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NOTES 
Edited by Vadim Ponomarenko 

 

Peano Curves in Complex Analysis 
 

Malik Younsi 

 

Abstract. A Peano curve is a continuous function from the unit interval into the plane whose 

image contains a nonempty open set. In this note, we show how such space-filling curves arise 

naturally from Cauchy transforms in complex analysis. 

1. INTRODUCTION. A Peano curve (or space-filling curve) is a continuous function 

f : [0,1] → C, where C denotes the complex plane, such that f([0,1]) contains a nonempty 

open set. 

The first example of such a curve was constructed by Peano [6] in 1890, motivated 

by Cantor’s proof of the fact that the unit interval and the unit square have the same 

cardinality. Indeed, Peano’s construction has the property that f maps [0,1] 

continuously onto [0,1] × [0,1]. Note, however, that topological considerations prevent 

such a function f from being injective. 

One year later, in 1891, Hilbert [3] constructed another example of a space-filling 

curve, as a limit of piecewise-linear curves. Hilbert’s elegant geometric construction 

has now become quite classical and is usually taught at the undergraduate level (see 

Figure 1). 

 

Figure 1. The first six steps of Hilbert’s iterative construction of a Peano curve. 

However, much less known is the fact that Peano curves can be obtained by the use 

of complex-analytic methods, more precisely, from the boundary values of certain 
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power series defined on the unit disk. This was observed by Salem and Zygmund in 

1945 in the following theorem: 
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Color versions of one or more of the figures in the article can be found 

online at www.tandfonline.com/uamm. 

Theorem 1 (Salem–Zygmund [be a lacunary power series, 

meaning that there is a constant λ > 1 such that 

 

Suppose moreover that |

 | , so that f defines a continuous function on the 

 

closed unit disk D that is analytic on D. 

Then there is an absolute constant λ0 such that if λ ≥ λ0 and if | | converges 

slowly enough (in some precise sense), then f(∂D) contains a nonempty open set. 

Note that if f is as in Theorem 1, then t → f(e2πit) defines a Peano curve, by 

definition. 

A few years later, in 1952, Piranian, Titus, and Young 

[8] gave a particularly simple 

example showing that one can construct f such that 

f(∂D),1]. This was later extended to a whole class of series by Schaeffer [ ] for other 

results on Peano curves and power series, as well as [2] and [7] for Peano curves 

arising from function algebras. 

The purpose of this note is to show that Peano curves can also be constructed using 

Cauchy integrals. The proof relies on a surprisingly little-known folklore theorem from 

complex analysis as well as on a classical lemma in geometric measure theory due to 

Frostman. 

2. A FOLKLORE THEOREM. In the following, we denote the Riemann 

sphere by = ∪ {∞}
.
 

Theorem 2. Let E ⊂ C be a nonempty compact set, and let → be a bounded 

continuous function analytic on \ . Then 

 

In other words, every value taken by f in the sphere is also taken by f in E. 

Theorem 2 appears in Browder’s textbook on function algebras [1, Lemma 3.5.4] 

in the case where E has empty interior, with some details left to the reader. We supply 

all the details in the general case for the sake of convenience. 

http://dx.doi.org/10.1080/00029890.2019.1605800
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Proof. Clearly . For the other inclusion, let . We have to show that 

if w ∈ f(C), then there exists z ∈ E with f(z) = w. Replacing f by f − w if necessary, we 

may assume that w = 0. 

Suppose, to obtain a contradiction, that f has a zero in C but no zero in E. First, 

note that f cannot have zeros tending to ∞. Indeed, if this were the case, then

 would 

have a nonisolated zero at ∞, in which case we would have f ≡ 0 on C \ E and hence f 

≡ 0 on ∂E ⊂ E by continuity, contradicting our assumption. It follows that f can have 

only finitely many zeros in the whole sphere, since otherwise a sequence of zeros 

would accumulate at a point of E and f would vanish at that point, again by continuity. 

Let z1,...,zn denote the zeros of f, listed with multiplicities, and define 

 

We do not include any zj equal to ∞ in the above formula for g. In particular, we may 

have g = f, if f has only one zero, at ∞. 

Now, note that g is a continuous and nonvanishing function in the plane, and 

therefore has a continuous logarithm h : C → C. Moreover, the function h is necessarily 

analytic outside E, since g is analytic there. We claim that this contradicts the fact that 

g(∞) = 0. Indeed, to see this, we consider the type of isolated singularity that h has at 

∞ (i.e., the singularity of h(1/z) at z = 0). If ∞ is a removable singularity ofh(z) h, then 

the limit limz→∞ h(z) exists, in which case limz→∞ g(z) = limz→∞ e would be a nonzero 

complex number, a contradiction. If h has an essential singularity at ∞, then by the 

Casorati–Weierstrass theorem, the set h({|z| >h(z)R}) for R > 0 large enough is dense in 

C, again contradicting the fact that limz→∞ e = 0. The only remaining possibility is that 

∞ is a pole of h. In this case, there exists some integer n ≥ 1 and some nonzero complex 

number α such that 

 

Write α = |α|eiθ, where θ is the argument of the complex number α. Then we have 

z h(|z|e−iθ/nn) = | | iθ lim

 α e , 

| |→∞ (|z|e−iθ/n) 
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so that in particular there exists M > 0 such that 

Re  

Taking the exponential and noting that |g| = |eh| = eReh gives 

 |  | | 

 | | 

This contradicts the fact that the left-hand side tends to 0 

as 

Since all possible cases lead to a contradiction, we get that f(E) = f( ), as required.

