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ABSTRACT

ARTICLE HISTORY

Inferences from different data sources can often be fused together, a process referred to as “fusion learning,’ Received May 2018

to yield more powerful findings than those from individual data sources alone. Effective fusion learning
approaches are in growing demand as increasing number of data sources have become easily available
in this big data era. This article proposes a new fusion learning approach, called “iFusion,’ for drawing
efficient individualized inference by fusing learnings from relevant data sources. Specifically, iFusion (i)
summarizes inferences from individual data sources as individual confidence distributions (CDs); (ii) forms
a clique of individuals that bear relevance to the target individual and then combines the CDs from those
relevant individuals; and, finally, (iii) draws inference for the target individual from the combined CD. In
essence, iFusion strategically “borrows strength” from relevant individuals to enhance the efficiency of
the target individual inference while preserving its validity. This article focuses on the setting where each
individual study has a number of observations but its inference can be further improved by incorporating
additional information from similar studies that is referred to as its clique. Under the setting, iFusion is
shown to achieve oracle property under suitable conditions. It is also shown to be flexible and robust
in handling heterogeneity arising from diverse data sources. The development is ideally suited for goal-
directed applications. Computationally, iFusion is parallel in nature and scales up easily for big data. An
efficient scalable algorithm is provided for implementation. Simulation studies and a real application in
financial forecasting are presented. In effect, this article covers methodology, theory, computation, and
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application for individualized inference by iFusion.

1. Introduction

Fusion learning refers to synthesizing statistical inferences from
multiple data sources to yield a more powerful inference than
those from individual data sources alone. It has become a highly
researched area, partly driven by the increasing availability of
data sources brought forth by the big data era. The challenges in
fusion learning often stem from the volume, the complexity, and
the heterogeneity of different data sources. Many approaches
have been developed recently to address different aspects of
fusion learning (e.g., Chen and Xie 2014; Kleiner et al. 2014; Liu,
Liu, and Xie 2014; Yang et al. 2014; Liu, Liu, and Xie 2015; Tang,
Zhou, and Song 2016; Liu, Liu, and Xie 2017; Zhu and Qu 2018).
It should be stressed that fusion learning is different from data
aggregation, as the former synthesizes inference results from
different data sources while the latter aggregates all data. In
many situations, akin to phenomena associated with Simpson’s
paradox, the latter can yield incorrect or misleading overall
inference results. One such example is in Liu, Liu, and Xie
(2017), which presents extremely low p-values from separate
datasets of two different aircraft types indicating poor land-
ing performance of both aircraft types, but a large p-value is
obtained from the aggregated data, leading to a false conclusion
of a good performance for both instead.

Given the inferences from multiple data sources, they can
be combined through fusion learning to yield a more efficient
overall inference. Can they also be combined to yield a more

efficient inference for a specific individual data source or sub-
ject? Often, the inference based on the specific individual data
source itself is valid, but it may be inefficient due to its limited
sample size and ignoring information in other sources. A case
in point is our collaborative project with the global consulting
firm Dun & Bradstreet (D&B) which provides risk manage-
ment services worldwide. It involves a practical dataset of time
series from more than 10,000 companies. One objective of the
project is to build a dynamic forecast model based on only the
most recent 24 or 36 months data for each company. A natural
approach is to construct a model, say an autoregressive model
with exogenous variables as covariates, for each company, using
its own time series data and relevant economic and market
indices in the past two or three years. However, such individual
company models tend to be unstable and inefficient due to
the limited data size from each company. With the availability
of the large database containing over 10,000 companies, there
may exist a set of companies that share similar traits of the
target company, whose information can be utilized to improve
its analysis.

Motivated by the D&B project, we propose in this article
a new fusion learning approach called individualized fusion
learning, abbreviated as iFusion, to strategically merge inference
or information from relevant data sources to enhance infer-
ence efficiency for a target individual study or company. The
proposed approach uses the tool of confidence distributions
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Parameter

Figure 1. An illustration of the effect of individualized inference using iFusion
approach to combine inference results from the relevant individuals.

(CDs) (see a brief review of CDs in Section 2.1). Specifically,
iFusion is a three-step approach: Step (i) Analyze the data from
each individual company and summarize each inference as a
CD function. Step (ii) Identify a set of companies, referred to
as a clique, whose inferences are relevant to that of the target
company. Step (iii) Strategically combine the CD functions in
the clique and use this combined CD to draw inference for the
target company. The combining in Step (iii) uses a suitably cho-
sen set of target-specific screen weights (detailed in Section 2.2).
The choice of screen weights is crucial, and it is determined by
bias-variance tradeoff to achieve the best allowable efficiency for
the target inference. This article focuses mainly on the setting
where an individual study has a number of observations but its
inference can be further improved by incorporating additional
information from similar studies in its clique. In Section 3 and
for our purpose, a clique is defined as a set of studies that share
the same or have similar model parameters as the target individ-
ual study; further discussions relating to grouping by covariates
are provided the discussion section. Under the setting, iFusion
is shown to achieve the oracle property under regularity condi-
tions. Overall, it is efficient, flexible, computationally scalable,
and even robust for handling heterogeneity arising from diverse
data sources.

Figure 1 presents a simple conceptual illustration of the effect
of individualized inference using iFusion approach to combine
inference results from relevant individual studies. Each normal
curve represents an individual inference result as a CD hovering
around its true parameter value (marked as a bar on the x-axis).
The red curve is a CD for the target individual. The peaked
normal curve in the black dashed line represents the combined
CD obtained by applying iFusion to suitably combine the indi-
vidual CD functions which are deemed relevant to the target
individual, namely the individuals in the clique (colored blue).
The other individuals, colored light gray, contribute negligibly,
or even negatively to the inference of the target individual, and
thus are excluded from the combining step of iFusion.

There exist several approaches for making individualized
inference. A common approach is to first cluster companies into
different subgroups; for example, in Figure 1, one may apply an
unsupervised learning method on point estimates of individual-
specific parameters to learn the subgroups. The data in the same
subgroup are then pooled to derive an overall inference for all
the individuals in the same subgroup. Although this clustering
approach leads to increased sample sizes in each subgroup, it
has several shortcomings. For example, the formation of sub-
groups can be arbitrary as it depends on not only the number
of clusters specified in the approach (which is known to be
difficult to determine especially when the number of individuals

is large), but also on the specifically chosen clustering method.
Furthermore, this approach forces all the individuals in the same
subgroup to have identical inference outcomes (e.g., parameter
estimation or testing). Worse still, in a situation where there
are no well-separated subgroups, the above subgroup approach,
by imposing an artificial subgroup structure, can induce large
biases in estimation and lead to invalid inference.

Bayesian hierarchical models can also be used for the D&B
project. Here, a forecast model for a company would be assumed
to be conditional on company-specific parameters that are
further modeled through a prior or hierarchical prior distri-
bution. Then, the resulting posterior distribution is used to
make inference about individual company-specific parameters.
See, for example, Gelman et al. (2013) and Gustafson, Hossain,
and McCandless (2005) for discussions on Bayesian hierarchical
models. However, a simple prior such as a Gaussian prior or a
standard hierarchical prior may be insufficient to capture the
underlying complexity of between-company heterogeneity. One
may consider more complicated models and priors such as finite
mixtures; the finite mixtures model faces the same difficulties
in determining the number of mixture components, especially
in the absence of well separated subgroups. Nonparametric
Bayesian (NPB) approaches based on infinite mixtures though,
for instance, Dirichlet process priors (see Griin and Leisch
2007; Hannah, Blei, and Powell 2011) may help overcome these
difficulties of determining subgroups. The main challenge of
these Bayesian approaches, however, is that they often rely on
MCMC sampling schemes and need to analyze all companies
altogether in each iteration. This is often computationally pro-
hibitively intensive, especially for a large number of compa-
nies, unless certain scalable parallel computing platforms are
involved.

The goal of iFusion is similar to that of the Bayesian hier-
archical methods in terms of improving inference efficiency of
the target company by “borrowing information” from relevant
others. iFusion has the following methodological advantages: (i)
inference validity in terms of frequentist properties is guaran-
teed by choosing properly the screen weights so that the infor-
mation sharing is taken place only among relevant individuals;
(ii) the proposed framework can be easily adapt to any forms of
individual parameters, so iFusion is essentially nonparametric
and needs no assumptions of any priors on the underlying
parameters; and (iii) it naturally fits in the “divide-and-conquer”
scheme and can be scaled up to big data applications such as
the D&B project, due to the fact that the first step of analyzing
individual companies can be performed without accessing the
entire dataset, which can be easily done by distributed or parallel
implementation. All these make iFusion particularly appealing,
especially in big data applications.

We organize the rest of the article as follows. In Section 2.1,
we briefly review CDs and show how CDs facilitate fusion
learning in general. We describe in Section 2.2 a general i{Fusion
approach, and then show in Section 3 that iFusion provides
a proper and efficient inference for a target individual, and
achieves the oracle property under some suitable regularity
conditions. Section 4 extends iFusion to heterogeneous data
settings. Section 5 describes implementation details, including a
scalable tuning algorithm. Sections 6 and 7 present, respectively,
simulation studies and a real-data application to demonstrate



the effectiveness of iFusion. Section 8 contains some concluding
remarks and discussions of other settings where the iFusion
methodology can be further developed.

2. Methodology
2.1. Confidence Distribution and Fusion Learning

Point or interval estimates are commonly used estimates for an
unknown parameter in statistical analyses. This section presents
a review of CD function which, being a sample-dependent
distribution function defined on the parameter space, serves as
a viable alternative. .

