit the model. As we can see in Table 2,
under the IID scenario, all predictive intervals are valid with a
correct coverage. The best one with the shortest interval length
is the one that uses the correct model and Opt-MSE estimation
method. In the non-IID case, only the shallow neural network
models provide valid predictions, and among them, Opt-MSE
can give us confidence intervals with half the width. Indeed,
when a wrong learning model is used, the IID assumption is
essential for the prediction validity and the use of awrongmodel
often results in wider intervals. Furthermore, the estimation of
model parameters seems to also have a big impact on prediction.

To get a full picture of the predictive intervals at all lev-
els, we plot in Figure 2 the predictive curves of ynew. The
plots are based on the first training dataset and making pre-
diction for (a) the IID case with the realization xnew =

(−0.909,−1.149,−0.771), and (b) the non-IID case with the
realization xnew = (3.653, 1.748, 1.063). The realized value
of μ0(xnew) is 0 and 4.338 in (a) and (b), respectively. From
Figure 2, we see that the use of a wrong model μ1(·)–μ4(·)

results in wider predictive curve (and predictive intervals at
all levels 1 − α ∈ (0, 1)) in both IID and non-IID cases.
Although the shallow neural network models μ0(·) and μ1(·)

can provide good coverage rates, the predictive curves in the
non-IID case are much wider than other approaches. This
peculiar phenomenon occurs even when we assume to know

Table 2. Performance of 95% predictive intervals under five different learning models and in two scenarios: coverage rates (before brackets) and average interval lengths
(inside brackets) (training data size = 300; testing data size = 20; repetition = 10).

True model Wrong model

μ0(·) μ1(·) μ2(·) μ3(·) μ4(·)

Opt-MSE Neuralnet Nueralnet Nueralnet Nueralnet Nueralnet

IID scenario 0.995 (4.462) 0.99 (4.608) 0.99 (4.809) 0.99 (5.212) 0.99 (5.201) 0.985 (5.26)
Non-IID scenario 0.955 (4.52) 0.985 (9.327) 0.98 (9.77) 0.71 (5.899) 0.695 (5.201) 0.685 (5.277)

Figure 2. Plots of predictive curves for (a) xnew
iid
∼ xi and (b) xnew �∼ xi . In each plot, the red solid curve is the target (oracle) predictive curve PVn(y) = 2max{�(y −

μnew), 1 − �(y − μnew)}, obtained assuming that the distribution of ynew ∼ N(μnew , 1) is completely known. The two predictive curves obtained using μ0(·) are in
black (solid line for Opt-MSE; dashed line for Neuralnet). The other predictive curves (all in a dashed or broken line and in various colors) are obtained using the other four
wrong working models.
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the true model structure μ0(·), indicating the importance of
estimating model parameters accurately. Furthermore, in the
non-IID case, there are large shifts when we use deep neural
network models μ2(·) and μ3(·), leading to invalid predictions.
The best prediction result is from the one obtained by using the
correct learning model μ0(·) with the more accurate parameter
estimation method Opt-MSE. The message is the same as what
we have learned from Table 2, which also exactly mirrors what
is found in the case study of linear models in Xie and Zheng
(2020).

4. Conclusion

Professor Efron pointed out that “the 21st Century has seen
the rise of a new breed of what can be called ‘pure prediction
algorithms’.” We are fully in agreement with Professor Efron’s
discussion that the prediction algorithms “can be stunningly
successful,” and that “the emperor has nice clothes but they’re
not suitable for every occasion.” Along the same line and under
the setting of conformal prediction, we have demonstrated and
explained how and why a prediction method can be success-
ful under the IID assumption, even if the learning model is
completely wrong. More importantly, we have also demon-
strated that it is still meaningful, and often crucial, to build our
prediction algorithms based on a good practice of modeling,
estimation and inference. We fully anticipate and believe that
“the most powerful ideas of Twentieth Century statistics”—
modeling, estimation, and inference, will play a pivotal role in
building the mathematical foundation of modern data science
and in fully realizing its potential for real-world applications.
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