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NOTES

Edited by Vadim Ponomarenko

Peano Curves in Complex Analysis

Malik Younsi

Abstract. A Peano curve is a continuous function from the unit interval into the plane whose
image contains a nonempty open set. In this note, we show how such space-filling curves arise
naturally from Cauchy transforms in complex analysis.

1. INTRODUCTION. A Peano curve (or space-filling curve) is a continuous function
f:[0,1] = C, where C denotes the complex plane, such that ([0, 1]) contains a nonempty

open set.

The first example of such a curve was constructed by Peano [6] in 1890, motivated
by Cantor’s proof of the fact that the unit interval and the unit square have the same
cardinality. Indeed, Peano’s construction has the property that f maps [0,1]
continuously onto [0,1] x [0,1]. Note, however, that topological considerations prevent
such a function f from being injective.

One year later, in 1891, Hilbert [3] constructed another example of a space-filling
curve, as a limit of piecewise-linear curves. Hilbert’s elegant geometric construction
has now become quite classical and is usually taught at the undergraduate level (see

Figure 1).
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Figure 1. The first six steps of Hilbert’s iterative construction of a Peano curve.

However, much less known is the fact that Peano curves can be obtained by the use
of complex-analytic methods, more precisely, from the boundary values of certain
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power series defined on the unit disk. This was observed by Salem and Zygmund in
1945 in the following theorem:

doi.org/10.1080/00029890.2019.1605800
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Color versions of one or more of the figures in the article can be found
online at www.tandfonline.com/uamm. 91). Let f(z) = Zk agz'™

Theorem 1 (Salem—-Zygmund [be a lacunary power series,

meaning that there is a constant N > 1 such that
n
e NN ()}
ny
Suppose moreover that 2_x % < |

[ , so that f defines a continuous function on the
closed unit disk D that is analytic on D.

Then there is an absolute constant Ao such that if A 2 Ao and if >k k| | converges

slowly enough (in some precise sense), then f(0D) contains a nonempty open set.

Note that if f is as in Theorem 1, then t - f(e*™) defines a Peano curve, by
definition.

A few years later, in 1952, Piranian, Titus, and Young

[8] gave a particularly simple = /() = [0, 1] x [0_
example showing that one can construct f such that 10]. See also 4
f(0D),1]. This was later extended to a whole class of series by Schaeffer [ ] for other
results on Peano curves and power series, as well as [2] and [7] for Peano curves
arising from function algebras.

The purpose of this note is to show that Peano curves can also be constructed using
Cauchy integrals. The proofrelies on a surprisingly little-known folklore theorem from
complex analysis as well as on a classical lemma in geometric measure theory due to
Frostman.

C C 2. A FOLKLORE THEOREM. In the following, we denote the Riemann
sphere by = U {eo}’
Theorem 2. Let E C C be a nonempty compact set, and let f ' C C= be a bounded

continuous function analytic on C E\. Then
FE) = f(C).

In other words, every value taken by f in the sphere is also taken by f in E.

Theorem 2 appears in Browder’s textbook on function algebras [1, Lemma 3.5.4]
in the case where E has empty interior, with some details left to the reader. We supply
all the details in the general case for the sake of convenience.

636 ¢ THE MATHEMATICAL ASSOCIATION OF AMERICA  [Monthly 126


http://dx.doi.org/10.1080/00029890.2019.1605800
http://www.tandfonline.com/uamm
http://www.tandfonline.com/uamm

Proof. Clearly,f (E) € f(©), For the other inclusion, letw € C. We have to show that
if w € f(C), then there exists z € E with f(z) = w. Replacing f by f - w if necessary, we

may assume that w = 0.

Suppose, to obtain a contradiction, that f has a zero in C but no zero in E. First,

note that f cannot have zeros tending to o. Indeed, if this were the case, then
-~ Fwould

have a nonisolated zero at oo, in which case we would have f =0 on C\ E and hence f
= 0 on OE C E by continuity, contradicting our assumption. It follows that f can have
only finitely many zeros in the whole sphere, since otherwise a sequence of zeros
would accumulate at a point of E and f would vanish at that point, again by continuity.

Let zy,...,zn denote the zeros of f, listed with multiplicities, and define
f(2)

=z (2—zn)

We do not include any z;equal to == in the above formula for g. In particular, we may

(z e@).

g(z) =

have g =f, if f has only one zero, at o°.

Now, note that g is a continuous and nonvanishing function in the plane, and
therefore has a continuous logarithm h : C - C. Moreover, the function h is necessarily
analytic outside E, since g is analytic there. We claim that this contradicts the fact that
g(ee) = 0. Indeed, to see this, we consider the type of isolated singularity that h has at
oo (i.e., the singularity of h(1/z) at z = 0). If e is a removable singularity ofh() h, then
the limit lim,-.. h(z) exists, in which case lim,;s. g(z) = lim,s. e would be a nonzero
complex number, a contradiction. If h has an essential singularity at oo, then by the
Casorati—Weierstrass theorem, the set h({|z| >hzR}) for R > 0 large enough is dense in
C, again contradicting the fact that lim,>~ e = 0. The only remaining possibility is that
oo is a pole of h. In this case, there exists some integer n > 1 and some nonzero complex

number a such that

. h(2)
lim =«

|z|=o0 Z

Write a = |a|e®, where 0 is the argument of the complex number a. Then we have

.h(]z}e®/ng) = | | ielim

ae,

| 1> (| 2] e-ien)
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so that in particular there exists M > 0 such that
(h(lzle ™) = Sallzl”  (lzl = M)
Re -2 N '
Taking the exponential and noting that |g| = |e"| = eRh gives

: 1 L1
|g(ze Mz e (2 > M)
I

This contradicts the fact that the left-hand side tends to 0 2| = oo. &
as

Since all possible cases lead to a contradiction, we get that f(E) = f( ), as required.