Consider a simple normal example with x; M N 0,0?),
i=1,...,nfor aknown o, where the mean 6 is the parameter
of interest. Instead of using a point (say, x) or an interval (say,
(1 — @) level confidence interval (x + ®~'(«/2)o/n'/%,x +
®~1(1 — a/2)0/n'/?)), we can also use a sample-dependent
function N(x, o2 /n) to estimate 6. Such a distribution estimate,
referred to as a CD, provides meaningful answers for almost
all questions related to statistical analysis, including point esti-
mation, confidence interval, and p-value (see Xie and Singh
2013; Schweder and Hjort 2016 and references therein). Cox
(2013) stated that a CD is to provide “simple and interpretable
summaries of what can reasonably be learned from data (and
an assumed model)” A CD may be conveniently defined as “a
sample-dependent distribution that can represent confidence
intervals or regions of all levels for parameters of interest” (Xie
and Singh 2013). A formal definition of CD can be found in Xie
and Singh (2013) and Schweder and Hjort (2016). If a CD is
presented as a density function when appropriate, it is referred
to as a confidence density or a CD density (see Efron 1993;
Singh, Xie, and Strawderman 2007).

The rich information contained in a CD makes it an effec-
tive tool to synthesize information from multiple data sources.
Singh, Xie, and Strawderman (2005) proposed a general frame-
work for combining CDs for a scalar parameter from indepen-
dent data sources and showed that the combined CD yields
valid statistical inference so long as each individual CD is valid,
regardless how they are obtained individually. Xie, Singh, and
Strawderman (2011) showed that the general framework of
CD combination can subsume almost all existing meta-analysis
approaches as special cases. Singh, Xie, and Strawderman (2005)
established a framework for combining univariate CDs by mul-
tiplying confidence density functions, which was extended by
Liu, Liu, and Xie (2015) to fusion learning on multivariate com-
mon parameters and to heterogeneous study designs, adopted
later by Tang, Zhou, and Song (2016) and others. A basic com-
bining scheme is based on

K
HOO; 8., 8k) = [ [ @ Sp) (1)

k=1
where hy(0; Sk) is a confidence density function derived from
the kth study or individual using only its dataset Sk. Liu, Liu,
and Xie (2015) showed that the point estimator obtained from
the combined CD, 9(6) = argmax, h90;8,,...,8), though
using only individual summary statistics, enjoys the same efhi-
ciency achieved by the maximum likelihood estimator derived

from the analysis of the full dataset.
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Most existing work on combining information in the current
literature assume that all the individual parameter values are the
same or similar. This assumption seems too stringent in many
real applications. Claggett, Xie, and Tian (2014) relaxed the
assumption by allowing unstructured different study parameter
values in a fixed-effects meta-analysis setup, but its development
was only for quantiles of the set of study parameter values and
not for individual study parameters 6.

2.2. iFusion by Adaptive Combination of CDs

We now proceed to describe the iFusion approach and articulate
its broad applicability to general settings without enforcing any
assumptions on the individual parameter values. Such flexibility
makes iFusion particularly useful for a broad range of problems
in individualized inference.

Consider a collection of K individual subjects with a dataset
S = {S1,...,Sk}, where S contains samples of size ni gen-
erated independently for the kth individual for k = 1,...,K,
respectively. For ease of presentation, we assume in this article
K is a (large) constant, although the iFusion development can
be extended to K — oo with some modifications on the
conditions; see further discussions on the case of K — 00 in
Section 8. We further assume that nx/n — ry for some constant
e € (0,1) asn — 00, where n = lele ny the sample size
of the entire dataset. Suppose the features for the kth individual
can be characterized by a pi-dimensional parameter 6 € RPx.
Also, in this Sections 2 and 3 assume that the K individual
models have a shared model design (so p; = -+ = px =
p), but their unknown parameter values {01, ...,0k} can vary
across individuals or equal/close to one another. In Section 4,
we extend iFusion to heterogeneous model designs with varying
pr’s, under which the method developed in Liu, Liu, and Xie
(2015) for varying pi’s can be viewed as a special case of iFusion.

Without loss of generality, individual-1, and thus 6;, are
chosen as the target unless specified otherwise. For convenience,
we will use the terms individual-1, model-1, and ), inter-
changeably. The goal is to make a valid and efficient inference
about 0.

Obviously, data S; can be analyzed directly under the
assumed model-1, for which a number of statistical procedures
may apply. For simplicity, we assume that @, can be estimated
consistently by a point estimator 81, as n — 00, and 0, follows
asymptotically a normal distribution with an estimated variance
1. In other words, 8 is estimated by an asymptotic normal CD,
N(1, %), with the corresponding confidence density given by

1

QP2 |5 |12

1 ~ ~ ~
X exp {—5(01 —01)'3710, - 91)}- (2)

h1(01;5)) =

If we use the likelihood approach, 8, is then the maximum like-
lihood estimator of 1, namely, 61 = argmaxg [1(0,]|S1), and an
estimator of £;(01) is £, = [—3%] 01151)/20100717 1y _p. -
Other estimation approaches may also be used, as long as the
asymptotic normality is available under mild regularity condi-
tions. We refer to this use of only &) to make inference about 6
as the individual approach. As discussed in Section 1, without
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utilizing potentially useful information from other individuals
in the dataset S, such an individual approach may miss out the
opportunity for improving efficiency. To improve the efficiency
for 6, of the individual approach, iFusion adaptively borrows
information from other relevant individuals. Specifically, it first
conducts separately the K individual approaches to obtain the
inference results as K confidence density functions hy(6; Sk),
k=1,...,K, similar to (2). Next, it combines these confidence
density functions using a set of screen weights, say, wyy for
k=1,...,K,

K
hY 81, 86 = [ ] @:50™, (3)
k=1

where hi(0; Sk) is the confidence density function for 8 based
on Sk, and wyk € [0, 1]is the screen weight for individual-k with
respect to individual-1, with larger wy, indicating the higher
degree of relevance of individual-k to individual-1 (i.e., sharing
more similar traits). Individuals very different from the target
individual-1 will receive low screen weights and thus be virtually
excluded. For convenience, from now on we omit Sy, from hy(-)
and Si,.. ., Sk from h\?(-) by setting hp(0) = hi(8;S)) and
hic)(O) = hic)(O;Sl, ...»8Sxk). This combined hﬁc)(O) can then
be used to derive a new point estimator of 6, namely,

K
~(0)
01C = arg m;ix log hgc) (0) = arg méaxz wik log he(0).  (4)

k=1
When the individual confidence density functions take the form
of (2), some simple algebra shows

K
1. 2@ o ~(0)
K (8) o exp { —5 -6, <Z Wik 1) ®—8, )}, (5)
k=1
and
© K -1k
A (c . NP
01 = <Z wlka 1) Z W]kzk 10k. (6)
k=1 k=1
We establish the asymptotic properties of éic) in Section 3.

The screen weights wi’s play a critical role in allowing
iFusion borrow efficiently information from other relevant indi-
viduals. The choice of wyy’s hinges on the determination of
the clique of relevant individuals that contribute to improving
the inference for the target individual-1. Note that, incorpo-
rating the information from other individuals could potentially

decrease variance of égc) (due to the increased sample size), but
could also introduce estimation bias. Intuitively, forming the
clique for individual-1, say C;, should include those individuals
that the resulting estimation bias can be offset by the result-
ing variance reduction. This consideration of bias-and-variance
trade-off dictates how we form a clique. Specifically, the clique
for individual-1 is constructed in two settings of and otherwise
in Section 4, respectively.

To achieve the maximum efficiency gain by iFusion, we
require the screen weights wyy’s to satisfy the following condi-
tion: for k = 1,..., K, where C; is the clique for individual-1,

i — 1—a; iff0; €Cy;
k=1 b otherwise.

(7)

for some nonnegative ax, by = 0,(n~'/2). Under this require-
ment, we will be able to control the aforementioned bias-and-
variance trade-off. Further theoretical details on the weight
choices and clique C; are given in Sections 3 and 4. Their
empirical implementations are discussed Section 5.

3. Theoretical Properties of iFusion

This section concerns a case where the K individual models
have a shared model design with p; = --- = px = p, but
their parameter values, {61, . . ., 0}, may vary. We assume that
ni/n — r, € (0,1) for some constant r, as n = Zle ng —
00. We define under this setup a clique for individual-1 as

Cl={0k:0k€Br(01),k=l,...,K}, (8)

where B, () is a ball centered at 8; with radius r = o(n~1/2).
The clique C; always contains 61, and for any §; € C; and
k # 1, it is indistinguishable from 6, by its /n-consistent
estimates based on the current sample size. Two extreme cases
are: (i) |Ci| = 1, indicating that @, is separated from all
the other 0y, or (ii) |C;| = K, indicating that all individual
parameters are indistinguishable from one another. Between
these two extremes is the general situation where 2 < |C;] <
K — 1 (K = 3), which implies a potentially suitable grouping
effect around 6. An equivalent expression of (8) akin to the
so-called “near tie” development is C; = {0y : n'2)0, —
01l = o(1),k = 1,...,K} (see, e.g., Xie, Singh, and Zhang
2009; Hall and Miller 2010; Claggett, Xie, and Tian 2014). It
resembles a “local asymptotic” development (e.g., van deer
Vaart 1998) by which “we study the local behavior around a
fixed value of the target parameter through a sequence of /n-
rated parameters” and “help measure the performance of an
estimator in finer detail and ensure its performance in moderate
sample size” (Claggett, Xie, and Tian 2014). Similar asymptotic
considerations are also seen in the high-dimensional regression
literature where it is assumed that the signal level grows at some
rate of the sample size, among others.

