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1. Introduction

Consider the task of predicting the future value of a univariate random variable Y*, based on a given sample of size n,
Y, = {Y1, Yo, ..., Y,}. Assume that the vector of the given sample data is from a distribution Gy(-) with parameter 0, denoted
by Y, ~ Gy, and that the new data point to be predicted is from a distribution F,(-) with the same parameter &, denoted by
Y* ~ Fy.Here, 8 € RP isap x 1 vector of parameter unless specified otherwise. Since G, and F, share the same 6, information
contained in the observed data Y, can be channeled through an estimate of € to assist the prediction of Y*. To simplify our
presentation, we assume that Y* and Y,, are independent, except in Section 6 with an example that Y* and Y, are allowed to
be dependent. Throughout the paper, the realization of Y* and Y, is denoted by y* and y, = {y1, ..., ¥n}, respectively. Also,
when they exist, the corresponding density functions of Fy and Gy are denoted by f, and gy, respectively.

There is a rich literature on predictive inference. Lawless and Fredette (2005) provided an excellent overview on the topic
and categorized statistical methods for prediction into two main approaches—frequentist and Bayesian. (I) In frequentist
approach, prediction intervals of the specific form (L,(Y;), L,(Y,)) are considered, so that the coverage probability

CP = Py {Ly(Y,) < Y* < Ly(Yn)} (1)
* Corresponding author.
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can be specified, exactly or asymptotically. Here, P; refers to the joint probability for both random variables Y* and Y,,.
Relevant references include Aitchison and Dunsmore (1980), Cox (1975), Beran (1990), Barndor-Nielsen and Cox (1996) and
Escobar and Meeker (1999), among others. (I) In Bayesian inference, Bayesian predictive distributions of the form

QO ¥a) = f Fo(y" (6 lyn)d6 )
fe®

is used. Here, @ is the parameter space of @ and p(@|y,) is the posterior density given Y,, = y,. Bayesian prediction intervals
(L1(¥n), L2(¥,)) can then be obtained from (2). Relevant references include Aitchison (1975), Aitchison and Dunsmore (1980),
Geisser (1993), Smith (1998) and others.

The classical frequentist approaches in (I) have the advantage of having a precise and well defined frequentist probabilistic
interpretation, analogous to that of “confidence intervals”. But those prediction intervals use only two endpoints of the
intervals to describe Y*, and thus are not as informative or flexible as the entire predictive distributions produced by the
Bayesian methods in (II) (as well as the approach to be discussed in this paper). This comparative observation is similar to
that in comparing inference outcomes from confidence intervals versus confidence distributions (cf. Cox, 2013; Xie, 2013).
Specifically, as stated in Cox(1958,2013), one often has a sense that “when 95% confidence limits of a normal mean are found
then, even if the parameter is outside the calculated range, it will not be too far outside”. This sense cannot be captured by the
definition of a 95% confidence interval, but can be clearly displayed by a confidence distribution. Similar case can be made
for using a full-fledged distribution function to describe the prediction outcome, as to convey fuller the prediction outcome
and also be sufficiently flexible to admit all forms of prediction outcomes, e.g., point estimates or prediction intervals of all
levels, etc.

The Bayesian approach in (II) does use a distribution function to describe the prediction of Y*, and enjoy the aforemen-
tioned “flexibility”. But the Bayesian outcomes depend on the additional assumptions of priors. Lawless and Fredette (2005)
pointed out that “objective Bayesian methods do not have clear probability interpretations in finite samples”, and “subjective
Bayesian predictions have a clear personal probability interpretation but it is not generally clear how this should be applied
to non-personal predictions or decisions”. In addition, many statistical models are developed under non-Bayesian framework
and Bayesian predictive distribution methods are not a natural fit for the developments in such practices.

To overcome the above shortcomings of the Bayesian approach Lawless and Fredette (2005) studied frequentist
predictive distribution functions in a special setting equipped with pivotal quantities, and referred to this as the pivotal
method. They further proved the superiority of the predictive distributions obtained from the pivotal method, as having a
smaller average Kullback-Leibler distance to the true distribution fy(y*), over those from the simple plug-in approach by
using f;(y*) to derive prediction intervals for all 6. Here, 6 = G(y,.) is the maximum likelihood estimate or any efficient
estimate of A based on the observed data. A related development is the fiducial predictive distributions studied by Wang
et al. (2012), who provided a set of conditions under which the fiducial predictive distributions can be used to construct
prediction intervals. The fiducial prediction intervals coincide with the exact pivotal-based intervals when available, and
otherwise possess correct frequentist coverage asymptotically.

Following the concept of predictive distribution in Lawless and Fredette (2005), we propose in this paper a rigorous
definition of a predictive distribution function and develop a general approach for constructing a predictive distribution of
Y* using a confidence distribution (CD) of the unknown parameter &. The resulting predictive distribution can account for
both the variability from the future random variable Y* and that from estimating the unknown parameter § using the sample
Y,. It takes the same form as the Bayesian and fiducial predictive distribution functions and thus also enjoys the flexibility of
being predictive distribution functions. More importantly, it is anchored on the idea to always provide prediction intervals with
clear frequentist probability interpretations. This approach was also considered in Schweder and Hjort (2016) under the name
of predictive confidence distribution, which also had a comparison with the Bayesian predictive distribution. In this paper,
we establish theoretical properties for the CD-based predictive distribution, including the frequentist coverage probabilities
of the prediction intervals, and related efficiency and optimality properties. Moreover, we also establish the connections
of this approach to other existing prediction approaches. In particular, we show that, under the formulation of the
CD-based predictive approach, the frequentist predictive distribution functions derived from the pivotal method in Lawless
and Fredette (2005), the fiducial predictive distributions from Wang et al. (2012), and even the Bayesian predictive
distribution all amount to the same equivalent expression. This clearly shows that the CD-based approach can provide a
unifying platform linking the existing frequentist, Bayesian and fiducial predictive distribution functions.

The rest of this paper is organized as follows: Section 2 defines predictive distribution functions and formulates a
CD-based predictive approach. Section 3 examines the theoretical properties of the CD-based predictive distribution function
and shows its connections to the Bayesian and fiducial predictive functions, and the frequentist predictive distribution
function studied in Lawless and Fredette (2005). This section also presents several properties concerning the efficiency and
optimality. Section 4 contains a simple yet broadly applicable Monte Carlo algorithm for carrying out the CD-based approach.
Section 5 demonstrates the effectiveness of the proposed CD-based approach using a simulation study under linear and
nonlinear regression models. Section 6 presents a real project on predicting the future volume of application submissions to
a government agency, showing that the proposed approach applies even to settings with dependent observations. Section 7
provides further comments and discussions.
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2. Predictive distribution function and its general formulation based on confidence distribution

Let Y* be the sample space of Y* and yY" the sample space of Y,,. Recall that Y, = {Y;,Ys,...,Ys} ~ Gg; Y* ~ Fp,
and 6 € R? is the unknown parameter with parameter space ®. Denote by 6, the true parameter value of 6. We define a
predictive distribution function for Y* based on the sample data Y, as follows:

Definition 1. A function Q(-; -)on Y* x Yy* — (0, 1) is called A PREDICTIVE DISTRIBUTION FUNCTION FOR A NEW OBSERVATION
Y* if it satisfies the two requirements below:

(R1) For each given Y, =y, € 4", Qy,(-) = Q(:; y») is a cumulative distribution function on Y*;

(R2) Q(Y™; Y,), as a function of both random sample Y* and Y,,, satisfies the following equation:

Pi(Q(Y*; Y,) <a)=a«a, forany0<o <1, (3)

where Py(-) is the joint probability measure w.r.t. Y* and Y,,. Also, the function Q(-; -) is called an asymptotic (or approximate)
predictive distribution, if the statement in (3) holds asymptotically.

