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 9 

ABSTRACT 10 

Neurological disorders affecting human memory present a major scientific, medical and societal 11 
challenge. Direct or indirect Deep Brain Stimulation (DBS) of the entorhinal-hippocampal 12 
system, the brain’s major memory hub, has been studied in people with epilepsy or Alzheimer’s 13 
Disease, intending to enhance memory performance or slow memory decline. Variability in the 14 
spatiotemporal parameters of stimulation employed to date notwithstanding, it is likely that 15 
future DBS for memory will employ closed-loop, nuanced approaches that are synergistic with 16 
native physiological processes. The potential for editing human memory—decoding, enhancing, 17 
incepting or deleting specific memories—suggests exciting therapeutic possibilities, but also 18 
raises considerable ethical concerns.  19 
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 21 

BACKGROUND 22 

The Challenge 23 

One of the critical challenges facing society in the 21st century is the specter of a cognitive 24 
catastrophe affecting millions of people in our midst, who face gradual loss of memory. With an 25 
increase in the aging population and the prevalence of various dementias, such as Alzheimer’s 26 
Disease (AD), there is an increasing need to find therapeutic measures; yet effective 27 
pharmacological agents have not been found to provide symptomatic relief that can restore 28 
quality of life. Preservation of human memory, and its enhancement when in decline, is 29 
therefore a major challenge for the human condition. Thus, we need to consider augmentation 30 
of human memory by introduction of neuroprosthetic devices that could interact with the 31 
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human brain via electrical or chemical signals. To achieve such a bionic future where brain and 32 
machine interface seamlessly, we need to consider specific brain networks where a direct 33 
causal role in memory processes has been established. Here we consider external modulation 34 
of the entorhinal-hippocampal circuit, the human brain’s chief organ of declarative and episodic 35 
memory.  36 

There are two major, parallel streams of discovery implicating the medial temporal lobe (MTL), 37 
with its hippocampal-entorhinal circuitry, as the hub of declarative memory (Buzsaki and 38 
Moser, 2013). First, the rodent literature has made major advances in locating the circuitry of 39 
spatial memory within the medial temporal lobe (Moser et al., 2008). Second, the medial 40 
temporal lobe is also the brain’s chief circuit for transforming human and non-human primate 41 
experience into durable representations that can later be consciously retrieved. This is 42 
supported by a large body of basic science and medical discovery ranging from primate 43 
neurophysiology and lesion studies, to human electrophysiology and neuroimaging studies, as 44 
well as brain lesions resulting in specific memory deficits (Squire, 2004). Together these 45 
literatures support a unified model of the role of the entorhinal-hippocampal circuitry evolving 46 
across species to support both spatial and non-spatial memory, culminating in human semantic 47 
and episodic memory.  48 

Electrical stimulation in the human brain 49 

The main means of modifying brain function are chemical (pharmacological) and electrical. 50 
Electrical stimulation has thus been used to treat human brain dysfunction in disease. In 51 
particular, Deep Brain Stimulation (DBS) is an invasive form of electrical stimulation, in which 52 
stimulating electrodes are implanted directly into the brain and can apply electric current to the 53 
surrounding brain tissue.  54 

This approach has been adopted to modulate neuronal circuits for therapeutic end. Its use has 55 
been particularly successful in Parkinson’s Disease and other movement disorders (Gross and 56 
Lozano, 2000). The use of DBS is also being explored in various neurological and 57 
neuropsychiatric disorders such as depression, OCD, and others, with promising results 58 
(McLaughlin et al., 2016). More recently, several studies have addressed the challenge of 59 
applying DBS to the memory domain with the hope of ameliorating memory impairment that 60 
accompanies several disorders, such as Alzheimer’s Disease, traumatic brain injury, and 61 
epilepsy.  62 

Prior to therapeutic application of DBS, electrical stimulation was commonly employed to map 63 
cortical function. Pioneered by Wilder Penfield during operations on awake patients under local 64 
anesthesia, electrical stimulation in primary motor and sensory areas evoked discrete 65 
movements or sensations, but when applied elsewhere, such as Broca’s and Wernicke’s areas 66 



or the angular gyrus, it disrupted performance on speech and language tasks (Penfield and 67 
Jasper, 1954, Penfield and Perot, 1963, Penfield and Roberts, 1959). Such disruption of complex 68 
cognitive functions indicated that the stimulated sites were involved in the function tested. In 69 
addition to elucidating the brain regions generally involved in various functions, this had 70 
immediate practical applications, allowing neurosurgeons to identify functional cortex that 71 
should be avoided during surgery (Szelényi et al., 2010, Ojemann et al., 1989).  72 

Ojemann and colleagues used electrical stimulation (2-10 mA, bipolar at 50Hz) in the cortex 73 
during structured tasks to map memory processes. They found that stimulation of sites in 74 
temporal and frontal cortex, when applied at various stages of mnemonic processing, disrupted 75 
memory performance (recognition of verbal or visuospatial material or free recall) (Ojemann, 76 
1978, Ojemann, 2003, Fried et al., 1982). The rationale of these studies was similar to language 77 
mapping: complex functions such as memory should be disrupted by gross stimulation of gray 78 
matter involved. The only site with stimulation-evoked improvement of memory was, in fact, in 79 
thalamus, where stimulation of the ventrolateral nucleus during encoding resulted in improved 80 
performance on subsequent retrieval (Ojemann, 1975 ).  81 

Although cortical stimulation did not lead to memory improvement, upon stimulation of sites in 82 
the temporal lobe, patients occasionally reported real experiences, distinct memories or 83 
percepts. (Penfield and Perot, 1963). These experiences were characterized by vividness and 84 
authenticity (“more real than remembering”), yet two experiences were never activated 85 
concurrently, and the patients were aware that they were in the operating room. These 86 
experiences were felt to demonstrate durable representations in the temporal lobe that 87 
became accessible to human consciousness by the stimulating probe. Penfield then postulated: 88 
“There is a stream of consciousness within the brain… hidden in the interpretive areas of the 89 
temporal lobe there is a key mechanism that unlocks the past”(Penfield, 1958).  90 

Experiential responses evoked by cortical electrical stimulation of the temporal lobe have been 91 
described in various publications since Penfield (reviewed in Lee et al. (2013b)), many of these 92 
giving the impression of recalled memories surfacing on the platform of consciousness. 93 
However, these responses were sporadic, and their relationship to specific neuronal circuitry 94 
difficult to dissect, especially since stimulation was presumed to affect a relatively large volume 95 
of tissue and neuropil. A recent report, however, demonstrated an ability to generate memory 96 
flashbacks in 48% of people with Alzheimer’s Disease via strong (7-10 V) stimulation of the 97 
fornix and subcallosal area (Deeb et al., 2019). These experiences included both 98 
autobiographical, episodic memories and semantic memories in the form of concepts (e.g., 99 
patient “thinking about her daughter”). Some of these memories acquired more detail with 100 
increasing level of stimulation.  These anecdotes of stimulation evoking strong memories have 101 
inspired new lines of research focused on intentionally modulating neural function to better 102 



understand the neural processes involved in memory and to explore whether such modulation 103 
could be used therapeutically.  104 

