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Abstract

This paper applies conformal prediction to derive predictive distributions that are valid under

a nonparametric assumption. Namely, we introduce and explore predictive distribution func-

tions that always satisfy a natural property of validity in terms of guaranteed coverage for

IID observations. The focus is on a prediction algorithm that we call the Least Squares

Prediction Machine (LSPM). The LSPM generalizes the classical Dempster–Hill predictive

distributions to nonparametric regression problems. If the standard parametric assumptions

for Least Squares linear regression hold, the LSPM is as efficient as the Dempster–Hill pro-

cedure, in a natural sense. And if those parametric assumptions fail, the LSPM is still valid,

provided the observations are IID.

Keywords Conformal prediction · Least Squares · Nonparametric regression · Predictive

distributions · Regression

1 Introduction

This paper applies conformal prediction to derive predictive distribution functions that are

valid under a nonparametric assumption. In our definition of predictive distribution functions

and their property of validity we follow Shen et al. (2018, Section 1), whose terminology we

adopt, and Schweder and Hjort (2016, Chapter 12), who use the term “prediction confidence
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distributions”. The theory of predictive distributions as developed by Schweder and Hjort

(2016) and Shen et al. (2018) assumes that the observations are generated from a paramet-

ric statistical model. We extend the theory to the case of regression under the general IID

model (the observations are generated independently from the same distribution), where the

distribution form does not need to be specified; however, our exposition is self-contained.

Our predictive distributions generalize the classical Dempster–Hill procedure (to be formally

defined in Sect. 5), which these authors referred to as direct probabilities (Dempster) and

A(n)/H(n) (Hill). For a well-known review of predictive distributions, see Lawless and Fre-

dette (2005). The more recent review by Gneiting and Katzfuss (2014) refers to the notion of

validity used in this paper as probabilistic calibration and describes it as critical in forecasting;

Gneiting and Katzfuss (2014, Section 2.2.3) also give further references.

We start our formal exposition by defining conformal predictive distributions (CPDs),

nonparametric predictive distributions based on conformal prediction, and algorithms pro-

ducing CPDs (conformal predictive systems, CPSs) in Sect. 2; we are only interested in

(nonparametric) regression problems in this paper. An unusual feature of CPDs is that they

are randomized, although they are typically affected by randomness very little. The starting

point for conformal prediction is the choice of a conformity measure; not all conformity

measures produce CPDs, but we give simple sufficient conditions. In Sect. 3 we apply the

method to the classical Least Squares procedure obtaining what we call the Least Squares

Prediction Machine (LSPM). The LSPM is defined in terms of regression residuals; accord-

ingly, it has three main versions: ordinary, deleted, and studentized. The most useful version

appears to be studentized, which does not require any assumptions on how influential any

of the individual observations is. We state the studentized version (and, more briefly, the

ordinary version) as an explicit algorithm. The next two sections, Sects. 4 and 5, are devoted

to the validity and efficiency of the LSPM. Whereas the LSPM, as any CPS, is valid under the

general IID model, for investigating its efficiency we assume a parametric model, namely the

standard Gaussian linear model. The question that we try to answer in Sect. 5 is how much

we should pay (in terms of efficiency) for the validity under the general IID model enjoyed by

the LSPM. We compare the LSPM with three kinds of oracles under the parametric model;

the oracles are adapted to the parametric model and are only required to be valid under it. The

weakest oracle (Oracle I) only knows the parametric model, and the strongest one (Oracle

III) also knows the parameters of the model. In important cases the LSPM turns out to be

as efficient as the Dempster–Hill procedure. All proofs are postponed to Sect. 6, which also

contains further discussions. Section 7 is devoted to experimental results demonstrating the

validity and, to some degree, efficiency of our methods. Finally, Sect. 8 concludes and lists

three directions of further research.

Another method of generating predictive distributions that are valid under the IID model

is Venn prediction (Vovk et al. 2005, Chapter 6). An advantage of the method proposed in

this paper is that it works in the case of regression, whereas Venn prediction, at the time of

writing of this paper, was only known to work in the case of classification (see, however, the

recent paper by Nouretdinov et al. 2018, discussed in Sect. 8).

The conference version of this paper (Vovk et al. 2017b), announcing the main results,

was published in the Proceedings of COPA 2017. This expanded journal version includes

detailed proofs, further discussion of the intuition behind the proposed algorithms, and topics

for further research, in addition to improved exposition.

A significant advantage of conformal predictive distributions over traditional conformal

prediction is that the former can be combined with a utility function to arrive at optimal deci-

sions. A first step in this direction has been made in Vovk and Bendtsen (2018) (developing

ideas of the conference version of this paper).
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2 Randomized and conformal predictive distributions

We consider the regression problem with p attributes. Correspondingly, the observation

space is defined to be R
p+1 = R

p × R; its element z = (x, y), where x ∈ R
p and y ∈ R,

is interpreted as an observation consisting of an object x ∈ R
p and its label y ∈ R. Our

task is, given a training sequence of observations zi = (zi , yi ), i = 1, . . . , n, and a new test

object xn+1 ∈ R
p , to predict the label yn+1 of the (n +1)st observation. Our statistical model

is the general IID model: the observations z1, z2, . . ., where zi = (xi , yi ), are generated

independently from the same unknown probability measure P on R
p+1.

We start from defining predictive distribution functions following Shen et al. (2018, Defini-

tion 1), except that we relax the definition of a distribution function and allow randomization.

Let U be the uniform probability measure on the interval [0, 1].

Definition 1 A function Q : (Rp+1)n+1 × [0, 1] → [0, 1] is called a randomized predictive

system (RPS) if it satisfies the following three requirements:

R1a For each training sequence (z1, . . . , zn) ∈ (Rp+1)n and each test object xn+1 ∈ R
p ,

the function Q(z1, . . . , zn, (xn+1, y), τ ) is monotonically increasing both in y ∈ R

and in τ ∈ [0, 1] (where “monotonically increasing” is understood in the wide sense

allowing intervals of constancy). In other words, for each τ ∈ [0, 1], the function

y ∈ R �→ Q(z1, . . . , zn, (xn+1, y), τ )

is monotonically increasing, and for each y ∈ R, the function

τ ∈ [0, 1] �→ Q(z1, . . . , zn, (xn+1, y), τ )

is monotonically increasing.

R1b For each training sequence (z1, . . . , zn) ∈ (Rp+1)n and each test object xn+1 ∈ R
p ,

lim
y→−∞

Q(z1, . . . , zn, (xn+1, y), 0) = 0 (1)

and

lim
y→∞

Q(z1, . . . , zn, (xn+1, y), 1) = 1.

R2 As function of random training observations z1 ∼ P ,…, zn ∼ P , a random test

observation zn+1 ∼ P , and a random number τ ∼ U , all assumed independent, the

distribution of Q is uniform:

∀α ∈ [0, 1] : P {Q(z1, . . . , zn, zn+1, τ ) ≤ α} = α.

The output of the randomized predictive system Q on a training sequence z1, . . . , zn and

a test object xn+1 is the function

Qn : (y, τ ) ∈ R × [0, 1] �→ Q(z1, . . . , zn, (xn+1, y), τ ), (2)

which will be called the randomized predictive distribution (function) (RPD) output by Q.

The thickness of an RPD Qn is the infimum of the numbers ε ≥ 0 such that the diameter

Qn(y, 1) − Qn(y, 0) (3)

of the set

{Qn(y, τ ) | τ ∈ [0, 1]} (4)
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is at most ε for all y ∈ R except for finitely many values. The exception size of Qn is the

cardinality of the set of y for which the diameter (3) exceeds the thickness of Qn . Notice that

a priori the exception size can be infinite.

In this paper we will be interested in RPDs of thickness 1
n+1

with exception size at

most n, for typical training sequences of length n [cf. (17) below]. In all our examples,

Q(z1, . . . , zn, zn+1, τ ) will be a continuous function of τ . Therefore, the set (4) will be

a closed interval in [0, 1]. However, we do not include these requirements in our official

definition.

Four examples of predictive distributions are shown in Fig. 5 below as shaded areas; let

us concentrate, for concreteness, on the top left one. The length of the training sequence

for that plot (and the other three plots) is n = 10; see Sect. 7 for details. Therefore, we are

discussing an instance of Q10, of width 1/11 with exception size 10. The shaded area is

{(y, Q10(y, τ )) | y ∈ R, τ ∈ [0, 1]}. We can regard (y, τ ) as a coordinate system for the

shaded area. The cut of the shaded area by the vertical line passing through a point y of

the horizontal axis is the closed interval [Q(y, 0), Q(y, 1)], where Q := Q10. The notation

Q(y) for the vertical axis is slightly informal.

Next we give basic definitions of conformal prediction adapted to producing predictive

distributions (there are several equivalent definitions; the one we give here is closer to Vovk

et al. 2005, Section 2.2, than to Balasubramanian et al. 2014, Section 1.3). A conformity

measure is a measurable function A : (Rp+1)n+1 → R that is invariant with respect to

permutations of the first n observations: for any sequence (z1, . . . , zn) ∈ (Rp+1)n , any

zn+1 ∈ R
p+1, and any permutation π of {1, . . . , n},

A(z1, . . . , zn, zn+1) = A
(

zπ(1), . . . , zπ(n), zn+1

)

. (5)

Intuitively, A measures how large the label yn+1 in zn+1 is, based on seeing the observations

z1, . . . , zn and the object xn+1 of zn+1. A simple example is

A(z1, . . . , zn+1) := yn+1 − ŷn+1, (6)

ŷn+1 being the prediction for yn+1 computed from xn+1 and z1, . . . , zn as training sequence

(more generally, we could use the whole of z1, . . . , zn+1 as the training sequence).