In addition to the clique C;, we also define boundary set B;
and the disperse set D; as

By = {0 : n1/2||0k —01]|2 — ¢, for some constant c,
0<c<oo,k=1,...,K},
Dy = {0k :n'/10x — 011, > 00,k =1,.., K},

)
(10)

respectively. Clearly, for individual-1, the set of K parameters
can be partitioned into three disjoint sets, {f1,...,0x} = C; U
B1 U Dy, and each 0 lies in one and only one of them. Let

dy = min{[|6; — 6|2 : 0k € D1} (11)
be the minimal distance between #; and any parameter inside
the disperse set. By construction, we have n'/2d; — co. When
B is empty, a 0y is either in C; or D, or equivalently

dy = mkin{||91 —Okll2: 0 ¢ C1). (12)

We refer to B; = @ or the equivalence (12) with n'/?d; — oo
as the separation condition.



iFusion is a local grouping approach adaptively designed
for each target individual by balancing bias-variance trade-oft
described in Section 2.2. In the terms of the clique, boundary
and disperse sets, including individuals in C; for the inference
of 6, incurs only negligible bias, but including individuals in
Dy may incur nonnegligible bias. In reality, the membership of
C; is unknown, and we propose to develop a data-based screen
method to identify studies inside C;.

We evaluate the performance of the iFusion estimator in (4)
using the oracle estimator as a benchmark, where the oracle
estimator of 01, is defined by pretending the membership of C;
were completely known. The oracle estimator can be expressed
in a mathematical form:

A

6 — argmaxlogh{” (8), where h{”8) = [ h(®). (13)
9k€C1

Under the normal individual confidence densities, it is easy to
see that

-1
DR Tl I Y M 7%

0,€Cy 0reCy

(14)

£(0) . . .
Lemma 1 states that @, ~ is consistent, asymptotically normal,
and efficient.

Lemma 1. Suppose that the membership of C; is known. Then,
asn — 00,

(i) 6y =8, +op(n1/2);
@ n'2@" — 6) 5 NOAP), where AP =
Eln( Y. £.H7'
okecl
(iii) é(lo) attains the optimal mean squared error (MSE) among

~F
all 8, , given by

éf: = arg max log l_[ hix(0x), for any F < {04,...,0k}.
0 0k€]:
(15)

A proof of Lemma 1 is given in Appendix A. Results in (i)
and (ii) of Lemma 1 imply that the oracle estimator is consistent
and asymptotic normal. Result (iii) of Lemma 1 further shows
that the choice of 7 = (; yields the smallest asymptotic MSE,
among all the estimators given in the form of (15). Note that the

individual estimator 6, itself is a special case of éf: with 7 =
{01}. Furthermore, to achieve consistency and asymptotic nor-
mality, the individuals to be combined under the conventional
meta-analysis or fusion learning methods are generally required
to have the same parameter values. Here, C; only requires the
individuals to be combined having parameters sufficiently near
the target parameter.

Theorem 1 states that our iFusion estimator éic) performs as
well as the oracle approach asymptotically, even without know-
ing the memberships of C;. Specifically, Theorem 1 provides a

. i, . G
sufficient condition on the screen weights, under which 6, " isa
consistent estimate of 6, follows a normal distribution asymp-
totically, and moreover, achieves the same limiting covariance

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 5

matrix and MSE as those of the oracle estimator éio). A proof of
Theorem 1 is given in Appendix A.

Theorem 1 (Oracle property). Suppose that wyy satisfies (7),
where C; is defined in (8), and the separation condition also

holds. Then, as n — o0, 9?) obtained from (4) possesses the
following properties:

@) 6y =0, +o0,(n1/2);
@) 207 — ) 4 N©.AY), where AY =
E[n( Y f]k_l)’l] and can be consistently estimated by
0cCy
n( e S D™ e wh S D (e wi S D7
(iii) éic) has the same MSE as the oracle estimator 950) , and thus
attains the optimal MSE among all élf defined in (15).

It is worth noting that condition (7) in Theorem 1 can be
satisfied in different approaches. For instance, it is satisfied by
the following data-driven and kernel-based screen weights

6,6
WM:K(HI kh)/m@,
b

where b, is a bandwidth parameter and XC(-) is a given kernel
function. Different choices of kernel functions may require dif-
ferent choices of bandwidths and also result in some change
in the finite-sample behaviors of wi. This point is discussed
further in Section 8. To simplify our presentation, we use a
uniform kernel K(-) = 31{| - | < 1} throughout the article.

Lemma 2 suggests that condition (7) can be satisfied when
formula (16) is used with a suitably-chosen bandwidth b,,. Its
proof is also deferred to Appendix A.

(16)

Lemma 2. The screen weights wyx’s in (16) with () = %]1{| .
| < 1} satisfies (7) if b,, satisfies
by/di — 0 and n'/%b, — cc. (17)

We have assumed the separation condition in Theorem 1,
under which iFusion is shown to yield an estimator asymp-
totically equivalent to the oracle estimator, and thus the most
efficient inference about ;. We now turn to the case that 5] #
¢ and the separation condition does not hold. Note that the
parameters in 31 are not easy to separate from those in C; by
using data alone, and inclusion of an individual in B; often
reduces estimation standard deviation at the same rate as the
bias it incurs. Theorem 2 quantifies precisely the performance
of iFusion under this setting.

Theorem 2. Assume that the screen weights wyi’s satisfies

| 1—ax if0 ¢ Dy;
Wik = { by otherwise (18)
for some nonnegative ay, by = op(nfl/z), fork = 1,...,K.

Then, éﬁ” obtained from (4) possesses the following properties:
asn — 00,

@ 8 =0, + 0,112
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Q) n2@° — 6, — BY) % N©A), where

B = (X £HU(Y 570k — 61), and
0,¢D; 0By
Ay =En( Y £ and

0:¢Dy
~ ~AF
(iii) MSE(®.”) < MSE(@} ), provided that DF # , or

-2

> !

> O -0

Ok, Ok, €81 0x¢D1
-1
x5 0, -0+ [ D0 5!
0x¢D1

(19

Or, — 0S| D0 2!

= X

0k1 ,0k265}- OreF
—1
- —1 - —1
x B 0k, — 1)+ tr > )
0k€]:

forany given F = C7UBZ UD” withCc? € €1, BF € By,
and D7 C Dy.

Asin (i) of Theorem 1, (i) of Theorem 2 suggests that the iFusion
estimator is consistent. Results (ii) and (iii) of Theorem 2 are
similar to results (ii) and (iii) of in Theorem 1, although they
include a bias correction term Bgc) that involves with unknown
parameter values in the boundary set 3;. Note that, if the param-
eter values in B§C) are substituted with their corresponding /n-
consistent estimators, the limiting distribution n'/2(8 ic) -0, —
BY) ) becomes nonnormal. Regardless, the results in Theorem 2
still suggest potential gains with smaller MSE by the iFusion
estimator.

To establish the claims in Theorem 2, Lemma 3 shows that
(16) can be used to obtain a wy; that satisfies (18), even if
Bi # ¥ and the separation condition does not hold. The proof
of Lemma 3 is similar to that of Lemma 2 and thus omitted.

Lemma 3. When By # @, wyy given by (16) satisfies (18),
provided that (17) also holds.

4. Extension to Heterogeneous Model Designs

In this section, we extend iFusion to more complex study
designs, where “the estimable model parameters may be differ-
ent from one individual model to another” (see, e.g., Simmonds
and Higgins 2007; Liu, Liu, and Xie 2015). In particular, we
assume that the estimable parameter of the kth study 6, €
RPk, for k = 1,...,K, and the vector length py,...,px may
be different. To help quantify the difference and also make a
connection between @ and 0y, we introduce for each k a latent
vector v € R and assume that there is a mapping B () :
R? — RPk from v to @, where all the latent vectors v’s have
the same dimension g. We further partition vy = (¥}, £})" with
¥, € RI7P and &, € RP. We assume for some individuals
&, may be the same or sufficiently close to &;. The task now

is to extend the iFusion method to this setting to improve the
individual inference for the target parameter 6;. Note that the
setting considered in Sections 2.2 and 3 can be viewed as a
special case here with: pp = g = p, Bi(-) being the identity
mapping, and & being identical to 6.

We use a linear regression model similar to those in Sim-
monds and Higgins (2007) and Liu, Liu, and Xie (2015) to
illustrate heterogeneous individual model designs considered
here.

Example 1. Consider K independent clinical trials (studies)
conducted on different subpopulations given by the following
linear model:

M k=1,...,K,
(20)

where Yj is the response for the ith observation from the

kth subpopulation, xjx is the treatment status (1/0 for treat-

Yik = ax + Brxik + vizik + ik i =1,. ..

ment/control), zj, is the drug dosage, with errors gk i N(0, akz).
Here, ok is a study-specific intercept, and Sk and yj are study-
specific regression coefficients corresponding to the treatment
and drug dosage, respectively. Consider the following two sce-
narios:

Scenario 1. Suppose the intercept oy is subpopulation-specific
and ax # o, k # 1, but some of the treatment effects (B, yx),
k # 1, are the same or close to (1, y1). We hope to borrow
information from these studies to improve the inference of 0 =
(a1, B, y1)'. In this case, vi = 0 = (atk, B> i)' and Yk = o,
&= By fork =1,..., K. Itis clear that we should devise
our clique for subpopulation-1 using &, rather than @y.
Scenario II. Continuing from Scenario I, suppose additionally in
some of the clinical studies, say k, the drug dosage is not part of
the research goal and thus is held constant z;; = zj, with a fixed
known constant z;. This reduces individual Model-k to Y =
(a1 + yxzk) + Bixik + €ik- The estimable parameters in Model-
k are O = (ax + yizk Br)' rather than (g, Bk, yi)'. Using the
mapping and notations we have introduced, we can rewrite 8 =
Bjvi where By, = ((1) 9 %) isa2 x 3 matrix, vk = (B> v&)"
and ¥, = o, & = (Br vx)'. The question now is whether we
can still borrow information from those k € K studies whose
& = (B vx)" are the same or close to §; = (1, y1)" to improve
the inference for 6;.