Spatiotemporal considerations of stimulation 105 

Neuromodulation is a spatiotemporal intervention in brain function that introduces 106 
electrochemical changes with a distinct temporal profile at a particular brain circuit. A great 107 
strength of electrical, compared to pharmacological, neuromodulation is its relative precision in 108 
both the spatial and temporal domains. As the entorhinal-hippocampal system, with its 109 
complex afferent and efferent fibers, is critically implicated in episodic memory, much recent 110 
work has targeted stimulation within this circuit (Figure 1). Intervention can be limited to 111 
particular stages of information processing—including encoding, consolidation and retrieval. 112 
Alternatively, it can be delivered in a chronic manner, either continuously, cyclically, or at fixed 113 
intervals, without regard to external events. Furthermore, stimulation can be delivered 114 
independently of, or in response to, endogenous brain activity.  115 

For each DBS study, then, it is important to consider the SITE, the spatial and temporal SCALE, 116 
the memory STAGE, brain STATE, and the SETTINGS of stimulation. Although we consider each 117 
of these separately below, it must be emphasized that these variables are not independent, and 118 
their interaction could dramatically affect the results of the study. Thus, two studies could both 119 
stimulate the same brain region and find different effects on memory if other factors differed. 120 

There is a large literature on noninvasive neuromodulation in the form of transcranial magnetic 121 
or electrical stimulation. These methods are limited in their ability to focally target a specific 122 
brain structure. Except for occasional reference to these methods, we will limit the discussion 123 
here to invasive and direct application of electrical stimulation. Similarly, we reference some 124 
animal studies that have been illuminating regarding the mechanisms by which deep brain 125 
stimulation may act on memory circuits, but a thorough review of the animal literature is 126 
outside the scope of this review. 127 

Clinical settings for intracranial stimulation 128 

As with all studies involving intracranial electrodes in humans, ethical issues limit the subject 129 
population to those for whom there is a pressing medical need for electrodes to be placed. 130 
Thus, a large number of these studies have been conducted in subjects with pharmacologically-131 
refractory epilepsy undergoing clinical seizure monitoring to identify the epileptogenic regions 132 
for possible surgical cure (e.g. Suthana and Fried, 2012). Because these patients frequently have 133 
electrodes placed in the medial temporal lobe, they are good candidates for stimulation 134 
studies. It should be noted that the hippocampal-entorhinal circuit may be impaired in some 135 
epilepsy patients, so some results may not generalize to the non-epileptic population. On the 136 



other hand, many valuable insights into the function of the medial temporal lobe have been 137 
derived from studies in this population, and improving memory for people with epilepsy is, in 138 
itself, a therapeutic goal. 139 

In addition, DBS has been explored as a potential treatment for a wide variety of 140 
neuropsychological diseases, including diseases characterized by cognitive impairment and 141 
memory loss—mainly AD (Lv et al., 2018, Posporelis et al., 2018), though a few trials have been 142 
conducted in Parkinson’s Disease Dementia (Lv et al., 2018) and traumatic brain injury (TBI) 143 
(Kundu et al., 2018) as well. The DBS research in AD patients has focused largely on long-term 144 
(months to years), continuous stimulation with the hope that it could reverse or at least slow 145 
the progression of the disease (Table 1), whereas the research with patients with epilepsy has 146 
primarily studied whether brief stimulations within well-defined memory paradigms have an 147 
overall positive or negative effect on subsequent memory performance for that task (Table 2). 148 

 149 

WHERE? SITE OF STIMULATION 150 

Stimulation of hippocampus proper 151 

Direct electrical stimulation of the hippocampus proper has generally been found to disrupt 152 
memory and thus  confirmed the role of the hippocampus in memory function in the same 153 
manner that electrical stimulation of language areas demonstrated their role in language 154 
(Bickford et al., 1958, Chapman et al., 1967, Ommaya and Fedio, 1972, Halgren and Wilson, 155 
1985, Halgren et al., 1985). The earliest of these studies used high stimulation amplitudes, 156 
often eliciting after-discharges, which were likely the source of the stimulation induced amnesia 157 
(Halgren and Wilson, 1985). Other early studies stimulated multiple sites at once, so the 158 
memory impairment cannot be directly attributed to hippocampal stimulation (Halgren et al., 159 
1985). 160 

More recent clinical opportunities to electrically stimulate in the hippocampus usually involve 161 
application of several milliamperes in a bipolar fashion through 2 mm contacts separated by a 162 
few mm. Such macrostimulation affects multiple neuronal layers and subregions of the 163 
hippocampus and it is difficult to see how it could interact physiologically in a positive capacity 164 
with the delicate hippocampal neuropil. Indeed, direct hippocampal stimulation has led to 165 
neutral (Suthana et al., 2012a, Coleshill et al., 2004, Lacruz et al., 2010, Fernandez et al., 1996, 166 
Kucewicz et al., 2018b) or negative (Jacobs et al., 2016, Coleshill et al., 2004, Lacruz et al., 2010) 167 
outcomes for memory when delivered during encoding and tested shortly afterward. 168 
Nevertheless, in one recent study, hippocampal stimulation did enhance recollection on a 169 



word-pair association task following a longer delay to testing (10 minutes) (Jun et al., 2019). A 170 
small number of studies has also addressed the long-term consequences of continuous 171 
hippocampal stimulation in people who received chronic stimulation for a period of months to 172 
years. In general, when stimulation was applied continuously, around the clock, no long-term 173 
change in memory performance was observed (Velasco et al., 2007, McLachlan et al., 2010, 174 
Boex et al., 2011, Miatton et al., 2011).  175 

A recent study used  more physiological levels of stimulation, delivering microstimulation across 176 
many electrodes within the hippocampus in a closed loop fashion (Hampson et al., 2018). 177 
Recordings from hippocampal subfields CA3 and CA1 were used to model CA1 firing patterns 178 
based on CA3 activity. Later, during a delayed match to sample task, activity in CA3 was 179 
recorded and, based on the model, stimulation was applied in CA1 to mimic its expected 180 
output. This led to to significantly improved performance in 6 of 7 patients, compared to a non-181 
stimulated condition or random stimulation condition, which in fact impaired memory in some 182 
subjects.  183 

Stimulation of the entorhinal area 184 

Suthana et al. (2012) found that stimulation applied in the entorhinal area during a spatial 185 
navigation task improved later memory performance, even when identical stimulation in the 186 
hippocampus provided no benefit. This marked the first demonstration that stimulating a brain 187 
region that directly projects to the hippocampus might be more effective for memory 188 
enhancement than stimulating the hippocampus proper. A subsequent study using a similar 189 
task, however, found primarily impairment in the five patients who received entorhinal 190 
stimulation (Jacobs et al., 2016). The same group also found a trend toward impairment in eight 191 
patients who received stimulation in the entorhinal cortex during a verbal memory task (Jacobs 192 
et al., 2016). Still a third group found enhancement of event-related potentials in hippocampus 193 
following entorhinal area stimulation during an item-color association memory task but no 194 
behavioral effect (Hansen et al., 2018). A possible difference among these studies is the site of 195 
stimulation within the entorhinal area, which could lead to different physiological effects on 196 
hippocampus. The spatial resolution of macrostimulation may be too large to determine the 197 
anatomical extent of the stimulation, or whether it involved white matter tracts, gray matter, or 198 
both (Figure 2). Additionally, extra-entorhinal regions were sometimes stimulated concurrently 199 
with entorhinal stimulation (e.g. hippocampus or parahippocampal gyrus (Jacobs et al., 2016) or 200 
perirhinal cortex (Suthana et al., 2012a)).  201 