Requirement (R1)in Definition 1implies that, in principle, any sample-dependent distribution function on the space of the
future random variable Y* can be used to predict Y* (i.e., to describe the performance of Y*). To draw meaningful prediction
inference, the additional Requirement (R2) is imposed to ensure that the statements of our prediction have the desired
frequentist interpretations. In particular Requirement (R2) ensures that the coverage probability (CP for short) defined in
(1)equals ¢, 0 < < 1, for L1(Y,) =Qy, Ya/2) and Ly(Y,) = Qy'ni(l —w/2).

Note that Definition 1 of prediction "functions bears striking resemblance to the definition of confidence distributions
(CDs), except that the parameter € and the corresponding parameter space @ in CDs are now replaced, respectively, by the
“future observation” Y* and its sample space Y*. More precisely, a sample-dependent function defined on the parameter
space @ is called a CD for @ if it satisfies the following two requirements: (R1°) For each given sample, it is a distribution
function on the parameter space @; (R2) It can provide confidence intervals (regions) of all levels for #; cf. Xie and Singh
(2013), Schweder and Hjort (2016) and references therein. See also Singh et al. (2001), Schweder and Hjort (2002) and Singh
et al. (2005) for a formal definition of CD. In general, a CD is a distribution estimate, instead of the usual point or interval
estimate, of the parameter of interest.

The statement of Definition 1 is an abstract definition without concrete procedures for constructing predictive dis-
tribution functions. We exploit the similarities between the concepts of CDs and predictive distributions, in terms of
their capability of summarizing information and quantifying uncertainty, to devise a precise formulation based on CD for
constructing predictive distribution functions.

As stated in Cox (2013),a CD is to provide “a simple and interpretable summary of what can reasonably be learned from
data (and an assumed model)". It quantifies both the information and uncertainty about the parameter # from the observed
data, and thus should naturally be the first and key ingredient for constructing a predictive distribution function for Y*. This
link of CDs to the construction of predictive distributions will later be seen as desirable in many practices. More specifically,
for a given CD for 8 derived from the data y,, denoted by H,(-) = H(-; y,), we can apply the formula below to obtain a
predictive distribution function:

Qs yn) = L Ry S5 o). @)

In Schweder and Hjort (2016) the same formula was also suggested along with some examples. Strictly speaking, Q(y*; y,,)
obtained by using (4) may not always satisfy Requirement (R2), but our theoretical results in Section 3 show that (R2) holds
exactly under some additional conditions on Fy(y*) and H(#; y,) and asymptotically under mild conditions.

We now use two simple examples to illustrate the construction formula (4). The first example assumes i.i.d. sequence from
the same distribution, but the second allows Y* and Y;i's to have different distribution to show the flexibility and generality
of the proposed approach. These two examples will serve as working examples for illustrating key steps in our development
throughout the paper.

Example 1 (Normal Distribution with Known Variance). Let Yy, ..., Y, and Y* be independent copies from N(6, o) with
a known o2, A CD for @ based on the sample y, is N(¥, 0%/n), where j = Z?ﬂyi/n is the sample mean. This yields
Fo(y*) = @((y* — 0)/o)and H(8; y,,) = @((6 — 7)/(0 /+/n)). Thus, by (4), it follows immediately

= [ e (Y0 0-F\ _p( ¥ -3 _
wivo= [ o(75) e (55) -2 () ®

Since Q(Y*; Y,) = &((Y*— Y)/ o /+/1+ 1/n)) ~ Uniform(0, 1), the requirements in Definition 1 are satisfied. Note that this
Q(y*; yn) is exactly the well-known predictive distribution N(y, o2(1 + 1/n)) as well as the Bayesian predictive distribution
with a flat prior for 6.

Example 2 (Exponential Distribution). Let Y;, ..., Y, be independent copies from an exponential distribution with scale
«f where ¢ > 0 is a known acceleration parameter (as in an accelerated life testing). Then, the joint density function of
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Y, = {Y, Ya, ..., Yo} is go(yn) = (@) "e /@) where j = 31 y;/n is the sample mean. Let Y* follow an exponential
distribution with scale 8, i.e., with the density function fo(y*) = 8~ 1e™¥"/¢, A CD for # based on the sample y, is H,(f) =
H(0;¥:) = 1 — I} 1(ny/(af)), where I, 1(+) is the cumulative distribution function of Gamma(n, 1) distribution. With
Fo(y*)=1— e/ for y* > 0, it follows from (4) with straightforward calculations that

oo ay* —n

Q(y*;yn)=f Fo(y*)dH(8;yx) = 1 — (1+ - ) : (6)
0 ny

Clearly, the two requirements in Definition 1 hold, since aY*/? follows an F-distribution and Q(Y*; Y,) = 92_2,,(5’*/?)

~ Uniform(0, 1). Here, 53 2,(t) = 1 —(1+ t/n)~" is the cumulative distribution function of the F-distribution with degrees

of freedom (2, 2n). Note that this same predictive distribution can also be obtained using the Bayesian approach with the

Jeffreys’ prior w(6) o< 1/6.

Note that there are many ways to derive a CD, say from, for instance, normalized likelihood, fiducial distribution, Bayesian
posterior distribution, bootstrap distribution, p-value function, among others; cf. Xie and Singh (2013) and references
therein. The same paper also stated, “any approach, regardless of being frequentist, fiducial or Bayesian, can potentially
be unified under the concept of confidence distributions, as long as it can be used to build confidence intervals of all levels,
exactly or asymptotically”. This useful property that CD can provide a unified framework to encompass inference procedures
from different paradigms is readily inherited by the framework of predictive distribution functions. This makes formula (4)
broadly applicable in many general settings. This point will be elaborated further.

3. Theoretical properties

In this section, we investigate theoretical properties of the predictive distribution Q(y*; y,,) constructed using formula
(4). For the ease of presentation, we focus on the case of scalar # with p = 1 in this section. We will provide comments on
extensions to the case of a multivariate @ with p > 1 at the end of the section.

The mean, the median and the mode of a CD H,(-) = H(-; ¥,) have been shown in Singh et al. (2007) to be consistent
estimators of the unknown parameter ¢ under Condition (A) below:

(A) Foranyé,0 <& < 1/2,L,(8) = Hn‘l(l —8)— H;l(a) — 0, in probability, as the sample size n — oco.
Later, Xie et al., (2011) proved that this is equivalent to Condition (A’) below:
(A") For any fixed € > 0, Hy(6o — €) — 0and H,(6y + €) — 1, in probability, asn — oo,

where 6 is the true value of . These two conditions can be interpreted as: as the sample size n increases, the probability
mass of the CD H,(#) becomes more concentrated around 6.

We establish the following theorem to show that, if H,(@) satisfies condition (A) or (A’), then Q(y*; y,) in (4) is an
asymptotic predictive distribution function for Y*. Thus, Q(y*; y,) based on H,(8) has valid frequentist interpretations
asymptotically. A proof of the theorem is given in Appendix.

