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Abstract—Advances in optimization and constraint satisfaction
techniques, together with the availability of elastic computing
resources, have spurred interest in large-scale network verifi-
cation and synthesis. Motivated by this, we consider the top-
down synthesis of ad-hoc IoT networks for disaster response
and search and rescue operations. This synthesis problem must
satisfy complex and competing constraints: sensor coverage, line-
of-sight visibility, and network connectivity. The central challenge
in our synthesis problem is quickly scaling to large regions while
producing cost-effective solutions. We explore a representation
of the synthesis problems using a novel constraint satisfaction
paradigm, satisfiability modulo convex optimization (SMC). We
choose SMC because it matches the expressivity needs for our
network synthesis. To scale to large problem sizes, we develop
a hierarchical synthesis technique that independently synthesizes
networks in sub-regions of the deployment area, then combines
these. Our experiments show that SMC consistently generates
better quality solutions than a baseline synthesis approach based
on Mixed Integer Linear Programming (MILP).

I. INTRODUCTION

Over the last few years, optimization and constraint sat-
isfaction technologies have improved to the point where
they can be applied to large-scale verification and synthesis
tasks. This, coupled with the advent of cloud computing, has
spurred recent work in verifying network configurations of
campuses [1], [2] and data centers [3]. Beyond verification,
these technologies have been applied to the synthesis of
network configurations as well [4)]. Ultimately, this line of
work will result in the synthesis of correct-by-design networks.

The problem. In this paper, we extend this line of work
by considering the synthesis of a specific class of network
topologies, namely, ad-hoc IoT networks. These networks,
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often deployed on-demand (in a deployment region) during
disaster response or search and rescue operations, must satisfy
at least four correctness constraints (§II). First, every point of
the deployment region must be covered by a small number (k)
of sensors (the coverage constraint). This k-coverage permits
trilateration (for £ > 3) of objects of interest (vehicles, people)
in the environment. Second, because sensors may have line-of-
sight limitations, the synthesis must account for obstacles in
the deployment region (visibility constraints). Third, obstacles
constrain the placement of sensors (placement constraint).
Lastly, the deployed nodes must form a connected network
such that there exists a network path between every pair
of nodes (we call this the connectivity constraint). This is
necessary to convey sensor information between nodes or
from node to a base station (potentially via other intermediate
nodes).

Beyond these correctness constraints, we impose perfor-
mance objectives. Motivated by our use case of rapidly-
deployable IoT networks for disaster response or search and
rescue, we require that the network synthesis (for brevity,
henceforth we will use “network synthesis” to refer to the
specific synthesis problem described above) scale to campus-
area deployments while generating topologies on the order
of tens of minutes. (By contrast, planning and deployment
timescales for longer-lived networks, such as datacenters, can
be on the order of weeks or months, if not longer [S]]). Finally,
to reduce deployment cost, the resulting synthesized network
must have an objective of using the fewest number of sensor
nodes.

While prior work (§VTI) has explored the synthesis of wired
networks [6]], of sensor placement for sensing coverage [7],
[8]], to our knowledge, no prior work has explored joint syn-
thesis of coverage and connectivity in obstructed environments
at scale.

Goal and Approach. The general network synthesis problem
is non-convex, since it needs to determine coverage of areas
not occupied by obstacles, and these areas can be non-convex.



Because non-convex programming is fundamentally hard to
scale, and because, over the past decade, significant effort
has focused on speeding up solvers for lower-complexity
formulations such as satisfiability (SAT) [9] and linear and
quadratic mixed integer formulations [10]], in this paper we
explore synthesis using a recently proposed technique called
Satisfiability Modulo Convex Optimization [[11] that permits
expression of convex constraints in addition to satisfiability

constraints (§III).

Challenges. In expressing the network synthesis problem
using SMC, our first challenge is to formulate the constraints
described above in SMC, without significantly impacting so-
lution quality. In our setting, we measure solution quality by
coverage redundancy, the ratio between the average number
of sensors covering a point in the deployment region to k.
Our second challenge is scaling, by which we mean the
ability to obtain solutions for larger problem sizes (e.g., for
a deployment region the size of a university campus).

Contributions. To this end, our paper makes two contribu-
tions. Our first contribution is an encoding of constraints in
SMC (. To address the first challenge discussed above, we
employ a grid-based discretization of space, in which a grid
is either occupied by an obstacle or not. Then, the coverage
problem reduces to determining coverage of unoccupied grids;
SMC can easily express these constraints. It can capture visi-
bility using geometric constraints expressed in terms of half-
planes that bound occupied grids, and network connectivity
using constraints on a multi-hop adjacency matrix. Thus, SMC
is able to jointly solve for coverage, visibility, and connectivity.

