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ANALYTIC CAPACITY AND HOLOMORPHIC MOTIONS 

STAMATIS POULIASIS, THOMAS RANSFORD, AND MALIK YOUNSI 

Abstract. We study the behavior of the analytic capacity of a compact set under 

deformations obtained by families of conformal maps depending holomorphically on 

the complex parameter. We show that, under those deformations, the logarithm of 

the analytic capacity varies harmonically. We also show that the hypotheses in this 

result cannot be substantially weakened. 

1. Introduction and statement of results The analytic 

capacity of a compact set K ⊂ C is defined by 

, 

where the supremum is taken over all holomorphic functions . Here D 

denotes the open unit disk, and ) is defined by 

. 

Analytic capacity was introduced by Ahlfors [1] in connection with the Painlev´e 

problem of characterizing removable singularities for bounded holomorphic 

functions. For more information on this subject, see the books of Garnett [5] and Tolsa 

[10]. 

The precise value of the analytic capacity is known only for a relatively small class 

of compact sets, satisfying rather restrictive geometric or connectivity properties. 

This leads us to seek techniques for estimating analytic capacity. One such technique 

was developed in [12], using numerical methods. In this paper we obtain estimates 

via a result on the variation of the analytic capacity of a compact set that depends 

holomorphically on a parameter. 

The prototype for our results is an old result from a paper of Yamaguchi [11] 

concerning the logarithmic capacity c(K). Yamaguchi’s result 

states that if  

is an analytic multifunction defined on a domain D, then) is a subharmonic function 

on D. For a brief introduction to analytic multifunctions, see Chapter VII of Aupetit’s 

book [4]. Yamaguchi’s theorem is proved in [4, Theorem 7.1.3]. 

It turns out that the analogous result for analytic capacity is false. We do not stop 

here to give an example, since we shall establish a better result in Theorem 1.3 
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below. Thus, in order to find a substitute of Yamaguchi’s result for analytic capacity, 

we need to consider a more restricted notion of holomorphic variation of sets. 

The appropriate notion is that of a holomorphic motion. Given a subset A of that:  

the Riemann sphere C, a holomorphic motion of A is a map  such 

(i) for each fixed z ∈ A, the map ) is holomorphic on D, 

(ii) for each fixed λ ∈ D, the map ) is injective on A, (iii) f(0,z) = z 

for all z ∈ A. 

It is a remarkable fact, first established by Slodkowski in [9], that every 

holomorphic motion  admits an extension to map that 

background on holomorphic motions, see [3]. Though we do not use this theorem is 

a holomorphic motion of C. For another proof of this result, as well as more 

directly, it does serve to motivate our consideration of holomorphic motions of C. 

In what follows, we write fλ(z) := f(λ,z). The following theorem is our first 

result. 

Theorem 1.1. Let K be a compact subset of C such that  

C be a holomorphic motion such that, for each λ ∈ D, the map fλ is holomorphic 

 and satisfies fλ(∞) = ∞. Then, writing Kλ := fλ(K), we have that 

) is a harmonic function on D. 

Combining this result with Harnack’s inequality for positive harmonic functions, 

we immediately obtain the following two-sided estimate for the analytic capacity of 

Kλ. 

Corollary 1.2. Assume, in addition, that γ(Kλ) ≤ M for all λ ∈ D. Then 

 .  

Theorem 1.1 yields a stronger conclusion than Yamaguchi’s theorem (harmonic 

versus subharmonic), but it also requires a much stronger hypothesis. It is natural to 

ask whether the hypothesis can be weakened. In particular, is it possible to omit the 

assumption that fλ is holomorphic on ? Our second result answers this question 

in the negative. 

Theorem 1.3. There exist a holomorphic motion , satisfying fλ(∞) = ∞ 

for all λ ∈ D, and a compact subset K of C with γ(K) > 0 such that, if we set Kλ := fλ(K), 

then the functions ) are neither subharmonic nor 

superharmonic on D. 

 



2. Proofs 

For the proof of Theorem 1.1, we shall need two lemmas. The first is part of the so-

called λ-lemma, due to Man˜´e, Sad, and Sullivan [6, p. 193]. 

Lemma 2.1. A holomorphic motionis jointly continuous in 

(λ,z).  