To mitigate these confounding factors, Titiz and colleagues applied microstimulation (150 PA) 202 
through single, small micro-wires (100 Pm), rather than large bipolar contacts (Titiz et al., 203 
2017), in an attempt to more precisely delineate the spatial extent of stimulation. Applying 204 



microstimulation during the encoding phase of a person recognition task, they found memory 205 
enhancement, but the effect was strongest when the stimulating electrode was positioned in 206 
the white matter (angular bundle) of the entorhinal area. The angular bundle contains a dense 207 
concentration of fibers of the perforant path (Yassa et al., 2010, Zeineh et al., 2017), which is 208 
commonly the site of stimulation in studies of long-term potentiation (Bliss and Lomo, 1973). 209 
The ability of the stimulating electrode to target this fiber tract may have been critical to the 210 
success of stimulation.  211 

To date, no studies of chronic stimulation in the entorhinal area have been conducted in 212 
humans. In rodents, however, some chronic stimulation studies have shown promise. Rodents 213 
with Alzheimer’s pathology showed memory benefits from long-term entorhinal stimulation 214 
(Mann et al., 2018, Zhang et al., 2015), likely due to effects of chronic stimulation on 215 
neuroanatomic and molecular processes, such as an increase in neurogenesis and a decrease in 216 
A-E and other molecular markers of Alzheimer’s pathology (Mann et al., 2018). 217 

Stimulation of fornix 218 

The fornix is the main efferent pathway from the hippocampus, projecting back indirectly to the 219 
hippocampus and entorhinal cortex via the various stations of the circuit of Papez (Papez, 1937) 220 
(Figure 1). It is therefore a potential route for modulation of hippocampal activity. 221 

Following a serendipitous observation of memory flashbacks with stimulation of the fornix 222 
during a DBS procedure and subsequent improvement in memory scores several months later 223 
(Hamani et al., 2008),  a Phase I clinical trial was launched with one year of chronic bilateral 224 
high frequency fornix stimulation in six participants with Alzheimer’s Disease. The study 225 
established safety with mixed clinical results (Laxton et al., 2010). Glucose metabolism was 226 
increased after a year of DBS in some regions (Laxton et al., 2010), and hippocampal volume 227 
either increased (2 of 6 subjects) or had a slowed rate of atrophy relative to matched controls 228 
(Sankar et al., 2015). In a follow-up Phase II trial, 42 participants with mild AD were implanted 229 
with bilateral fornix stimulators (Holroyd et al., 2015). After 12 months, no statistical 230 
differences were found between patients who received active stimulation and those receiving 231 
sham stimulation (i.e. stimulators were implanted but turned off) in the primary outcome 232 
measure of cognitive decline, or in glucose metabolism (Lozano et al., 2016). Post-hoc analyses 233 
suggested that while those under 65 experienced considerably greater exacerbation of 234 
symptoms than their non-stimulated counterparts, those over 65 experienced moderate 235 
slowing of disease progression compared to the non-stimulated group (Lozano et al., 2016). 236 
Following up after a second year, during which all participants received active stimulation, the 237 
delayed activation groups showed similar trends in the second year as the early activation 238 



group in the first year, including the apparent worsening of symptoms for those under 65 239 
(Leoutsakos et al., 2018). 240 

Two small studies in participants with epilepsy have also tested fornix stimulation. In one, 4 241 
hours of continuous low frequency stimulation led to moderate improvements on the delayed 242 
recall portion of the MMSE (Koubeissi et al., 2013). In the other, with too small a sample size for 243 
statistical analysis, 20+ minutes of theta-burst stimulation suggested enhanced performance on 244 
a complex figure memory test but decline in retention of word lists (Miller et al., 2015). 245 

Animal studies have tested behavioral effects of fornix stimulation, along with molecular 246 
markers for neural activity or disease pathology. Chronic fornix stimulation enhanced memory 247 
performance in the Morris Water Maze under a variety of stimulation paradigms and in both 248 
healthy and impaired rodents (Zhang et al., 2015, Hao et al., 2015), as well as improved 249 
performance for novel object recognition memory (Zhang et al., 2015), contextual fear 250 
conditioning (Hao et al., 2015), and a delayed non-match to sample task (Sweet et al., 2014). 251 
These performance effects may be attributed to molecular changes induced by stimulation, 252 
such as increased neurogenesis and neuronal load and decreased pathological burden (Leplus 253 
et al., 2019, Hao et al., 2015). Shorter-term theta-burst stimulation of the fornix often rescued 254 
performance on memory tasks when tested in rodents with memory-impairing conditions, such 255 
as TBI, medial septal inactivation, or scopolamine injection (Hescham et al., 2013, Shirvalkar et 256 
al., 2010, Sweet et al., 2014). 257 

Stimulation of other areas within the Limbic System and Forebrain 258 

The Circuit of Papez is a set of brain regions forming an interconnected loop that was originally 259 
proposed as the anatomical basis of emotion (Papez, 1937). The circuit includes the 260 
hippocampus, mammillary bodies, anterior nucleus of the thalamus, cingulate gyrus, 261 
parahippocampal gyrus and entorhinal cortex, and the white matter tracts that connect them 262 
(Figure 1). Modulation of any component in this circuit, as well as related limbic structures such 263 
as the amygdala and the septal nuclei, may affect hippocampal activity, and thus may be 264 
considered for memory modulation. 265 

Deep brain stimulation of the Anterior Nucleus of the Thalamus (ANT) has been primarily 266 
tested in rat models. Hescham and colleagues (2015) found no effect of short-term ANT 267 
stimulation on either behavior or cFos expression. On a longer-term scale, chronic ANT 268 
stimulation has shown more promise, likely due to ANT stimulation leading to an increase in 269 
neurogenesis (Toda et al., 2008, Hamani et al., 2011). In a rat model of AD, rats with ANT 270 
stimulation 4 weeks prior to testing showed improved performance on Morris Water Maze. 271 
This improvement, however, was less pronounced than in animals receiving stimulation in 272 



either the entorhinal cortex or the fornix (Zhang et al., 2015). Chronic ANT stimulation has been 273 
recently approved as treatment for refractory epilepsy. Initial studies have shown minimal 274 
effect on human memory in implanted patients (Oh et al., 2012, Fisher et al., 2010), although 275 
with larger numbers of patients receiving ANT DBS there will be opportunity to test memory 276 
effects more extensively. 277 