Our second contribution addresses the scaling challenge
by developing a hierarchical synthesis technique, which
partitions the deployment region in sub-areas, solves each sub-
area independently, then, in a second step, adds additional
relay nodes, using SMC’s connectivity formulation, to ensure
the network connectivity constraint. Hierarchical synthesis
permits two relaxations that can speed up the synthesis:
(a) solving only for coverage in the sub-areas (since, often,
coverage will result in a substantially connected network) and
establishing connectivity in the second step, and (b) solving
for j < k coverage in each of the sub-areas (since sensors in
one sub-area can potentially cover sensors in another area),
then repairing coverage in the second step.

Summary of Results. To analyze the performance of SMC,
we also develop an MILP formulation (with hierarchy) of
the synthesis problem with integer linear constraintsﬂ The
performance of SMC and MILP approaches is sensitive to
the extent of obstacles (i.e., the fraction of the deployment
region covered by obstacles) and their dispersion (how the
obstacles are spread across the region). While MILP can
generate a network with slightly lower coverage redundancy
(i.e., a better solution quality) for few obstacle setting with
small deployment regions, SMC performs consistently well
for all settings regardless of the deployment region size.

'We omit details of the MILP formulation in this paper for lack of space.

II. THE NETWORK SYNTHESIS PROBLEM

In this section, we formulate the network synthesis problem
and its associated challenges.

Problem. Assume that we have a deployment region (the area
in which to deploy the network) L. C R%. Let O C L be the
set of obstacles in the deployment region. Suppose we have
N omni-directional sensors (e.g., 360-degree cameras, acoustic
sensors), and each sensor with location s; € R? has a sensing
radius rj and a communication radius 7;.

The network synthesis problem seeks to find locations S =
{si € R?i € {1,--- ,N}} for the N sensors such that:

1) At least k sensors cover each point [ € L'\ O.

2) The sensors form a connected network: i.e., there exists a
path from each node to every other node in the network.

3) The network uses as few of the IV sensors as possible.

To concretely represent this synthesis problem, we need
to model constraints imposed by limited sensing and com-
munication ranges, as well as by visibility constraints in the
environment. The following sub-paragraphs do this.

Coverage constraint (C1). Let dist(z;,x;) = [|z; — xj]2
represent the Euclidean distance between z;, z; € R?, any two
locations in the deployment region L. The predicate C(s;, [;) :
R? xR? — {0, 1} represents the fact that sensor s; € S covers
location ; € L'\ O:

Csi, 1) = (dist(si, 1) < r7) /\ B(si. 1) (1)

where 77 is the coverage radius of the sensor s;. B(s;,[;)
is a predicate that checks whether there exist a line of sight
between s; and [; (defined below). Line-of-sight visibility
constraints are important for sensors such as cameras. Fur-
thermore, in practice, cameras have finite range because of the
finite resolution of the camera itself: beyond a certain distance,
objects become too small to be distinguishable to the human
eye [12]. The k-coverage goal then reduces to:

N
> Clsilj) >k ¥V I;€L\O 2)

i=1

This ensures that at least & sensors cover each location within
the deployment region but not within an obstacle.

Environmental Visibility Constraints (C2). Obstacles pose
a significant challenge for network synthesis. We explore
synthesis for planar surfaces for which it suffices to model
obstacles in two dimensions. Future work can generalize this
to 3-D models of the environment.

Let B°(s;,1;, 0) be a predicate that checks whether obstacle
o does not block the line of sight between s; and I;. Then,
we can model the visibility between s; and [;, defined by the
predicate B(s;,[;) as:

B(si,l;) = [\ B°(si,lj,0) 3)

0€O



TABLE I: Summary of Problem Formulation

Coverage (Cl)y > 1C(sislj) >k V I €eL\O
Visibility (C2) B(si,lj) = Noeo B(si, 15, 0)
Vs;€Sandl; € L\ O
Connectivity ~ (C3) (AN_1)ij >0
Vi,j €{l,---,N} and i#3j
Placement (C4) V(sz) Vs; €S
Network connectivity constraint (C3). If predicate
P(si,55) R? x R? — {0,1} represents the direct

connectivity between sensors s;, s; € S, then:
P(si,85) = (dist(si,sj) < rﬁj) )

where ¢ ; = min{r{, ¢} and 7 is the communication radius
of sensor s;. In this, we make two simplifying assumptions:
that line-of-sight is not required for RF communication, and
that wireless propagation follows a path-loss model with r{ as
the maximum distance with acceptable radio signal strength.
We have left to future work to relax these assumptions, because
they can significantly impact the scaling of network synthesis.