The second lemma is a simple result about how the analytic capacity of a compact 

set transforms under conformal mapping of the complement. 
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Lemma 2.2. Let K and L be compact subsets of C, and let be a 

conformal mapping such that h(∞) = ∞. If γ(K) > 0, then also γ(L) > 0 and, for all R > 

maxz∈K |z|, 

Proof. Under the hypotheses on 

, 

where a ∈ C \ {0}. Given a holomorphic function g : C \ L → D, the composition g ◦ h 

map from ). is a holomorphic 

Hence 

Taking the supremum over all such g, we deduce that 

γ(L) ≤ 

γ(K)/|a|. 

Applying the same argument to the inverse map, which 

 , we obtain , and hence 

γ( ) ( 

Finally, to evaluate a, we observe that, by Cauchy’s theorem, if R > maxz∈K |z|, then 

, 

and hence 

 

The result follows.  

Proof of Theorem . By Lemma 2.2, applied to the conformal 

mapping fλ : C \ K → C \ Kλ, we have γ(Kλ) > 0 for all λ ∈ D and 

(2.1) . 



By Lemma 2.1, the map (λ,z) → ) is continuous. Also, it is 

holomorphic in λ (and finite- valued) for each fixed | . It follows 

easily that the integral in (2.1) is a holomorphic function of λ. Since the integral does 

not take the value zero, the log of its modulus is a harmonic function. It follows that 

logγ(Kλ) is a harmonic function of λ.  

We now turn to Theorem 1.3. For this, we need the following result of Astala [2]. 

Here and in what follows, dimH denotes the Hausdorff dimension. 

Lemma 2.3. Given t ∈ (0,2), there exist a holomorphic motion 

satisfying fλ(∞) = ∞ for all λ ∈ D, and a compact subset K of C, such that, writing Kλ := 

fλ(K), we have 

(2.2) dim . 

Proof. Essentially this is proved in [2, p. 54]. In fact, what is shown there is that, given 

a sequence of pairwise disjoint disks (Dk)k≥1 inside the unit disk, there exist a 
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holomorphic motion and compact sets (Jk)k≥1 such that fλ(Jk) ⊂ Dk for all 

k ≥ 1 and all λ ∈ D, and 

dim . 

It is easy to see that, in addition, f may be chosen so that fλ(∞) = ∞ for all λ ∈ D. If we 

further stipulate that the disks Dk accumulate only at 0, then 

. Thus, setting  and Kλ 

:= fλ(K), we have  for all λ ∈ D. Since the addition of a single 

point does not affect the Hausdorff dimension, it follows that (2.2) holds.  

Proof of Theorem 1.3. Fix t ∈ (0,1) and choose f and K as in Lemma 2.3. Then there 

exists δ ∈ (0,1) such that dimH(Kλ) < 1 for λ ∈ [0,δ) and dimH(Kλ) > 1 for λ ∈ (δ,1). Now 

it is a well-known property of analytic capacity of compact sets that dimH < 1 implies 

γ = 0 and that dimH > 1 implies γ > 0 (see for example [10, p. 34]). Thus we have 

. 

In particular, logγ(Kλ) = −∞ on [0,δ). This straightaway rules out the possibility that 

logγ(Kλ) is superharmonic, since superharmonic functions never take the value −∞. 



It also shows that logγ(Kλ) cannot be subharmonic on D, because a subharmonic 

function that takes the value −∞ on a line segment must be equal to −∞ everywhere 

in its domain (see for example [8, Exercise 2.5.1]), and in our case logγ(Kλ) > −∞ if λ 

∈ (δ,1). 

It is also easy to see that ) is not superharmonic on D. Indeed, it attains 

a minimum without being constant, thus violating the minimum principle for 

superharmonic functions. 

To treat the question of whether ) is subharmonic, we invoke the 

following criterion due to Rad´o [7, §3.12]: given a nonnegative function u(λ), then 

logu(λ) is subharmonic if and only if |eαλ|u(λ) is subharmonic for each α ∈ R. Since we 

know that logγ(Kλ) is not subharmonic, by Rado´’s criterion there exists α ∈ R such 

that |eαλ|γ(Kλ) is not subharmonic. Thus, if we replace f(λ,z) by the holomorphic 

motion eαλf(λ,z), which has the effect of replacing Kλ by eαλKλ, we obtain an example 

for which, in addition to all the other properties already established, ) is not 

subharmonic on D. 

This nearly proves the theorem. The only item lacking is that γ(K) = 0, instead of 

γ(K) > 0 as promised. To get around this, it is enough to change the base point of the 

holomorphic motion as follows. Fix λ0 ∈ (δ,1) and define 

  and

 . 

Thus the modified pair  f, satisfies all the requirements of the theorem. ∈  Then f 

is a holomorphic motion, andfor all λ D. 
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