Amygdala stimulation in both rats (Bass and Manns, 2015) and humans (Inman et al., 2018) 278 
caused no memory difference on an immediate memory test but enhanced memory when 279 
tested after a 1-day delay. Stimulation also increased low gamma coherence between 280 
hippocampal regions CA1 and CA3 (Bass and Manns, 2015) or theta-gamma coupling between 281 
the amygdala and perirhinal cortex (Inman et al., 2018). 282 

The medial septum is a primary source of cholinergic innervation to the hippocampus and plays 283 
an important role in pacing the hippocampal theta rhythm. In rodent studies, stimulation of the 284 
medial septum has had no effect on memory in healthy control animals, but in rodent models 285 
of epilepsy and TBI, stimulation of the medial septum at theta frequency improved memory, 286 
even rescuing it to levels equivalent to non-injured animals in those with TBI (Lee et al., 2013a, 287 
Izadi et al., 2019). 288 

The nucleus basalis of Meynert in the basal forebrain is the primary source of cholinergic 289 
innervation throughout the cortex, including dense reciprocal projections with limbic and 290 
paralimbic cortices (Mesulam, 2013). Degeneration of this nucleus is implicated in symptoms of 291 
dementia, so it has been proposed as a potential target of DBS for AD (Gratwicke et al., 2013). 292 
While chronic stimulation of this area has not stopped the progression of AD in small pilot 293 
studies (2-6 subjects), it does seem to have slowed cognitive decline relative to matched 294 
controls (measured by ADAS-cog, ADAS memory, and MMSE scores), in both early- and late-295 
stage AD (Kuhn et al., 2015a, Kuhn et al., 2015b). 296 

Neocortical Stimulation 297 

The entorhinal-hippocampal system has extensive connections with neocortex. There is major 298 
convergence of multisensory input from temporal neocortex into hippocampus through the 299 
entorhinal cortex, as well as frontal connections to the MTL (Von Der Heide et al., 2013). 300 
Therefore, electrical stimulation of temporal and frontal neocortex can utilize these highly 301 
functional connections to modulate hippocampal-entorhinal circuitry and affect memory 302 
function.  303 

Several studies of epilepsy patients undergoing evaluation with neocortical electrodes have 304 
used direct cortical stimulation to probe or modulate memory function. Although early studies 305 
found that stimulation of the lateral cortex induced specific verbal or visuospatial memory 306 



deficits (Penfield and Roberts, 1959, Fried et al., 1982, Ojemann, 1978), a recent study found 307 
that lateral temporal cortex was the only site, among several tested, where stimulation 308 
improved memory for lists of words (Kucewicz et al., 2018b). In another study, stimulation in 309 
the left superior frontal gyrus led to improved reaction times in a working memory task 310 
(Alagapan et al., 2019). 311 

An approach that leveraged the wide coverage of electrodes in many patients with epilepsy 312 
used recorded data from multiple sites to build a classifier to predict subsequent memory 313 
success or failure based on neural activity during encoding. Ezzyat and colleagues (2017) set out 314 
to identify states where the brain could presumably benefit from stimulation. They first showed 315 
by retrospective analysis that if the brain was already in a state favorable for encoding, 316 
stimulation tended to impair subsequent encoding. On the other hand, if the brain was in a 317 
poor state for encoding, stimulation tended to increase later memory performance (Ezzyat et 318 
al., 2017). Applying this model and prospectively stimulating lateral temporal cortex selectively 319 
when the model predicted a poor encoding state led to improvement in memory performance 320 
for stimulated lists of words compared to performance on lists without stimulation (Ezzyat et 321 
al., 2018). This study is unique, in the sense that it utilized a closed-loop approach to prescribe 322 
stimulation based on brain signals recorded in real time.  323 

Analyzing neural activity from multiple sites may also allow for identifying functionally 324 
connected brain regions that are modulated by memory demands. Kim and colleagues 325 
identified pairs of electrodes whose activity was correlated during spatial memory retrieval and 326 
then stimulated them conjointly, which led to selective impairment in spatial memory (Kim et 327 
al., 2018). Similarly, Fell and colleagues (2013) tested whether stimulating the hippocampus 328 
and rhinal cortex in phase with each other or in an anti-phase protocol might have differential 329 
effects. They found a trend toward in-phase stimulation resulting in better memory than no 330 
stimulation, which in turn was better than anti-phase stimulation. Together, these studies 331 
suggest that stimulation at multiple sites should be considered in devising protocols for 332 
modulation of broad memory networks.  333 

 334 

WHEN? TEMPORAL PROFILE OF STIMULATION 335 

Just as the site of stimulation has varied among different research methods, so has the 336 
temporal profile of stimulation. This relates to several considerations, including the memory 337 
stage at which stimulation is provided, the temporal profile of the stimulation waveform itself, 338 
the duration of stimulation, and the delay between stimulation and test. Recently, as closed-339 



loop methods have become more accessible, the relationship between stimulation timing and 340 
brain state has also been investigated. 341 

Memory Stage 342 

Although the traditional approach to memory research employs a division into stages of 343 
encoding, consolidation and retrieval, in continuous ‘real life’ behavior these stages are 344 
intermixed and cannot be easily separated into distinct time segments. The majority of research 345 
involving trial-based or item-based stimulation has provided stimulation during or just prior to 346 
encoding. These studies, which yielded variable results in memory performance, have been 347 
reviewed above.  348 

Similar to encoding, stimulation of the hippocampus proper during retrieval had a detrimental 349 
or no effect on memory performance (Halgren et al., 1985, Lacruz et al., 2010, Merkow et al., 350 
2017). Stimulation during both encoding and retrieval may have compounding effects, such 351 
that the memory changes to a greater degree than stimulating during only one or the other 352 
(Halgren et al., 1985, Lacruz et al., 2010). However, timing of stimulation may be a critical factor 353 
for retrieval. Norman et al. (2019) reported a content-specific transient increase in sharp wave 354 
ripples (SWR) in hippocampus prior to free recall. This could serve as a temporal biomarker for 355 
stimulation, similar to what has been reported in rodents during sleep (see below; Maingret et 356 
al., 2016). 357 

Distractor tasks are often used between training and test in order to increase dependence of 358 
memory on the hippocampus, so neocortical stimulation during this period may impact the 359 
ability of the hippocampus to maintain the memory during the distraction. Indeed, direct 360 
hippocampal stimulation during a distractor task between encoding and retrieval led to greater 361 
impairment than during encoding or retrieval alone (Merkow et al., 2017). 362 

Sleep is a major temporal window when consolidation of hippocampal dependent memory 363 
occurs, primarily during slow wave sleep (SWS). There is extensive rodent literature supporting 364 
a model in which hippocampal-cortical dialog during slow wave sleep promotes stabilization of 365 
labile memory traces for long-term storage (Buzsaki, 1989). These studies identified specific 366 
electrical signatures of consolidation, particularly sharp wave ripples, which are now considered 367 
a key mechanism for memory consolidation.  368 