The predicate P(s;, s;) alone is not sufficient to establish
network connectivity. To do this, let AN_l be a matrix in
which the (4, j)-th element represents the number of (N-1) hop
paths without loops between sensors ¢ and j. Then, network
connectivity holds if there is at least one path between each
pair of nodes:

(ANfl)ij >0 VZ,L] € {13 7N} with Z#J (5)

Obstacles and sensor placement (C4). To prevent the syn-
thesizer from placing sensor s; on obstacles, let 1° (5,;, o) be a
predicate that evaluates to true if s; is not placed on obstacle
o. Then, if V(s;) is a predicate that checks whether sensor
s; € S is not placed on any obstacle:

V(si) = /\ V°(si,0). (6)
0cO
The overall formulation. Given this formulation, our network
synthesis formulation reduces to finding the smallest number
of sensors N that satisfy all four of the constraints listed in
Table [I
Performance Goals. Table [l| lists constraints on the cor-
rectness of network synthesis. In addition, motivated by the
problem of quick, ad-hoc deployments of IoT networks (§I)
in large deployment areas, we impose two performance objec-
tives: synthesizing a network, within fens of minutes, to cover
a large urban campus of a /-2 sq. kms. As we show in the
rest of the paper, these scaling goals stress the capabilities of
existing synthesis methods.

III. A BRIEF OVERVIEW OF SMC

Satisfiability Modulo Convex (SMC) Theory [11] extends
Boolean Satisfiability (SAT). A Boolean Satisfiability (SAT)
problem finds feasible assignments to Boolean variables con-
sistent with a set of constraints, typically represented as the
conjunction of a set of Boolean clauses, for example:

ay N\ (ag vV CL3) A (a1 V a3) (7)

Here, a1, as, as are Boolean variables. A SAT solver attempts
to find an assignment for the Boolean variables, such that the
entire clause evaluates to TRUE given the formula is satisfi-
able. For example, Equation [/| can be satisfied the following
assignment: a; = TRUE,ay = FALSE,a3 = TRUE, and the
SAT solver returns this assignment. On the other hand, if no
such assignment exists, the function expressed by the formula
is FALSE for all possible variable assignments and the formula
is unsatisfiable and the SAT solver identifies that no satisfying
assignment exists. For example, a; A —a; is unsatisfiable. SAT
problems are typically hard to solve, but recent SAT solvers
(9], [13]) scale well to problems of practical interest [14]],
[15]].

SMC [11], designed to address the feasibility of mixed-
integer convex problems, uses a SAT solver to suggest admis-
sible assignments for a problem’s Boolean Variableﬂ and a
convex solver (e.g., [LO]) to suggest admissible values of the
problem’s real variables. To bridge the two tools, it represents
convex constraints using pseudo-Boolean variables. Consider
the following example:

al/\(ag\/ag)/\(al—>x1 +.’E2:4) (8)

Here, a1, a2,a3 are Boolean variables and x;, xo are real
variables. The third clause implies that if a; is TRUE, we
should be able to find a valid value of x; and x5 such that
1 + x2 = 4 (a convex constraint).

SMC replaces the convex constraint with a pseudo-Boolean
variable, say a4, then runs the SAT solver. If the solver pro-
duces a TRUE assignment for both a4 and a;, then it attempts
to use the convex solver to find a satisfying assignment for
the convex constraint. If none are found (in our example,
there exists a satisfying assignment), the output of the convex
solver is used to produce a counter-example to constrain the
search space for the SAT solver. This leads to a search over a
more constrained SAT solution space by excluding conflicting
combinations of pseudo-boolean variables corresponding to
the counter-example. This process repeats until the suggested
combination of convex constraints is satisfiable.

When used for network synthesis, SMC produces a feasible
solution, given NV, the number of sensors, as input (or indicates
infeasibility). To synthesize a network with the fewest sensors,
we perform a binary search on N.

IV. SMC FORMULATION OF NETWORK SYNTHESIS

In this section, we describe how we cast network synthesis
in the SMC framework [11].

Area Coverage. The coverage constraint (C1, Equation
specifies point coverage, where the locations [; represent
discrete locations in the deployment region L. In practice, IoT
deployments desire area coverage, where at least k& sensors
cover every point within L that is not covered by an obstacle.

2Note that one can almost trivially encompass integer variables via a larger
number of Boolean variables, following the appropriate transformations.



Fig. 1: A complex obstacle can be modeled as a polygon, but this
can be computationally difficult. We discretize space into grids
and model each grid as occupied (if even a part of an obstacle
overlaps with the grid) or unoccupied. Occupied grids are shaded
in a dark color.

The area coverage problem in presence of obstacles is not
convex, so it is hard to represent it using SMC.