To extend iFusion under such heterogeneous model designs
to make inference for the target parameter 6;, we need a new
combining formula and definitions of clique, boundary and
disperse sets. Specifically, we use &, rather than 8 to define the
clique, boundary and disperse sets with respect to individual-1,
and treat the parameter ¥, as a nuisance parameter. Specifically,

Ci =& :n' )& — &lla = 0(1), k=1,...,K}
={&x: & €B(§), k=1,...,K},
is the clique set, where B, (&) is a ball centered at &, with radius
r = o(n"1/%). We define
B, = (& : n1/2||§k —&,|l2 — ¢, for some constant c,
0O<c<oo,k=1,...,K},
Dy = (& : n'?llg — &1l —> 00, k=1,..,K}.

1)



Furthermore, we denote by ;. = (¥1,..., ¥k, «Sf()t andlet Ay €
RPXK(@=P)+P} be the matrix that maps 5 to 0. We have ) =
Aini. We also extend our combining formula in Section 3 to the
current setup as follows

K
h ) = [T b ™™,

(22)
k=1
with the screen weights wyg, where p = (¥f,..., ¥L, DI A
point estimator of #; is then
(jic) = Alﬁgc), where f;ﬁc) = argmax log h(lc)(n). (23)
n

Inference for @1 can then be made using éic) = A f]ic) following
a procedure similar to that in Section 3 for the homogeneous
model design.
If C; were known, we could write hio)(n) = J1 hx(Axn)
£eCy
and define the oracle estimator of 6 as

~(0)

0, = Alﬁgo), where fygo) = arg max log hio)(n).
"

Similar to Lemma 1, the oracle estimator 950) can be shown
to be consistent, asymptotically normally distributed and attain
the smallest asymptotic MSE among all estimators of 6, given
by é]: = Alf]]:, for F < {&,,...,&g}, where ﬁ]: =
argmax [] hi(Agn).
T ger

Theorems 3 and 4 show that iFusion in the extended frame-
work to heterogeneous model designs retains similar desirable
properties established in Section 3. Specifically, they give the
asymptotic properties of éic), respectively, when B, = ¢ and
when B, # #. Theorem 3 shows that the iFusion estimator

. NON . .
achieves the oracle property, namely @, * is a consistent estimate
of 6, asymptotically normally distributed for suitably chosen
wik’s. Moreover, it has the same limiting covariance matrix

and MSE as those of éio), showing once again that no loss of
efficiency is incurred by iFusion.

Theorem 3 (Oracle property). Suppose that wy satisfies, for k =
L...,K,

_ 1—ax if&kEél;
Wik = { by otherwise

for some nonnegative ay, by = op(rfl/z), and n'/? min{||&, —

Eill2 & ¢ Ci} — 0. Then, 9? obtained from (23) possesses
the following properties: as n — o0,

(@) 6y =0, +0p(n~1/2);

() 2@\ — 0) L N©,AY), where ALY = E[na,
(Zékeél A,iflk_lAk)_lAtl] anfl can be consistently eAsti—
mated Il()y nAl(Z:f:l WlkAlizk—lAk)fl(Zle w%kA,iEk—l
Ay wiALS T A TIAL

(iii) 9§C) has the same MSE as the oracle estimator éio).
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Suppose that Oy is partitioned into 0 = ('ﬁ;t@ £}, similar to
that described in Scenario I in Example 1. Let ¢ ic) be the part of
9(1C) that estimates ¥ ;. An interesting byproduct of Theorem 3 is

that 1/}56) actually improves upon ¥ 1» the corresponding subpart
of the individual estimate 91 (= arg moax logh;(@)). Assume,

without loss of generality, that ¥, is a scalar. This interesting
finding can be summarized in the following corollary.

Corollary 1. Under the assumptions of Theorem 3, Var(lﬁl(c)) <
var(1), asymptotically.

It shows that there is efficiency gain in the joint approach
over the individual approach, as the estimation of other indi-
viduals can contribute to improve the estimation of ¥ ;. This
may seem counterintuitive at first, as other individuals contain
no direct information on ¥ ;. However, ¥, and &, are often
correlated and through this hidden correlation the improve-
ment of the estimation of &, can be passed on to the esti-
mation of ¥, and vice versa. As pointed out in Liu, Liu,
and Xie (2015), “this phenomenon of borrowing strength is
not yet well appreciated in conventional meta-analysis and the
individual-specific parameters are generally reported as the final
estimators” Although this advantage is observed in Liu, Liu,
and Xie (2015) where &, = --- = &g (in our notation),
iFusion shows the same advantage even when &;’s are not
identical.

Theorem 4 can be viewed as an extension of Theorem 2,
showing that iFusion has potential gain in efficiency in hetero-
geneous model designs even when B; # # and the separation
condition does not hold.

Theorem 4. Suppose that wyj satisfies

_ | 1—a if& ¢ Dy
Wik = { by otherwise

for some nonnegative ay, by = op(n_l/z), fork = 1,...,K.

Then, 9(1C) obtained from (23) possesses the following proper-
ties: as n — 00,

@) 8 =8, +0p(n112);
@ n2@" - 6, — BY) 4 N@© A, where BY =
ACY AZTADTICX AR Ak — ), and
§1€D1 §reby
Ar=E[nA( Y AL A T1A ) and
&:¢D1
~(0) ~F . <
(iii) MSE(@, ) < MSE(0; ), provided that D7 = J or

d
—

-2

> A A
£¢Dy

2

&k bk, €81

(e, — 1) AL 25 A,

. W -l
x AL S Ak (ny, — my) +tr{( 3 A%, lAk) }
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= X

(i, — m)' A}, 3 A, > A A

§x, Er, €87 §reF
x Ap, B Ak, (n, —np) + tr{( > A,ﬁik‘lAk)—l},
I;‘ke}'

forar}y]:=~(f]:ul:3]:uﬁ}—withc~]: c C,BF C B,
and D7 C D;.

The proofs of Theorems 3 and 4 are similar to their counter-
parts in Section 3 with only slight modification to account for
Ay and are thus omitted.

To end the section, we comment on a use of the kernel-based
screen weight similar to (16) that was considered in Section 3.
We now suppose that either &, or a subvector of &, say ¢y, is
estimable in the kth study, as described in the two scenarios of
Example 1. In this case, we can directly substitute 0, and 6 in
(16) with é 1 and é o respectively, if &; and &, are both estimable
parameters; Otherwise, we substitute 91 and 0 & with 21 and E o
respectively, with an additional assumption that close in ¢; and
¢ implies close in &, and &;. With this substitution, we can
show that the results of Lemmas 2 and 3 still hold under the
same conditions, following similar proofs for the two previous
lemmas with slight modifications.

5. A Scalable Algorithm and Empirical Selection of
Screen Weights

In this section, we cover several computational issues concern-
ing the implementation of iFusion and the empirical selection
of screen weights used in our data analysis.

For a chosen kernel function, the performance of the kernel-
based weights is impacted by the choice of bandwidth. To assess
such a finite-sample impact and to ensure good large sample
performance, it is convenient to decompose b, = t,b, where
b = O(1) is a constant. In practice, we may set 7, according
to the conditions stated in Lemma 2 so that wyx behave well
asymptotically. In our development, we treat the unknown con-
stant b as a tuning parameter that may impact the performance
of iFusion under finite sample size: a very large b would lead
to “diluted” inference due to inclusion of irrelevant individuals
while a very small b would essentially lead to the same result
as the individual approach, gaining no efficiency. To this end,
we use a cross-validation tuning algorithm to assess b from the
data itself. This is elaborated below in greater generality.

In a more practical setting, 0} is often a vector with its
components (61, . . ., Okp) measured in different scales. To avoid
using a multivariate kernel and multiple bandwidths, we can use
the distance norm in (16), although the norm may potentially
be unduly influenced by one or a few components. Ideally,
the screen weights should be scale-invariant and most, if not
all, components should contribute to the screening in defining
cliques. To reflect this consideration and improve finite sample
performance, we modify (16) as follows:

161 — Okl 5, 5,
=K 1+2) K(0), 24
Wik ( Tnrb - (inep)1 /2 / 0) (24)

where ||x — ylls = /(& —y)!S(x—y) is the Mahalanobis

distance w.r.t. matrix S and 7,y is the geometric average sample
size of n; and ny. Here, $iand & « are the variances of individual
CDs for Individual-1 and k, respectively. Note that: (i) this mod-
ified version has the same asymptotically behavior to that of (16)
so all the claims in Lemmas 2 and 3 apply without further mod-
ification; (ii) if ) € Cy, then (81 — 8" (21 + S~ (@1 — 1)
follows approximately a chi-squared distribution of 2p degrees
of freedom, making the quantity inside KC(-) in (24) more stable
than that in (16).

We propose the following cross-validation algorithm to
empirically select the constant b in (24):

1. For each k = 1,...,K, randomly split the data Sy into V
equally sized folds {S}, ... ,SIY}. Denote by S,V = Si/S)
the subset data that exclude S}, forv=1,..., V.

2. For a given b, let 9§C) (b, v) be the combined estimator from
applying iFusion to {S; ", S, ",..., 8"} with b, = 75, b
included in the calculation of wy.

3. Compute the loss of éic)(b, v) using subset data S}, denoted
by L(b, v). For example, in Simulation I in Section 6, we use
the average quadratic loss L(b,v) = ﬁ ZY“ c S{{Yil —

' b))

4. Repeat Steps 2 and 3 for v = 1,..., V. Compute the aver-
age loss over the V folds, L) = ‘—1, ZLI]L(b, ), and
the standard deviation of {IL(b, 1), ...,L(b, V)}, denoted by
std(IL(b)).