Theorem 1. Assume that the CD H,(-) used for constructing the predictive function in (4) satisfies Condition (A), and also that
Fy(-) is continuous in @ in a neighborhood of 6,:

sup |Fy(t) — Fg,(t)] < C |0 — 6ol , (7)
t
for some constant C > 0. Then,
Q(Y*; Yy) = U+ 0p(1), (8)
where U ~ Uniform(0, 1).

Theorem 1 ensures an asymptotic coverage in (3) for a broad range of settings, though in some cases such asin Examples 1
and 2, Q(Y*; Y,,) follows exactly Uniform(0, 1) independent of the sample size. Next, we provide a set of sufficient conditions,
under which the predictive distribution Q(Y*; Y, ) always has exact coverage probability. Specifically, consider a condition
on the distribution function Fy, (y*):

(I) Suppose that there exists a monotonic mapping s; : Y* x ® — Y* and a monotonic mappings; : @ x @ — @ such
that Fy,(y*) is invariant to the transformations s; and s, in the sense that, forany 8 € @,

Fo,(¥*) = Foy90,0)(51(y", 6)). (9)
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Condition (I) is satisfied in both Examples 1 and 2. For instance, in Example 1, with s;(y*, 8) = y* — 8, 5,(6p,8) = 6, — 6
and Y* = ® = (—o0, oc), we can verify (9), since Fy (y*) = @((y* —)/0) = @({(y* —0) — (60 — 6)}/0) = Fg,_¢(y* — ) for
any 6 € (—oo, oo). Similarly, in Example 2, with s1(y*, 6g) = y¥* /60, 52(60, 8) = 6/6 and Y* = @ = (0, oo), we immediately
have (9), since Fy, (y*) = 1 — e ¥/ = 1 — e 0" /9)//%) = F, ,(y*/6) for any & € (0, 00).

Without loss of generality and to simplify our presentation, we assume from now on that s;(f, 6) is increasing in 6p and
decreasing in 0. Denote by Sy, (t) = Py, {s1(Y*, 8y) < t} and Ry (t) = Py, {s2(0(Yy), ) < t}, where 6(Y,) is the maximum
likelihood estimate or some other efficient estimate of ¢y derived from the observed data. It follows immediately that
Rgn(sz(é(Y,,), 6)) ~ Uniform(0, 1).1fs1(Y*, 6p) and s2(8(Yy), Go) are pivotal quantities, then Sg,(t) and Ry, (t) are independent
of 6p, and thus can be written as S(t) and R(t). In this case, a CD for 6, can be obtained by

Hy(8; 8(yn)) = 1 — R(s2(B(yn), 0)).

Following (4), the corresponding predictive distribution is

Qi) = [ Fly" e(0: Dy (10)
He®
The following theorem states that the function Qg(-; -) expressed in (10) is an exact predictive distribution function. This
theorem covers a class of cases including Examples 1 and 2. The proof of the theorem is also given in Appendix.

Theorem 2. Assume that Condition (I) holds, and that s,(Y*, 6p) and sz(é(Yn), 6p) are pivotal quantities. Then, Qz(Y*; Y,) ~
Uniform(0, 1).

The proposed CD-based prediction framework has broad implications. In particular, we present two corollaries which
indicate that the CD-based prediction framework can be applied broadly to encompass several existing Bayesian, fiducial
and frequentist prediction procedures.

First, note that fiducial and posterior distributions are sample-dependent distribution functions on the parameter space.
If their corresponding fiducial or credible intervals have valid frequentist probability coverages (which is a goal in many
developments on the topics of fiducial and (objective) Bayes), they satisfy the definition of CDs; cf. Xie and Singh (2013). In
this context, Bayesian predictive distributions defined in (2) and the fiducial predictive distributions defined in Wang et al.
(2012) are in fact the same as (or treated as special cases of) the general formulation of the predictive distributions in (4).
Thus, an immediate result from Theorems 1 and 2 is that the predictive intervals obtained from these fiducial and Bayesian
predictive distributions have valid frequentist coverage. This observation is summarized as a corollary below.

Corollary 1. If a Bayesian posterior or a fiducial distribution of 6 can be justified as a CD, then (a) its corresponding predictive
distribution also has the valid frequentist probability coverage, and (b) it is also a predictive distribution function with valid
frequentist probability coverages, as defined in Definition 1.

Note that the predictive distribution by the pivotal method of Lawless and Fredette (2005) can also be linked to the
general formulation (4), even though it is quite different in appearance. The pivotal method relies on the random variable
W = Fé(yn)(Y*), which is required to be a pivotal quantity so that its cumulative distribution function K(t) = Pj(W < t)is
parameter-free. By defining our predictive distribution function as

Qoiv(¥*: ¥n) = K(Fzy, 7). (11)

we obtain the predictive distribution function proposed in Lawless and Fredette (2005). Clearly, Qy;,(y*; ¥n) satisfies the
requirements in Definition 1. The next corollary states that Qpiy(y*; ¥n) can actually be expressed in the general formula (4).
A proof of Corollary 2 can be found in Appendix.

Corollary 2. Under the condition of Theorem 2, Qpuiy(y*; ¥n) defined in (11) can be expressed as
Quoly"se) = [ Faly" eHa(6: 03,
fc®

where Hg(6; @(yn)) is the CD obtained based on é(y,1 ).

Altogether, Corollaries 1 and 2 suggest that the general formulation of predictive distributions in (4) through CDs provides
a common link or a unifying platform for most, if not all, existing frequentist, fiducial and Bayesian predictive distributions.

We next discuss two optimality results regarding choices of different predictive distribution functions. As in the CD
development where there may exist different CDs for the same estimation problem, there may also exist different predictive
distribution functions for the same prediction problem. The discussions on the optimality issues surrounding CDs in Xie and
Singh (2013) and Schweder and Hjort (2016) indicate that a better CD (under a certain criterion) typically leads to a better
(under the same or a similar criterion) of the corresponding point estimator or test, and vice versa (cf. Xie and Singh, 2013).
A natural question here would be whether a better CD will also lead to a better predictive distribution function.

Assume that we are to predict the random quantity Y* and also that Y* ~ Fy (-). Let U* = Fg,(Y*). Then U* ~
Uniform(0, 1) and is free of fy. Assume that Fg,(-) is invertible, then Y* = FG"OI(U*). Suppose that we use predictive
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distribution function, Q(-; Y ), to make inference about Y*. Denoting by Qy_ ! the inverse function of Qy,(-) = Q(-; Y;), we
can write Y[l'” O_Ynl(U*) ~ Q(+; Yy) and then view Yg as a random copy of the predicted Y* derived from the predictive
distribution function Q(-; Y,).

