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ABSTRACT ARTICLE HISTORY
Meta-analysis with fixed-effects and random-effects models provides Received 9 December 2016
a general framework for quantitatively summarizing multiple ~ Accepted 19 August 2017
comparative studies. However, a majority of the conventional KEYWORDS

methods rely on large-sample approximations to justify their Meta-analysis; exact
inference, which may be invalid and lead to erroneous conclusions, inference: fixed-effects
especially when the number of studies is not large, or sample sizes of model; random-effects
the individual studies are small. In this article, we propose a set of model

‘exact’ confidence intervals for the overall effect, where the coverage

probabilities of the intervals can always be achieved. We start with

conventional parametric fixed-effects and random-effects models, and

then extend the exact methods beyond the commonly postulated

Gaussian  assumptions.  Efficient numerical algorithms  for

implementing the proposed methods are developed. We also conduct

simulation studies to compare the performance of our proposal to

existing methods, indicating our proposed procedures are better in

terms of coverage level and robustness. The new proposals are then

illustrated with the data from meta-analyses for estimating the efficacy

of statins and BCG vaccination.

1. Introduction

Meta-analysis has been widely used to combine information from multiple studies, espe-
cially in medical research. One important objective is to make inference about the overall
effect often relative to a standard care of therapy. The fixed-effects and random-effects
models, often coupled with the DerSimonian and Laird (D-L) approach [1], are two most
commonly used statistical models in meta-analysis. However, the D-L method is subopti-
mal and may lead to too many statistically significant results when the number of studies
is small and there is moderate or substantial heterogeneity [2]. Depending on specific set-
tings, the coverage probability of the confidence interval (CI) by the D-L method may fail
to achieve the target level even when the number of studies is as high as 20-35 [2,3]. The
key reason is that the validity of the CI depends on large-sample approximation of the
combined point estimator. The goal of this paper is to propose a family of test statistics
for constructing exact CIs under fixed-effects and random-effects models, that are valid

CONTACT Sifan Liu @ sifan.liu@rutgers.edu

© 2017 International Biometric Society — Chinese Region



2 (& S.LUETAL

regardless of the number of studies. The validity of the proposal does not rely on large-
sample approximations and the corresponding coverage probabilities can always achieve
the specified nominal level.

This research is partially motivated by need of evaluating the efficacy of BCG vac-
cine in the prevention of tuberculosis. Though the use of BCG has a long history with
billions of doses given, there has been an on-going debate on its efficacy [4,5]. Multiple
clinical studies are identified for meta-analysis and the D-L approach was used to
combine the information [6]. However, given the limited number of studies, the results
based on the D-L method may not be reliable and hence more robust statistical
inference is wanted.

Indeed, various CI procedures aiming to correct the under-coverage of the D-L
method for random-effects model have been developed recently. Likelihood approaches,
such as constructing Cls by profile likelihood [7] and by the restricted maximum likeli-
hood method [8], are considered. Modifications are proposed to account for the
between-study variability, e.g. [9], and the Student’s t-distribution is also used [10].
Another approach is to centre the CI at the fixed-effects estimate with a robust variance
estimator [11]. In addition, there are some higher order asymptotical inference proce-
dures such as the Bartlett-type correction for the likelihood ratio statistics [12]. How-
ever, all these inferences are still asymptotic with respect to the number of studies. More
recently, confidence distribution (CD) [13-15] is proved to be a powerful vehicle in
developing new meta-analysis methods [16-18]. But again, these CD-based methods are
asymptotic procedures.

Some exact methods, including Tian et al’s method of combining CIs [19] and Liu
et al.’s method of combining p value functions [20], have been developed. Mainly focusing
on meta-analysis of rare events, both of these methods can be unified under the general
framework of combining CDs [21]. Nevertheless, they are developed under the setting of
fixed-effects models. We are interested in developing an exact inference procedure for
both fixed-effects and random-effects models without relying on exact test for each study.
The most related work is the permutation method proposed by Follmann and Proschan
[22]. However, its implementation is slow except for very small number of studies.

The problem considered here is also closely related to the well-known Behrens-Fisher
(B-F) problem, i.e. comparing the means of two Gaussian distributions with unknown
variances. Specifically, the Gaussian fixed-effects model in Section 2 is directly related to
the B-F problem, and the random-effects model is even more complicated. Compared to
the exact solutions to the B-F problem, which need a second stage sampling [23-25], our
proposed solution is much more direct and simpler. In addition, our method can also be
extended beyond the fixed-effects model and even the parametric distribution
assumptions.