The conformal transducer determined by a conformity measure A is defined as

Q(z1, . . . , zn, (xn+1, y), τ ) := 1
n+1

∣

∣

{

i = 1, . . . , n + 1 | α
y
i < α

y
n+1

}∣

∣

+ τ
n+1

∣

∣

{

i = 1, . . . , n + 1 | α
y
i = α

y
n+1

}∣

∣ , (7)

where (z1, . . . , zn) ∈ (Rp+1)n is a training sequence, xn+1 ∈ R
p is a test object, and for

each y ∈ R the corresponding conformity score α
y
i is defined by

α
y
i := A(z1, . . . , zi−1, zi+1, . . . , zn, (xn+1, y), zi ), i = 1, . . . , n,

α
y
n+1 := A(z1, . . . , zn, (xn+1, y)). (8)

A function is a conformal transducer if it is the conformal transducer determined by some

conformity measure. A conformal predictive system (CPS) is a function which is both a con-

formal transducer and a randomized predictive system. A conformal predictive distribution

(CPD) is a function Qn defined by (2) for a conformal predictive system Q.

Any conformal transducer Q and Borel set A ⊆ [0, 1] define the conformal predictor

Γ A(z1, . . . , zn, xn+1, τ ) := {y ∈ R | Q(z1, . . . , zn, (xn+1, y), τ ) ∈ A} . (9)

The standard property of validity for conformal transducers is that the values (also called p

values) Q(z1, . . . , zn+1, τ ) are distributed uniformly on [0, 1] when z1, . . . , zn+1 are IID and
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τ is generated independently of z1, . . . , zn+1 from the uniform probability distribution U on

[0, 1] (see, e.g., Vovk et al. 2005, Proposition 2.8). This property coincides with requirement

R2 in the definition of an RPS and implies that the coverage probability, i.e., the probability

of yn+1 ∈ Γ A(z1, . . . , zn, xn+1), for the conformal predictor (9) is U (A).

Remark 1 The usual interpretation of (7) is that it is a randomized p value for testing the

null hypothesis of the observations being IID. In the case of CPDs, the informal alternative

hypothesis is that yn+1 = y is smaller than expected under the IID model. Then (6) can

be interpreted as a degree of conformity of the observation (xn+1, yn+1) to the remaining

observations. Notice the one-sided nature of this notion of conformity: a label can only be

strange (non-conforming) if it is too small; large is never strange. This notion of conformity

is somewhat counterintuitive, and we use it only as a technical tool.

2.1 Defining properties of distribution functions

Next we discuss why Definition 1 (essentially taken from Shen et al. 2018) is natural. The

key elements of this definition are that (1) the distribution function Q is monotonically

increasing, and (2) its value is uniformly distributed. The following two lemmas show that

these are defining properties of distribution functions of probability measures on the real line.

All proofs are postponed to Sect. 6.

First we consider the case of a continuous distribution function; the justification for this

case, given in the next lemma, is simpler.

Lemma 1 Suppose F is a continuous distribution function on R and Y is a random variable

distributed as F. If Q : R → R is a monotonically increasing function such that the

distribution of Q(Y ) is uniform on [0, 1], then Q = F.

In the general case we need randomization. Remember the definition of the lexicographic

order on R × [0, 1]: (y, τ ) ≤ (y′, τ ′) is defined to mean that y < y′ or both y = y′ and

τ ≤ τ ′.

Lemma 2 Let P be a probability measure on R, F be its distribution function, and Y be a

random variable distributed as P. If Q : R × [0, 1] → R is a function that is monotonically

increasing (in the lexicographic order on its domain) and such that the image (P × U )Q−1

of the product P × U, where U is the uniform distribution on [0, 1], under the mapping Q

is uniform on [0, 1], then, for all y and τ ,

Q(y, τ ) = (1 − τ)F(y−) + τ F(y). (10)

Equality (10) says that Q is essentially F ; in particular, Q(y, τ ) = F(y) at each point y

of F’s continuity. It is a known fact that if we define Q by (10) for the distribution function F

of a probability measure P , the distribution of Q will be uniform when its domain R×[0, 1]
is equipped with the probability measure P × U .

The previous two lemmas suggest that properties R1a and R2 in the definition of RPSs

are the important ones. However, property R1b is formally independent of R1a and R2 in our

case of the general IID model (rather than a single probability measure on R): consider, e.g.,

a conformity measure A that depends only on the objects xi but does not depend on their

labels yi ; e.g., the left-hand side of (1) will be close to 1 for large n and highly conforming

xn+1.
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2.2 Simplest example: monotonic conformity measures

We start from a simple but very restrictive condition on a conformity measure making the

corresponding conformal transducer satisfy R1a. A conformity measure A is monotonic if

A(z1, . . . , zn+1) is:

– monotonically increasing in yn+1,

yn+1 ≤ y′
n+1 �⇒ A(z1, . . . , zn, (xn+1, yn+1)) ≤ A(z1, . . . , zn, (xn+1, y′

n+1));

– monotonically decreasing in y1,

y1 ≤ y′
1 �⇒ A((x1, y1), z2, . . . , zn, zn+1) ≥ A((x1, y′

1), z2, . . . , zn, zn+1).

(Because of the requirement of invariance (5), being decreasing in y1 is equivalent to

being decreasing in yi for any i = 2, . . . , n.)

This condition implies that the corresponding conformal transducer (7) satisfies R1a by

Lemma 3 below.

An example of a monotonic conformity measure is (6), where ŷn+1 is produced by the

K -nearest neighbours regression algorithm:

ŷn+1 := 1

K

K
∑

k=1

y(k)

is the average label of the K nearest neighbours of xn+1, where y(1), . . . , y(n) is the sequence

y1, . . . , yn sorted in the order of increasing distances between xi and xn+1 (we assume n ≥ K

and in the case of ties replace each y(i) by the average of y j over all j such that the distance

between x j and xn+1 is equal to the distance between xi and xn+1). This conformity measure

satisfies, additionally,

lim
y→±∞

A(z1, . . . , zn, (xn, y)) = ±∞

and, therefore, the corresponding conformal transducer also satisfies R1b and so is an RPS

and a CPS.

2.3 Criterion of being a CPS

Unfortunately, many important conformity measures are not monotonic, and the next lemma

introduces a weaker sufficient condition for a conformal transducer to be an RPS.

Lemma 3 The conformal transducer determined by a conformity measure A satisfies con-

dition R1a if, for each i ∈ {1, . . . , n}, each training sequence (z1, . . . , zn) ∈ (Rp+1)n , and

each test object xn+1 ∈ R
p , α

y
n+1 − α

y
i is a monotonically increasing function of y ∈ R (in

the notation of (8)).

Of course, we can fix i to, say, i := 1 in Lemma 3. We can strengthen the conclusion

of the lemma to the conformal transducer determined by A being an RPS (and, therefore, a

CPS) if, e.g.,

lim
y→±∞

(

α
y
n+1 − α

y
i

)

= ±∞.
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3 Least squares predictionmachine

In this section we will introduce three versions of what we call the Least Squares Predic-

tion Machine (LSPM). They are analogous to the Ridge Regression Confidence Machine

(RRCM), as described in Vovk et al (2005, Section 2.3) (and called the IID predictor in

Vovk et al. 2009), but produce (at least usually) distribution functions rather than prediction

intervals.

The ordinary LSPM is defined to be the conformal transducer determined by the confor-

mity measure

A(z1, . . . , zn+1) := yn+1 − Êyn+1 (11)

[cf. (6)], where yn+1 is the label in zn+1 and Êyn+1 is the prediction for yn+1 computed using

Least Squares from xn+1 (the object in zn+1) and z1, . . . , zn+1 (including zn+1) as training

sequence. The right-hand side of (11) is the ordinary residual. However, two more kinds of

residuals are common in statistics, and so overall we will discuss three kinds of LSPM. The

deleted LSPM is determined by the conformity measure

A(z1, . . . , zn+1) := yn+1 − ŷn+1, (12)

whose difference from (11) is that Êyn+1 is replaced by the prediction ŷn+1 for yn+1 computed

using Least Squares from xn+1 and z1, . . . , zn as training sequence (so that the training

sequence does not include zn+1). The version that will be most useful in this paper will be

the “studentized LSPM”, which is midway between ordinary and deleted LSPM; we will

define it formally later.

Unfortunately, the ordinary and deleted LSPM are not RPS, because their output Qn

[see (2)] is not necessarily monotonically increasing in y (remember that, for conformal

transducers, Qn(y, τ ) is monotonically increasing in τ automatically). However, we will see

that this can happen only in the presence of high-leverage points.

Let X̄ stand for the (n + 1) × p data matrix, whose i th row is the transpose x ′
i to the i th

object (training object for i = 1, . . . , n and test object for i = n + 1). The hat matrix for the

n + 1 observations z1, . . . , zn+1 is

H̄ = X̄(X̄ ′ X̄)−1 X̄ ′. (13)

Our notation for the elements of this matrix will be h̄i, j , i standing for the row and j for the

column. For the diagonal elements h̄i,i we will use the shorthand h̄i .

The following proposition can be deduced from Lemma 3 and the explicit form [analogous

to Algorithm 1 below but using (22)] of the ordinary LSPM. The details of the proofs for all

results of this section will be spelled out in Sect. 6.