5. Repeat Steps 2 to 4 along a path of b (denoted by P). Let b* =
arg minyep L(b). Choose b as b = median{b : L(b) <
L(b*) + ﬁ - std(IL(b*)), b € P}, for some ¢ > 0.

In Step 5, rather than the global minimizer b*, we choose the
median of the b’s which corresponds to a loss no greater than the
minimum by one standard error of it, up to a constant multiplier
¢ that can accommodate the inherent randomness in L(b%).
Empirically, we have used ¢ = 1 in our numerical study and
found this cross-validation method performs reasonably well
under various settings. This particular choice of ¢ is similar to
the one standard error rule that has been widely used in cross-
validation (see, e.g., Hastie, Tibshirani, and Friedman 2001). In
principle, b can be different for different studies. This difference
can also be empirically accommodated by using a scaled axb.
For example, ay = 6%/61 and &y is an estimated variance of O
in the univariate case, fork = 1,...,n.

Obviously, the tuning algorithm introduces extra computa-

tional cost, but the algorithm can be accelerated by a number of
strategies, especially for large data.
Strategy 1. In Step 1, when K is huge, a quick prescreen can
be carried out using the ranks of {||9k — 91 ||2}f:1, since the
computation of I, norms can be vectorized in most program-
mings, and thus quickly done. In contrast, the Mahalanobis
distance involved in (24) requires inverting a matrix and has to
be computed for each individual data source. Denote the ranks
0f{||9k — 6A’1||2}f:1 by {uk}le. We set wip = 0if up > u* for
a prespecified u* € {1,...,K}. As aresult, only a portion of the
individuals can proceed to the next steps. The choice of u* can
depend on both the number of individual subjects in the project
and the available computing resources.



Strategy II. In Step 5, it is often not necessary to search the
full path P. Loss functions such as the empirical quadratic loss
are typically bowl-shaped (with noise) as a function of b, due
to the bias-variance tradeoft. Hence, we may begin with some
small b, then gradually increase it until the loss stops decreasing.
Specifically, let b™* = argmin; L(b,,) that corresponds
to the running minimum average loss by the mth value in P.
Stop the search if L(b) exceeds L(b"*) + \/LV - std(IL(b™*)) for
consecutively rounds, and then choose b =

L(bw) < L™) + = - std(L(b"™)), m' < m}.
Strategy III. The design of this algorithm, together with the
framework of iFusion, easily allows implementing iFusion in a
distributed fashion and is thus particularly suited for the case
that individual datasets are stored in different computer clusters.
In this case, a central coordinator will (i) collect the individual
confidence density functions that are independently computed
using S ¥ on each cluster, (ii) compute a combined estimator

median{b,, :

él(c)(b, v) according to some choice of b and return it to each

cluster, and (iii) tally the losses with combined él(c) (b, v) that are
again independent evaluated on S} on each computer. Repeat-
ing (i), (ii), and (iii) through different (b, v), the algorithm can
scale up to big dataset that are too large for storage or processing
in a single computer.

Finally, in real applications, different components of the
parameter vector #; may have different interpretations, scales,
or units. We address these differences by enhancing the distance
measure || - || in (16) or | - ||s in (24) to reflect the component-
wise differences. Alternatively, we can consider using a kernel

e”h;lek’ , with different
N

element-wise bandwidths b,;, although tuning multiple band-
widths will require extra computing efforts.

function on each component, ]_[‘;7:l K (

6. Simulation Studies

This section shows the simulation studies under three different
settings: (I) with some subgroup structures, (II) where sub-
group analysis is not applicable, and (III) with a heterogeneous
study design considered in Section 4. We compare results from
iFusion, the oracle approach (assuming the clique is known),
and other competing methods such as the commonly used
combination after clustering (in Simulation I) and NPB method
(in Simulation II).

Simulation I. We generate random data: Y ~ N(6, 1), for
i=1,...,n, k=1,...,9, where 6; assumes values as follows:
(i) 6 = 0 for k = 1,2,3; this forms a clique with equal
parameter values. (ii) 6y = d + Ug/ny for k = 4,5,6, where
Uk id U[—1, 1]; this forms a clique according to (8) but with
varying parameter values. (iii) 6y = (k — 5)d for k = 7,8,9.
Here, d is proportional to the minimum distance between the
parameters that are, respectively, inside and outside a clique, as

defined in (12). In this simulation, we set d = 3n,§1/ 6,

In the individual approach, a CD for 6y is N (ék, 6,{2), with
) Y >, Yie/nk and a (1 —
«) asymptotic confidence interval O £ Za/20%. Here, &kz =
221 (Yik — Y. )% /(nx — 1) and Zq /2 is the upper /2 quantile of
the standard normal distribution. We run iFusion using these

a point estimate 6y = Y =
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Table 1. Numeric setting of the iFusion tuning algorithm in simulation studies.

Simulation | Simulation I Simulation IlI
Bandwidth search path {0.1,0.2,...,5} {0.1,0.2, ...,5} {0.1,0.2, ..., 5}
CV-folds 5 5 5
Early stopping rounds 5 5 5
€ 0.5 0.5 0.5
Kernel Uniform Uniform Uniform
Loss I I I
Prescreen survival rate - 1% -

CDs from individuals for each 6, with screen weights tuned
according to the numerical setup in column 1 of Table 1. The

iFusion method with (4) then yield a point estimate OA,EC) and

an (1 — o) asymptotic confidence interval é,ic) + za/28k(c),

where (&,fc))2 = (Zle W%k&l:z)/(ZIk(:l wlk(?]:z)z. The oracle
approach is also performed on each 6y, where the screen weights
match the membership of the clique. For example, w; 1.9 =
(1,1,1,0,0,0,0,0,0) for targeting individual-1, and wg 1.9 =
(0,0,0,0,0,0,0, 1,0) for individual-8.

We repeat the simulation 500 times for n, = 40 and n; =
400 to represent moderate and large sample sizes, respectively.
We compare the performance of the traditional method of
using only individual data, the proposed iFusion method and
the oracle method described in Section 3 as the benchmark
for comparison. We also include a modified iFusion method
that incorporates a bootstrap calibration to improve the finite-
sample performance, especially when sample size is only mod-
erate. More details of this calibration is provided in Section A.6
of Appendix A.

Table 2 reports MSE of the point estimate, empirical coverage
probability and average length of the nominal 95% confidence
interval obtained by these four methods. When the clique has
size greater than one (individuals-1-6), iFusion always returns
point estimates with significantly reduced MSE, confidence
intervals which are narrower but still retain approximately the
desired coverage probabilities. When the sample size is large
nx = 400, the results from iFusion and the oracle approach
are the same, thus support the claims in Theorem 1. The cov-
erage probabilities from iFusion, under moderate n; = 40, are
slightly lower than the individual and oracle approaches. This
is expected, due to additional uncertainty in the screen weights,
but the results using the calibrated iFusion method show that
it can effectively overcome the potential under-coverage issue
for small/moderate sample size cases. Finally, for an individual
with a clique size one by itself (individuals-7-9), no information
can be borrowed from their neighbors. In this case, all three
approaches yield similar or same results, so iFusion does not
alter the inference when there is no clique to borrow informa-
tion from.

Table 2 also provides a comparison with a popular sub-
group analysis approach. To implement this method, we first
use k-means clustering on élgc) to divide the individuals into
J groups/clusters, and use the pooled data within each cluster
to make inference for all individuals within the cluster. The
number of clusters need be determined in advance and ] =
4,5,6 are used in our experiments, where ] = 5 is the true
number of subgroups. For individuals-, 1-6, the subgroup anal-
ysis approach works okay and only slightly worse for k = 6.
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Table 2. Simulation | results—MSE of point estimates, empirical coverage, and average length of 95% confidence intervals.

ng =40 ng = 400

Indiv. jFusion  jFusion® Oracle  4-Sub  5-Sub  6-Sub  Indiv  jFusion  jFusion® Oracle  4-Sub  5-Sub  6-Sub

MSE 61 0.025 0.012 0.012 0.008 0.009 0.013 0.019 0.003 0.001 0.001 0.001 0.001 0.001 0.002
(%) 0.026 0.011 0.011 0.008 0.009 0.014 0.020 0.003 0.001 0.001 0.001 0.001 0.001 0.002

03 0.023 0.010 0.010 0.008 0.009 0.012 0.018 0.003 0.001 0.001 0.001 0.001 0.001 0.002

[ 0.023 0.011 0.011 0.008 0.016 0.013 0.015 0.002 0.001 0.001 0.001 0.001 0.001 0.002

05 0.025 0.012 0.012 0.008 0.016 0.012 0.018 0.003 0.001 0.001 0.001 0.001 0.001 0.002

06 0.023 0.011 0.011 0.008 0.016 0.012 0.016 0.002 0.001 0.001 0.001 0.001 0.001 0.002

67 0.025 0.028 0.028 0.025 0.387 0.157 0.072 0.002 0.002 0.002 0.002 0.153 0.060 0.031

Os 0.026 0.027 0.027 0.026 0.678 0.291 0.111 0.002 0.002 0.002 0.002 0.318 0.110 0.047

(2} 0.026 0.026 0.026 0.026 0.332 0.158 0.058 0.002 0.002 0.002 0.002 0.148 0.047 0.019

Coverage 601 0.942 0.928 0.948 0.944 0.942 0.910 0.912 0.946 0.950 0.954 0.950 0.950 0.938 0.922
(%) 0.940 0.928 0.950 0.944 0.942 0.910 0.898 0.946 0.950 0.954 0.950 0.950 0.938 0918

63 0.942 0.930 0.950 0.944 0.942 0.926 0.924 0.938 0.948 0.952 0.950 0.950 0.948 0.926