We define the predictive mean squared error (PMSE) for quantifying the expected squared deviation between Ya and Y*:

PMSE(Q) = E5(Yg — Y*)*. (12)

In essence, PMSE(Q ) quantifies the expected squared deviation between the quantiles of the distributions Q(-; ¥,;) and Fg(-).
Suppose that there are two different predictive distribution functions Q;(-; Y,)and Qz(+; Y,) obtained through the general
form (4) using two different CDs, H{(-) = Hi(; Y,) and Ha(:) = Ha(:; Yy), respectively. We study how the underlying
properties of CDs H;(-) and H,(-) affect the comparison of PMSE(Q;) and PMSE(Q;).
Following Singh et al. (2007) and Xie and Singh (2013), Hy(+) is considered more efficient than H,(-) at 8§ = 8y, if for all
€(0, 1),

(H7'(u) — 00)* < (H;'(u) — 6o)* and (Hy'(1) —60)" < (H (1) — )" (13)

t
Here 550 is the stochastic order. Also shown in Singh et al. (2007) is: If the CD random variable associated with H;(-) is denoted
by Ocp,i, i.e., Ocpi ~ Hi(-) fori = 1, 2, then

sto sto
(Bcp,1 — 60)" < (Bcp2 — )" and (Ocp,1 — 60)” < (Bcp,2 — Bo) ™. (14)

The inequality (14) is interpreted that the CD Hy(-) is more “concentrated” around the true parameter 8, than Hy(-); cf., Singh
etal. (2007). The theorem below shows that a more efficient CD yields a better prediction. A proof of the theorem is provided
in Appendix.

Theorem 3. Let Fe"(u) be nondecreasing in € for any given u € (0, 1). If the CD H,(6) is more efficient than another CD H,(6)
for 0 for the same true value 6y, then

PMSE(Q;) = PMSE(Q,), (15)
where Q;(Y*; Yy,) is the predictive distribution induced by H;(8) fori = 1, 2.

An immediate result in terms of stochastic ordering similar to that of (14) is
it
(¥, = V)" S (v, V)" and (Y —¥")" S (g, — V), (16)

provided that FH“ (u) is nondecreasing in #. Similarly, (16) can be interpreted as that the predictive distribution function
Q1(-; Y,) is more “concentrated” around the “actual” Y* than Qx(-; Y,).

If there is a family of uniformly most powerful unbiased (UMPU) tests for testing K, : 6 < c versus K; : 6 > c, for every
¢ € @, Theorem 2.2 of Singh et al. (2007) states that the CD corresponding to the p-value function of the UMPU tests is the
most efficient. Combining this observation with Theorem 3, we immediately have:

Corollary 3. Under the setting of Theorem 3 and assume that a CD is derived from a p-value function of a UMPU test, then the
corresponding predictive distribution function obtained by using (4) has the smallest PMSE.

We now use Examples 1 and 2 to elucidate the implications of Theorem 3. Under the setting of Example 1, Singh et al.
(2007) showed that Hy(f) = ®((# — Y)/(c'/+/n)) is the most efficient CD for 6y. We also consider a CD derived from the
sample median, say M. Since /n(M — 6,) — N(0, mo?/2) in distribution, as n — o0, Hy(8) = @((68 — M)/(o /+/20/7))
is an asymptotic CD for 6. Although H, may be more robust, it is known to be less efficient than H,. Applying (4), the
predictive distribution functions based on H; and H; can be obtained. They are Q;(Y*; Y,) = @((Y* — Y)/(o/+/1+ 1/n))
and Qx(Y*; Y,) = @((Y*—M) /(o /+/1 + 7 /2n)), respectively. Since F;‘(u) = @ ~'(u)40 is increasing in 6 for any u € (0, 1),
Theorem 3 implies that the PMSE of Q; is smaller than that of Q. Indeed, simple algebra gives PMSE(Ql) = 362 and
PMSE(Q,) =~ En:r2 for a large n. The same argument also holds for Example 2 with the CDs H,(8) = 1 — I3, 1(nY,/(«f))
and H,(¢) = 1 — I, 1(11 Y /(a8)) with their corresponding predictive distributions Qi(Y*; Yz) = Faan(eY*/Y,) and
Q:(Y*; Yn) = Foon (Y™ /Yy). Here we assume that Yy, is a subset of Y, withn > n’ > 4. Clearly, Fy Yu) = —6log(1 —u)is
increasing in 6 for any u € (0, 1). Therefore, Theorem 3 implies PMSE(Q,) < PMSE(Q5).

Finally, we discuss the plug-in predictive distribution F;(y*) which has often been used as an approximation to the true
distribution Fy, (y*). Although the plug-in predictive distribution has valid asymptotic coverage probability similar to that of
(8), it fails to account for the uncertainty in the estimation of # and typically cannot achieve exact coverage probability in
comparison with the result of Theorem 2. In fact, Lawless and Fredette (2005) showed that when the pivot method applies,
the predictive distribution Qpiy(y*; ¥») in (11) is always better than the plug-in predictive distribution F;, ,(y*), as measured
by the average Kullback-Leibler distance to the true distribution Fg, (y*) cf. Theorem 1 of Lawless and &gredette (2005

The next theorem reports a sllghtly more general result. Let Hg(6; H(y,,)) be a CD for @ obtained based on § = G(y,,)
To simplify the notations, we let Q;(t) = Q(t; 6} qy(t) = ere(t )and f3(t) = F 5(t). The theorem below shows that the
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predictive distribution function Q4(y*) = Q(y*; 9(yn)) obtained using Hy(6; @(yn)) is better than the naive plug-in predictive
distribution function F@(yn)(y*), as measured by the average Kullback-Leibler distance to the true distribution Fy,(y*). A proof
is provided in Appendix.

Theorem 4. Assume that
fg(Y*) ] i
qp(Y<) | —

(17)

Then,
Dia(fea5) < Dia(fio If),

where ﬁKL(fgn lg;) = g {log L ] is the average Kullback-Leibler distance between fy, and any density function of the form g;.
In the pivot example in Lawless and Fredette (2005), Quv(¥Y*; ¥a) = K(Fé(y (¥*)). So, gz(t) = %Qpiv(t; Yn) =
k(F. By )( ))fe (t) where k(s) = £-K(s) is the density function corresponding to the cumulative distribution function K(-). It

("
obtained by variable transformation and the observation that U = Fyy, )( *) ~ k(-). Thus, (17) holds and Theorem 4 covers

the result of Lawless and Fredette (2005) as a special case.

We close this section by addressing the potential extensions of the above theoretic developments to the multivariate
0 € RP setting with p > 1. Although, on the outset, we note that Definition 1 of the predictive distribution, the general
formulation (4) in Section 2 and even the algorithm to be proposed in Section 4 can be applied directly in the multivariate
setting, there remains a technical difficulty in defining a general multivariate CD in very general cases and thus a rigorous
presentation of all theoretical results in Section 3 for the general multivariate @ setting is still being sought. In principle, the
concept of a multivariate CD is straightforward (i.e., a sample-dependent distribution function on the multivariate parameter
space that can produce confidence regions of all levels), however a precise definition with explicit mathematical formulation
to cover very general cases thus far remains elusive. But partial progress can still be made, since under asymptotic settings
or wherever the usual likelihood inference or bootstrap theory applies, multivariate CDs can be applled with ease. For
instance, under the general setup in likelihood inference, the multivariate normal distribution N(#@, E) serves as a first-
order asymptotic CD for # where 6 is the maximum likelihood estimate of # and £ is the inverse of the observed Fisher’s
information using the entire n observations; cf. Yang et al. (2014) and Liu et al. (2015). In addition, if we limit ourselves to
center-outwards confidence regions (instead of all Borel sets) in the parameter space, concepts such as the c-CDs derived
from the notion of data depth (cf. Liu et al. 1999) considered in Singh et al. (2007) and the confidence curve considered
in Schweder (2007) and Schweder and Hjort (2016) offer coherent notions of multivariate CDs in the exact sense. In these
cases, we still can generalize most of the theoretical developments to the multivariate setting. This fact has been used in
some of our examples, e.g., in Section 6. See also Schweder and Hjort (2016) for related discussions.