Discretizing the deployment region. To address this chal-
lenge, we discretize space into a uniform grid which induces
a new discretized space D. Each grid element d € D can
be represented in 2-D space as the intersection of four half
planes:

T(x) = I%w,y) = (z > i) A (2 < Th,)
A (y > ygnzn) A (y < ygnax)

The respective four physical corners are L% = {(z,,,,,y%,.).

(xﬁ@ax’ yﬁnzn) ’ (xgnazv’ y;’ina;ﬂ)’ (xgnirw y:lnaw) }

Representing obstacles. In general, we can represent an
obstacle as a fine-grain polygon (Figure [I). However, the
finer the representation of the obstacles, the less scalable the
network synthesis process becomes. A single obstacle with P
vertices creates O(M - N - P) constraints, where M represents
the set of points covered by sensors. So, we leverage the space
discretization to improve synthesis scaling: we say that each
grid element d € D is occupied if an obstacle covers even a
part of the element, else the element is unoccupied (Figure [T).
Furthermore, since every d € D is either occupied by an
obstacle or free, D is the union of two disjoint sets O and U,
corresponding to occupied (obstacles) and unoccupied spaces,
respectively.

©))

Defining area coverage. If a sensor s; covers the four
corners of a grid element u, € U, then it covers all points
within the element. Thus, we can represent the problem of
covering the entire area L by the problem of covering the
corners of unoccupied grids. Formally, let L = Uu,;eU Ly
where L} denotes the four corners of the grid u;. Then, our
formulation uses the pseudo-Boolean variables in Table |l] to
directly represent the convex and complex constraints (§]I).

We can encode the k-coverage problem using SMC as
follows.

Coverage Constraints (CI). We ensure that at least k
sensors cover each grid region ug as follows:

N
(Z biy > k)
i=1

where covering a grid implies that the same sensor covers
all four corners of the grid (b, — A, eLy bi;) which

(10)

TABLE II: Pseudo Boolean for SMC Formulation

All Pseudo Respective
Description Possible Boolean Predicate or
Combinations Variable Constraints
- N
Location Py = Nit1 /\l]eL (be — C(si,l]))
Coverage
Grid v — Ay cu (b, = Ayews Clsili)
Coverage
. N
visbily  ¥s= AN AyenAoco (%, — B(siliiog)
Link Yy = AL A (bgj N ’P(sz,s]))
Connectivity
Placement 5 = AY, Nogeo (bfq — Ve (si, og))

expresses the constraint that if sensor s; covers a grid u,g
(b;-‘g =1 or TRUE), then it covers all four corners of the
grid [; € Lg.

Visibility Constraints (C2). The four half-planes (Equa-
tion[9) of each occupied grid element can also model visibility.
Let Ly represent the respective four corners of occupied grid
element o, € O. Then, line of sight depends upon two
conditions:

(vl) This condition applies when all four vertices of an obsta-
cle are on the same half plane created by the line joining
a sensor location s; and a sensed location [; (Figure @
If the line equation joining s;, [; is fi;j(x = (z,y)) =0
then all four vertices should satisfy either f;;(x) > 0 or
fij(x) <0, expressed as follows:

(A G0>0)V (A () <0)

xELZ xeLo
amn

This condition applies when both the sensor location and
the sensed location are on the outer half-plane of at least
one obstacle face (Figure [2b)). Mathematically, both points
should satisfy one of the following four conditions: =z <
xfnin’ x> x?nax’ Yy < ygfnn’ Y > y'(r)na:r’ expressed as
follows:

Bl(sivlj7og) =

(v2)

B (51 = (z1,91),1l; = (56271/2)7057) = (z1,22 < Zpyin)

o

\ (xl’xQ > xmaz) \ (y17y2 < yfnzn) v (ylayQ > ygzaz)

(12)

If B°(s;,1;,04) is a predicate that checks whether an obsta-

cle grid element o, does not block the line of sight between
s; and [;, then we can write:

BO(SZ‘, lj, Og) = Bl(si, lj, Og) vV Bg(Si, lj, Og) (13)

Using this, we can compute the visibility constraint (Equa-
tion [3).
Connectivity Constraints (C3). In a connected network, there
should exist a communication path (single-hop or multihop)
between every pair of nodes. Consider the adjacency matrix
A: A;j = bf; where bf; € {0, 1} with True as 1 and False as
0. Now, let A, represent the h-hop adjacency matrix (whose
i, j-th entry is the number of h-hop paths between s; and s;),
then we can write the connectivity constraint as:
N
A

j=2

((AN_l)lj > 0). (14)



(€)) (b)
Fig. 2: Two visibility conditions. Red dot signifies a sensor and
Blue dot signifies a sensed location.