In rats, suppressing ripples by stimulating the ventral hippocampal commissure during sharp 369 
wave ripples disrupted the consolidation processes, resulting in poorer memory performance 370 
(Girardeau et al., 2009). Maingret and colleagues (2016) applied neocortical stimulation in the 371 
frontal lobe timed to the sharp-wave ripples, thus enhancing hippocampal-cortical coupling and 372 
resulting in enhanced performance on a spatial memory task in rodents. Fernandez-Ruiz et al 373 



(2019) showed that prolongation of spontaneously occurring ripples by optogenetic stimulation 374 
increased memory in rodents during maze learning, which leads to the question of whether 375 
electrical stimulation in humans could also prolong ripples.  376 

Interventions during SWS could modulate consolidation processes in humans. Several groups 377 
have used non-invasive stimulation (e.g. transcranial direct current stimulation or transcranial 378 
magnetic stimulation) during SWS. Providing rhythmic stimulation at the frequency of 379 
endogenous slow waves has led to increased slow wave activity in both open and closed-loop 380 
tests (Marshall et al., 2006, Massimini et al., 2007, Bellesi et al., 2014). Relatively few studies 381 
that tested the ability of non-invasive stimulation to evoke slow waves also examined the 382 
impact of this intervention on memory; nonetheless a meta-analysis of these studies suggests 383 
that on average there is a positive benefit for memory with this manipulation (Barham et al., 384 
2016). Sensory stimulation, especially rhythmic bursts of noise delivered in the slow wave 385 
frequency range, has also led to increased slow wave activity (Bellesi et al., 2014), with at least 386 
one study reporting a concomitant memory enhancement (Ngo et al., 2013). 387 

Together, these rodent and human non-invasive studies suggest that the memory consolidation 388 
stage is a potential target for enhancement of long-term memory. The ability to observe and 389 
respond in real time to local hippocampal features of sleep—which cannot be measured or 390 
targeted non-invasively—as well as to intervene directly at different points within the 391 
hippocampal-entorhinal-neocortical circuitry makes deep brain recording and stimulation 392 
during sleep an especially promising avenue for such enhancement.  393 

Stimulation Parameters 394 

The stimulation waveform is likely a factor in the success of stimulation to induce memory 395 
changes. Stimulation parameters may vary from continuous high frequency stimulation to even 396 
a single pulse. Modeled after the success of application of DBS in Parkinson’s disease, many 397 
studies have applied continuous high-frequency stimulation at 130 Hz. The majority of these 398 
studies has either considered long-term effects of high-frequency stimulation in patients with 399 
AD or examined changes to the molecular markers of memory, disease, and neuronal activity in 400 
animal models. The animal model research often appears promising—with increased presence 401 
of cFos+ (Stone et al., 2011, Gondard et al., 2015, Hescham et al., 2016) and BrdU+ (Stone et al., 402 
2011, Hao et al., 2015, Mann et al., 2018) cells, higher levels of Acetylcholine (Hescham et al., 403 
2016), enhanced BOLD response (Ross et al., 2016), decreased markers of disease pathology 404 
(Mann et al., 2018, Leplus et al., 2019), and even some behavioral enhancement (Stone et al., 405 
2011, Hao et al., 2015, Zhang et al., 2015, Mann et al., 2018). Unfortunately, corresponding 406 
behavioral changes have generally not been borne out in humans (Laxton et al., 2010, Oh et al., 407 
2012, Boex et al., 2011, Lozano et al., 2016). 408 



Efforts to enhance memory of specific items have generally targeted stimulation frequencies 409 
that reflect prominent endogenous rhythms in the hippocampus: 50 Hz stimulation is within the 410 
range of endogenous gamma rhythm, while 5-10 Hz stimulation is intended to mimic the theta 411 
frequency. Results have been varied among these protocols, with theta frequency stimulation 412 
more often showing enhancement (Koubeissi et al., 2013, Alagapan et al., 2019, Izadi et al., 413 
2019, Lee et al., 2013a) and 50 Hz stimulation split between showing impairment (Coleshill et 414 
al., 2004, Jacobs et al., 2016, Merkow et al., 2017, Halgren and Wilson, 1985) and improvement 415 
(Inman et al., 2018, Suthana et al., 2012a, Bass and Manns, 2015, Fell et al., 2013). Combining 416 
these approaches by nesting a higher frequency stimulation pulse within a low frequency 417 
rhythm has been a promising approach in rodents (Boix-Trelis et al., 2006, Sweet et al., 2014), 418 
often yielding memory enhancement when low frequency or high frequency stimulation failed 419 
to do so (Sweet et al., 2014, Shirvalkar et al., 2010). In humans, theta burst stimulation is not 420 
yet well studied, but has shown promising initial results (Titiz et al., 2017, Miller et al., 2015). 421 

 Another important factor of the stimulation waveform is the amplitude of the stimulation 422 
current. Halgren demonstrated that stimulation strong enough to cause after discharges caused 423 
memory impairment (Halgren and Wilson, 1985). Many studies have, therefore, chosen 424 
stimulation amplitudes just below the after discharge threshold. Although the variability in 425 
other stimulation parameters precludes a meta-analysis of the effect of amplitude, it is notable 426 
that many of the studies in which stimulation caused memory impairment used this approach, 427 
applying amplitudes of stimulation in the milliampere rather than microampere range. One 428 
possible explanation for this effect may be that high amplitude stimulation is likelier to inhibit 429 
neuronal firing, even several centimeters from the stimulation site (Mohan et al., 2019, 430 
Herrington et al., 2016). 431 

Timing Relative to Brain Activity 432 

If stimulation is to enhance memory, it is likely to work by acting in concert with the brain’s 433 
natural memory mechanisms. Closed-loop strategies taking into account on-going brain activity 434 
have been used effectively in animal studies, such as enhancing memory by temporally locking 435 
stimulation to sharp wave ripples (Fernandez-Ruiz et al., 2019, Maingret et al., 2016) or 436 
targeting a particular phase of endogenous rhythms (Siegle and Wilson, 2014). There has been 437 
a relatively small number of closed-loop stimulation studies in human memory. Initial studies 438 
include closed-loop methods that take into account spiking patterns (e.g. Hampson et al., 2018) 439 
or data-derived brain states  (Ezzyat et al., 2017, 2018). So far, these closed loop methods look 440 
promising for memory enhancement, but more studies will be needed to confirm and refine 441 
these methods. 442 



Memory formation involves mechanisms of synaptic plasticity which require coordination of 443 
action potentials across neuronal populations. In humans,  Rutishauser and colleagues (2010) 444 
have shown that successful memory encoding in humans is predicted by a tight coordination of 445 
spike timing with the local theta oscillation  Stimulation targeted at precise timing relative to 446 
ongoing brain rhythms is a strategy that has not yet been tested in human DBS. However, 447 
phase-amplitude coupling between frequency bands appears to be important in human 448 
memory (Mormann et al., 2005, Axmacher et al., 2010) and sleep (Staresina et al., 2015, 449 
Niknazar et al., 2015 ). Evidence from rodents indicates also that encoding and retrieval may be 450 
active at distinct phases of the theta cycle (Hasselmo et al., 2002) or frequency of gamma 451 
(Colgin et al., 2009), suggesting that targeting the appropriate phase or frequency could amplify 452 
the effects of stimulation. Targeting specific sleep rhythms via closed-loop systems has been 453 
shown to be the most effective for enhancing consolidation via auditory stimulation (Ngo et al., 454 
2013, Batterink et al., 2016, Bellesi et al., 2014). 455 