follows from direct calculation that E; If(,(Y ) L E;{1/k(F, ) Y*))} = Ey{1/k(U)} = 1, where the last two equations are

4. A computing algorithm

To implement the approach formulated in (4), we propose a Monte Carlo algorithm for computing predictive distributions
and prediction intervals. This algorithm is simple yet applicable to a wide range of problems. Specifically, given Y, = y,,aCD
Hy(-) = H(-; ya) is a distribution function on the parameter space @. Conditional on Y, = y,, we can simulate a CD-random
variable 6cp by Ocp lyn ~ Hy(-). The precise algorithm is as follows:

[Monte Carlo Algorithm] Obtain a simulated copy of y§ from Q(-; ¥, ) by: first simulate a CD-random variable cp |yn ~ Hu(-),
and then simulate a y§ from yz ‘HCD facp(+)- Repeat this procedure a large number of times, say N times, to obtain N copies
of simulated yz. The histogram of these N copies of y¢ is then used to approximate a predictive distribution of Y* and hence
its prediction intervals of all levels.

This algorithm applies to any CD H,,(-) = H(-, y,) for 8 € RP. Note that, any approach, regardless of being frequentist,
fiducial or Bayesian, can be used to construct CDs, as long as the produced CDs can be used to build confidence intervals of
all levels, exact or asymptotically; cf. Xie and Singh (2013) and references therein. So this algorithm is quite general and can
be applied broadly.

As a special case, this algorithm can be carried out using a bootstrap method, noting that a bootstrap distribution is known
to be also a CD (see e.g., Efron, 1998; Xie and Singh, 2013). In particular, we can simply simulate a future observation y* by
y* |t9b0Ot ~ fopoor (*): Where By, is the bootstrap estimate of the parameter 8. Obviously, this simulation method makes the
proposed prediction approach very useful in practice, as it is simple and general.

Clearly, the prediction intervals and predictive distributions obtained by using the proposed algorithm above have valid
frequentist interpretations, following Theorems 1 and 2 (and their extensions to multivariate 8 as discussed at the end of
Section 3),
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5. Simulation

In this section, we use two numerical examples to demonstrate the proposed approach and computing algorithm for
constructing predictive distribution functions, and then examine their frequentist properties. The first example is a simple
linear regression model with zero-intercept, for which the well-known exact predictive distribution function can be obtained
explicitly. We report and compare the numerical results from this explicit predictive distribution function and those from the
computing algorithm described in Section 4. The second example is a nonlinear regression, for which an exact CD function
for the underlying parameter does not exist and neither does the corresponding predictive distributions. Nonetheless, we
are able to apply the computing algorithm in Section 4 with several different asymptotic CD functions to perform predictions
and study their numerical performance.

Simulation Example I: Consider a simple linear regression model with zero-intercept:
Yi=0xi+e&, i=1,...,n,

iid. A . . ~ A
where & ~ N(0,0%).Let & = 31 yix;/ 3 x> be the ordinary least squares estimate of @ and 6> = - Y"1 (y; — dx)%.
For a new independent observation Y* associated with covariate x*, the well-known predictive distribution is given by

. y* _éx*
Q(y ;YH):Tn—l( ), (18)

ST+ xR/, 2

where T,_1(+) is the cumulative distribution function of t-distribution with degrees of freedom n — 1. It is easy to verify that
Q:(y*; yn) satisfies Definition 1. This is the same as the predictive distribution considered in Schweder and Hjort (2016). If
o is known, straightforward calculation can yield

6—a
HO) =@ | ———
o/ Z?:l xl_z
as a CD for 6. The corresponding predictive distribution for Y* using formula (4) is then
0o * * ) * Dok
. yr—E&x £E—06 y*—6x
Q(y;yn)=f cb( - )dq) - =@ - ;
e of\ L% o1+ P/ X
and hence
y* — éx*
Qa(y*;yn)=¢( ) (19)

G /14 xR/ %

is an asymptotic predictive distribution by replacing o with its estimate 7.

Alternatively, we can also construct the predictive distribution using bootstrap distribution of 0, since bootstrap
distribution is an asymptotic CD (as demonstrated earlier) with which the bootstrap estimator is the corresponding
CD-random variable. Specially, we (1) compute the ordinary least squares estimate 8, (2) obtain bootstrap samples from
the residuals e; = y; — 6x;, denoted by e; poor, and (3) compute the bootstrap least squares estimate @y Using the new
samples {(¥i boot, Xi)} 1, Where y; poor = éx,- + €; boot- Finally in step (4), a sample from the predictive distribution of Y;* .,
say Quoot(+; ¥n), can be obtained empirically by first generating ¢* ~ N(0, 62) and then computing Yooot = ébuotx* + €*.
Repeat these four steps for a large number of times to get sufficient many copies of y;,... These copies of y;,; are then used
to construct a predictive distribution function as well as prediction intervals.

We compare the empirical coverage probabilities of the prediction intervals from the four different predictive distri-
butions: (1) the naive plug-in predictive distribution Fé(yn)(y*) = P((y* — éx*)/&), (2) the exact predictive distribution
Q:(v*; ya) in (18) and (3) the asymptotic predictive distributions Q(y*; ¥») in (19) and (4) Quoot(¥™; ¥n) described in the
previous paragraph. The prediction intervals are obtained by taking the upper and lower «/2 quantiles of the corresponding
predictive distributions. Comparisons are made with different choices of o and sample sizes in order to provide a general
picture of performance comparison. The numerical settings are as follows: @ = 1,0 = 1, x; ~ U[—2, 2] are fixed once they
have been generated, and x* = 2. For Q.0 (¥*; ¥n), 1000 bootstrap samples are utilized. Three sample sizes are considered:
n = 10, 100, 1000. For each sample size, the analysis is repeated 5000 times with y1, ..., ¥n, y* being simulated anew
accordingly.

Table 1 contains the empirical coverage probabilities and median widths of the prediction intervals. Note that the widths
of the prediction intervals from Fay. (¥*), Q:(y¥*; yn) and Q,(y*; ¥») can be assessed without simulation. They are, respectively,