TABLE III: Summary of SMC Encoding of k-Coverage

Coverage (Cl) g = /\ugeU (szil b?g 2 k)

Visibility ~ (C2) 04€0 V3jg
Connectivity  (C3) 17 = /\;'\]:2 (An_1)1; > 0)

Placement (C4H Ys = A\;q /\og co big

This is a simplified version of (Equation [5): we only check
connectivity between node 1 and every other node because, if
there exists a path from node 1 to every other node, they can
always connect via node 1.

Obstacles and sensor placement (C4). To prevent the syn-
thesizer from placing sensors in grid elements occupied by
obstacles, we can define constraints that ensure that each
sensor s;’s position is outside the four half planes (Equation [0
defined by each grid element, as follows:

VO(SZ' = (ff,y),09> = ((E < mfnzn) v ((E > ‘r;)naz)v

o o (15)
(y < ymin) \ (y > ymam)

where x0. .. To 1ws Yrins Yrmae define the four halfplanes of
the obstacle grid. Finally, to make sure that the SMC solver
does not put the sensor inside the obstacles, we add the

following sets of clauses, the equivalent of (Equation [6):

A A B

i=10,€0

(16)

This forces the solver to only select locations from the
unoccupied grid elements.

The overall formulation. Putting all these together, the four
key constraints can be summarized in Table From this, we
arrive at the overall SMC formulation: 1 = /\f=1 ;. With
this formulation, we perform a binary search on N to find the
solution with the fewest number of sensors.

Constraint pre-computation. Our SMC encoding discretizes
the deployment region. If two such locations /; and I; are more
than twice the sensing radius apart, then no single sensor can
cover them. While SMC can eventually determine this through
counter-examples with our encoding, we have found that it
significantly improves the speed of synthesis to provide these
as pre-computed constraints. We do this by (a) finding all pairs
l; and [; that are greater than twice the sensing radius apart
and (b) adding a constraint that prevents a single sensor from
covering them. (We add similar constraints for connectivity as
well).

V. HIERARCHICAL SYNTHESIS

SMC, by itself, fails to achieve our scaling goals (§III). We
apply hierarchical synthesis to achieve these.

In hierarchical synthesis, we subdivide the deployment area
L into smaller sub-areas (Figure and solve for coverage
(and not for connectivity) in each of the sub-areas separately.
Then, once we have individual solutions, we need to connect
them so that we have a connected network. To connect the
individual sub-problems in SMC, we first combine the solu-
tions to check for connected pairs of nodes, then collapse each
of the connected sub-networks into a single node (Figure [3b).
Then, we use constraints ¢4 and 7 in the SMC formulation
to ensure connectivity between the sub-areas.

We could have solved for both coverage and connectivity in
each of the sub-areas. In a complex deployment region, solving
for both connectivity and coverage in each subproblem often
over-provisions the network. Also, a k-coverage solution often
results in connected sub-networks, so our approach enables
faster synthesis by reducing computation (§VI).

Incremental Coverage Repair. Hierarchical synthesis can
help scaling but may result in redundant coverage, because it
solves each sub-region independently, so more than k& sensors
may cover parts of the sub-region near the boundaries (e.g., by
sensors from neighboring sub-regions). To circumvent this, we
first solve each sub-area for £k = 1 coverage. Then, for each
grid element u, we measure the obtained coverage k, from
this solution. The residual coverage requirement for u, then,
is k—k,; we now run the coverage problem again for each sub-
area with these residual coverage requirements as constraints,
which effectively “fills” up the coverage on grid points interior
to the sub-area. After this, we apply the connectivity repair
described above.

VI. EVALUATION
A. Methodology

Comparison. To understand the performance of SMC in the
context of network synthesis, we developed a baseline network
synthesis formulation using the well-known Mixed Integer
Linear Programming (MILP) framework. To model visibility
in MILP formulation, we assume that a sensor, located in
a space directly adjacent to an obstacle, cannot sense any
discrete space at or past the obstacle’s position. For example,
if a sensor is in a space diagonal to an obstacle, it cannot
sense any space on the vertically or horizontally opposite
side of the object (Figure [a and Figure Ab). The MILP
formulation transforms the visibility and coverage constraints
into a graph vertex cover problem. The solution to this vertex
cover problem is the placement of sensors that satisfies the
visibility and coverage constraints, but the resulting network
may not be connected. We restore connectivity via a graph
based Steiner tree approach similar to the SMC hierarchical
approach (§V). We do not present the MILP formulation
details due to page limitations.



(a)

(b)

Fig. 4: Visibility restrictions placed on the sensors in discrete
space. We under-approximate visibility so the resulting assignment
of discrete locations is valid for any real-valued location within the
discrete region.