64 0.958 0.936 0.952 0.956 0.910 0.936 0.936 0.946 0.952 0.958 0.952 0.950 0.942 0.916

05 0.932 0.944 0.954 0.960 0914 0.940 0910 0.940 0.950 0.954 0.950 0.948 0.932 0.924

O¢ 0.954 0.942 0.956 0.956 0.910 0.936 0.916 0.954 0.952 0.958 0.952 0.950 0.940 0.914

67 0.944 0.940 0.950 0.944 0.480 0.768 0.878 0.946 0.946 0.952 0.946 0.462 0.766 0.854

Os 0916 0.906 0.932 0.916 0.042 0.558 0.800 0.948 0.948 0.952 0.948 0.000 0.626 0.812

(2 0.944 0.944 0.952 0.944 0.478 0.748 0.894 0.950 0.950 0.960 0.950 0.486 0.810 0.902

Length 61 0.613 0.354 0.383 0.351 0.351 0.384 0.441 0.196 0.113 0.116 0.113 0.113 0.123 0.141
(%) 0.616 0.355 0.383 0.351 0.351 0.388 0.440 0.196 0.113 0.116 0.113 0.113 0.122 0.138

(%) 0.618 0.356 0.384 0.351 0.351 0.387 0.438 0.196 0.113 0.116 0.113 0.113 0.122 0.141

64 0.618 0.353 0.382 0.351 0.348 0.370 0.419 0.196 0.113 0.116 0.113 0.113 0.120 0.137

05 0.614 0.351 0.380 0.351 0.348 0.372 0.426 0.196 0.113 0.116 0.113 0.113 0.120 0.139

06 0.616 0.351 0.380 0.351 0.348 0.369 0.420 0.196 0.113 0.116 0.113 0.113 0.118 0.134

67 0.619 0.618 0.649 0.619 0.517 0.582 0.605 0.196 0.196 0.200 0.196 0.166 0.185 0.190

Os 0.610 0.599 0.632 0.610 0.439 0.539 0.587 0.196 0.196 0.200 0.196 0.138 0.176 0.187

(%) 0.617 0.617 0.648 0.617 0.525 0.578 0.607 0.196 0.196 0.201 0.196 0.167 0.187 0.193

NOTE: iFusion® indicates that bootstrap calibration is applied to the raw iFusion confidence intervals. The subgroup approach uses k-means clustering to divide the
individuals into J (/ = 4, 5, or 6) subgroups and then combines individual confidence densities within each subgroup. The “implied” number of subgroups in this

example is 5.

For individuals-7-9, all with no groups, the subgroup performs
significantly worse. This is because the clustering algorithm
sometimes incorrectly groups, say individual-8, with other indi-
viduals even when the correct J is used, thus leads to overly
aggressive inference.

Simulation II. We generate 6000 datasets according to the regres-
sion model

Yik = ag + Brxik + &ik, ik ~ N(0,1),

fori=1,...,nrand k= 1,...,6000, (25)
where the true parameter values of {0 = (ax, Br)'k =
1,...,6000} are spreaded along a circle of radius R = 500.

Specifically, the 6000 8 values are obtained by (i) generating 1200
points evenly distributed along the circle {(«, B) : o + B =
R?}, (ii) replicating each point four times to obtain 6000 points
in total, and (iii) adding to each point a small random perturba-

tion. More precisely, the true (otg, Bx) = (500 cos( L%J 122%) +

Yu 500 sin(v;slj 21 4 Uy ywhere Uy S U—1,1], for
j=1,2and k = 1,...,6000. The setup suggests a clique of size
five for each individual in a circular structure, where a subgroup
analysis is generally not applicable. Finally, we simulate x;
independently from N(0, 1.5%) and then Yj; from (25).

For the kth individual regression, N G k,c}kz (X,thk)’l) is an
asymptotic CD for 0, where Oy is the least square estimate of
0k, Xi the design matrix and 6 a consistent estimate of .
The iFusion and oracle approaches then follow similarly as in
Simulation I, except that, as discussed in Section 5, a prescreen

procedure is applied to iFusion to exclude irrelevant individual
datasets.

We calculate marginal coverage and length of the confidence
intervals for oy and By separately. The results on the coverage
probability of the confidence region for 8 are similar and thus
omitted. Table 3 reports the summary results for individuals-
1500, 3000, and 4500, as representatives of the entire 6000
individuals. It compares the performance of individual-data
method, the iFusion and bootstrap calibrated iFusion methods,
and the oracle method, with 500 repeated simulations, again
for ny = 40 and 400. In all cases, iFusion returns out point
estimates with significantly smaller MSE and lengths of confi-
dence intervals than the individual approach. It is close to the
oracle approach under moderate sample size, and yields almost
exactly the same results under large sample size. Overall, these
numerical studies demonstrate well our theoretical claims under
the setting of multivariate parameters and big data.

We also carry out a NPB approach to make individualized
inference about 8. We use the DP1mm function in the R pack-
age DPpackage by Jara, Hanson, and Quintana (2011). The
function estimates a linear mixed-effects model with a Dirichlet
process mixture prior for the distribution of the random effects,
and is suitable here, as both regression intercept and slope
are treated as random effects. In each random simulation, the
MCMC samples for the target parameter can be extracted to
compute posterior mean and credible interval. Their frequentist
properties can be then examined against the true value of 6
based on 500 simulations. However, this NPB approach is time-
consuming even for a single random simulation, because it
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Table 3. Simulation Il results—MSE of point estimates, empirical coverage, and average length of 95% confidence intervals.

ng = 40 ny = 400
Indiv iFusion iFusion® Oracle NPB Indiv iFusion iFusion® Oracle NPB
MSE 1500 0.025 0.007 0.007 0.005 0.005 0.002 0.0005 0.0005 0.0005 -
B1500 0.017 0.004 0.004 0.002 0.002 0.001 0.0002 0.0002 0.0002 -
3000 0.031 0.009 0.009 0.007 0.006 0.003 0.0005 0.0005 0.0005 -
B3000 0.011 0.004 0.004 0.002 0.002 0.001 0.0002 0.0002 0.0002 -
4500 0.026 0.007 0.007 0.005 0.005 0.002 0.0005 0.0005 0.0005 -
Basoo 0.021 0.006 0.006 0.003 0.003 0.001 0.0002 0.0002 0.0002 -
Coverage 1500 0.952 0.934 0.954 0.938 0.938 0.970 0.950 0.954 0.950 -
B1500 0.932 0910 0.944 0.926 0.944 0.974 0.966 0.970 0.966 -
3000 0.920 0.908 0.940 0.916 0.932 0.942 0.942 0.950 0.942 -
B3000 0.948 0.924 0.942 0.934 0.942 0.946 0.954 0.960 0.954 -
4500 0.920 0.926 0.952 0.938 0.954 0.958 0.938 0.958 0.938 -
Basoo 0.928 0.916 0.944 0.934 0.944 0.910 0.950 0.956 0.950 -
Length 1500 0.628 0.282 0.310 0.272 0.276 0.196 0.088 0.090 0.088 -
B1500 0.472 0.183 0.201 0.175 0.178 0.131 0.058 0.059 0.058 -
3000 0.630 0.290 0.322 0.276 0.282 0.196 0.088 0.090 0.088 -
B3000 0.415 0.187 0.207 0.177 0.182 0.125 0.058 0.059 0.058 -
4500 0.608 0.282 0.311 0.269 0.276 0.197 0.088 0.090 0.088 -
Basoo 0.523 0.221 0.244 0.210 0.216 0.127 0.059 0.060 0.059 -

NOTE: iFusion® indicates that bootstrap calibration is applied to the raw iFusion confidence intervals. The nonparametric Bayesian (NPB) approach is applied on a subset of
individual datasets that have survived the iFusion prescreen procedure. The case of ngy = 400 is not run for the NPB approach due to computational limit.

simultaneously estimates all the individual parameters rather
than just a specific target individual parameter. The computing
is unattainable in our computing environment (2000 MCMC
iterations for a single random run; 2018 MacBook Pro with a 2.3
GHz Intel Core i5 processor). As a compromise, we restrict the
analysis to a subset data with only 30 neighboring individuals
for ny = 40. (The analysis for ny = 400 is terminated as the
computing would seem to last forever.) In each random simu-
lation, the last 1000 of the total 2000 MCMC samples are used
to compute posterior means and credit intervals. (Despite this
much reduced sample size, it still takes around 15 sec for a single
run; in comparison, iFusion less than a second for the same
run.) As for the performance, the NBP approach works as well
as the oracle approach and even slightly outperforms in terms
of the coverage probability, noting that the oracle approach
used in our simulation uses asymptotic formulas. To produce
outputs comparable to the iFusion and oracle approaches, the
NPB approach will impose a huge burden in computing time
and data storage.

Simulation III.  To study the performance of iFusion under a
heterogeneous design described in Section 4, we generate K =
4 regression datasets from (20) with the following setup: In
each regression, x; is 1 or 0 with equal probability, zj; assumes
three levels: 1, 2, 5, and each level is assigned with roughly
nk/3 observations. The regression parameters are ¢y = —1 +
Un/ng, o = Ust/ng, a3 = 14+ Usy /ng, a4 = 2+ U /g, f1 =
1+ Un/npr = 1+ Un/nefs = 1+ Usp/ngBs =
—1+ Up/tiocyn = =1+ Uis/ney2 = =1+ Uss/npys =
=1+ Uss/ng, 1 = —1 + Uss/ng, where Uy, K U[—1,1] for
k =1,...,4and j = 1,2,3. The configuration follows the
Scenario I of Example 1, where (B, yx) are approximately the
same, up to a constant of order O(1/ny), for k = 1,2,3. The
cliques are defined based on (B, yx) but not a. Individual-1
and individual-4 are our targets of interest, one for demonstrat-
ing the efficiency and validity of iFusion when |C;| = 3 and

Table 4. Simulation Ill results—MSE of point estimates, empirical coverage, and
average length of 95% confidence intervals.