Proposition 1 The function Qn output by the ordinary LSPM [see (2)] is monotonically

increasing in y provided h̄n+1 < 0.5.

The condition needed for Qn to be monotonically increasing, h̄n+1 < 0.5, means that the

test object xn+1 is not a very influential point. An overview of high-leverage points is given

by Chatterjee and Hadi (1988, Section 4.2.3.1), where they start from Huber’s 1981 proposal

to regard points xi with h̄i > 0.2 as influential.

The assumption h̄n+1 < 0.5 in Proposition 1 is essential:

Proposition 2 Proposition 1 ceases to be true if the constant 0.5 in it is replaced by a larger

constant.
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The next two propositions show that for the deleted LSPM, determined by (12), the

situation is even worse than for the ordinary LSPM: we have to require h̄i < 0.5 for all

i = 1, . . . , n.

Proposition 3 The function Qn output by the deleted LSPM according to (2) is monotonically

increasing in y provided maxi=1,...,n h̄i < 0.5.

We have the following analogue of Proposition 2 for the deleted LSPM.

Proposition 4 Proposition 3 ceases to be true if the constant 0.5 in it is replaced by a larger

constant.

The best choice, from the point of view of predictive distributions, seems to be the stu-

dentized LSPM determined by the conformity measure

A(z1, . . . , zn+1) := yn+1 − Êyn+1
√

1 − h̄n+1

(14)

(intermediate between those for the ordinary and deleted LSPM: a standard representa-

tion for the deleted residuals yi − ŷi , where ŷi is the prediction for yi computed using

z1, . . . , zi−1, zi+1, . . . , zn+1 as training sequence, is (yi − Êyi )/(1 − h̄i ), i = 1, . . . , n + 1;

we ignore a factor independent of i in the definition of internally studentized residuals in,

e.g., Seber and Lee 2003, Section 10.2).

An important advantage of studentized LSPM is that to get predictive distributions we do

not need any assumptions of low leverage.

Proposition 5 The studentized LSPM is an RPS and, therefore, a CPS.

3.1 The studentized LSPM in an explicit form

We will give two explicit forms for the studentized LSPM (Algorithms 1 and 2); the versions

for the ordinary and deleted LSPM are similar (we will give an explicit form only for the

former, which is particularly intuitive). Predictive distributions (2) will be represented in the

form

Qn(y) := [Qn(y, 0), Qn(y, 1)]

(in the spirit of abstract randomized p values of Geyer and Meeden 2005); the function Qn

maps each potential label y ∈ R to a closed interval of R. It is clear that in the case of

conformal transducers this interval-valued version of Qn carries the same information as

the original one: each original value Qn(y, τ ) can be restored as a convex mixture of the

end-points of Qn(y); namely, Qn(y, τ ) = (1 − τ)a + τb if Qn(y) = [a, b].
Remember that the vector (Êy1, . . . , Êyn+1)

′ of ordinary Least Squares predictions is the

product of the hat matrix H̄ and the vector (y1, . . . , yn+1)
′ of labels. For the studentized

residuals (14), we can easily obtain

α
y
n+1 − α

y
i = Bi y − Ai , i = 1, . . . , n,

in the notation of (8), where y is the label of the (n + 1)st object xn+1 and

Bi :=
√

1 − h̄n+1 + h̄i,n+1
√

1 − h̄i

, (15)
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Algorithm 1 Least Squares Prediction Machine

Require: A training sequence (xi , yi ) ∈ R
p × R, i = 1, . . . , n.

Require: A test object xn+1 ∈ R
p .

1: Set X̄ to the data matrix for the given n + 1 objects.

2: Define the hat matrix H̄ by (13).

3: for i ∈ {1, 2, . . . , n} do

4: Define Ai and Bi by (16) and (15), respectively.

5: Set Ci := Ai /Bi .

6: end for

7: Sort C1, . . . , Cn in the increasing order obtaining C(1) ≤ · · · ≤ C(n).

8: Return the predictive distribution (17) for yn+1.

Ai =
∑n

j=1 h̄ j,n+1 y j
√

1 − h̄n+1

+
yi −

∑n
j=1 h̄i, j y j

√

1 − h̄i

(16)

[see also (40) below]. We will assume that all Bi are defined and positive; this assumption

will be discussed further at the end of this subsection.

Set Ci := Ai/Bi for all i = 1, . . . , n. Sort all Ci in the increasing order and let the

resulting sequence be C(1) ≤ · · · ≤ C(n). Set C(0) := −∞ and C(n+1) := ∞. The predictive

distribution is:

Qn(y) :=
{

[ i
n+1

, i+1
n+1

] if y ∈ (C(i), C(i+1)) for i ∈ {0, 1, . . . , n}
[ i ′−1

n+1
, i ′′+1

n+1
] if y = C(i) for i ∈ {1, . . . , n},

(17)

where i ′ := min{ j | C( j) = C(i)} and i ′′ := max{ j | C( j) = C(i)}. We can see that the

thickness of this CPD is 1
n+1

with the exception size equal to the number of distinct Ci , at

most n.

The overall algorithm is summarized as Algorithm 1. Remember that the data matrix X̄

has x ′
i , i = 1, . . . , n + 1, as its i th row; its size is (n + 1) × p.

Finally, let us discuss the condition that all Bi are defined and positive, i = 1, . . . , n. By

Chatterjee and Hadi (1988, Property 2.6(b)), h̄n+1 = 1 implies h̄i,n+1 = 0 for i = 1, . . . , n;

therefore, the condition is equivalent to h̄i < 1 for all i = 1, . . . , n + 1. By Mohammadi

(2016, Lemma 2.1(iii)), this means that the rank of the extended data matrix X̄ is p and it

remains p after removal of any one of its n + 1 rows. If this condition is not satisfied, we

define Qn(y) := [0, 1] for all y. This ensures that the studentized LSPM is a CPS.

3.2 The batch version of the studentized LSPM

There is a much more efficient implementation of the LSPM in situations where we have

a large test sequence of objects xn+1, . . . , xn+m instead of just one test object xn+1. In this

case we can precompute the hat matrix for the training objects x1, . . . , xn , and then, when

processing each test object xn+ j , use the standard updating formulas based on the Sherman–

Morrison–Woodbury theorem: see, e.g., Chatterjee and Hadi (1988, p. 23, (2.18)–(2.18c)).

For the reader’s convenience we will spell out the formulas. Let X be the n × p data matrix

for the first n observations: its i th row is x ′
i , i = 1, . . . , n. Set

gi := x ′
i (X ′ X)−1xn+1, i = 1, . . . , n + 1. (18)

Finally, let H be the n × n hat matrix

H := X(X ′ X)−1 X ′ (19)
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Algorithm 2 Least Squares Prediction Machine (batch version)

Require: A training sequence (xi , yi ) ∈ R
p × R, i = 1, . . . , n.

Require: A test sequence xn+ j ∈ R
p , j = 1, . . . , m.

1: Set X to the data matrix for the n training objects.

2: Set H = (hi, j ) to the hat matrix (19).

3: for j ∈ {1, 2, . . . , m} do

4: Set xn+1 := xn+ j .

5: Define an (n + 1) × (n + 1) matrix H̄ = (h̄i, j ) by (20) and (21).

6: for i ∈ {1, 2, . . . , n} do

7: Define Ai and Bi by (16) and (15), respectively.

8: Set Ci := Ai /Bi .

9: end for

10: Sort C1, . . . , Cn in the increasing order obtaining C(1) ≤ · · · ≤ C(n).

11: Return the predictive distribution (17) for the label of xn+ j .

12: end for

for the first n objects; its entries will be denoted hi, j , with hi,i sometimes abbreviated to hi .

The full hat matrix H̄ is larger than H , with the extra entries

h̄i,n+1 = h̄n+1,i = gi

1 + gn+1
, i = 1, . . . , n + 1. (20)

The other entries of H̄ are

h̄i, j = hi, j − gi g j

1 + gn+1
, i, j = 1, . . . , n. (21)

The overall algorithm is summarized as Algorithm 2. The two steps before the outer for

loop are preprocessing; they do not depend on the test sequence.

3.3 The ordinary LSPM

A straightforward calculation shows that the ordinary LSPM has a particularly efficient and

intuitive representation (Burnaev and Vovk 2014, Appendix A):

Ci = Ai

Bi

= ŷn+1 + (yi − ŷi )
1 + gn+1

1 + gi

, (22)

where ŷn+1 and ŷi are the Least Squares predictions for yn+1 and yi , respectively, computed

from the test objects xn+1 and xi , respectively, and the observations z1, . . . , zn as the training

sequence. The representation (22) is stated and proved in Sect. 6 as Lemma 4. The predictive

distribution is defined by (17). The fraction
1+gn+1

1+gi
in (22) is typically and asymptotically (at

least under the assumptions A1–A4 stated in the next section) close to 1, and can usually be

ignored. The two other versions of the LSPM also typically have

Ci ≈ ŷn+1 + (yi − ŷi ). (23)

4 A property of validity of the LSPM in the onlinemode

In the previous section (cf. Algorithm 1) we defined a procedure producing a “fuzzy” distribu-

tion function Qn given a training sequence zi = (xi , yi ), i = 1, . . . , n, and a test object xn+1.