Implementation. Our SMC implementation uses Z3 [9] for
SAT solving, and CPLEX [[16]] for convex constraints. We use
CPLEX also for the MILP formulation.

Inputs. There are six inputs in our evaluation. The deployment
region L denotes the discretized grid for which we synthesize
the network. For most of our experiments, we use two different
sizes of scenarios: (1) 20 x 20 (Small) and (2) 50 x 50 (Large)
grid. In the Small, we use hierarchy with SMC but not with
MILP since the latter scales to this problem size. For the Large,
we use hierarchy for both since neither is able to scale to
this problem size. The performance of synthesis algorithms
depends heavily on the fraction of the deployment region
occupied by obstacles (obstacle extent), and on the spread
of these obstacles across the deployment region (obstacle
dispersion). The coverage radius r. and the communication
radius rs are also inputs; our results are sensitive to 3, the
ratio of the communication radius to the coverage radius.
The grid granularity controls how finely we can represent
the deployment region; a finer grid implies lower coverage
redundancy at the expense of scalability. Finally, we fix the
coverage goal at kK = 3 (at least three sensors must cover each
grid).

Scalability and Performance. Since we are interested in
synthesis for ad-hoc rapid deployments, we use the time taken
to arrive at a good solution for a given problem size as a
measure of scalability. Since we compare iterative synthesis
methods, we specify this time as a constraint: we allocate
a fixed amount of execution time 7, on a fixed computing
configuration for each of our methods and use the solution

(b)
Fig. 3: (a) Hierarchical synthesis solves sub-regions, then combines these solutions to satisfy coverage and connectivity over the entire
deployment region using a (b) Connectivity repair method between sub-problems

obtained by the end of that duration (or earlier if the synthesis
has converged). A problem setting that does not scale will have
arrived at a sub-optimal solution after 7. In our experiments,
we fix T, to 1 hour.

Metric. We then measure the performance of network syn-
thesis by its coverage redundancy. If the average number of
sensors covering each location in the solution is k.4, coverage
redundancy is k“% where k is the desired coverage. For
example, if, on average, 6 sensors cover every location, but
we desire 3-coverage, then coverage redundancy is 2.

B. The Role of Obstacles

Obstacles determine the visibility and placement constraints
(§M) and significantly impact the performance of network
synthesis. To evaluate how obstacle extent and obstacle dis-
persion affect the performance of SMC, we perform a set of
experiments on synthetically generated obstacle distributions.

To quantify the obstacle dispersion, we define vy as the aver-
age number of adjacent grids with obstacles for each obstacle
grid. y can theoretically vary from O to 8 with v = 7,8 being
highly rare. For a fixed obstacle extent, lower values of ~y
occur for small, widely dispersed obstacles. We evaluate and
compare the performance of MILP and SMC for all feasible
combinations of four different obstacle extents 5%, 15% 25%,
50%, and eight different values of v = {0,1,2,3,4,5,6,7}
(we do not use v = 7 for Small as it is very rare). In each case,
we place obstacles on a 20 x 20 grid and a 50 x 50 grid and
generate five obstacle placements (coverage redundancy varies
little across placements, so we use 5 placements to minimize
the total time to run experiments). We set the coverage radius
to 6 units and explore the sensitivity of results to three different
choices of g ={2,1,0.5}.

Figure [5 presents the results of these experiments, both for
Large and Small, where two methods are comparable if either
their coverage redundancy 95% confidence intervals overlap or
the means are within 10% of each other. These results indicate
four distinct regimes of operation, discussed below.

Small Obstacle Extent (< 15%). Figure [5|illustrates that for
both Large and Small, with few obstacles (roughly < 15%)
SMC outperforms MILP for 5 = 1,0.5. On the other hand,
for § = 2 the performance largely depends on the obstacle
dispersion (Figure [5a) and [5d) with slightly better performance
for MILP with lower obstacle dispersion (v > 3). For 8 = 2,



Obstacle Dispersion
y=2 3

5% 5%

15% 15%
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25% 25%
(1:3%)
SMC MILP
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the coverage solution is also connected [17]]; MILP converges
faster to solutions with slightly lower coverage redundancy
in these settings both because its visibility and connectivity
approximation is less in obstructed environments and be-
cause the visibility graphs are less dense. SMC still performs
comparable to MILP for most settings. MILP performs less
well for 8 = 1,0.5 because of its graph based connectivity
repair technique. For # = 1 (when the connectivity same
as the sensing radius) and 8 = 0.5 (when the connectivity
radius is half the sensing radius), MILP has to deploy a large
number of relay nodes to repair connectivity (made larger
by the under-approximation of connectivity), which increases
coverage redundancy significantly compared to SMC.