N = 40 n = 400
Indiv iFusion iFusion® Oracle Indiv iFusion iFusion¢ Oracle
MSE a1 0.105 0.055 0.055 0.052 0.013 0.006 0.006 0.006
B1 0.117 0.045 0.045 0.038 0.010 0.004 0.004 0.004
y1 0.008 0.003 0.003 0.003 0.001 0.0003 0.0003 0.0003
ag 0109 0.109 0.109  0.109 0.010 0.010 0.010 0.010
Ba 0.109 0.109 0.109 0.109 0.010 0.010 0.010 0.010
ya 0.007 0.007 0.007 0.007 0.001 0.001 0.001 0.001
Coverage o1 0.934 0.946 0.954 0.950 0.938 0952 0.954 0.952
B1 0.940 0.934 0.946 0.938 0.944 0942 0.952 0.942
y1 0.934 0.944 0.958 0946 0.960 0.944 0.952 0.944
g 0948 0.948 0.968 0.948 0.948 0948 0.954 0.948
Bs 0942 0942 0960 0.942 0.958 0.958 0.964  0.958
y4 0958 0.958 0.968 0.958 0.950 0.950 0.950 0.950
Length o7 1.248 0.908 0.988 0.901 0432 0297 0306 0.297
B1 1.319 0748 03814 0.735 0.392 0.226 0.233 0.226
y1 0346 0.213 0.232 0.210 0.113 0.066 0.068 0.066
o 1347 1347 1452 1.347 0415 0415 0.427 0.415
Ba 1.244 1.244 1341 1.244 0.391 0.391 0.402 0.391
ya 0.348 0.348 0.375 0.348 0.116 0.116 0.119 0.116

NOTE: iFusion® indicates that bootstrap calibration is applied to the raw iFusion
confidence intervals.

the other for |é4| = 1. Also, we set oy = 1 and let n, = 40
or 400. For the oracle approach, we set wy 1.4 = (1,1,1,0) and
W4l4 = (0) 0,0, 1)

Table 4 reports the summary statistics of MSEs, cover-
age probabilities and lengths of confidence intervals, all based
on 500 repeated random simulations. For individual-1 where
|Ci] = 3, it shows that iFusion outperforms the individual
approach in two aspects. First, iFusion is more efficient in mak-
ing inference for 8; and y;, achieving smaller MSEs and length
of confidence intervals. In fact, iFusion is approximately oracle.
These observations agree with Theorem 3. The second, and a
more intriguing, result is the inference on o;: the MSE of the
point estimator from iFusion is much smaller than that from
the individual approach, even though «; is not shared by other
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ay’s. This clearly highlights the power of fusing learning. This
also supports numerically the claim in Corollary 1. It appears
that the improvement in estimating B, and y; by iFusion is
channeled to bring about improvement in estimating «;. Given
that individual-4 forms a clique by itself, all three approaches
obtain the same result as expected.

7. Real Data Example

Fama-French model is a widely used model to describe port-
folio returns in asset pricing and portfolio management (Fama
and French 1993). A Fama-French three-factor model for the
kth portfolio over timet =1,...,Tis

Ttk = 0k + Bmktk"t,mkt + Bsmb,k?t,smb + Bhmik’thml + Etks
fork=1,...,K. (26)

Here, 1y, is the excessive return on the kth portfolio over the risk-
free rate at time #; rymie is the excessive return on the market
portfolio; 7 gmb (“small minus big”) is the return on a portfolio
long small-capitalization stocks and short large-capitalization
stocks; 7 nmi (“high minus low”) is the return on a portfolio
long high book-to-price stocks and short low book-to-price
stocks (i.e., value stocks vs. growth stocks). These are calculated
with combinations of portfolios composed by ranked stocks
and available historical market data. Additionally, the idiosyn-
cratic errors &y are serially uncorrelated and homoscedastic;
ay is known as Jensen’s alpha and may account for any market
inefficiency and friction. Due to its strong performance across
multiple markets, the Fama-French model and its variants have
enjoyed popularity in finance applications (see Fama and French
1993, 2012, 2014; Cakici, Fabozzi, and Tan 2013).

In this section, we analyze daily price returns in the year
of 2016 for individual stock in Russell 3000 Index using the
Fama-French three-factor model, and compare the iFusion
method with the individual approach, with each stock being an
individual subject. The stocks in the index cover 3000 largest
publicly held companies in United States as measured by total
market capitalization, and represents approximately 98% of the
American public equity market. In our analysis, the prices of
each individual stock are obtained from Yahoo Finance from
2016/01/01 to 2016/12/31, and Fama-French factors as well as
the risk-free rate for the same period are downloaded from
Kenneth French’s website. Furthermore, we narrow down our
set of stocks for study by excluding those with absolute daily
returns greater than 30% in any single day of the year. This helps
us exclude potential data errors or idiosyncratic issues such as
stock split/reverse split and focus on methodologies. We end up
with 2558 such eligible stocks. Different from simulations, the
underlying parameter values are unknown in real data analysis.
It is impractical to use the same performance metrics such as
MSE and coverage as we did in Section 6. Instead, we com-
pare the forecasting ability on out-of-sample data via rolling
prediction. The idea is that the more efficiently a model we can
estimate, the more accurate forecasts we can expect from using
the model.

In our analysis, we first obtain the least squares estimation
of (26) based only on each individual stock data and given a
fixed tick (time) window size of 60. We choose 60 heuristically

corresponding the number of trading days in roughly three
months. Then, for a target stock (say, Stock-k), iFusion is applied
to obtain a combined estimate of the model parameters. Using
the combined estimate, we obtain the /-day forward factors and
the h-day forward excessive return of the target stock based on
the model in (26). We roll the window & day forward starting
from day-tick 60 + h and repeat the same steps, until reaching
the end of entire time period. For the target stock and each
rolling window, the forecasted stock excessive returns and their
realized/observed values are recorded, leading to the rolling
mean squared prediction error (RMSPE):

S
1 n
RMSPE;, = S § (o — 1)
s=1

Here, S is the number of available rolling windows, 75 is the
forecasted return, and r is the observed return. The RMSPE
based solely on the individual stock is also calculated for com-
parison. We repeated the computation for each of the target
stockk =1,...,2558.

The h-day forward factors (i.e., the time ¢ + h realized factor
returns) are typically unknown by time ¢, though their values
themselves can be estimated. For example, Hu (2003) projected
the forward factor returns using their historical marks together
with a number of macroeconomic variables. In out setting, the
availability of macroeconomic data is limited at daily frequency.
A more practical approach is to regress stock excessive returns
directly on the time-lagged factors:

Tethk = Qk+Bmkek"t,mkt T Bsmb kT t,smb+BhmLk thml +Etk- (27)

In our numerical study, we consider both models (26) and (27).
The forecasting using (27) and the computation of RMSPEy, are
the same as those using (26), excepted that the prediction is now
based on (27) and h-day factors up to the current time.

Figure 2 reports the histogram of relative RMSPEs, that is,
the ratio of RMSPE from iFusion over that from the individual
stock data approach for every stock, based on one-day forward
(h = 1) forecasting. The two histograms correspond to settings
(26) and (27), respectively, from the left to right. In both settings,
iFusion improves prediction accuracy for 99% of all the stocks,
with the average reduction in PRMSE by 3%. Note that there
is always a random error associated with a future observation
and it adds a sizable base to the RMSPE calculation. Thus, the
reduction in RMSPE is usually not as much as the reduction in
MSE of parameter estimates seen in the simulation examples.
Nevertheless, Figure 2 provides a clear evidence that iFusion can
help improve inference for forecasting by borrowing informa-
tion from other relevant stocks.

8. Concluding Remarks and Further Discussions

This article introduces iFusion as a statistical learning approach
for making efficient individualized inference by borrowing
“sharable” information from relevant individuals (or individual
data sources), under both homogeneous and heterogeneous
model designs. When there exist moderate number of observa-
tions for each individual study and there are similar individuals
in the entire data source, iFusion is shown to improve signifi-
cantly the efficiency of each individual inference, by controlling
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Figure 2. Ratio of one-day-ahead RMSPE from iFusion to the individual approach for 2558 individual stocks under setting (26) (left) and (27) (right), respectively. The
RMSPEs by iFusion versus the conventional analysis of using only individual stock data are less than 1 for more than 99% of the 2558 stocks, with median reductions around
3%; It indicates that iFusion method can often improve the forecasting accuracy by a meaningful amount by incorporating information from other relevant stocks.

the bias while reducing variance. Otherwise, iFusion achieves
the same efficiency as the individual inference based on the
individual data source. Furthermore, under suitable conditions,
the iFusion method can achieve the oracle property to have the
best asymptotic efficiency afforded by the entire data source.

In using CD as the inference tool in our development, iFusion
naturally inherits many desirable properties from CD. In par-
ticular, the validity of the combined CD, in terms of providing
appropriate frequentist inference, relies solely on the individ-
ual CDs, regardless how they are obtained (Singh, Xie, and
Strawderman 2005; Xie and Singh 2013), for example, through
likelihood methods, or other frequentist, fiducial, or Bayesian
approaches. Such a feature affords iFusion with great versatility
and applicability to combining individual CDs even if they are
derived from different paradigms. More important, in many set-
tings, point or interval estimates are undefined or unavailable,
but CDs as distribution estimates remain available and can be
used to carry out the inference. For example, using CDs Liu,
Liu, and Xie (2014) carried out a fusion learning of multiple
clinical studies that include some zero-total events where point
estimates of odds-ratio are not well-defined but CDs are. This
further attests to the broad applicability of iFusion.