 456 

WHAT ARE WE MODULATING? 457 

Memory is a multi-faceted phenomenon that exists in different forms (Squire, 2004) and on 458 
different time scales. Even within the domain of hippocampal-dependent memory, there are 459 
multiple variations that must be considered. Methods that modulate recognition memory, for 460 
example, may not have similar effects on free recall. Even within a single domain, the effects of 461 
the same stimulation paradigm may vary with the material to be recognized (such as faces vs 462 
words) (Lacruz et al., 2010). Tasks that lean primarily on verbal vs visual processing may be 463 
differentially lateralized in human processing (Smith and Milner, 1989, Fried et al., 1982, 464 
Ojemann, 1983, Haxby et al., 1996), such that the hemisphere of stimulation delivery matters 465 
(Titiz et al., 2017). 466 

Forgetting is a process that occurs over time. If a memory benefit of stimulation were related to 467 
protection from forgetting, these benefits could be masked if the memory test is conducted too 468 
soon after learning. Stimulation of the amygdala, for example, showed no apparent change in 469 
memory performance for an immediate memory test but enhanced recognition memory after a 470 
one-day delay in both humans and rats (Inman et al., 2018, Bass and Manns, 2015). Similarly, if 471 
stimulation causes molecular changes that enhance memory, giving time for these changes to 472 
occur may also uncover effects that would not be obvious on an immediate test. For example, 473 
healthy mice receiving entorhinal stimulation six weeks prior to encoding had enhanced search 474 
strategies on the Morris water maze after a 4 week delay; these timescales are consistent with 475 
the timing required for a stimulation-induced increase in neurogenesis to affect memory of a 476 



proximal event (Stone et al., 2011). Thus, future studies should follow patients for longer 477 
periods of time. 478 

Several different pathological conditions can lead to impaired memory, including dementia, 479 
epilepsy, and traumatic brain injury. Each comes with its own underlying cause, and specifically 480 
targeting each condition’s underlying neural changes may be critical to successful interventions. 481 
It is sometime difficult to separate the effect of stimulation on the disease process and its direct 482 
effect on memory function (e.g., in AD, enhancing memory processes vs slowing down the 483 
disease progression). In epilepsy patients  one mechanism that appears to impact memory is 484 
when interictal discharges induce physiological events, such as sleep spindles, at inappropriate 485 
times (Gelinas et al., 2016). In such cases, a closed loop stimulation method targeted at 486 
suppressing interictal discharges could be effective.  487 

A relatively recent advance in epilepsy treatment has been the advent of chronically-488 
implantable devices that stimulate in a closed loop manner when certain electrographic 489 
signatures are detected (Figure 3A). A 2-year follow up study of temporal lobe epilepsy patients 490 
with such devices found a rather small (2%) increase in verbal memory scores (Loring et al., 491 
2015). 492 

 493 

FUTURE DIRECTIONS 494 

Neuromodulation of human memory has focused primarily on the hippocampal-entorhinal 495 
system and its wide network of efferent and afferent targets. Studies to date have entailed 496 
substantial variability in the spatial and temporal characteristic of intervention. It is thus 497 
imperative that data be shared among investigators, criteria be established for monitoring the 498 
large number of relevant variables across research centers (Suthana et al., 2018), and studies 499 
be planned and interpreted in close association with basic neuroscience. The entorhinal-500 
hippocampal circuitry is one of the most extensively studied of all brain networks, yielding 501 
some of the most striking correlations between neuronal mechanisms and behavior. Yet, there 502 
is still a substantial gap between the knowledge gained from basic science and the ability to 503 
apply it to modulate memory mechanisms in humans. Therefore, despite the overwhelming 504 
number of patients with neurological disorders affecting memory, we caution against 505 
premature launching of large DBS studies in this field, and advocate smaller adaptive studies 506 
where spatiotemporal variables of modulation can be changed more readily (Fried, 2015, Fried, 507 
2016). 508 



As we look toward the future of memory modulation, we must consider what are we trying to 509 
modulate.  Most of the studies to date have been carried out in patients with neurological 510 
disorders, whether epilepsy or AD, where memory is impaired to varying degrees. Chronic 511 
studies that apply continuous stimulation, such as the fornix studies in AD, have primarily 512 
aimed to alter the disease process which causes the memory impairment, whereas acute 513 
studies have focused on transiently altering neural activity to promote a mnemonic brain state. 514 
These are not mutually exclusive approaches, however. For example, it might be useful to 515 
include acute studies of memory, where the momentary effects of stimulation on memory can 516 
be tested directly, in the patient population with AD.  517 

Enhancing memory will likely require tapping into the brain’s natural memory mechanisms in a 518 
manner more nuanced than most of what has been tried already. The amplitude of stimulation 519 
is likely critical to whether stimulation is acting as a lesion or a boost, with physiological level 520 
amplitudes less likely to induce widespread neuronal inhibition. Although DBS was introduced 521 
as a therapeutic approach for Parkinson’s Disease with the thought that it might mimic a lesion, 522 
current thinking adopts a modulatory approach to the abnormal motor network underlying the 523 
symptoms of the disease. Modulation of cognition in general, and memory in particular, may 524 
prove more challenging since the assessment of modulated variables are much less obvious to 525 
both patient and physician compared to overt motor variables such as tremor or rigidity. 526 
Furthermore, in diseases such as PD and epilepsy, the goal of stimulation is to stop or dampen 527 
abnormal oscillatory brain rhythms that generate symptoms, whereas in the case of memory, 528 
the goal is to facilitate neuronal network activity that is conducive to memory. Achieving this 529 
will likely require tuning the stimulation parameters away from the high frequency stimulation 530 
protocols that have been customarily used for DBS, with a focus on identifying parameters that 531 
lead to physiological changes that are consistent with positive memory performance. 532 

Substantial work remains to verify the physiological effects of the stimulation protocols 533 
reviewed here, as many studies report only behavioral effects. Among those that have reported 534 
physiological effects, a change in gamma power, arguably a reflection of action potentials, or 535 
theta-gamma coupling is common (Inman et al., 2018, Shirvalkar et al., 2010, Stypulkowski et 536 
al., 2017, Ezzyat et al., 2017, Kucewicz et al., 2018a). With respect to enhancing encoding by 537 
entorhinal stimulation, it has been proposed that the underlying mechanism involves resetting 538 
of the native rhythms of the human hippocampus (Suthana et al., 2012a) or the entrainment of 539 
neurons within the hippocampal subfields (Diamantaki et al., 2018).  Future work should also 540 
elucidate circumstances under which stimulation directly influences neuronal spiking, 541 
modulates excitability of downstream structures, entrains neuronal firing toward coherence, or 542 
induces long-term potentiation (LTP). For instance, the use of theta burst stimulation of the 543 
perforant path (Titiz et al., 2017) may enhance encoding via LTP in the hippocampal subfields. 544 
The ability to record on micro-wires and reject stimulation artifact has allowed for following 545 



spiking waveforms between stimulation and non-stimulation periods (O’Shea and Shenoy, 546 
2018), which will provide valuable insights into the immediate and delayed effects of 547 
stimulation on individual neuronal responses. 548 