In this and following sections we will use both notation Qn(y) (for an interval) and Qn(y, τ )
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(for a point inside that interval, as above). Remember that U is the uniform distribution on

[0, 1].
Prediction in the online mode proceeds as follows:

Protocol 1 Online mode of prediction

Nature generates an observation z1 = (x1, y1)

from a probability distribution P;

for n = 1, 2, . . . do

Nature independently generates a new observation

zn+1 = (xn+1, yn+1) from P;

Forecaster announces Qn , a predictive distribution

based on (z1, . . . , zn) and xn+1;

set pn := Qn(yn+1, τn), where τn ∼ U independently

end for

Of course, Forecaster does not know P and yn+1 when computing Qn .

In the online mode we can strengthen condition R2 as follows:

Theorem 1 (Vovk et al. 2005, Theorem 8.1) In the online mode of prediction (in which

(zi , τi ) ∼ P × U are IID), the sequence (p1, p2, . . .) is IID and (p1, p2, . . .) ∼ U∞,

provided that Forecaster uses the studentized LSPM (or any other conformal transducer).

The property of validity asserted in Theorem 1 is marginal, in that we do not assert that

the distribution of pn is uniform conditionally on xn+1. Conditional validity is attained by

the LSPM only asymptotically and under additional assumptions, as we will see in the next

section.

5 Asymptotic efficiency

In this section we obtain some basic results about the LSPM’s efficiency. The LSPM has

a property of validity under the general IID model, but a natural question is how much we

should pay for it in terms of efficiency in situations where narrow parametric or even Bayesian

assumptions are also satisfied. This question was asked independently by Evgeny Burnaev

(in September 2013) and Larry Wasserman. It has an analogue in nonparametric hypothesis

testing: e.g., a major impetus for the widespread use of the Wilcoxon rank-sum test was

Pitman’s discovery in 1949 that even in the situation where the Gaussian assumptions of

Student’s t-test are satisfied the efficiency (“Pitman’s efficiency”) of the Wilcoxon test is still

0.95.

In fact the assumptions that we use in our theoretical study of efficiency are not comparable

with the general IID model used so far: we will add strong parametric assumptions on the way

labels yi are generated given the corresponding objects xi but will remove the assumption

that the objects are generated randomly in the IID fashion; in this section x1, x2, . . . are fixed

vectors. (The reason being that the two main results of this section, Theorems 2 and 3, do not

require the assumption that the objects are random and IID.) Suppose that, given the objects

x1, x2, . . ., the labels y1, y2, . . . are generated by the rule

yi = w′xi + ξi , (24)

where w is a vector in R
p and ξi are independent random variables distributed as N (0, σ 2)

(the Gaussian distribution being parameterized by its mean and variance). There are two
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parameters: vector w and positive number σ . We assume an infinite sequence of observations

(x1, y1), (x2, y2), . . . but take only the first n of them as our training sequence and let n → ∞.

These are all the assumptions used in our efficiency results:

A1 The sequence x1, x2, . . . is bounded: supi ‖xi‖ < ∞.

A2 The first component of each vector xi is 1.

A3 The empirical second-moment matrix has its smallest eigenvalue eventually bounded

away from 0:

lim inf
n→∞

λmin

(

1

n

n
∑

i=1

xi x ′
i

)

> 0,

where λmin stands for the smallest eigenvalue.

A4 The labels y1, y2, . . . are generated according to (24): yi = w′xi + ξi , where ξi are

independent Gaussian noise random variables distributed as N (0, σ 2).

Alongside the three versions of the LSPM, we will consider three “oracles” (at first

concentrating on the first two). Intuitively, all three oracles know that the data is generated

from the model (24). Oracle I knows neither w nor σ (and has to estimate them from the data

or somehow manage without them). Oracle II does not know w but knows σ . Finally, Oracle

III knows both w and σ .

Formally, proper Oracle I outputs the standard predictive distribution for the label yn+1 of

the test object xn+1 given the training sequence of the first n observations and xn+1, namely

it predicts with

ŷn+1 +
√

1 + gn+1σ̂n tn−p, (25)

where gn+1 is defined in (18),

ŷn+1 := x ′
n+1(X ′ X)−1 X ′Y ,

σ̂n :=

√

√

√

√

1

n − p

n
∑

i=1

(yi − ŷi )2, ŷi := x ′
i (X ′ X)−1 X ′Y ,

X is the data matrix for the training sequence (the n × p matrix whose i th row is x ′
i ,

i = 1, . . . , n), Y is the vector (y1, . . . , yn)′ of the training labels, and tn−p is Student’s

t-distribution with n − p degrees of freedom; see, e.g., Seber and Lee (2003, Section 5.3.1)

or Wang et al (2012, Example 3.3). (By condition A3, (X ′ X)−1 exists from some n on.) The

version that is more popular in the literature on empirical processes for residuals is simplified

Oracle I outputting

N
(

ŷn+1, σ̂
2
n

)

. (26)

The difference between the two versions, however, is asymptotically negligible (Pinelis 2015),

and the results stated below will be applicable to both versions.

Proper Oracle II outputs the predictive distribution

N
(

ŷn+1, (1 + gn+1)σ
2
)

. (27)

Correspondingly, simplified Oracle II outputs the predictive distribution

N
(

ŷn+1, σ
2
)

; (28)

the difference between the two versions of Oracle II is again asymptotically negligible under

our assumptions. For future reference, Oracle III outputs the predictive distribution

N
(

w′xn+1, σ
2
)

.
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Our notation is Qn for the conformal predictive distribution (2), as before, QI
n for simpli-

fied or proper Oracle I’s predictive distribution, (26) or (25) (Theorem 2 will hold for both),

and QII
n for simplified or proper Oracle II’s predictive distribution, (28) or (27) (Theorem 3

will hold for both). Theorems 2 and 3 are applicable to all three versions of the LSPM.

Theorem 2 The random functions Gn : R → R defined by

Gn(t) :=
√

n
(

Qn(ŷn+1 + σ̂n t, τ ) − QI
n(ŷn+1 + σ̂n t)

)

weakly converge to a Gaussian process Z with mean zero and covariance function

cov(Z(s), Z(t)) = Φ(s) (1 − Φ(t)) − φ(s)φ(t) − 1

2
stφ(s)φ(t), s ≤ t .

Theorem 3 The random functions Gn : R → R defined by

Gn(t) :=
√

n
(

Qn(ŷn+1 + σ t, τ ) − QII
n (ŷn+1 + σ t)

)

weakly converge to a Gaussian process Z with mean zero and covariance function

cov(Z(s), Z(t)) = Φ(s) (1 − Φ(t)) − φ(s)φ(t), s ≤ t . (29)

In Theorems 2 and 3, we have τ ∼ U ; alternatively, they will remain true if we fix τ to

any value in [0, 1]. For simplified oracles, we have QI
n(ŷn+1 + σ̂n t) = Φ(t) in Theorem 2

and QII
n (ŷn+1 + σ t) = Φ(t) in Theorem 3. Our proofs of these theorems (given in Sect. 6)

are based on the representation (22) and the results of Mugantseva (1977) (see also Chen

1991, Chapter 2).

Applying Theorems 2 and 3 to a fixed argument t , we obtain (dropping τ altogether):

Corollary 1 For a fixed t ∈ R,

√
n

(

Qn(ŷn+1 + σ̂n t) − QI
n(ŷn+1 + σ̂n t)

)

⇒ N

(

0, Φ(t)(1 − Φ(t)) − φ(t)2 − 1

2
t2φ(t)2

)

and

√
n

(

Qn(ŷn+1 + σ t) − QII
n (ŷn+1 + σ t)

)

⇒ N
(

0, Φ(t)(1 − Φ(t)) − φ(t)2
)

.

Figure 1 presents plots for the asymptotic variances, given in Corollary 1, for the two

oracular predictive distributions: black for Oracle I (Φ(t)(1 − Φ(t)) − φ(t)2 − 1
2

t2φ(t)2

vs t) and blue for Oracle II (Φ(t)(1 − Φ(t)) − φ(t)2 vs t); the red plot will be discussed

later in this section. The two asymptotic variances coincide at t = 0, where they attain their

maximum of between 0.0908 and 0.0909.

We can see that under the Gaussian model (24) complemented by other natural assump-

tions, the LSPM is asymptotically close to the oracular predictive distributions for Oracles I

and II, and therefore is approximately conditionally valid and efficient (i.e., valid and effi-

cient given x1, x2, . . .). On the other hand, Theorem 1 guarantees the marginal validity of the

LSPM under the general IID model, regardless of whether (24) holds.
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Fig. 1 The asymptotic variances for the Dempster–Hill (DH) procedure as compared with the truth (Oracle

III, red) and for the LSPM and DH procedure as compared with the oracular procedures for known σ (Oracle

II, blue) and unknown σ (Oracle I, black); in black and white, red is highest, blue is intermediate, and black

is lowest

5.1 Comparison with the Dempster–Hill procedure

In this subsection we discuss a classical procedure that was most clearly articulated by

Dempster (1963, p. 110) and Hill (1968, 1988); therefore, in this paper we refer to it as

the Dempster–Hill procedure. Both Dempster and Hill trace their ideas to Fisher’s (1939;

1948) nonparametric version of his fiducial method, but Fisher was interested in confidence

distributions for quantiles rather than predictive distributions. Hill (1988) also referred to

his procedure as Bayesian nonparametric predictive inference, which was abbreviated to

nonparametric predictive inference (NPI) by Frank Coolen (Augustin and Coolen 2004).

