
Water-Soluble BODIPY Photocages with Tunable Cellular
Localization
Dnyaneshwar Kand, Pei Liu, Marisol X. Navarro, Logan J. Fischer, Liat Rousso-Noori,
Dinorah Friedmann-Morvinski, Arthur H. Winter, Evan W. Miller,* and Roy Weinstain*

Cite This: J. Am. Chem. Soc. 2020, 142, 4970−4974 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Photoactivation of bioactive molecules allows manipulation of cellular processes with high spatiotemporal precision.
The recent emergence of visible-light excitable photoprotecting groups has the potential to further expand the established utility of
the photoactivation strategy in biological applications by offering higher tissue penetration, diminished phototoxicity, and
compatibility with other light-dependent techniques. Nevertheless, a critical barrier to such applications remains the significant
hydrophobicity of most visible-light excitable photocaging groups. Here, we find that applying the conventional 2,6-sulfonation to
meso-methyl BODIPY photocages is incompatible with their photoreaction due to an increase in the excited state barrier for
photorelease. We present a simple, remote sulfonation solution to BODIPY photocages that imparts water solubility and provides
control over cellular permeability while retaining their favorable spectroscopic and photoreaction properties. Peripherally
disulfonated BODIPY photocages are cell impermeable, making them useful for modulation of cell-surface receptors, while
monosulfonated BODIPY retains the ability to cross the cellular membrane and can modulate intracellular targets. This new
approach is generalizable for controlling BODIPY localization and was validated by sensitization of mammalian cells and neurons by
visible-light photoactivation of signaling molecules.

Photoactivation of small bioactive molecules is a powerful
approach to manipulate and study cellular events with

high spatiotemporal resolution.1,2 Photoprotecting groups
(PPGs) covalently attached to bioactive molecules mask
their biological activity and allow subsequent removal upon
exposure to light. Established PPGs, including those based on
nitrobenzyl,3 ruthenium4 (RuBi), coumarin5 and others,6 have
been used instrumentally in a wide variety of biological7,8 and
materials9,10 applications. The recent emergence of visible-light
excitable photocages, spanning a range of structural
classes,11−15 has the potential to further expand the already
significant utility of photocaging in these fields. For example,
extension of the excitation wavelength beyond the traditional
UV-region6 expands the operational window in which
uncaging light can be delivered, enabling photoactivation of
multiple cues through orthogonally caged molecules.16,17

Furthermore, longer wavelength light can penetrate deeper
into tissue and is less harmful to biological matter, opening the
door to new applications, such as in drug delivery.18−20

We recently introduced meso-methyl BODIPYs as photo-
protecting groups in the visible range.21,22 The narrow
excitation band, adaptable synthetic chemistry, and overall
biocompatibility of BODIPYs23 make them promising
candidates for visible-light photocaging. Meso-methyl BODIPY
PPGs effectively release cargo in living cells, in part because of
their large extinction coefficients.21,22 Further chemical
modification to methyl-BODIPY cages can improve photo-
release quantum efficiency,24 extend excitation wavelength into
the far-red,25 or allow postsynthetic functionalization for
targeting to subcellular locations,26 making them a versatile
platform for photorelease.

Nevertheless, all BODIPY PPGs reported to date are
inherently highly hydrophobic, which severely limits their
potential concentration and thus utility in water-based
solutions. Moreover, the hydrophobic nature of BODIPYs
makes them highly cell permeable (Scheme 1). While

advantageous when specifically pursuing intracellular inter-
ventions, this property makes BODIPY PPGs less effective
when targeting extracellular proteins or plasma membrane-
residing receptors and complicates analysis when the released
molecule can act both intra- and extracellularly.
We therefore sought to develop water-soluble BODIPY

PPGs with controlled cellular localization, while retaining their
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Scheme 1. Water-Soluble BODIPY Photocages
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favorable spectroscopic and photoreaction properties. We
initially opted for 2,6-sulfonation27 as a minimal structural
modification28 that also provides improved photobleaching
resistance.29 2- and 2,6-sulfo BODIPYs 2 and 3, bearing p-
nitroaniline (PNA) as a model leaving group, were synthesized
by sulfonation of 1 using a sulfur trioxide−pyridine complex
(Scheme 2).30 Surprisingly, both 2 and 3 did not release PNA

when irradiated with green light (545/30 nm, 49 mW/cm2). In
contrast, 1 is an effective photocage, with ε × Φrel = 3 and t1/2
= 3.8 min (Figure 1a and Table S1). We hypothesized that the

electron-withdrawing effect of sulfonate is responsible for the
diminished photoreaction. Indeed, a comparable BODIPY with
2-aldehyde (4) also failed to release the leaving group, while
2,6-diethyl BODIPY 5 photolyzed with ε × Φrel = 19 and t1/2 =
31 s, better than 1 (Table S1).
The observed trend in Φrel (5 > 1 > 4 ≈ 2 ≈ 3) suggests a