Just as early studies elucidated brain areas involved in particular cognitive functions, newer 549 
studies may use stimulation to further our understanding of the neural mechanisms underlying 550 
memory, as electrical stimulation can address causation rather than merely correlation. For 551 
example, El-Kalliny and colleagues (2019) demonstrated a relationship between memory 552 
performance and a gradual drift in low frequency spectral power in the temporal lobe, then 553 
showed that using electrical stimulation to change this drift modulated memory performance 554 
accordingly. Similarly, evaluating how hippocampal patterns of activity were modulated by 555 
microstimulation that enhanced or failed to enhance memory specificity (Titiz et al., 2017) 556 
could shed light on theories of human hippocampal pattern separation. 557 

Such studies highlight the importance of the dialogue between the basic science of memory 558 
and its modulation by electrical stimulation. Identifying the differing physiological effects of 559 
stimulation when memory is enhanced or impeded will provide insight into mechanisms of 560 
memory, while further understanding of the signatures of successful vs unsuccessful memory 561 
will provide benchmarks against which to test the design of stimulation protocols. A recent 562 
study showed that stimulation of the posterior cingulate cortex increased gamma power in 563 
hippocamnpus, yet the behavioral result was impairment of memory, indicating that an 564 
increase in hippocampal activity may not necessarily yield an improvement in memory (Natu et 565 
al., 2019). Overall, then, converging evidence from multiple studies that report not only 566 
behavioral but also physiological effects of stimulation may further our understanding of 567 
memory processes and how to enhance them. 568 

Using closed loop methods to compute and deliver appropriate neural codes directly to the 569 
hippocampus may be more effective than fixed external stimulation but will require a much 570 
clearer understanding of the native neural code of the human hippocampus (Hampson et al., 571 
2018). In the absence of such a model, targeting stimulation to white matter tracts may be a 572 
more physiological approach to manipulating hippocampal activity and to reduce disruption to 573 
the neuronal computations ongoing in the cell layers of the hippocampus (Titiz et al., 2017), 574 
Using a constant train of high frequency stimulation ranging from 50 Hz to 200 Hz, as has been 575 
used in several studies to date, may be based on the broad assumption that such frequencies 576 
recruit single cells in target regions within the hippocampus-entorhinal circuitry. Selecting a 577 
more physiological stimulation waveform, such as nested frequencies, could enhance theta-578 
gamma coupling, or other memory-relevant oscillatory patterns. In general, the more 579 
stimulation mimics native physiological memory processes, the likelier it may prove effective in 580 
enhancing memory. 581 



A major challenge for the field will be translating the findings from short term experiments into 582 
effective chronic treatments of people who are suffering from memory impairment. A first step 583 
is to increase the cross-talk between the short-term memory studies with epilepsy patients and 584 
the longer-term studies of patients with chronic implants for AD or epilepsy. Epilepsy patients 585 
undergoing stimulation for memory should be followed for longer periods of time to allow for 586 
monitoring effects of stimulation, such as those induced by molecular changes, that may take 587 
time to emerge. Conversely, using naturalistic, closed-loop parameters in patients undergoing 588 
chronic stimulation, rather than focusing exclusively on the goal of slowing disease progression, 589 
may increase its efficacy for improving memory (Senova et al., 2018). Patients with temporal 590 
lobe epilepsy who have received chronically implanted neurostimulators, such as the 591 
responsive neurostimulator (RNS; Figure 3A), may be an ideal subject population for these 592 
crossover studies, as their physiological response to stimulation and memory tests can be 593 
recorded over the long term. 594 

A further challenge for development of viable neuroprosthetic devices will be the 595 
transformation from tightly controlled memory experiments—where stimulation and tasks can 596 
be carefully coupled—to applying appropriate stimulation during the ongoing experiences of 597 
daily life. Using closed loop models for deriving timing of an intervention by analyzing states of 598 
the brain (e.g. Ezzyat et al., 2017, 2018) or assessing specific external demands and actuating 599 
electrical stimulation accordingly may prove useful strategies. It is currently difficult to envision 600 
a method for automatic detection of whether an individual is challenged with encoding or 601 
retrieval of information. Therefore, strategies that target encoding and retrieval differentially 602 
may be difficult to achieve. However, as research progresses, we may find neural markers of 603 
encoding or retrieval intention or need. In the meantime, one could envision giving control to 604 
users of a device themselves, allowing them to select a “learning” mode versus a 605 
“recall/testing” mode. 606 

A major promising strategy for memory neuromodulation may involve the enhancement of 607 
consolidation during sleep based on measuring spontaneously occurring biomarkers of neural 608 
activity, such as slow waves, spindles and ripples. In general, sleep provides a relatively stable 609 
period of time with limited environmental input and decodable electrical activity, and thus may 610 
be ripe for neuromodulation to improve consolidation of memory traces. 611 

Perhaps the final frontier for memory neuromodulation will be refining the specificity of 612 
modulation. Most of the human studies to date have involved interventions to improve general 613 
conditions for encoding new information. Specificity was limited to the types of memory or 614 
material tested (e.g., spatial memory, memory for faces or word lists etc.). But the question 615 
remains: can we enhance or even “incept” a specific select memory? Using optogenetic 616 
techniques in rodents, it has been possible to manipulate selected engrams, that is, the specific 617 



subset of hippocampal cells that hold the key to a particular memory, and activate behavior 618 
that indicates memory has been induced (Ramirez et al., 2013). In another study, stimulation 619 
during NREM sleep in rodents triggered by the reactivation of a particular place cell, incepted a 620 
memory for positive emotion at a particular place, evidenced by the animal preferring this place 621 
in subsequent waking behavior (De Lavilléon et al., 2015). Similar approaches may offer not 622 
only the inception but also the deletion of specific memories.  623 

Ethical Considerations: Opportunities and Risks 624 

Several ethical issues arise in considering the use of deep brain stimulation for memory 625 
modification. Concerns can largely be divided into considerations regarding the invasive nature 626 
of DBS and issues pertaining to external intervention in the memory of an individual human 627 
being. As a surgical procedure, DBS carries relatively small risks, even in fragile patients such as 628 
elderly patients with Alzheimer’s Disease (Laxton et al., 2010). These risks include mainly 629 
infection and bleeding, which may result in neurological deficit. Many studies with multiple 630 
intracranial depth electrodes (SEEG) implanted for diagnostic reasons in epilepsy patients 631 
where over 10 electrodes may be commonly implanted, show low (1-2%) intracranial bleeding 632 
or infection rates (Fenoy and Simpson, 2014). 633 