We are not using the last term since it seems that all of this paper (and the whole area of

conformal prediction) falls under the rubric of “nonparametric predictive inference”. An

important predecessor of Dempster and Hill was Jeffreys (1932), who postulated what Hill

later denoted as A(2) (see Lane 1980 and Seidenfeld 1995 for discussions of Jeffreys’s paper

and Fisher’s reaction).

The Dempster–Hill procedure is the conformal predictive system determined by the con-

formity measure

A(z1, . . . , zn+1) = A(y1, . . . , yn+1) = yn+1; (30)

it is used when the objects xi are absent. (Both Dempster and Hill consider this case.) It can

be regarded as the special case of the LSPM for the number of attributes p = 0; alternatively,

we can take p = 1 but assume that all objects are xi = 0. The predictions ŷ are always 0

and the hat matrices are H̄ = 0 and H = 0 (although the expressions (13) and (19) are not

formally applicable), which means that (11), (12), and (14) all reduce to (30). It is easy to see

that the predictive distribution becomes, in the absence of ties (Dempster’s and Hill’s usual

assumption),

Qn(y) :=
{

[ i
n+1

, i+1
n+1

] if y ∈ (y(i), y(i+1)) for i ∈ {0, 1, . . . , n}
[ i−1

n+1
, i+1

n+1
] if y = y(i) for i ∈ {1, . . . , n}

(31)

(cf. (17)), where y(1) ≤ · · · ≤ y(n) are the yi sorted in the increasing order, y(0) := −∞, and

y(n+1) := ∞. This is essentially Hill’s assumption A(n) (which he also denoted An); in his

words: “An asserts that conditional upon the observations X1, . . . , Xn , the next observation
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Xn+1 is equally likely to fall in any of the open intervals between successive order statistics

of the given sample” (Hill 1968, Section 1). The set of all continuous distribution functions

F compatible with Hill’s A(n) coincides with the set of all continuous distribution functions

F satisfying F(y) ∈ Qn(y) for all y ∈ R, where Qn is defined by (31).

Notice that the LSPM, as presented in (23), is a very natural adaptation of A(n) to the

Least Squares regression.

Since (31) is a conformal transducer (provided a point from an interval in (31) is chosen

randomly from the uniform distribution on that interval), we have the same guarantees of

validity as those given above: the distribution of (31) is uniform over the interval [0, 1].
As for efficiency, it is interesting that, in the most standard case of IID Gaussian obser-

vations, our predictive distributions for linear regression are as precise as the Dempster–Hill

ones asymptotically when compared with Oracles I and II. Let us apply the Dempster–Hill

procedure to the location/scale model yi = w + ξi , i = 1, 2, . . ., where ξi ∼ N (0, σ 2) are

independent. As in the case of the LSPM, we can compare the Dempster–Hill procedure with

three oracles (we consider only simplified versions): Oracle I knows neither w nor σ , Oracle

II knows σ , and Oracle III knows both w and σ .

It is interesting that Theorems 2 and 3 (and therefore the blue and black plots in Fig. 1)

are applicable to both the LSPM and Dempster–Hill predictive distributions. (The fact that

the analogous asymptotic variances for standard linear regression are as good as those for

the location/scale model was emphasized in the pioneering paper by Pierce and Kopecky

1979.) The situation with Oracle III is different. Donsker’s (1952) classical result implies the

following simplification of Theorems 2 and 3, where QIII stands for Oracle III’s predictive

distribution (independent of n).

Theorem 4 In the case of the Dempster–Hill procedure, the random function Gn : R → R

defined by

Gn(t) :=
√

n
(

Qn(w + σ t, τ ) − QIII(w + σ t)
)

=
√

n (Qn(w + σ t, τ ) − Φ(t)) (32)

weakly converges to a Brownian bridge, i.e., a Gaussian process Z with mean zero and

covariance function

cov(Z(s), Z(t)) = Φ(s) (1 − Φ(t)) , s ≤ t .

The variance Φ(t)(1 − Φ(t)) of the Brownian bridge is shown as the red line in Fig. 1.

However, the analogue of the process (32) does not converge in general for the LSPM (under

this section’s assumption of fixed objects).

6 Proofs, calculations, and additional observations

In this section we give all proofs and calculations for the results of the previous sections and

provide some additional comments.

6.1 Proofs for Sect. 2

Here we prove Lemmas 1–3.
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Proof of Lemma 1

Suppose there is y ∈ R such that Q(y) �= F(y). Fix such a y. The probability that Q(Y ) ≤
Q(y) is, on the one hand, Q(y) and, on the other hand, F(y′), where

y′ := sup{y′′ | Q(y′′) = Q(y)}.
(The first statement follows from the distribution of Y being uniform and the second from the

definition of F in conjunction with its continuity.) Since Q(y) �= F(y), we have y′ > y, and

we know that Q(y) = Q(y′−) = F(y′) > F(y). We can see that Q maps the whole interval

[y, y′) of positive probability F(y′) − F(y) to one point, which contradicts its distribution

being uniform.

Proof of Lemma 2

First we prove that Q(y, 1) = F(y) for all y ∈ R. Fix a y ∈ R such that Q(y, 1) �= F(y),

assuming it exists. Set

y′ := sup{y′′ | Q(y′′, 1) = Q(y, 1)}. (33)

Since Q(y, 1) �= F(y) and, for (Y , τ ) ∼ P × U ,

Q(y, 1) = P(Q(Y , τ ) ≤ Q(y, 1)) ≥ P(Q(Y , 1) ≤ Q(y, 1))

≥ P((Y , 1) ≤ (y, 1)) = P(Y ≤ y) = F(y),

we have Q(y, 1) > F(y). Next we consider two cases:

– if the supremum in (33) is attained,

F(y) < Q(y, 1) = P(Q(Y , 1) ≤ Q(y, 1)) = P((Y , 1) ≤ (y′, 1)) = F(y′),

and so Q maps the lexicographic interval ((y, 1), (y′, 1)] of positive probability F(y′)−
F(y) into one point;

– if the supremum in (33) is not attained,

F(y) < Q(y, 1) = P(Q(Y , 1) ≤ Q(y, 1)) = P((Y , 1) < (y′, 1)) = F(y′−),

and so Q maps the lexicographic interval ((y, 1), (y′, 0)) of positive probability F(y′−)−
F(y) into one point.

In both cases we get a contradiction with the distribution of Q being uniform, which completes

the proof that Q(y, 1) = F(y) for all y ∈ R.

In the same way we prove that Q(y, 0) = F(y−) for all y ∈ R.

Now (10) holds trivially when F is continuous at y. If it is not, Q−1((F(y−), F(y))

will only contain points (y, τ ) for various τ , and so (10) is the only way to ensure that the

distribution of Q is uniform.

Proof of Lemma 3

Let us split all numbers i ∈ {1, . . . , n + 1} into three classes: i of class I are those satisfying

α
y
i > α

y
n+1, i of class II are those satisfying α

y
i = α

y
n+1, and i of class III are those satisfying

α
y
i < α

y
n+1. Each of those numbers is assigned a weight: 0 for i of class I, τ/(n + 1) for i of

class II, and 1/(n +1) for i of class III; notice that the weights are larger for higher-numbered

classes. According to (7), Qn(y, τ ) is the sum of the weights of all i ∈ {1, . . . , n + 1}. As y

increases, each individual weight can only increase (as i can move only to a higher-numbered

class), and so the total weight Qn(y, τ ) can also only increase.
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6.2 Comments and proofs for Sect. 3

After a brief discussion of Ridge Regression Prediction Machines (analogous to Ridge

Regression Confidence Machines, mentioned at the beginning of Sect. 3), we prove Propo-

sitions 1–5 and find the explicit forms for the studentized, ordinary, and deleted LSPM.

Ridge regression prediction machines

We can generalize LSPM to the Ridge Regression Prediction Machine (RRPM) by replacing

the Least Squares predictions in (11), (12), and (14) by Ridge Regression predictions (see

Vovk et al. 2017a for details). In this paper we are interested in the case p � n, and so

Least Squares often provide a reasonable result as compared with Ridge Regression. When

we move on to the kernel case (and Kernel Ridge Regression), the Least Squares method

ceases to be competitive. Vovk et al. (2017a) extend some results of this paper to the kernel

case replacing the LSPM by the RRPM.

Remark 2 The early versions of the Ridge Regression Confidence Machines used
∣

∣yn+1 − Êyn+1

∣

∣ in place of the right-hand side of (11) (see, e.g., Vovk et al. 2005, Section 2.3).

For the first time the operation |· · · | of taking the absolute value was dropped in Burnaev

and Vovk (2014) to facilitate theoretical analysis.

Proof of Proposition 1

According to Lemma 3, Qn(y, τ ) will be monotonically increasing in y if α
y
n+1 − α

y
i is

a monotonically increasing function of y. We will use the notation ei := yi − ŷi (sup-

pressing the dependence on y) for the i th residual, i = 1, . . . , n + 1, in the data sequence

z1, . . . , zn, (xn+1, y); yn+1 is understood to be y. In terms of the hat matrix H̄ (which does

not depend on the labels), the difference en+1 − ei can be written as

α
y
n+1 − α

y
i = en+1 − ei

= (yn+1 − ŷn+1) − (yi − ŷi )

= y − ŷn+1 + ŷi + c

= y − (h̄n+1,1 y1 + · · · + h̄n+1,n yn + h̄n+1 y)

+ (h̄i,1 y1 + · · · + h̄i,n yn + h̄i,n+1 y) + c

= (1 − h̄n+1 + h̄i,n+1)y + c, (34)

where c stands for a constant (in the sense of not depending on y), and different entries of

c may stand for different constants. We can see that Qn will be a nontrivial monotonically

increasing function of y whenever

1 − h̄n+1 + h̄i,n+1 > 0 (35)

for all i = 1, . . . , n. Since h̄i,n+1 ∈ [−0.5, 0.5] (see Chatterjee and Hadi 1988, Prop-

erty 2.5(b) on p. 17), we can see that it indeed suffices to assume h̄n+1 < 0.5.