Remark. Theorem 2 is clearly interesting only if f is not constant. In this case, the set

f(€) is open, by the open mapping theorem. In particular, the set f(E) has nonempty
interior, even though E may not!

The above remark raises the following question: For which compact set E does there

exist a nonconstant bounded continuous function / : € € that is analytic outside
E? Can we find such sets with empty interior?
As we shall see in the next section, the answer is affirmative.

3. PEANO CURVES FROM CAUCHY INTEGRALS.

Theorem 3. Let E C C be compact. Suppose that E has empty interior and that its
Hausdorff dimension satisfies W% (E) > 1 Then there exists a bounded continuous

function f:C Cs , analytic on C\ E, that is not constant.

Remark. In other words, compact sets of dimension bigger than one are nonremovable
for bounded continuous functions analytic outside the set. On the other hand, a well-
known result generally attributed to Painleve states that compact sets of Hausdorff”
dimension less than one are removable [11, Corollary 2.8]. This case is not interesting
from the point of view of Theorem 2, since for such sets only constant functions satisfy
the assumptions.

For example, in Theorem 3, one could take E to be a fractal curve with Hausdorff
dimension strictly between one and two, such as the Koch snowflake for instance.
Combining Theorem 3 with Theorem 2 then yields examples of Peano curves.

Corollary 4. Let be any curve with 1 < dim#(I') <2 and let f be as in Theorem 3.
Then () is a Peano curve.

4. PROOF OF THEOREM 3. For the proof of Theorem 3, we construct the function
f as a Cauchy-type integral.
Suppose that E c C is a compact set with empty interior, and let p be a nontrivial

Radon measure supported on E. The function
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d .
Cu() :=f O e T\
£ —2 )

is called the Cauchy transform of the measure p. By differentiating under the integral
sign, one easily sees that Cp defines an analytic function outside E. Moreover, that

function is not constant, since

lim Cu(z) =0,

AN

whereas
Ji#n;OzCﬂ(z) =—u(E) #0

Cauchy transforms are therefore good candidates for the function f in Theorem 3. The
problem, however, is that in general Cy may not bounded, let alone continuous on the

sphere. For this to hold, we need additional assumptions on the measure .

Lemma 5. Let E € C be a compact set with empty interior, and let . be a nontrivial
Radon measure supported on E. Suppose moreover that W satisfies the growth condi-

tion

u(D(zo,r)) < r* (z0€EC,r>0),

for some 1 <'s <2. Then the Cauchy transform C\ defined by (1) is a nonconstant

analytic function onC  E\ that extends to a bounded continuous function on C.

Proof. We already mentioned that Cp is analytic outside E and not constant.

We show that the growth property of p implies that Cp is Holder continuous out-"
side E, so that in particular it extends to a bounded continuous function on the whole
sphere, by uniform continuity. The argument is quite standard, see, for example, [11,
Theorem 2.10]. Fix zzw € C\ E, z=w, and write 6 := |z - w|. Then

dp(t)
-C )
Cuy = f|c—z||¢—w|

We split the integral over the four disjoint sets

A ={TEE:|T-2]|<6/2},

Ay:={TEE:|T-w]|<6/2},
As:={CEE:|l-z| <[T-w]|,|T-2z| 26/2},
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Asi={T€E: [T-2z| > |T-w]|,|T-w]|25/2}.

On Ay, |T-w]| >6/2, so we have

f du(¢) <2[ f"“
a e =zlle —wl = Ju, Sie—: § — t2dtdu(Q)

8/2 00
=2f f t2dt du() +2f / t2dt dp(¢)
Ay Jig—z Ay Jog2

where C is independent of 6.
Similarly for the integral 372 5 7| over
As. For the integral over — 2]; u(DG, D)t 7dr + 457 (A1) As,

we have 52
< 2[ £ 72dt 48718520
— 0

=8,
=25 p({8/2 <t —z| <thtdt

5/2

oo
525[ +3dt
5/2

ros—1

5] du(¢) 55/
A 18—zl —w] le—zlzs2) 1€ — z?

f du(Q)

Here, we used the fact that s < 2. Similarly for the integral over As4. This completes the
proof of the lemma. W

The final ingredient for the proof of Theorem 3 is the following consequence of a
classical result of Frostman.

Lemma 6 (Frostman’s lemma). Let E C C be a compact set such that dimu(E) > 1.
Then for any 1 < s < dimu(E), there exists a nontrivial Radon measure \ supported on

E with growth

u(D(zo,r)) <1 (zo€ C,r>0).

Proof. See, for example, [5, Theorem 8.8]. [ |

Theorem 3 now follows directly from Lemmas 5 and 6.
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Proof. Let pbe as in Lemma 6. Then by Lemma 5, the function ~ J =Cltis abounded
continuous function on the whole sphere which is analytic on C \ E, but not constant.
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