High Obstacle Dispersion (y < 3). Figure [5] also illustrates
that, regardless of the obstacle extent and value of /3, with
dispersed obstacles (i.e., v < 3) SMC outperforms or is
comparable to MILP. With many small sized obstacles, MILP
under-approximates visibility significantly and ends up placing
more sensors. Thus, even with a large obstacle extent, if
obstacles are small and widely dispersed, MILP’s performance
degrades.

Medium Obstacle Extent (15% — 25%) and Low Obstacle
Dispersion (y > 3). In this regime, MILP often outperforms
SMC regardless of the values of g for Small when MILP
does not require any hierarchy, but SMC does (Figure [5a]
[5¢). In more obstructed environments, SMC requires a deeper
hierarchy to scale well. However, as we introduce hierarchy to
MILP (Large), MILP’s performance deteriorates due to over-
provisioning as a result of hierarchy and SMC becomes the
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Fig. 5: Performance comparison for different combinations of obstacles extent, S and . Blue = SMC performs significantly better,
Light Blue — SMC performs slightly better (< 10%), Light Orange — MILP performances slightly better (within 10% of each
other), Orange — MILP performs significantly better, and Yellow — infeasible test scenario.
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better alternative (Figure [5d] [5e} [5f).

Large Obstacle Extent (> 25%) and Low Obstacle Disper-
sion (v > 3). In this regime, the relative performance of these
schemes again depends on the value of 8 (similar to Small
Obstacle Extent (< 15%)). For 8 = 2, MILP performance
is slightly better (i.e., comparable) than SMC (Figure [5a] and
[Bd) and for 8 = 1,0.5, SMC outperforms MILP (Figure [5b]
[5¢] [5f). This results from the connectivity repair technique
used in MILP. For 3 = 2, the coverage solution is guaranteed
to be connected [17].

Effect of 5. When 8 = 2, a solution for coverage also results
in a connected network. In contrast, when 5 = (.5, ensuring
connectivity requires additional sensors. This is evident from
the coverage redundancy values in Figure [5] For 8 = 1,2, the
best coverage redundancy is mostly within a factor of 2 of the
optimal across the entire range of obstacle distributions while
it is within a factor of 4 of the optimal for 8 = 0.5. In Figure[5]
we can see a nice separation between two regimes where SMC
and MILP perform well for 3 = 2 (Figure [54 and [5d). As j3
goes from 2 to 1 to 0.5, the regime where MILP outperforms
SMC vanishes. Since the primary difference between these
regimes is the importance of connectivity, this shows that SMC
handles connectivity constraints better than MILP.

Number of grid elements. As the number of grid elements
increases (we fix the grid dimensions), MILP and SMC
need hierarchy to scale. Figure [5] shows that for Small there
exists a difference between MILP and SMC (e.g., Figure @[);
MILP does not need hierarchy but SMC does. This difference
disappears in the Large (Figure [5¢). For MILP, the problem



TABLE IV: Summary of the Experiments

Obstacle Obstacle B Best Synthesis Method
Extent Distribution ~ [O]<x [O] > x
Any >3 >1 MILP MILP/SMC
Any <3 >1 SMC SMC
< 15% Any <1 SMC SMC
> 15%, < 25% >3 <1 | MILP/SMC SMC
> 15%, < 25% <3 <1 SMC SMC
> 25% Any <1 SMC SMC

size beyond which it does not scale can be characterized by
the number of unoccupied grids, |O|. If this number is greater
than a threshold y, then MILP does not scale without hierarchy
because the number of constraints and solution search space
increases dramatically (the number of constraints in MILP is
a function of the number of open grids, since these determine
its visibility and communication graphs). x is a function of the
capacity of the solver [9] and the computing configuration used
for the synthesis. We can experimentally profile this quantity;
in our experiments, X is approximately 1200.

SMC requires hierarchy in both scenarios. Its performance
improves relative to MILP, because MILP performance de-
grades because of the coverage and connectivity approxima-
tions. These arise from limitations in MILP’s expressivity with
respect to our network synthesis problem. This is evident from
Figure [5¢] and [51} for the Large with 8 = 1,0.5, SMC always
outperform MILP significantly. For 5 = 2, we can see that the
change is less severe as for 5 = 2 the coverage solution is the
connectivity solutions and thus adding hierarchy deteriorates
the performance of MILP slightly and makes it comparable to
SMC.

To check whether the boundary between the two changes at
larger settings, we performed a set of experiments with a 75 x
75 grid scenario and generated the respective heatmap (also
omitted for brevity). This heatmap is comparable to the Large
results in Figure[5] With increasing problem size, both methods
appear to be equally affected by the addition of deeper levels
of hierarchy needed to scale the synthesis.