Proof of Proposition 2

We are required to show that our c = 0.5 is the largest c for which the assumption h̄n+1 < c

is still sufficient for Qn(y, τ ) to be a monotonically increasing function of y. For ε ∈ (0, 1),
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consider the data set

X̄ =
(

−1 + ε

1

)

(36)

(so that n = 1; we have two observations: one training observation and one test observation).

The hat matrix is

H̄ = 1

2 − 2ε + ε2

(

(1 − ε)2 −1 + ε

−1 + ε 1

)

.

The coefficient in front of y in the last line of (34) [i.e., the left-hand side of (35)] now

becomes

1 − 1

2 − 2ε + ε2
+ −1 + ε

2 − 2ε + ε2
= ε2 − ε

2 − 2ε + ε2
< 0.

Therefore, Qn(·, τ ) is monotonically decreasing and not monotonically increasing. On the

other hand,

h̄n+1 = h̄2 = 1

2 − 2ε + ε2

can be made as close to 0.5 as we wish by making ε sufficiently small.

Proof of Proposition 3

Let e(i) be the deleted residual: e(i) := yi − ŷ(i), where ŷ(i) is computed using Least Squares

from the data set z1, . . . , zi−1, zi+1, . . . , zn+1 (so that zi is deleted from z1, . . . , zn+1, where

we set temporarily zn+1 := (xn, y)). It is well known that

e(i) = ei

1 − h̄i

,

where ei is the ordinary residual, as used in the proof of Proposition 1 (for a proof, see, e.g.,

Montgomery et al. 2012, Appendix C.7). Let us check when the difference e(n+1) − e(i) is

a monotonically increasing function of y = yn+1. Analogously to (34), we have, for any

i = 1, . . . , n:

e(n+1) − e(i) = en+1

1 − h̄n+1

− ei

1 − h̄i

= yn+1 − ŷn+1

1 − h̄n+1

− yi − ŷi

1 − h̄i

= y − h̄n+1 y

1 − h̄n+1

− yi − h̄i,n+1 y

1 − h̄i

+ c

= y − yi − h̄i,n+1 y

1 − h̄i

+ c

= y
1 − h̄i + h̄i,n+1

1 − h̄i

+ c. (37)

Therefore, it suffices to require

1 − h̄i + h̄i,n+1 > 0, (38)

which is the same condition as for the ordinary LSPM [see (35)] but with i and n+1 swapped.

Therefore, it suffices to assume h̄i < 0.5.
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Proof of Proposition 4

The statement of the proposition is obvious from the proofs of Propositions 2 and 3: motivated

by the conditions (35) and (38) being obtainable from each other by swapping i and n + 1,

we can apply the argument in the proof of Proposition 2 to the data set

X̄ =
(

1

−1 + ε

)

(which is (36) with its rows swapped).

Proof of Proposition 5

Similarly to (34) and (37), we obtain:

α
y
n+1 − α

y
i = en+1

√

1 − h̄n+1

− ei
√

1 − h̄i

= yn+1 − ŷn+1
√

1 − h̄n+1

− yi − ŷi
√

1 − h̄i

= y − h̄n+1 y
√

1 − h̄n+1

− yi − h̄i,n+1 y
√

1 − h̄i

+ c

=
√

1 − h̄n+1 y + h̄i,n+1
√

1 − h̄i

y + c. (39)

Therefore, we need to check the inequality

√

1 − h̄n+1 + h̄i,n+1
√

1 − h̄i

≥ 0.

This inequality can be rewritten as

h̄i,n+1 ≥ −
√

(1 − h̄n+1)(1 − h̄i )

and follows from Chatterjee and Hadi (1988), Property 2.6(b) on p. 19.

Computations for the studentized LSPM

Now we need the chain (39) with a more careful treatment of the unspecified constants c:

αn+1 − αi = en+1
√

1 − h̄n+1

− ei
√

1 − h̄i

= yn+1 − ŷn+1
√

1 − h̄n+1

− yi − ŷi
√

1 − h̄i

=
y −

∑n
j=1 h̄ j,n+1 y j − h̄n+1 y

√

1 − h̄n+1

−
yi −

∑n
j=1 h̄i, j y j − h̄i,n+1 y

√

1 − h̄i

=
(

√

1 − h̄n+1 + h̄i,n+1
√

1 − h̄i

)

y
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−
(

∑n
j=1 h̄ j,n+1 y j
√

1 − h̄n+1

+
yi −

∑n
j=1 h̄i, j y j

√

1 − h̄i

)

= Bi y − Ai , (40)

where the last equality is just the definition of Bi and Ai , also given by (15) and (16) above.

The ordinary and deleted LSPM

Here we will do the analogues of the calculation (40) for the ordinary and deleted LSPM.

For the ordinary LSPM we obtain

αn+1 − αi = en+1 − ei

= (yn+1 − ŷn+1) − (yi − ŷi )

=

⎛

⎝y −
n

∑

j=1

h̄ j,n+1 y j − h̄n+1 y

⎞

⎠ −

⎛

⎝yi −
n

∑

j=1

h̄i, j y j − h̄i,n+1 y

⎞

⎠

=
(

1 − h̄n+1 + h̄i,n+1

)

y

−

⎛

⎝

n
∑

j=1

h̄ j,n+1 y j + yi −
n

∑

j=1

h̄i, j y j

⎞

⎠

= Bi y − Ai ,

with the notation

Bi := 1 − h̄n+1 + h̄i,n+1, (41)

Ai =
n

∑

j=1

h̄ j,n+1 y j + yi −
n

∑

j=1

h̄i, j y j . (42)

For the deleted LSPM the calculation (40) becomes:

αn+1 − αi = en+1

1 − h̄n+1

− ei

1 − h̄i

= yn+1 − ŷn+1

1 − h̄n+1

− yi − ŷi

1 − h̄i

=
y −

∑n
j=1 h̄ j,n+1 y j − h̄n+1 y

1 − h̄n+1

−
yi −

∑n
j=1 h̄i, j y j − h̄i,n+1 y

1 − h̄i

=
(

1 + h̄i,n+1

1 − h̄i

)

y −
(

∑n
j=1 h̄ j,n+1 y j

1 − h̄n+1

+
yi −

∑n
j=1 h̄i, j y j

1 − h̄i

)

= Bi y − Ai ,

with the notation

Bi := 1 + h̄i,n+1

1 − h̄i

,

Ai =
∑n

j=1 h̄ j,n+1 y j

1 − h̄n+1

+
yi −

∑n
j=1 h̄i, j y j

1 − h̄i

.
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6.3 Comments and proofs for Sect. 5

There are different notions of weak convergence of empirical processes used in literature,

but in this paper (in particular, Theorems 2 and 3) we use the old-fashioned one due to

Skorokhod: see, e.g., Billingsley (1999, except for Section 15). We will regard empirical

distribution functions and empirical processes to be elements of a function space which

we will denote D: its elements are càdlàg (i.e., right-continuous with left limits) functions

f : R → R, and the distance between f , g ∈ D will be defined to be the Skorokhod distance

(either d or d◦ in the notation of Billingsley 1999, Theorem 12.1) between the functions

t ∈ [0, 1] �→ f (Φ−1(t)) and t ∈ [0, 1] �→ g(Φ−1(t)) in D[0, 1]. (Here Φ is the standard

Gaussian distribution function; we could have used any other function on the real line that is

strictly monotonically increasing from 0 to 1.)

Proofs of Theorems 2 and 3 for the ordinary LSPM

We will start our proof from the ordinary LSPM, in which case the predictive distribution is

particularly simple.

Lemma 4 (Burnaev and Vovk 2014) In the case of the ordinary LSPM, we have (22).

Proof Remember that, in our notation, X is the data matrix based on the first n observations,

X̄ is the data matrix based on the first n + 1 observations, H is the hat matrix X(X ′ X)−1 X ′

based on the first n observations, and H̄ is the hat matrix X̄(X̄ ′ X̄)−1 X ′ based on the first n+1

observations; the elements of H are denoted as hi, j and the elements of H̄ as h̄i, j , except

that for the diagonal elements we do not repeat the index. Besides, we let Y ∈ R
n stand for

the vector of the training labels (y1, . . . , yn)′. To compute Ci we will use the formulas (41),

(42) and (20), (21):

Bi = 1 − h̄n+1 + h̄i,n+1

= 1 −
x ′

n+1(X ′ X)−1xn+1

1 + x ′
n+1(X ′ X)−1xn+1

+
x ′

i (X ′ X)−1xn+1

1 + x ′
n+1(X ′ X)−1xn+1

=
1 + x ′

i (X ′ X)−1xn+1

1 + x ′
n+1(X ′ X)−1xn+1

.

and, letting ŷ stand for the predictions computed from the first n observations,

Ai = yi −
n

∑

j=1

h̄i, j y j +
n

∑

j=1

h̄ j,n+1 y j

= yi −
n

∑

j=1

hi, j y j +
n

∑

j=1

x ′
i (X ′ X)−1xn+1x ′

n+1(X ′ X)−1x j

1 + x ′
n+1(X ′ X)−1xn+1

y j

+
n

∑

j=1

x ′
j (X ′ X)−1xn+1

1 + x ′
n+1(X ′ X)−1xn+1

y j

= yi − ŷi +
x ′

i (X ′ X)−1xn+1x ′
n+1(X ′ X)−1 X ′Y

1 + x ′
n+1(X ′ X)−1xn+1

+ Y ′ X(X ′ X)−1xn+1

1 + x ′
n+1(X ′ X)−1xn+1

= yi − ŷi +
x ′

i (X ′ X)−1xn+1 ŷn+1

1 + x ′
n+1(X ′ X)−1xn+1

+ ŷn+1

1 + x ′
n+1(X ′ X)−1xn+1
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= yi − ŷi +
1 + x ′

i (X ′ X)−1xn+1

1 + x ′
n+1(X ′ X)−1xn+1

ŷn+1.