Another desirable feature of iFusion is its scalability to big
data applications. Developed under the frequentist framework,
iFusion allows the construction of confidence density functions
independently for each individual, without being burdened by
other individuals and any nuisance or less relevant informa-
tion. This agrees with the so-called “division of labor” fea-
ture described in Efron (1986) and Wasserman (2007). Efron
(1986) and Wasserman (2007) observed that in the Bayesian
approach “statistical problems need to be solved as one coherent
whole, including assigning priors and conducting analyses with
nuisance parameters,” while a frequentist approach can focus
directly on the target parameter without estimating nuisance
parameters. Compared to the full Bayesian approach which
requires running a large-scale simulation using an MCMC

algorithm, the “divide-and-conquer” nature of iFusion makes it
scale better to big data settings.

Given the availability of (asymptotic) confidence density
functions for the individuals under consideration, iFusion
applies to a general inference framework that covers a wide
range of problems. Although the numerical examples in Sec-
tions 6 and 7 only demonstrate the effectiveness of iFusion for
simple linear models, we stress that iFusion is readily applicable
to more complex models such as time series models, survival
models, and high-dimensional models. Consider for instance
a set of high-dimensional linear regressions corresponding to
multiple individual subjects or data sources. Here, asymptotic
confidence densities for the individual regression coefficients
can be obtained by the de-biased lasso procedure (see Javan-
mard and Montanari 2014; van de Geer et al. 2014; Zhang and
Zhang 2014), and then the combined estimate and inference for
a target individual can be obtained through iFusion. This pro-
cedure naturally extends the divide-and-conquer strategies for
high-dimensional regression with multiple datasets (see Chen
and Xie 2014; Kleiner et al. 2014; Battet et al. 2015; Tang, Zhou,
and Song 2016) from the perspective of an overall inference for
all data to individualized inference.

Among many goal-directed applications, iFusion is ideally
suited for precision medicine. Precision medicine tailors medical
treatments to each individual patient rather than a treatment for
the “average” or subgroup of patients. In the latter, patients are
divided into subgroups by one or few baseline characteristics
and subsequent analysis is conducted within the subgroup (see,
e.g., Wang et al. 2007). This partitioning of patients has natural
interpretations and seems perfectly logical, but it lacks statistical
guarantees for the combined inference of model parameters
within the subgroup. In comparison, iFusion makes inference
directly on the parameter space with statistical justifications. It
may be worthwhile to consider combining the two procedures
with ways to retain the merits of both and gain even more
efficiency. One possibility is to partition the individuals into
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different subgroups according to their features, and then apply
iFusion within subgroups. It is important to note that iFusion
is different from the machine-learning-based methods used in
precision medicine to assign an individualized treatment to each
patient (see, e.g., Murphy 2005; Qian and Murphy 2011; Zhao
etal. 2011; Goldberg and Kosorok 2012; Tian et al. 2014). Rather
iFusion can provide an effective alternative and compliment to
the machine learning approach to provide and improve infer-
ence for treatment-decision for individual patient.

Although the theoretical development in the article is illus-
trated using asymptotic normal CDs, the iFusion approach can
be applied directly to the case where the CD obtained in some
studies are nonnormal. In this case, most theoretical results (e.g.,
consistency and reduction in MSE) still hold under some mild
conditions; see Singh, Xie, and Strawderman (2005) and Xie,
Singh, and Strawderman (2011) for discussions on weighted
combining of nonnormal CDs. Also, the use of adaptive screen-
ing weights in iFusion is similar to those used in Hu and Zidek
(2002) and Wang and Zidek (2005) in the context of weighted
likelihood and also those in robust meta-analysis development
in Xie, Singh, and Strawderman (2011) and Claggett, Xie, and
Tian (2014). However, here iFusion focused on screening out
studies that are different from the target individual. In addition,
since a (normalized) likelihood is often a CD function (Xie and
Singh 2013), the weighted likelihood with weights tailored to the
target individual can be viewed as a special case of iFusion devel-
oped in this article and the iFusion development covers broader
cases than likelihood procedures including CDs obtained from
quasi-likelihood inference methods, p-value functions and even
a Bayesian or fiducial inference procedure.

So far, iFusion in the article is developed under the asymp-
totic setting that ny/n — r, for some constant ;. € (0,1) and
K is large but finite. The development can possibly be extended
to the case with ny — oo and K — oo in principle, although
some notations and conditions in Sections 2-4 may need to be
strengthen to accommodate K — oc. The development cannot
be extended to the case that each individual study has only one
or a limited number observations with 7, = O(1). To form a
clique and borrow information from other individuals in this
case, a stringent assumption such as “dense assumption” that
there are infinite many individuals in a small neighborhood of
the target individual is needed. As a result, a different develop-
ment related to empirical Bayes methods (e.g., Zhang 2003) can
be utilized. A separate research is currently underway.

Finally, we comment on the choice of kernel functions when
implementing the kernel screen weights. Generally, iFusion is
still applicable if we use functions other than uniform, such as
(i) Epanechnikov kernel %(1 —u?)1{|u| < 1}; (ii) quartic kernel
}—2(1 — u)21{|u| < 1}; (iii) Gaussian kernel ﬁe’”z/z. How-
ever, to achieve the same convergence rate of wyy as required in
Lemma 2, stronger regularity conditions on b, may be needed
for some of these kernel function. For instance, if K(-) is the
Epanechnikov or the quartic kernel, then wj; given by (16)
satisfies (7) if b, /d; — 0and n'/4b, — oo. As for the Gaussian
kernel, the regularity condition becomes (by,/d;)?logn — 0
and n'/4b, — oo. Note that both conditions are stronger than
that for the uniform kernel (see (17)). Our empirical observa-
tions indicate that, with finite sample size, the uniform kernel is

more effective than the others, which also agrees with the rate
discussion above.

Appendix A
A.1. Proof of Lemma 1
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A.3. Proof of Lemma 2
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A.4. Proof of Theorem 2

We only prove part (iii) here, since parts (i) and (ii) can be proved

following the same arguments in the proof of Theorem 1. Define §(°)
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-2
t—1 $—1
= Y G- Y 5
0k, 0k, ¢D1 01¢D,
-1
xE O, —0n+u i | Y B
0:¢Dy
-2
te—1 a1
= D G- Y X
01, 05, By 014D
—1
xS O, —on+ued [ Y B!
014D

The last equation holds because if 8, or 0, € Cy, then the squared
bias vanishes as n — oo.
Now, for any F C {01,...,0k}, if DF # (), then (A.2) implies

nMSE(@l]: ) — o0. Since MSE(@EC)) = oYy, MSE(()l )y <
MSE(®] ), asymptotically. If DF = @, then (A.2) implies

-2

A to—1 a1
MSE@1) = ) G —o0'S | )
0k1,0k2€C}-UBF O F
-1
$s—1 $s—1
xE Ok, -0+ [ Y0 %
0k€./—'
-2
tg—1 S—1
= Z 0, —01) Z Z X
0k1,0k2€BF 9k€.7'-
-1
A1 &—1
x O, -0+ | D E

okE]‘—

This shows the asymptotic equivalence between MSE(GiC)) <

MSE(@7 ) and (19) if DF = 0.

A.5. Proof of Corollary 1

Since var(n(c)) > A]tcfi
£eCy
show that {( ) A]t{flk_lAk)_l}u < {Z1}11. For simplicity, we
Ekecl
assume further, without loss of generality, that K = 2 and v, is a scalar
as well. If &, ¢ C; then the equality holds. If §, € C1, we need to
show {(A'ii:;lAl + A§2;1A2)71}1,1 < {21}1,1. Partition 21 and

X Lagp1 asymptotically, it suffices to

ﬁz, respectively, as

& a1 bt1 & [ a bg
El—(bl Cl>, 2:2—(112 C >
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where Cj and C; are g x q matrices. By definition,

t
B 1 0 qul
A=l o I, )
qx1 qx1 q

t
B 0 I
A= g 0 I
(gx1 qx1 q

where I is an identity matrix of size ¢ x g. Some linear algebra with
blockwise matrix inversion formula gives

(AfE A + 4555 A
=a - bicylb +biCr e + oo h e .

Following Lemma A.3 in Liu, Liu, and Xie (2015): for the two g x g posi-
tive definite matrices W1 and W5 and gx 1 vector v, v/ (W1 +Wy) Iy <
vWi lv, we then obtain {(A} % 1A; + ALAES )y < a =
{Z1},1

A.6. Correcting iFusion Confidence Intervals Using Boot-
strap

We illustrate the model with scalar 6;’s. For vector parameters, we
perform the correction on each dimension. Let wyy,...,wix be the

screen weights tuned by the algorithm in Section 5. Let él(c) be the

corresponding iFusion estimator and s/ta(él(c)) be its estimated stan-
dard deviation. For an asymptotic normal individual CD with 7 is
large, an approximate 1 — o confidence interval of 61 is given by
él(c) =+ z, /zsﬁ(él@ ). This confidence interval may result in coverage
probability less than 1 — o when the sample size is moderate, due to
both the approximation and the uncertainty associated with the screen

weights. We intend to use a bootstrap calibration to find a constant ¢y,

¢y > 1, so that él(c) + cazy /2§t?1(él(c)) will have a better coverage rate.

We bootstrap each individual dataset Sy to get a bootstrapped
dataset S?, from which we get an individual bootstrap CD. Using the
screen weights w11, ..., wig obtained from the original data and the
individual CDs, we obtain the confidence interval following the same
way as described in the article. Repeat the above procedure for B times
we obtain B confidence intervals él(cg + Za/zgtTi(él(fb)), b=1,...,B
The empirical ¢ is chosen to be

B
1 R . .
G = min {c > 1’52 HO© € 161 + czqpstd@DT) = 1 — a}.
b=1
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