However, as an invasive therapy that requires undergoing neurosurgery, DBS should be 634 
undertaken with caution. Indeed, we caution against efforts to apply DBS in healthy individuals. 635 
Although it has been found to be safe and well-tolerated, even for long-term use, there may be 636 
unforeseen risks to surgical interventions in brain parenchyma, including possible unknown 637 
neuropsychological side effects (Kubu and Ford, 2007). For instance depression has been found 638 
to be a possible side effect of the use of DBS in the ANT for epilepsy (Tröster et al., 2017). 639 
Additional ethical questions surrounding DBS generally include patient selection, informed 640 
consent, and equality of access to a high-cost intervention (Bell et al., 2009, Unterrainer and 641 
Oduncu, 2015). The question of informed consent is an especially relevant one for the case of 642 
expanding DBS for treatment of dementia or other cognitive impairment, 643 

Memory modification, especially should it reach the level where specific memories can be 644 
manipulated, poses its own set of ethical challenges. Because our memories are strongly tied to 645 
our sense of self and identity, memory modification has significant implications for our 646 
autonomy as free human beings. Are we rushing an era where human memory can be edited?  647 

Admittedly, one could hardly argue against providing a memory boost to a patient with early 648 
Alzheimer’s Disease who wants to remain an active and productive member of his work and 649 
family environment. Is such a “memory aid” different from a hearing aid or cochlear implant? 650 
Should the “hard of remembering” be differently treated than the “hard of hearing”? Even 651 



when it comes to manipulating specific memories, can one argue against deletion of a noxious 652 
memory in an individual with post-traumatic stress disorder (PTSD), where the ability to forget 653 
or diminish a specific traumatic experience may alleviate immense suffering?  654 

On the other hand, who should decide under what circumstances a memory can be edited? 655 
Especially if such editing could involve not only the decoding and enhancing of human 656 
memories, but also the inception and deletion of specific wanted or unwanted memories? How 657 
would the modification of single memories interact with the entire memory network? Would it 658 
distort a person’s sense of reality and identity? (Hui and Fisher, 2015, Liao and Sandberg, 2008). 659 
These questions may be of special concern in the vulnerable populations for which DBS is 660 
targeted, such as those with dementia, head injury or PTSD. If memory editing technologies 661 
advance significantly, it will be important to have safeguards to prevent potential misuse, such 662 
as requiring multiple levels of scrutiny with changes of stimulation protocols. One must also 663 
consider more sinister scenarios of misguided or abusive applications of memory manipulation 664 
or “hacking” of the human mind for nontherapeutic ends.  665 

The present era entails the rapid development of several technologies (Figure 3). On the one 666 
hand, closed-loop implanted devices interacting with the human brain in daily life are already in 667 
clinical or advanced investigative use. These include the Responsive Neurostimulation device 668 
(RNS, NeuroPace), FDA-approved for use in epilepsy, and the RC+S (Medtronic), capable of 669 
streaming online neural signals in behaving individuals. At the same time, recording and 670 
stimulation devices with hundreds of electrodes and thousands of channels of single neuron 671 
and local field potential data are already in use in animal research and are on the threshold of 672 
being translated to human use. These include the Neuropixel probe (Jun et al., 2017) and the 673 
robotically-implanted probe of Neuralink (Musk, 2019). The large amount of data these 674 
technologies will produce, coupled with the incredible ascent of artificial intelligence, may 675 
translate into therapeutic use for memory manipulation, even without sufficient understanding 676 
of the underlying brain mechanisms.  677 

As research and technology continue to push forward the prospect of memory enhancement 678 
and modification, we should actively engage in these discussions, encouraging ethicists, 679 
neuroscientists, neurologists, neurosurgeons, psychologists, engineers, caretakers, and other 680 
concerned citizens to join in conversation on the best ways to advance responsible intervention 681 
in one of the basic foundations of human individuality and autonomy, our memory.  682 
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FIGURES 689 

Figure 1. Components of the limbic system have been targeted for deep brain stimulation for 690 
modulation of memory. The Circuit of Papez includes the hippocampus (a), which projects via 691 
the fimbria and fornix (b) to the mammillary bodies (c), which then project via the 692 
mammillothalamic tract (d) to the anterior nucleus of the thalamus (e). Thalamocortical fibers 693 
continue to the cingulate gyrus, from which the fibers of the cingulum (f) innervate the 694 
parahippocampal gyrus (g)—which includes the entorhinal cortex (h)—as well as many cortical 695 
areas. The circuit is completed as the entorhinal cortex projects to the hippocampus through 696 
several pathways, including the perforant path. Other components of the limbic system include 697 
the hypothalamus, amygdala (i), nucleus accumbens, and septal nuclei (j). Though not 698 
considered part of the limbic system, the Nucleus Basalis of Meynert (k) has also been targeted 699 
for chronic DBS for the treatment of AD, due to its large number of cholinergic projections 700 
throughout the brain. Regions that have been targeted for DBS and are reviewed here are 701 
shaded in color. Brain sketch by Natalie Cherry, inspired by the dissections in (Shah et al., 2012). 702 

Figure 2. Large, widely spaced bipolar stimulating contacts may affect multiple brain regions 703 
and networks. Left: Coronal slice from a T1 weighted MRI of a participant with deep brain 704 
electrodes. Red circles: locations of adjacent macro electrodes (3.5 mm spacing); red crosshair: 705 
position of a 100-um diameter electrode that was used for microstimulation. Right: 706 
Enlargement of the medial temporal lobe. Top: white matter pathways between the entorhinal 707 
cortex and hippocampus. Bottom: distinct anatomical regions of the MTL. Adapted with 708 
permission from (Titiz et al., 2017). 709 

Figure 3. Chronically Implantable DBS Systems of today and Tomorrow. A. Closed-loop 710 
Responsive Neurostimulation (RNS) system (NeuroPace Inc) used for treatment of epilepsy. The 711 
system includes a neurostimulator embedded in the skull and connected to two four-contact 712 
leads, a depth lead placed into deep brain structures and/or a subdural strip placed over the 713 
cortex. The system senses brain activity (intracranial EEG) and can apply stimulation at 714 
prescribed locations. When sensing epileptic activity, it can deliver stimulation to avert seizures 715 
(Courtesy of Neuropace, Inc). B. Proposed design for a closed-loop hippocampal 716 
neuroprosthesis for modulation of human memory. This unit includes depth leads placed in the 717 
entorhinal-hippocampal circuit providing both sensing and stimulation capabilities. The device 718 
extends the capabilities beyond current DBS and RNS by including: Recording of single units in 719 
addition to local field potentials, simultaneous sensing and stimulation, increased number of 720 
channels (32-64), wireless data and power transfer, and small size of implantable unit. The 721 
design additionally includes an external earpiece with modules for secure data handling, artifact 722 
rejection, closed-loop models, and a battery for power. Data transfer between intracranial and 723 



extracranial parts is wireless by miniature RF coils. (Based on design for UCLA DARPA RAM 724 
(Restoring Active Memory) project (I. Fried, PI); illustration courtesy of Dejan Markovic). 725 
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m
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 et al. 
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