22,26, 2ty_1.4/26 4/ 1+ (x*)2/3 " ,x? and szﬂ&”: 1+ (x*)2/3 1L x2. Here ty_1,4/2 and z, ; are the (1—e /2)th percentiles of
t distribution with degrees of freedom n — 1 and the standard normal distribution, respectively. From Table 1, at all nominal
levels, the prediction intervals from Q;(y*; y,) have the correct frequentist coverage probability since it is an exact predictive
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Table 1
Comparison of predictive distributions in Simulation Example I: 80%, 90% and 95% prediction intervals.
n 1-a Fyy, (¥*) Q:(Y*; Yn) Qu(Y*; Yn) Qboor(Y™; ¥n)
Coverage Width Coverage Width Coverage Width Coverage Width
10 0.80 0.695 2.482 0.793 3.096 0.762 2.869 0.746 2.786
10 0.90 0.803 3.185 0.895 4103 0.860 3.682 0.845 3.579
10 0.95 0.871 3.796 0.950 5.064 0916 4,387 0.906 4258
100 0.80 0.795 2555 0.805 2619 0.803 2.601 0.798 2.595
100 0.90 0.893 3.279 0.903 3.370 0.899 3339 0.897 3326
100 0.95 0.941 3.907 0.947 4,028 0.944 3978 0.943 3.958
1000 0.80 0.801 2.562 0.802 2.568 0.801 2.566 0.799 2.562
1000 090 0.901 3.288 0.902 3.296 0.901 3.293 0.900 3.284
1000 0.95 0.948 3918 0.948 3.929 0.948 3.924 0.942 3.903

distribution. For small sample size (such as n = 10), the empirical coverage of the prediction intervals from Fé(y")(y*) is far
below its nominal level. This is because those prediction intervals do not take into account the uncertainty stemming from
the estimation of the unknown parameter and such uncertainty is large relative (or at least comparable) to the noise level
(o?) for small n. The empirical coverages of the prediction intervals from Q,(y*; ¥,) and Quoo:(y*; ¥,,) improve significantly
upon those from F(;,(yn)(y*). though are still below the nominal level for small n. This is due to the fact that in Q,(y*; y,) the
estimated & is used to approximate the actual o and that for Queor(y*; ¥u) the bootstrap distribution only works well for at
least moderate sample size n. For moderate or large sample size, such as n = 100 or n = 1000, the coverage probabilities of
all the four types of prediction intervals approximate well their nominal levels.

Simulation Example II: Consider a nonlinear regression in the form of
Yi=hx,8)+e, i=1,...,n,

where
61x;
h(x;, 0) = ——,
92 + X;
and &; =~ N(0, o). The parameter § = (91, 6,)" can be estimated by nonlinear least squares and solved iteratively
using Gauss-Newton algorithm. Denote by @ the nonlinear least squares estimate of 6 and let 6% = ﬁZL,(yf -

h(x;, &))2. Although there exists no explicit expression of the exact sampling distribution of 9 it can be approximated b§

N (6, o2 {A(x, ) A(x, 0)}‘1) where A(x, #)is the nx 2 matrix of the partial derivatives with the ith row (%h(x;, @), u_gggh(xi, 7

ﬁ, — 9(’1’::.)2 ) Therefore, the cumulative distribution function of N (9 G2(A(x, O A(x, é))‘l) can be used as an
1 20
asymptotic CD function for @. In this formula, the unknown values are replaced by their estimates.

For a new independent observation Y* associated with covariate x*, we can construct asymptotic predictive distribution
by using the above asymptotic CD and taking advantage of the approximation

h(x*, 8) ~ h(x*, 8) + a(x*, 8)'(6 — 8),

where a(x*, 0) = w .Applying formula (4) and some simple algebra, we can obtain the asymptotic predictive distribution
y* — h(x*, 8) )
&\/ 1+ a(x*, O {A(x, Y A(x, 8)}a(x*, 8)

Qs yn) = cb(

Alternatively, we can also see the bootstrap-based predictive distribution, denoted by Qpeot(¥*; ¥n ), using the construction
almost in the same way as in Simulation Example I.

We proceed to compare the empirical coverage probabilities of the prediction intervals from the three different predictive
distributions: (1) the naive plug-in predictive distribution F@(y")(y*) = &((y* — h(x*, 8))/a), (2) the asymptotic predictive
distributions Q,(y*; ¥»), and (3) Quoot(¥*; ¥n). Once again, comparisons are made at« = 0.8, 0.9, 0.95 and n = 10, 100, 1000

with 5000 repetitions for each sample size. The numerical settings are: 8; = 15,6, = 5,0 = 1, x; e U[0, 30] are fixed
once generated, x* = 40. For the bootstrap-based approach, 1000 bootstrap samples are generated. Similar to Table 1,
Table 2 lists the empirical coverage probabilities and median widths of the prediction intervals. In the case of small sample
size (n = 10), the empirical coverage probabilities of the prediction intervals from all the three approaches are below the
nominal level since they are all approximate methods. However, both the CD-based predictive distributions, either Q,(y*; y»)
derived from the multivariate normal CD or Qpoot(y™; ¥») derived from the bootstrap CD, have outperformed the plug-in
predictive distribution F@,(y“)(y*) in terms of empirical coverage. This is because the CD-based methods have incorporated
the uncertainty in the parameter estimation. Again, for moderate or large sample size, such as n = 100 or n = 1000, the
coverage probabilities of all the three prediction intervals are close to the corresponding nominal levels.



J. Shen et al. / Journal of Statistical Planning and Inference 195 (2018) 126-140 135

Table 2
Comparison of predictive distributions in Simulation Example II: 80%, 90% and 95% prediction intervals.
n 1-a Fé(\'n)(ym) Qa(Y*;Yn) chct(Y*QYn)
Coverage Width Coverage Width Coverage Width
10 0.80 0.698 2.438 0.764 2817 0.751 2.742
10 0.90 0.809 3.129 0.862 3.615 0.854 3512
10 0.95 0.872 3.728 0.913 4,308 0.903 4,177
100 0.80 0.782 2.552 0.791 2610 0.791 2.603
100 0.90 0.888 3275 0.896 3.350 0.894 3.335
100 0.95 0.941 3.902 0.946 3.992 0.943 3.973
1000 0.80 0.794 2.564 0.795 2.569 0.793 2.564
1000 0.90 0.895 3.291 0.896 3.298 0.896 3.285
1000 0.95 0.949 3.922 0.949 3.929 0.947 3.907

6. Real applications

In this section, we provide a real data example, in which the predictive inference developed is applied to data from a
complex time series. We can envision that the development of predictive distributions be applied and generalized to other
complex situations such as survival data analysis, multiple regressions and any other fields and applications that involve
forecasting and prediction.

Before we start our real data example, we need to extend the general formula (4) discussed in Section 2 to cover the case
that Y* and Y, are dependent; for instance, a time series data in which Y;, are sample observations up to the given data and
Y* is a future response at the time series. Specifically, we propose to consider the conditional distribution of Y* given Y,, and
modify the general formula (4) to be

@Uﬁhkiﬂ Fay” 9a)dH(6; Y. (20)
€0

In fact, formula (4) can now be viewed as a special case of (20) when Fy(y*|y,) = Fs(y*). Many of the theoretical results
developed in Section 3 can be extended straightforwardly. For example, if we modify (7) to be sup, |F9(t[y,.) — Fgo(tlyn)| <
C |6 — 6| for some positive constant C, then the result of Theorem 1 applies to Q.(y*; y,) for the dependent case. This means
that the predictive distribution function Q.(y*; y,) for the dependent case also has valid frequentist interpretations, under a
set of very mild conditions.

The real data example is from a research project partially sponsored by the US Department Homeland Security (DHS)
through its academic research center DHS University Center of Excellence for Command, Control, and Interoperability
(CCICADA) based at Rutgers University. This data example specifically focuses on the analysis of the monthly volume of
applications for a certain type of government benefit (the name of the governmental program is masked per a confidentiality
agreement).

The main objective of the project is to seek more effective statistical methods that can substantially improve upon the
current benchmark model used by the agency in gaining accuracy of forecast. This gain can allow the agency to optimize the
human resource allocation and minimize the cost of management.