Synthesis method selection. Taken together, these results
suggest that MILP and SMC perform well in different regimes
(indicated by the dashed line boundary in Figure [5), so
network synthesis should select which method to use de-
pending on (a) the obstacle extent, (2) obstacle dispersion
(7), (3) the coverage to communication radius ratio (3), and
(4) the number of open grids (JO[). Table summarizes
these choices. Table [[V] illustrate that SMC is a better choice
for large scale network synthesis and one can pick SMC
for network synthesis regardless of the values of the four
factors (discussed above) to produce a network with acceptable
performance.

VII. RELATED WORK

Table [V| shows how our work relates to the existing litera-
ture.

Wireless Sensor Networks. Over the last two decades, re-
searchers have studied sensor network placement problems [[7]],
[8]. Common approaches rely on random dense deployment
followed by a careful selection among the deployed sensors to
fulfill the sensing goal [18]]: often, this work has not considered

obstacles. We highlight the most relevant prior work in this
area: [19]], [20] present a more complete treatment.

Discrete Set of Semnsors and Locations. With a set of
randomly pre-deployed sensors, the network topology design
reduces to controlling the sleep pattern of the sensors [21]],
[L7], [22], [23]. This can be easily encoded using SAT [24]
or framed using computational geometry [25]. None of these
approaches deals with obstacles and visibility constraints for
sensing. In contrast, we focus on a methodical top-down
synthesis and support richer sensing goals such as k-coverage.
Moreover, unlike these approaches, we focus on scaling to
large deployments in highly occluded settings.

Submodular Optimization. Prior work has explored a
greedy algorithm for submodular optimization of sensor place-
ment and scheduling [26]. The proposed method does not
consider connectivity constraints. Similarly, [27] uses greedy
heuristics to solve several problems in selecting an optimal
placement of sensors in a water network with submodular
objectives. While sub-modularity assumptions enable rapid
synthesis, they lack the expressivity of SMC which is neces-
sary to jointly address coverage and connectivity constraints.

TABLE V: Summary of Related Work

Related Coverage Modelling Connec- Scal- Topdown
‘Work k- Area Sensing | Comm | Obstacle | Visibility tivity ability | Synthesis
Cover | Cover Range Range model model
[ 17 v v v v v
(18 v v v v
22 v v v
123 v v
26 v v
27 v
128 v v v v v
29 v v v v
[30; v v
(31 v v v
32 v v v v v
1331, [34 v v v v v
1351, 136 v v v v v
Our Work v v v v v v v v v

Relay Placement. Prior work has also explored connectivity
repair using relays [28], [29]. In [30], the authors address
the problem of placing relay nodes to create k = 1,2, and
higher connectivity in both one and two-way communication
scenarios. The problem is NP-hard, and a series of polynomial
approximation algorithms are presented to solve the problem
for k¥ = 1,2 and a generalization is given for k > 2.
In contrast, we do not focus on just relay placement, but
on the synthesis of a connected network satisfying coverage
objectives, a much harder problem. In [29], a set of relays
is placed to establish a communication backbone. They con-
sider obstacles and compute an Euclidean Obstacle-Avoidance
Steiner tree to place the relays but this solution does not scale.

Camera Placement. There exists a body of work on camera
placement related to our work. Solutions to the well-known
art-gallery problem for placing visual sensor [31] generally
assume infinite sensing range, and do not consider connec-
tivity. One work [32] explores an indoor camera placement
problem with connectivity constraints, but in an uncluttered
environment and assumes unlimited sensing range. Another
work [33] considers limited camera ranges and polygonal
obstacles, but does not consider connectivity. Other prior work
has used quadratic convex programming [34], integer linear



programming [35], and linear programming [36] for camera
placements, but again do not consider connectivity.

Wired Network Synthesis. Finally, prior work has explored
synthesis of network topologies and routing configurations [4],
[6]]. Our problem is qualitatively different in that it includes
coverage requirements and visibility constraints.

VIII. CONCLUSION

Motivated by advances in solver technology, this paper
considers the top-down synthesis of large-scale ad-hoc IoT net-
works. We explore a formulation based on the SMC framework
that permits convex constraints. We also develop a hierarchical
synthesis technique to scale to large problem sizes. Our results
show that, SMC’s solution quality is better than a baseline
MILP formulation at larger problem sizes. This is likely due
to the fact that MILP can only approximately capture coverage
and connectivity constraints, and these approximations result
in higher coverage redundancy. Several directions of future
work remain including: extending the synthesis to accommo-
date heterogeneous and directional sensors, and determining
scaling techniques for these; incorporating computational el-
ements into the network synthesis to place fusion nodes that
can optimally process sensor data; and large scale real world
experimentation to validate the synthesized networks.
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