This gives

Ci = Ai/Bi = (yi − ŷi )
1 + x ′

n+1(X ′ X)−1xn+1

1 + x ′
i (X ′ X)−1xn+1

+ ŷn+1,

i.e., (22). ��

Now Theorems 2 and 3 will follow from Mugantseva (1977) and Chen (1991). Mugantseva

only treats simple linear regression, and in general we deduce Theorem 2 from Chen (1991,

Theorem 2.4.3) and deduce Theorem 3 from Chen’s Theorems 2.4.3 and 2.3.2. However, to

make those results applicable we need to show that the fraction
1+gn+1

1+gi
in (22) can be ignored;

the following lemma shows that both gn+1 and gi are sufficiently close to 1.

Lemma 5 Under our conditions A1–A4, maxi=1,...,n+1 |gi | = O(n−1) = o(n−1/2).

Proof We have, for all allowed sequences x1, x2, . . .,

max
i=1,...,n+1

|gi | ≤ ‖xn+1‖ maxi=1,...,n+1 ‖xi‖
λmin(X ′ X)

<
‖xn+1‖ maxi=1,...,n+1 ‖xi‖

nε
= O(n−1),

with the inequality holding for some ε > 0 from some n on. ��

We will spell out the details of the proof only for Theorem 3. Since Qn is concentrated at

the points C1, . . . , Cn , its transformation t �→ Qn(ŷn+1 + σ t) is concentrated at

ti = Ci − ŷn+1

σ
= yi − ŷi

σ

1 + gn+1

1 + gi

(43)

[by (22)]. If we replace (43) by

t̄i = yi − ŷi

σ

the desired result reduces to Mugantseva’s (as presented by Chen 1991), so we need to check

that this replacement is valid. We will use the fact that, by Lemma 5,

1 + gn+1

1 + gi

= 1 + o(n−1/2)

as n → ∞ uniformly in i = 1, . . . , n. Let Fn be the empirical distribution function

determined by the random points t1, . . . , tn and F̄n be the empirical distribution function

determined by the random points t̄1, . . . , t̄n . Let

Gn(t) := n1/2(Fn(t) − Φ(t))

Ḡn(t) := n1/2(F̄n(t) − Φ(t))

be the corresponding empirical processes. We know that Ḡn weakly converge to the zero-

mean Gaussian process Z with the covariance function (29). Our goal is to prove that the

same is true about Gn .

The idea is to use Prokhorov’s theorem, in the form of Theorem 13.1 in Billingsley

(1999), first proving that the finite-dimensional distributions of Gn converge to those of Z
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and then that the sequence Gn is tight. The functional space D(−∞,∞) is defined and

studied in Billingsley (1999, p. 191); we can use it in place of D if we consider, without loss

of generality, the domains of Gn and Ḡn to be bounded. Let πt∗1 ,...,t∗k
be the projection of

D(−∞,∞) onto R
k : πt∗1 ,...,t∗k

(x) := (x(t∗1 ), . . . , x(t∗k )).

Lemma 6 The finite-dimensional distributions of Gn weakly converge to Z: πt∗1 ,...,t∗k
(Gn) ⇒

πt∗1 ,...,t∗k
(Z).

Proof For simplicity, we will only consider two-dimensional distributions. To see that

πt∗1 ,t∗2
(Gn) ⇒ πt∗1 ,t∗2

(Z), notice that, for some εn → 0,

P
(

Gn(t∗1 ) ≤ a1, Gn(t∗2 ) ≤ a2

)

= P
(

n1/2(Fn(t∗1 ) − Φ(t∗1 )) ≤ a1, n1/2(Fn(t∗2 ) − Φ(t∗2 )) ≤ a2

)

≤ P

(

n1/2(F̄n(t∗1 − εnn−1/2) − Φ(t∗1 )) ≤ a1,

n1/2(F̄n(t∗2 − εnn−1/2) − Φ(t∗2 )) ≤ a2

)

≤ P

(

n1/2(F̄n(t∗1 − εnn−1/2) − Φ(t∗1 − εnn−1/2)) ≤ a1 + εn,

n1/2(F̄n(t∗2 − εnn−1/2) − Φ(t∗2 − εnn−1/2)) ≤ a2 + εn

)

(44)

= P
(

Ḡn(t∗1 − εnn−1/2) ≤ a1 + εn, Ḡn(t∗2 − εnn−1/2) ≤ a2 + εn

)

≤ P
(

Ḡn(t∗1 − εnn−1/2) ≤ a1 + ε, Ḡn(t∗2 − εnn−1/2) ≤ a2 + ε
)

(45)

→ P
(

Z(t∗1 ) ≤ a1 + ε, Z(t∗2 ) ≤ a2 + ε
)

(46)

≤ P
(

Z(t∗1 ) ≤ a1, Z(t∗2 ) ≤ a2

)

+ δ. (47)

The inequality (44) follows from
∣

∣Φ ′∣
∣ ≤ 1. The inequality (45) holds from some n on for

any ε > 0. By making ε sufficiently small we can make the δ in (47) arbitrarily small. The

convergence (46) follows from Lemma 8 below. In the same way we can prove the opposite

inequality

P
(

Gn(t∗1 ) ≤ a1, Gn(t∗2 ) ≤ a2

)

= P
(

n1/2(Fn(t∗1 ) − Φ(t∗1 )) ≤ a1, n1/2(Fn(t∗2 ) − Φ(t∗2 )) ≤ a2

)

≥ P

(

n1/2(F̄n(t∗1 + εnn−1/2) − Φ(t∗1 )) ≤ a1,

n1/2(F̄n(t∗2 + εnn−1/2) − Φ(t∗2 )) ≤ a2

)

≥ P

(

n1/2(F̄n(t∗1 + εnn−1/2) − Φ(t∗1 + εnn−1/2)) ≤ a1 − εn,

n1/2(F̄n(t∗2 + εnn−1/2) − Φ(t∗2 + εnn−1/2)) ≤ a2 − εn

)

= P
(

Ḡn(t∗1 + εnn−1/2) ≤ a1 − εn, Ḡn(t∗2 + εnn−1/2) ≤ a2 − εn

)

≥ P
(

Ḡn(t∗1 + εnn−1/2) ≤ a1 − ε, Ḡn(t∗2 + εnn−1/2) ≤ a2 − ε
)

→ P
(

Z(t∗1 ) ≤ a1 − ε, Z(t∗2 ) ≤ a2 − ε
)

≥ P
(

Z(t∗1 ) ≤ a1, Z(t∗2 ) ≤ a2

)

− δ.

��
The second step in the proof of Theorem 3 is to prove the tightness of the perturbed

empirical distribution functions for the residuals.
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Lemma 7 The sequence Gn , n = 1, 2, . . ., is tight.

Proof We will use the standard notation for càdlàg functions x on a closed interval of the real

line (Billingsley 1999, Section 12): j(x) stands for the size of the largest jump of x , wx (T ) :=
sups,t∈T |x(s) − x(t)| for any subset T of the domain of x , wx (δ) := supt wx [t, t +δ] for any

δ > 0, and w′
x (δ) := inf{ti } maxi∈{1,...,v} wx [ti−1, ti ), where t0 < t1 < · · · < tv range over the

partitions of the domain [t0, tv]of x that are δ-sparse in the sense of mini∈{1,...,v}(ti −ti−1) > δ.

We know that Ḡn ⇒ Z and, therefore, Ḡn is tight. By Billingsley (1999, Theorem 13.4),

the continuity of Z implies that j(Ḡn) ⇒ 0. This can be written as

∀ε > 0 : lim
n

P( j(Ḡn) ≥ ε) = 0

and in combination with

∀ε > 0 : lim
δ↓0

lim sup
n→∞

P(w′
Ḡn

(δ) ≥ ε) = 0

(this is Billingsley 1999, Theorem 13.2(ii)) and

wx (δ) ≤ 2w′
x (δ) + j(x)

(this is Billingsley 1999, (12.9)) implies

∀ε > 0 : lim
δ↓0

lim sup
n→∞

P(wḠn
(δ) ≥ ε) = 0. (48)

The statement of the lemma will follow from Billingsley (1999, Theorem 13.2, Corollary).