The data set contains 167 months of application volume. The logarithm transformation of the 167 observed volumes is
shown in Fig. 1. We denote the transformed series by {y.}.%’.

It was noted in Chang (2015) the known outliers at t = 105, 106, 107 due to policy changes in the application process.
Thus, we filter out these outliers with three indicator variables ]1?05), ]15106), and 151071' where ]1([") = 1ift = kand l(rk) =0
otherwise. Also, the series in seasonal nature exhibits a cyclical pattern with periodicity of 12 that is modeled with seasonal
terms. In addition, there is a strong linear relationship between y; and another type of benefit application x;. Taking all this
information into account and building upon the work by Chang (2015), we propose the following seasonal ARMA model
with exogenous variables,

(1— ¢1BX1 — 1)y, — frx, — 210" — 318" — B,18") = (1 + ©,8")e,. (21)

Here, {&,} is a white noise series with variance o2, B is the backshift operator such that By, = y,_; for an integer s > 0. Also,
denote by 8 = (¢1, @1, @1, B1, B2, B3, Ba) the associated coefficients.

Table 3 summarizes the coefficient estimates and their standard errors from model (21). It is easy to see that all the
coefficients are significant at the 95% significance level. Fig. 2 shows the sample autocorrelation function (ACF) and partial
autocorrelation function (PACF) plots of the residuals from model (21). With no significant autocorrelation and partial
autocorrelation, we conclude that model (21) is adequate in capturing the patterns of {y; }Z

Our ultimate goal is to make prediction on future application volumes given the past observations and construct the
corresponding prediction interval and predictive distributions. More specifically, we need to predict a sequence of y67.15
forh = 1,2, ..., based on past observations up to time ¢ = 167. On the other hand, since we do not know the values of
the future observations after t = 167, we cannot really tell how well these predictions are. To this end, we demonstrate
the effectiveness of our proposed method by formulating our predictions as of length h > 0 steps away, on a rolling basis
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Fig. 1. Time series plot of monthly application volumes for a government benefit and 95% one-step ahead prediction intervals, rolling from t = 141
with a rolling window size d = 120. The red triangle points show the predicted values and the blue dotted lines show the upper and lower limits of the
corresponding 95% prediction intervals. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this

article.)
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Fig. 2. Sample ACF and PACF plots of the residuals from model (21).
Table 3
Coefficient estimates and their standard errors of model (21).
& =0} ch B B2 Bs Ba
Coefficient 0.784 0.998 —0.966 0.975 0.633 2.160 —0.696
Std. Error 0.048 0.011 0.111 0.014 0.175 0.200 0.175

with a rolling window of width d, e.g., d = 120 corresponding to the data of the past ten years. That is, at time t, we predict
¥, based on the most recent d observations, compare the prediction with the actual value, and then increase t by one and
repeat the procedure until t = 167 — h. It is well-known that the coverage of the prediction intervals by the so-called
plug-in method (described in Section 3) is typically below the nominal level because they fail to consider the uncertainty
in parameter estimation, among others. Using our approach, however, it is possible to capture this type of uncertainty, and
thus show substantial improvement.

The process to derive simulated predictive distribution of y;n, given {y;—gy1, .- .

outlined in four steps as follows:

1. Estimate model (21) using maximum likelihood method and {y; 4.1, - .-

,y:} for any prediction length h, is

» Yt} Denote bya = (‘2’1, &4, b, .31, Bz,

,33, 34) the estimated coefficients, and ' the covariance matrix of §, and by 6'52 the estimated variance of the noise
term. Let y; be the fitted values of y; and e; = y; — ys, fors < t.
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Fig. 3. One-step ahead predictive distribution of Y; for t = 141, 142, 143 and 144.

Density

10.0 5

2. As demonstrated in Section 3, the multivariate normal distribution N(é, 32) serves as a first-order asymptotic CD for
0 = (¢1, D1, @1, B1, B2, B3, Ba) for a reasonable d. Thus, we can simulate

bep = (¢cp,1, Pcp, 1, @cp,1, Bep,1, Bep,2: Bep,3, Bep,a) ~ N(a, 2.

We alsodraw &}, ..., &}, % N(0, 02), with the unknown o2 replaced by 6 under a reasonable d.
. 6
3. Recursively solve for y;, , through (1—cp1B)(1~ o, 1B™ )Y, — e i¥esn—Fenaliyy —Pooaliy —Beoaliyy ) =

(14 @cp,1B")ef,,,, where y; = y; and e} = e fors < t.
4. Repeat Steps 1 to 3 for, say, N = 5000 times and get N copies of prediction value of y; ;. These copies of y;, , can be
used to form a predictive distribution and prediction intervals for y;p.

Following the algorithm above, we can now make one-step ahead prediction, i.e.,, h = 1, for our data set, rolling from
t = 131 to 166 (representing three years) with window width d = 120. The blue dotted lines in Fig. 1 show the upper and
lower limits of the 95% prediction intervals.

We also plot in Fig. 3 the predictive predictions at, for example, t = 141, 142, 143 and 144, respectively, with the black
lines indicating the actual values of y;. The predictive distributions provided in our prediction contain a wealth of information
and can facilitate the quantification of uncertainty in prediction, Take t = 141 for example, we are able to gain insight
into issues such as: (1) What is the prediction interval at 90% confidence level? (The 90% prediction interval is [10.7,11.4].)
(2) What confident levels are associated with the statements that the untransformed application volume will be greater
than 40,000, 50,000 or 60,0007 (The confidence is 98.3%, 84.4% and 54.0% respectively.) (3) What is the lowest predicted
application volume of original scale at 90% confidence level? (It is with 90% confidence level that the application volume will
exceed 47,332.) These are all important questions concerning government officials in their planning of allocating manpower
for handling applications.

7. Further comments

In this paper, we develop a comprehensive statistical inference framework for prediction by: (1) providing (in Def-
inition 1) a formal definition of predictive distribution functions, (2) presenting a general approach based on CDs for
constructing such predictive distribution functions, and finally, (3) proposing a Monte Carlo algorithm for implementing
the CD-based approach to obtain predictive distribution functions and make inference about the predictions. We also
establish the supporting theories for the proposed approach, and discuss its optimality issues as well as its connections to
other existing prediction approaches, including Bayesian, fiducial and the frequentist pivotal-based predictive distribution
proposed in Lawless and Fredette (2005) and also the CD-based method by Schweder and Hjort (2016). The proposed
approach is shown to have several desirable features. Particularly notable is its ability to afford a valid frequentist
interpretation and yield prediction intervals of all levels with valid frequentist probability coverage.
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This framework is very general and the proposed CD-based formulation is broadly applicable, as the CD concept covers a
broad range of examples, including: fiducial distribution, bootstrap distributions, likelihood functions (after normalization),
p-value functions, and Bayesian posterior distributions. Regardless of different statistical paradigms, these examples can
all be used as CDs as long as they provide valid frequentist probability coverage. This entails that the proposed predictive
distribution has the desirable property to be flexible and all encompassing. Case in point is that the Bayesian posterior
distribution is often a CD, either asymptotically under the Bernstein-von Mises type theorems or exact using probability
matching priors. Noting that Q(y*; y,) has the same form of the Bayesian predictive distribution in (2), the Bayesian
predictive distribution can be simply viewed as a special case of our CD-based predictive distribution. Similar arguments
apply to the fiducial predictive distributions defined in Wang et al. (2012). All these observations show that the general
formulation of Q(y*; y,) through CDs provides an ideal platform to unify most of, if not all, the existing frequentist, fiducial
and Bayesian predictive distributions.