strong effect of the 2,6-positions on the photoreaction with a
positive influence of electron donation. We therefore modeled
the excited state geometries of 1−5 to explore the
consequences of 2,6-substitution on photouncaging efficiency
(B3LYP/6-31+G(d,p), SMD = H2O). No fundamental change
in the nature of the excited state exists between 1−5. Neither
chromophore planarity nor position of the LUMO (meso
carbon) differs across compounds 1−5 (Computation S1−S7).
However, a relaxed potential energy scan of the C−O bond
breaking coordinates (Computation S8−S13) reveals that
electron-withdrawing groups (EWGs) at the 2,6-positions
substantially raise the barrier for C−O bond heterolysis on the
triplet surface compared to electron-donating groups (Figure
1b), consistent with a previous report of these positions’ effect
on BODIPY photostability.31 These computations further
support our previous hypothesis regarding photorelease in

meso-methyl BODIPYs, i.e. formation of a meso carbocation
diradical intermediate during the photoreaction.24 Thus,
electron-donating groups (EDGs) at the 2,6-positions stabilize
the resulting carbocation, lowering the barrier for its formation,
and conversely, EWGs increase the barrier to photoreaction.
To circumvent deleterious electronic effects on the BODIPY

core when introducing sulfonates, we harnessed our recently
reported functionalization method; a one-pot, two-step
protocol, to install an unprotected functional group on an in
situ activated α-methyl.26 We synthesized (Figure S1a) tertiary
amine (6), ether (7), and thioether (8−9) containing BODIPY
PPGs. Although amine substitution gave the highest synthetic
yields, tertiary amines could no longer undergo photorelease
(6, Figure S1d), likely because of a competing electron transfer
(PeT) mechanism.32−34 Instead, we find thiol nucleophiles
best combine high chemical yield with efficient photorelease in
BODIPY thioether (Figure S1). Thus, 2-mercaptoethane-
sulfonic acid sodium salt (MESNA) was used to introduce
sulfonic acid groups, affording BODIPYs 10 and 11 in 42%
and 33% yield, respectively (Scheme 3).

As expected, both 10 and 11 show improved water solubility
compared to 5. In mixtures of CH3CN/water, 5 features
absorbance λmax at 545 nm, a shoulder at 511 nm, and an ∼2.1
peak/shoulder ratio. But, in water, the peak red shifts and
broadens (556 nm), and the ratio collapses to 1.1, a nearly 1.9-
fold reduction and characteristic of aggregation35 (Figure 2a).

In contrast, the absorption spectra of 10 and 11 are nearly
identical in either pure water or a mixture of CH3CN/water,
establishing their high water solubility (Figures 2a, S2).
Critically, both 10 and 11 retain photoreleasing ability, in
stark contrast to core-sulfonated 2 or 3. Both 10 and 11
possess comparable quantum yield to 5 (Φrel = (3.6−5.1) ×
10−4) (Figures 2b, S3−S5 and Tables S1, S2), but afford

Scheme 2. Synthesis/Structures of BODIPYs 1−5a

a(a) SO3−Pyridine, DMF, 60 °C, 24 h; (b) SO3−Pyridine, DMF, 60
°C, 48 h; (c) DMF, POCl3, DCM, 0 °C to rt, 3 h.

Figure 1. Light-induced release from meso-methyl BODIPY PPGs. (a)
PNA release from 1−5 (10 μM in CH3CN/water 7/3) irradiated with
545/30 nm (49 mW/cm2) light for the indicated times. (b) Observed
Φrel and a DFT calculated C−O bond breaking energy for derivatives
1−5 as plotted versus σp Hammett constants.

Scheme 3. Synthesis of Sulfonated BODIPYs 10 and 11

Figure 2. MESNA-BODIPY PPGs. (a) Absorbance spectra of
BODIPYs 5, 10, and 11 (20 μM) directly dissolved in CH3CN/
water 7/3 (dashed line) or water (solid line). (b) Light-induced
release of PNA from 5, 10, and 11 (10 μM, CH3CN/water 7/3)
following, or not, irradiation with 545/30 nm light (49 mW/cm2) for
the indicated times.
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higher photochemical yields (59−60% vs 46%), probably due
to their increased solubility. These results establish peripheral
MESNA as a small, readily implemented modification to meso-
methyl BODIPYs that improve solubility while maintaining
high photorelease efficiency.
The degree of sulfonation influences the cellular uptake of

BODIPY PPGs. HEK 293T cells display intracellular
fluorescence, along with bright fluorescent puncta (presumably
aggregates), when treated with non-MESNA BODIPY 5
(Figure 3a). In contrast, mono-MESNA 10 shows a higher

degree of cellular fluorescence (2-fold higher than 5, Figure
S6), but without any observable puncta (Figure 3b). The
higher intracellular fluorescence may be a result of better water
solubility of 10 compared to 5, leading to higher effective
concentration in the buffer. Di-MESNA 11, with two
sulfonates, was completely cell impermeable and showed no
intracellular or membrane-associated fluorescence (Figure 3c).
These results are in line with previous observations of
sulfonated coumarin photocages.36 No toxicity or photo-
toxicity was observed for compound 5, 10, or 11 (Figure S7).
To evaluate the dependence of sulfonated BODIPY PPG

cellular permeability on the nature of the leaving group, we
compared sets of non-, mono-, and di-MESNA BODIPYs
bearing three caged biogenic amines: serotonin, dopamine, and
histamine (compounds 12−20, Scheme 4), forming a series of

leaving groups with decreased hydrophobicity. The cellular
permeability of non- and mono-MESNA-BODIPYs was highly
dependent on the polarity of the leaving group while di-
MESNA-BODIPY was completely cell impermeable, irrespec-
tive of the leaving group polarity (Figure S6).