We will only check condition (ii) (i.e., (7.7) in Billingsley 1999) for Gn ; in other words, we

will check (48) with Gn in place of Ḡn . It suffices to notice that

wGn (δ) = sup
|t2−t1|≤δ

|Gn(t2) − Gn(t1)| = sup
|t2−t1|≤δ

(Gn(t2) − Gn(t1))

= sup
|t2−t1|≤δ

√
n (Fn(t2) − Φ(t2) − Fn(t1) + Φ(t1))

≤ sup
|t2−t1|≤δ

√
n

(

F̄n(t2 + εnn−1/2) − Φ(t2) − F̄n(t1 − εnn−1/2) + Φ(t1)
)

≤ sup
|t2−t1|≤δ

√
n
(

F̄n(t2 + εnn−1/2) − Φ(t2 + εnn−1/2)

− F̄n(t1 − εnn−1/2) + Φ(t1 − εnn−1/2)
)

+ εnn−1/2

= sup
|t2−t1|≤δ

(

Ḡn(t2 + εnn−1/2) − Ḡn(t1 − εnn−1/2)
)

+ εnn−1/2

≤ sup
|t ′2−t ′1|≤2δ

(

Ḡn(t ′2) − Ḡn(t ′1)
)

+ εnn−1/2 (49)

= wḠn
(2δ) + εnn−1/2,

where the inequality (49) holds from some n on. ��

Now Theorem 3 follows from Lemmas 6 and 7 by Billingsley (1999, Theorem 13.1).

The following lemma was used in the proof of Lemma 6.

Lemma 8 Suppose a sequence Ḡn of random functions in D(−∞,∞) weakly converges to a

random function Z in C(−∞,∞) and suppose tn → t are real numbers (or, more generally,

tn are random variables converging to t in probability). Then Ḡn(tn) weakly converges to

Z(t).
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Proof By Billingsley (1999, Theorem 3.9), (Ḡn, tn) ⇒ (Z , t). By the mapping theorem

(Billingsley 1999, Theorem 2.7), Ḡn(tn) ⇒ Z(t). ��

Proofs for the studentized LSPM

Let us see that Theorems 2 and 3 still hold for the deleted and studentized LSPM. For

concreteness, we will only consider the studentized LSPM. We have the following stronger

form of Lemma 5.

Lemma 9 Under conditions A1–A4, maxi, j=1,...,n+1

∣

∣h̄i, j

∣

∣ = O(n−1).

Proof As in the proof of Lemma 5, we have, for all permitted sequences x1, x2, . . .,

max
i, j=1,...,n

∣

∣hi, j

∣

∣ ≤
maxi, j=1,...,n ‖xi‖

∥

∥x j

∥

∥

λmin(X ′ X)
= O(1).

It remains to combine this with (20), (21), and the statement of Lemma 5. ��

We will use the old notation B and A for the ordinary LSPM, (41) and (42), but will supply

B and A with primes, writing B ′ and A′, for the studentized LSPM, (15) and (16). Since B

and B ′ are very close to 1,

B ′
i =

√

1 − h̄n+1 + h̄i,n+1
√

1 − h̄i

= 1 + O(n−1),

Bi = 1 − h̄n+1 + h̄i,n+1 = 1 + O(n−1),

we only need to check that A and A′ are very close between themselves. The difference

between them,

A′
i − Ai =

(
∑n

j=1 h̄ j,n+1 y j
√

1 − h̄n+1

+
yi −

∑n
j=1 h̄i, j y j

√

1 − h̄i

)

−

⎛

⎝

n
∑

j=1

h̄ j,n+1 y j + yi −
n

∑

j=1

h̄i, j y j

⎞

⎠

=
n

∑

j=1

O(n−2)y j + O(n−1)yi +
n

∑

j=1

O(n−2)y j ,

has a Gaussian distribution conditionally on x1, x2, . . ., and its variance is O(n−2). Now it

suffices to apply the method of the previous subsection to

t ′i :=
A′

i/B ′
i − ŷn+1

σ
,

which can also be regarded as perturbed t̄i .

7 Experimental results

In this section we explore experimentally the validity and efficiency of the studentized LSPM.
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7.1 Online validity

First we check experimentally the validity of our methods in the online mode of prediction.

It is guaranteed by our theoretical results but provides an opportunity to test the correctness

of our implementation.

We generate IID observations zn = (xn, yn), n = 1, . . . , 1001, and the corresponding

p values pn := Qn(yn+1, τn), n = 1, . . . , N , N := 1000, in the online mode. In our

experiments, xn ∼ N (0, 1), yn ∼ 2xn + N (0, 1), and, as usual, τn ∼ U , all independent.

Figure 2 plots Sn :=
∑n

i=1 pi vs n = 1, . . . , N ; as expected, it is an approximately straight

line with slope 0.5. Figure 3 presents three plots: the cumulative sums Sα
n :=

∑n
i=1 1{pi ≤α},

where 1 is the indicator function, vs n = 1, . . . , N , for three values ofα,α ∈ {0.25, 0.5, 0.75}.
For each of the three αs the result is an approximately straight line with slope α. Finally, Fig. 4

plots Aα
N against α ∈ [0, 1], where Aα

N := 1
N

∑N
i=1 1{pi ≤α}. The result is, approximately,

the main diagonal of the square [0, 1]2, as it should be.
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Fig. 2 The cumulative sums Sn of the p values versus n = 1, . . . , 1000
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Fig. 3 The cumulative sums Sα
n versus n = 1, . . . , 1000 for α ∈ {0.25, 0.5.0.75}
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Fig. 4 The calibration curve: Aα
N

versus α ∈ [0, 1] for N = 1000
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Fig. 5 Examples of true predictive distribution functions (black), their conformal estimates (represented by

the shaded areas), and the distribution functions output by simplified Oracle I (red) and Oracle II (blue) for

a tiny training sequence (of length 10 with two attributes, the first one being the dummy all-1 attribute); in

black and white, the true predictive distribution functions are the thick lines, and Oracle I is always farther

from them in the uniform metric than Oracle II is
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Fig. 6 The left-hand plot is the first (upper left) plot of Fig. 5 normalized by subtracting the true distribution

function (the thick black line in Fig. 5, which now coincides with the x-axis) and with the outputs of the proper

oracles added; the right-hand plot is an analogous plot for a larger training sequence (of length 100 with 20

attributes, the first one being the dummy attribute)

7.2 Efficiency

Next we explore empirically the efficiency of the studentized LSPM. Figure 5 compares

the conformal predictive distribution with the true (Oracle III’s) distribution for four ran-

domly generated test objects and a randomly generated training sequence of length 10

with 2 attributes. The first attribute is a dummy all-1 attribute; remember that Theo-

rems 2 and 3 depend on the assumption that one of the attributes is an identical 1 (without

it, the plots become qualitatively different: cf. Chen 1991, Corollary 2.4.1). The second

attribute is generated from the standard Gaussian distribution, and the labels are generated as

yn ∼ 2xn,2 + N (0, 1), xn,2 being the second attribute. We also show (with thinner lines) the

output of Oracle I and Oracle II, but only for the simplified versions, in order not to clutter the

plots. Instead, in the left-hand plot of Fig. 6 we show the first plot of Fig. 5 that is normalized

by subtracting the true distribution function; this time, we show the output of both simplified

and proper Oracles I and II; the difference is not large but noticeable. The right-hand plot of

Fig. 6 is similar except that the training sequence is of length 100 and there are 20 attributes

generated independently from the standard Gaussian distribution except for the first one,

which is the dummy all-1 attribute; the labels are generated as before, yn ∼ 2xn,2 + N (0, 1).

Since Oracle III is more powerful than Oracles I and II (it knows the true data-generating

distribution), it is more difficult to compete with; therefore, the black line is farther from the

shaded area than the blue and red lines for all four plots in Fig. 5. The estimated distribution

functions being to the left of the true distribution functions is a coincidence: the four plots

correspond to the values 0–3 of the seed for the R pseudorandom number generator, and for

other seeds the estimated distribution functions are sometimes to the right and sometimes to

the left.

8 Conclusion

This paper introduces conformal predictive distributions in regression problems. Their advan-

tage over the usual conformal prediction intervals is that a conformal predictive distribution

Qn contains more information; in particular, it can produce a plethora of prediction intervals:
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e.g., for each ε > 0, {y ∈ R | ε/2 ≤ Qn(y, τ ) ≤ 1 − ε/2} is a conformal prediction interval

at confidence level 1 − ε.

These are natural possible topics for further research:

– This paper is based on the most traditional approach to weak convergence of empiri-

cal processes, originated by Skorokhod and described in detail by Billingsley (1999).

This approach encounters severe difficulties in more general situations (such as multi-

dimensional labels). Alternative approaches have been proposed by numerous authors,

including Dudley (using the uniform topology and ball σ -algebra, Dudley 1966, 1967)

and Hoffmann-Jørgensen (dropping measurability and working with outer integrals; see,

e.g., van der Vaart and Wellner 1996, Section 1.3 and the references in the historical

section). Translating our results into those alternative languages might facilitate various

generalizations.

– Another generalization of the traditional notion of weak convergence is Belyaev’s notion

of weakly approaching sequences of random distributions (Belyaev and Sjöstedt–de Luna

2000). When comparing the LSPM with Oracle III, we limited ourselves to stating the

absence of weak convergence and calculating the asymptotics of 1-dimensional distribu-

tions; Belyaev’s definition is likely to lead to more precise results.

– The recent paper by Nouretdinov et al. (2018) uses inductive Venn–Abers predictors to

produce predictive distributions, with very different guarantees of validity. Establishing

connections between the approach of this paper and that of Nouretdinov et al. (2018) is

an interesting direction of further research.
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