  

Remark. Theorem 2 is clearly interesting only if f is not constant. In this case, the set 

 is open, by the open mapping theorem. In particular, the set f(E) has nonempty 

interior, even though E may not! 

The above remark raises the following question: For which compact set E does there 

exist a nonconstant bounded continuous function → that is analytic outside 

E? Can we find such sets with empty interior? 

As we shall see in the next section, the answer is affirmative. 

3. PEANO CURVES FROM CAUCHY INTEGRALS. 

Theorem 3. Let E ⊂ C be compact. Suppose that E has empty interior and that its 

Hausdorff dimension satisfies . Then there exists a bounded continuous 

function → , analytic on C \ E, that is not constant. 

Remark. In other words, compact sets of dimension bigger than one are nonremovable 

for bounded continuous functions analytic outside the set. On the other hand, a well-

known result generally attributed to Painleve states that compact sets of Hausdorff´ 

dimension less than one are removable [11, Corollary 2.8]. This case is not interesting 

from the point of view of Theorem 2, since for such sets only constant functions satisfy 

the assumptions. 

For example, in Theorem 3, one could take E to be a fractal curve  with Hausdorff 

dimension strictly between one and two, such as the Koch snowflake for instance. 

Combining Theorem 3 with Theorem 2 then yields examples of Peano curves. 

Corollary 4. Let  be any curve with 1 < dim , and let f be as in Theorem 3. 

Then f() is a Peano curve. 

4. PROOF OF THEOREM 3. For the proof of Theorem 3, we construct the function 

f as a Cauchy-type integral. 

Suppose that E ⊂ C is a compact set with empty interior, and let μ be a nontrivial 

Radon measure supported on E. The function 
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  (1) 

is called the Cauchy transform of the measure μ. By differentiating under the integral 

sign, one easily sees that Cμ defines an analytic function outside E. Moreover, that 

function is not constant, since 

lim Cμ(z) = 0, 
z→∞ 

whereas 

. 

Cauchy transforms are therefore good candidates for the function f in Theorem 3. The 

problem, however, is that in general Cμ may not bounded, let alone continuous on the 

sphere. For this to hold, we need additional assumptions on the measure μ. 

Lemma 5. Let E ⊂ C be a compact set with empty interior, and let μ be a nontrivial 

Radon measure supported on E. Suppose moreover that μ satisfies the growth condi- 

tion 

 μ(D(z0,r)) ≤ rs (z0 ∈ C,r > 0), 

for some 1 < s < 2. Then the Cauchy transform Cμ defined by (1) is a nonconstant 

analytic function on  \ that extends to a bounded continuous function on C. 

Proof. We already mentioned that Cμ is analytic outside E and not constant. 

We show that the growth property of μ implies that Cμ is Holder continuous out-¨ 

side E, so that in particular it extends to a bounded continuous function on the whole 

sphere, by uniform continuity. The argument is quite standard, see, for example, [11, 

Theorem 2.10]. Fix z,w ∈ C \ E, z = w, and write δ := |z − w|. Then 

|Cμ(z) . 

We split the integral over the four disjoint sets 

A1 := {ζ ∈ E : |ζ − z| < δ/2}, 

A2 := {ζ ∈ E : |ζ − w| < δ/2}, 

A3 := {ζ ∈ E : |ζ − z| ≤ |ζ − w|,|ζ − z| ≥ δ/2}, 
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A4 := {ζ ∈ E : |ζ − z| > |ζ − w|,|ζ − w| ≥ δ/2}. 

On A1, |ζ − w| > δ/2, so we have 

 δ  t−2dt dμ(ζ) 
| 

where C is independent of δ. 

Similarly for the integral over 

A2. For the integral over A3, 

we have 

dμ(ζ) 

Here, we used the fact that s < 2. Similarly for the integral over A4. This completes the 

proof of the lemma.  

The final ingredient for the proof of Theorem 3 is the following consequence of a 

classical result of Frostman. 

Lemma 6 (Frostman’s lemma). Let E ⊂ C be a compact set such that dimH(E) > 1. 

Then for any 1 < s < dimH(E), there exists a nontrivial Radon measure μ supported on 

E with growth 

 μ(D(z0,r)) ≤ rs (z0 ∈ C,r > 0). 

Proof. See, for example, [5, Theorem 8.8].  

Theorem 3 now follows directly from Lemmas 5 and 6. 
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Proof. Let μ be as in Lemma 6. Then by Lemma 5, the function  is a bounded 

continuous function on the whole sphere which is analytic on C \ E, but not constant. 
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