Collectively, these data establish that the solubility of
BODIPY photocages can be significantly improved by
sulfonation without compromising photoreaction properties
and that their cellular permeability can be predetermined by
tuning the number of sulfonates.
To highlight the ability to tune the cellular accessibility of

caged biomolecules with BODIPY compounds, we synthesized
two sphingosine-caged BODIPY derivatives, 21 and 22
(Scheme 4). 21 is based on the traditional, nonsulfonated
BODIPY photocage, while 22 utilizes the di-MESNA-BODIPY
scaffold. Our hypothesis was that 21 could pass through
plasma membrane to effect localized uncaging of sphingosine
intracellularly, triggering Ca2+ release, while 22 would be
retained externally and would be incompetent to trigger
internal Ca2+ release.37 Consistent with this hypothesis,
treatment of HeLa cells with 21, followed by green uncaging
light, results in large Ca2+ transients detected by the fluorescent
Ca2+ indicator, fura-2 (Figure S8a−c). Induction of Ca2+

transients requires uncaging light: we observed no Ca2+

oscillations in the absence of light (Figure S8d). In contrast,
the uncaging of extracellularly targeted 22 results in no Ca2+-
associated transient (Figure S8e). Together, these data show
that di-MESNA-BODIPY cages can retain even lipophilic
bioactive molecules in the extracellular space.
The enhanced solubility of MESNA-BODIPYs makes them

promising candidates to modulate cell surface receptors. We
utilized them to control the availability of the neuromodulator
dopamine. We examined the localization of BODIPY-caged
dopamine compounds in cultured neurons. While BODIPY-
dopamine 12 shows significant cytosolic accumulation (Figure
S9a,d), both mono- (15) and di-MESNA-BODIPY-dopamine
18 display little to no cellular uptake (Figure S9b,e and S9c,f),
consistent with the localization of di-MESNA-BODIPY cages
in HEK cells (Figures 3, S6).
Di-MESNA BODIPY-dopamine 18 delivers dopamine in a

light-dependent fashion to neurons. Ca2+ imaging in hippo-
campal neurons treated with dopamine (5 μM) results in
fluorescence oscillations (Figure 4a,b).22,38 Hippocampal
neurons treated with di-MESNA-BODIPY-dopamine 18 (5
μM) and irradiated with green light also show Ca2+ oscillations
(Figure 4c), with 34% of neurons responding compared to
46% with dopamine alone (Figure S10). In the absence of
green light, 18 has little effect on the activity of hippocampal
neurons (Figure 4d), and green light alone, when 18 is not
present, does not evoke a similar Ca2+ response (Figure 4e).
Finally, preincubation with the dopamine receptor antagonist
butaclamol (100 μM) prior to green light uncaging in the
presence of 18 results in a substantial reduction in the number
of Ca2+ transients (Figures 4f, S10).
Complementary experiments using the cell-impermeable

mono-MESNA-BODIPY caged histamine 16 reveal that this
caged compound can also effectively modulate neuronal
physiology and Ca2+ signaling in a light-dependent fashion
(Figure S11). We further show that the spatial resolution of
uncaging can be controlled (Figure S12).
In summary, we introduce biocompatible BODIPY PPGs

with substantially improved water-solubility, user-designated
control over cellular localization and high photorelease
efficiency. Initial efforts to directly sulfonate the BODIPY
core improved solubility but abolished photorelease. A
combination of computation and in vitro characterization
suggests that EWGs at the 2,6-positions destabilize the
carbocation formed during the photoreaction. We circum-

Figure 3. Confocal fluorescence microscopy of HEK 293T cells
treated with BODIPY 5, 10, or 11 (2 μM) for 30 min and costained
with Hoechst dye. Cells were washed thrice and imaged.

Scheme 4. Structures of BODIPYs 12−20
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vented this barrier by introducing remote sulfonation, resulting
in an increase in water solubility and the ability to regulate
cellular localization through the degree of sulfonation. The
cellular impermeability of peripherally disulfonated BODIPYs
makes them promising candidates for use in modulation of
extracellular proteins and cell-surface receptors, while mono-
sulfonated BODIPYs retain the ability to cross the cellular
membrane and can modulate intracellular targets. Moreover,
the peripheral sulfonation strategy presented herein should be
applicable to BODIPY fluorophores at large, providing a
convenient route to confer water solubility and control cellular
permeability.
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