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ANALYTIC CAPACITY AND HOLOMORPHIC MOTIONS

STAMATIS POULIASIS, THOMAS RANSFORD, AND MALIK YOUNSI

Abstract. We study the behavior of the analytic capacity of a compact set under
deformations obtained by families of conformal maps depending holomorphically on
the complex parameter. We show that, under those deformations, the logarithm of
the analytic capacity varies harmonically. We also show that the hypotheses in this
result cannot be substantially weakened.

1. Introduction and statement of results The analytic

capacity of a compact set K c C is defined by

Y(K) := sup|g’(c0)]|
g )
where the supremum is taken over all holomorphic functions - C\ K — DD Here D
denotes the open unit disk, andgf(oo) is defined by
g'(o0) == Tim z(g(2) — g(o0))

Analytic capacity was introduced by Ahlfors [1] in connection with the Painlev’e
problem of characterizing removable singularities for bounded holomorphic
functions. For more information on this subject, see the books of Garnett [5] and Tolsa
[10].

The precise value of the analytic capacity is known only for a relatively small class
of compact sets, satisfying rather restrictive geometric or connectivity properties.
This leads us to seek techniques for estimating analytic capacity. One such technique
was developed in [12], using numerical methods. In this paper we obtain estimates
via a result on the variation of the analytic capacity of a compact set that depends
holomorphically on a parameter.

The prototype for our results is an old result from a paper of Yamaguchi [11]
concerning the logarithmic capacity c(K). Yamaguchi’s - result
states tha‘cg ifA — f&g)\ pactty <(f9 ° A loge( Ky
is an analytic multifunction defined on a domain D, then) is a subharmonic function
on D. For a brief introduction to analytic multifunctions, see Chapter VII of Aupetit’s
book [4]. Yamaguchi’s theorem is proved in [4, Theorem 7.1.3].

It turns out that the analogous result for analytic capacity is false. We do not stop
here to give an example, since we shall establish a better result in Theorem 1.3
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below. Thus, in order to find a substitute of Yamaguchi’s result for analytic capacity,
we need to consider a more restricted notion of holomorphic variation of sets.
The appropriate notion is that of a holomorphic motion. Given a subset A of that:

the Riemann sphere C, a holomorphic motion of A is amap.f : D x A — Cgsych

(i) for each fixed z € 4, the map A f(A, ~) is holomorphic on D,
(ii) for each fixed A € D, the map® J(A, #) is injective on 4, (iii) f{0,z) = z
forall z € A.

It is a remarkable fact, first established by Slodkowski in [9], that every
holomorphic motion/f : D X A — @admits an extension to map.f : D x C— @that
background on holomorphic motions, see [3]. Though we do not use this theorem is
a holomorphic motion of C. For another proof of this result, as well as more

directly, it does serve to motivate our consideration of holomorphic motions of C.
In what follows, we write f2(z) := f(A,z). The following theorem is our first

result.

Theorem 1.1. Let K be a compact subset of C such thatY(/) > 0. Let f:DxC —

C be a holomorphic motion such that, for each A € D, the map fiis holomorphic

on C\ K anqg satisfies fi(e0) = oo. Then, writing K := fi(K), we have that
A logﬁ-(K)\) is a harmonic function on D.

Combining this result with Harnack’s inequality for positive harmonic functions,
we immediately obtain the following two-sided estimate for the analytic capacity of
K.

Corollary 1.2. Assume, in addition, that y(K2) < M for all A € D. Then

1=\ _ log(M/A(Ky)) _ 1+
T+ A~ log(M/v(K)) — 1—|A
Theorem 1.1 yields a stronger conclusion than Yamaguchi’s theorem (harmonic

versus subharmonic), but it also requires a much stronger hypothesis. It is natural to
ask whether the hypothesis can be weakened. In particular, is it possible to omit the

(AeD)

assumption that f;is holomorphic onC \ K7 Our second result answers this question
in the negative.

Theorem 1.3. There exist a holomorphic motion/ : DxC — C satisfying fi(oo) = oo
for all A € D, and a compact subset K of C with y(K) > 0 such that, if we set Ki:= fi(K),
then the functions A — V(&) and A — log ":’(KA) are neither subharmonic nor
superharmonic on D.



2. Proofs

For the proof of Theorem 1.1, we shall need two lemmas. The first is part of the so-
called A-lemma, due to Man™e, Sad, and Sullivan [6, p. 193].

Lemma 2.1. A holomorphic f:]]])xA—H@ motionis jointly continuous in
A2).