There are ample discussions in literature on the great generality and utility of CD as an inference tool. Given that CD
has succeeded in providing solutions to problems surrounding difficult complex settings such as making inference from
combining heterogeneous studies (e.g., Liu et al., 2015; Claggett et al., 2014; Yang et al., 2014) or studies that fail to produce
well-defined point or interval estimates (e.g., Liu et al., 2014), it would seem natural to expect that our proposed CD-based
approach can be applied to make inference in predictions for such complex problem settings as well. This should be worth
studying further.

Finally, there are also some publications in the literature that treat “predictive distributions” as estimators of F5(y* |y, ), the
distribution function of Y* given Y, =y, see, e.g., Aitchison (1975), Murray (1977), Ng (1980), Lejeune and Faulkenberry
(1982), Harris (1989), and Vidoni (1998). But, as pointed out by Lawless and Fredette (2005), although an estimator of
Fo(¥*|Va), say F(y*|yn), provides probability statements about the future random variable Y*, given Y,, = y,, the probability
statements for Y* do not have a frequentist interpretation in terms of repeated sampling. For example, even if a* = L(y;) is
chosen so that F(a*|y,) = 0.95, it is not true in general that P;{Y* < L(Y,)} = 0.95; see Lawless and Fredette (2005) for
further elaboration. Furthermore, there are developments of “predictive likelihood function” (see, e.g., Bjornstad, 1990 and
references therein), which rely on a so-called likelihood principle for prediction (Berger et al., 1988). The general idea here is
to eliminate the “nuisance” parameter @ in the joint likelihood function L(#|y*, y,) by using different techniques to obtain
a new “likelihood” L(y*|y,) which is free of &, and then use it to make predictive inference. Depending on the techniques
use, different versions of predictive likelihood functions can be obtained, and their performance naturally varies. Some may
meet the frequentist probability coverage criterion discussed in this paper, but many may not (cf. Bjornstad, 1990). Finally,
even though in some special cases the method of the predictive likelihood function coincides with the predictive distribution
function developed in this paper, this method does not stress the need of providing a predictive distribution function that
has suitable frequentist probabilistic interpretations.
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Appendix

Proof of Theorem 1. By Condition (A) and (7), we have, for any ¢ > 0,

f [Fa(Y") — By, (Y*)} dH(0: Y,)
fc®

< f IF(Y*) — Fyy (Y*)| dHI(6: ¥,)
0e®

Bp+€
=f |Fa(Y*) — Foo(Y*)| dH(0; Y,,) + 2H(8, — €) + 2(1 — H(6p + €))
2]

o—€

Bo+e
5(’6[ dH(8; Yn) + 0p(1) < Ce + 04(1).
9

o—€

It follows that
f (Fa(Y*) — Fio(Y*)} dH(8; Y,) = 0,(1).
He®
Thus, we have

Q(Y*;Yn}=f
#c®
=U+4o0y(1). O

Fo(Y*)dH(6; Ya) = Foo(Y*) + f {Fo(Y™) = Fgo(Y*)} dH(6; Yy)
fc®
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Proof of Theorem 2. First, we note that
Fa(y") = Pg(Y" = y*) = Py(51(Y™, 0) = 51(¥", 9)) = S(s5:(¥", 9)).
Therefore we have

f Fyy")dHR(6; B(yn)) = [ S(s1(y", 0))dH(8; Bly,)). (22)
fe® fe®

Let (W, V) be a transformation from (Y*, @(Yn)) such that
W =F, é(yn)!go)(si(Y*,eﬂ))
{v = 52(A(Yy), o),
and letw = F,

5(6¥n).00) y(s1(¥*, 6)) be a realization of W, By the invariance condition w = FS2 Byn), 9)(51(y*, 0)). Plugging this
into the right hand side of (22) gives

| raso o = [ sk w)aeo: G (23)
€0 fe®
On the other hand, the cumulative distribution function of W is
B(W < w) = f B(W < w|V = v)dR(v) = f B(F, (s1(¥*. 6,)) < w)dR(v) (24)
= f B(sy(Y*, 6) < F;"'(w))dR(v) = [ SCF; (w))dR(v) (25)
-[ S R0 D) (26)

Here, the second equation of (24) is true because given V=u, Fy(s1(Y*, 6,)) is independent of V; and (26) is true following
the transfer of randomness from v to 8 through v = s2(6(ya), 6).

By (23) and (26), we have that Qg(y*; ¥,) = fa Fo(y*)dHg(0: 6(y,)) is equivalent to Fy(w) = P(W < w), where Fyy(-) is
the cumulative distribution function of W. There?ore Qr(Y*; Y,) = Fw(W) and it is uniformly distributed on (0, 1). O
Proof of Corollary 2. By the invariance condition F;(y*) = F, 55((yn).00) (sl(y ). It immediately follows from the proof of

Theorem 2 that K(Fé(yn)(y*)). or K(FSZ(é(yn),eg)(S’(y*’ 6p))), can be expressed as fﬁe@ Fo(y*)dHg(8; (;'(y,,)). O

Proof of Theorem 3. Since F,; (u) is non-decreasing in 6, (Fy Yy — Fg:)'(u))2 as a function of € is non-increasing for 6 < 6,
and non-decreasing for & > 6,. Thus by (14) we have

(Fich () = Fyy ()P 1(0cp,1 = 60) S (Fyl () = Fy. () 1(6co 2 > o)
and
(Fyel () — By (W) 26cp.1 < 00) < (B, (1) — Fyy ()P 1(6co,2 < 6o).
The above inequalities lead to
E(Fy) (u)— F'(w))® < B(F; ! (u) — F; '(w)?,

for any u € (0, 1), which further implies

E(F;! (U) - F (U)P < E(Fy) (U) — F '(U)R, (27)

Ocp.1
where U ~ Uniform(0, 1), and thus (15) by the relation between Y and Y*. O

Proof of Inequality (16). Since F, '(u) is nondecreasing in 6 for any given u € (0, 1), {F, '1( ) — F, '(u) > ¢} has non-zero

probability only if & > 90, forany & > 0. Therefore from (14) we have (1-'9"CD 1(u) 1'~“(;‘1(11))Jr (F(,.CD 2(u)—F,;Jl(llt))‘“. Similarly,

(F, e 1( u) — Fgr]l(u)) (FB‘CD 2(u) ( ))~. Since the two inequalities are true for any u € (0, 1), it immediately follows
that(Yé‘1 —Y*)t Stgg (Yo’i2 —Y*)*t and( —Y*)~ s (YQz — Y*)~ by substituting u with U ~ Uniform(0, 1). O

Proof of Theorem 4. The average Kullback-Leibler distance of any density function in the form of g;(:) to fs,(-) can be
expressed as

= Joo(Y7)
DKL(f90|g§) {logg (Y )} ’
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where the subscript means the expectation is taken jointly over Y* x Y" at the true parameter value 6,, and thus (17) implies

: : ) r)
Buthlap ~ bulit) =3 foe Zes | < e { 25} <0
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