The second lemma is a simple result about how the analytic capacity of a compact
set transforms under conformal mapping of the complement.
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Lemma 2.2. Let K and L be compact subsets of C, and leth: C\K — C\ Lpe 4
conformal mapping such that h(e) = oo. If y(K) > 0, then also y(L) > 0 and, for all R >

maxzeK |z,

Proof. Under  the <%(K) hypotheses on
~ 1 h(z

’(L) :|—f J(Q)dz.
21 Jiz1=p 2

h, we have h(z) = az + O(1) as |z| — o

where a € C\ {0}. Given a holomorphic function g : C\ L = D, the compositiong ° h
C\ K to D with (g o h)'(c0) = ag’(c0

|9’ (00
is a holomorphic map from )| =1(goh)(c0)l/lal <~(K)/|al. ).
Hence
Taking the supremum over all such g, we deduce N . that
vy h:C\L—-C\K <
satisfies h=1(2) = a='2 + O(1) as [2| = oo Y(K) < ~y(L)|al
K [y L) = |al. v(K)/\al.
Applying the same argument to the inverse map, which
, we obtain , and hence
vC ) (

Finally, to evaluate a, we observe that, by Cauchy’s theorem, if R > maxzex |z|, then

[ h(j) dz = / @ dz (R >R)
Jz|I=R J|z|=R'

Z =

’

and hence
/ hz) dz = lim [ hz) dz = lim / w dz = 2mia.
JIz1=R |2|=R’ ==

22 Jrey

The result follows.

Proof of Theorem 11+ FiX [t > maXzex |2 By Lemma 2.2, applied to the conformal

mapping fa: C\ K- C\ K), we have y(Kx) > 0 for all A € D and

WK | L fAD) e
(2.1) Y(K») |2ﬂ'ijl;|n 22 2| (A€ )



By Lemma 2.1, the map (Az) ' [f(A2 — ) is continuous. Also, it is

- .. zwith |z =R
holomorphic in A (and finite-

valued) for each fixed | . It follows
easily that the integral in (2.1) is a holomorphic function of A. Since the integral does
not take the value zero, the log of its modulus is a harmonic function. It follows that

logy(Kx) is a harmonic function of A.

We now turn to Theorem 1.3. For this, we need the following result of Astala [2].
Here and in what follows, dimx denotes the Hausdorff dimension.

Lemma 2.3. Given t € (0,2), there exist a holomorphic motion / : D x C — C
satisfying fi(o0) = oo for all A € D, and a compact subset K of C, such that, writing Kx:=

fA(K), we have

(K») =

) = :

(2.2) dim t+(2-0)(1=A)/(1+A) .
Proof. Essentially this is proved in [2, p. 54]. In fact, what is shown there is that, given

a sequence of pairwise disjoint disks (Dk)k=1 inside the unit disk, there exist a
ANALYTIC CAPACITY AND HOLOMORPHIC MOTIONS 133

0D<A<1)

holomorphic motion/ : DxC — Cand compact sets (Ji)x=1such that fi(Ji) < Di for all

k=1andallA €D, and

2t )
dimu (fA (L;Jh)) = 00N/ AN (<A< l).

[t is easy to see that, in addition, f may be chosen so that fi(o0) = oo for all A € D. If we

further stipulate that the disks Dkaccumulate only at 0, then

Us Jx = Uy Jx U {0} and fJ\(O_) = 0 for all A € D Thys, settingX -= Uk Jk and K»
= fi(K), we havefx = fa(U i) U{0} for all A € D. Since the addition of a single
point does not affect the Hausdorff dimension, it follows that (2.2) holds.

Proof of Theorem 1.3. Fix t € (0,1) and choose fand K as in Lemma 2.3. Then there
exists 6 € (0,1) such that dimu(K3) < 1 for A € [0,6) and dimx(K3) > 1 for A € (6,1). Now
it is a well-known property of analytic capacity of compact sets that dimus < 1 implies
y = 0 and that dimx > 1 implies y > 0 (see for example [10, p. 34]). Thus we have

(K =0, 0< A<y,
AEAMYS 0 s<x<t

In particular, logy(Kz) = —c0 on [0,6). This straightaway rules out the possibility that

logy(K») is superharmonic, since superharmonic functions never take the value —oo.



It also shows that logy(K1) cannot be subharmonic on D, because a subharmonic
function that takes the value —oo on a line segment must be equal to —co everywhere
in its domain (see for example [8, Exercise 2.5.1]), and in our case logy(Kx) > -0 if A
€ (61).

It is also easy to see that A “:‘(KA) is not superharmonic on D. Indeed, it attains
a minimum without being constant, thus violating the minimum principle for

superharmonic functions.
To treat the question of whether A ’)"(KA) is subharmonic, we invoke the

following criterion due to Rad’o [7, §3.12]: given a nonnegative function u(4), then
logu(A) is subharmonic if and only if |e*2|u(A) is subharmonic for each a € R. Since we
know that logy(K)) is not subharmonic, by Rado”s criterion there exists « € R such
that |e*|y(K)) is not subharmonic. Thus, if we replace f{A,z) by the holomorphic
motion e?f{A,z), which has the effect of replacing Ki by e”Kj, we obtain an example
for which, in addition to all the other properties already established,/\ = “r’(K/\) isnot
subharmonic on D.

This nearly proves the theorem. The only item lacking is that y(K) = 0, instead of
y(K) > 0 as promised. To get around this, it is enough to change the base point of the
holomorphic motion as follows. Fix Ao € (6,1) and define

Fons) = 1 (P £ 2)

~ PO i and
K =K, =AE)=Ko-n/0-00

Thus the modified pair N K’ﬁ satisfies all the requirements of the theorem. € Then f

is a holomorphic motion, andfor all A D.
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