In the rest of the article, we first propose procedures of constructing the exact Cls
for conventional Gaussian fixed- and random-effects models. We show that the cover-
age probabilities of the resulting CIs can always achieve the target level, regardless of
the number of studies. Some easy-to-implement computation algorithms are provided
for constructing the corresponding exact confidence intervals. Then, we consider gen-
eralized fixed- and random-effects models, where the Gaussian assumptions can be
relaxed. Lastly, we report results from the conducted simulation studies and two real
life meta-analyses.
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2. Exact inference with Gaussian fixed-effects and random-effects models
2.1. Model settings and review of the D-L method
Suppose that we have K independent studies and the ith study has a summary statistic
(observed treatment effect) Y; for the true study-specific treatment effect 6;. The standard
meta-analysis random-effects model assumes that, independently,

Yi|0;~N(0;,07),6i~N(wo,7°),i=1,...,K; (1)
which is equivalent to the parametric model

Yi~N(pp, 07 +7°),i=1,...,K. ()

Here, u, is the overall effect, aiz is the within-study variance and 7% is the between-study

variance which is generally unknown.
The D-L method [1] is to estimate (1, by

A~ A2 \—1 . . . . A2 . .
where w; = (01-2 +1T;,)  is the inverse-variance weight, 77,; is a moment estimate of %,

given by
A {El 1072 (Yi - fir)’ } (K-1)
Tpp = max - kK 5 0
POART D DART D Dt
and
/:l/ . Zﬁlafz Yi
F= K __
2107
is an initial estimator for p,. Given{(Y;,0;)|i=1,...,K}, the normal approximation

(fipr — Ho) ~N(0, I/lelw,) leads to 100(1 — a)% CI for 1,

P ~1/2 K ~1/2
—zap(z; ) u+/(zw)
=1 i=1

where z,/, is the o /2 upper quantile of the standard normal. The validity of this CI relies on
the large-sample approximations with the assumption that the number of studies, K, goes to
infinity. When K is small, 75,; can be inaccurate but the D-L method does not account for its
randomness. See also [26] and [27] for insightful discussions on related challenges.

In the remaining of this section, we construct the exact CIs for 1, by inverting appro-
priate exact tests. Note that when 72 = 0, the random-effects model (1) degenerates into
the simple fixed-effects model, independently,

Yi~N(p,07),i=1,...,K. (3)
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As a special case of random-effects models, the fixed-effects model requires that
0) = ---= 0k = 1 and the usual estimate of 1, is simply fip. It is not difficult to see
that all proposed CIs for u in this article are valid under both fixed- and random-effects
models. We shall avoid repeating this observation when each individual CI is discussed
later. Throughout the developments, we let V; ~ Bernoulli (%), i=1,...,K.

2.2. Proposed test statistics and exact Cls for 1,

Motivated by the ‘exact’ hypothesis testing procedure on median, we propose to consider
the test statistics.

To(p) = Zwi{I(YiSM) —%} (4)

which is essentially a weighted sign test statistic. Here, {wy, ..., wx} is a set of positive
weights given a priori, and I(-) is the indicator function. Model (2) implies that
Pr(Y; < py) = 0.5, and T, (1), at the true value 1, is a weighted sum of K independent
Bernoulli random variables. Thus, we can define

K 1

Immediately, we have the key equivalence that T, () has the same distribution of T,
ie.

Tw(o) ~ T, (6)
which leads to the construction of the exact CI for u, shown in the following theorem.

The rigorous justification is provided in the Appendix A.

Theorem 2.1. For the random-effects model (1), consider the test statistic T, () (4) and
the random variable T}, (5). Define

pw(t) =2min{F}(1), S, (1) },

where F,(t) = Pr(T; <t) and S;,(t) = Pr(T; > t). Then, the 100(1 — a)% CI for y1, can
be constructed as

Cwa = [/'L pw{Tw(M)} > O{] (7)

Here, p,,{T,,(1¢)} can serve as the exact two-sided p value for testing Hy : uy = u ver-
sus Hy : g # . Operationally, C,,, can be constructed by assembling all u’s over a
dense grid with the corresponding p value, p,,{T, (1)}, greater than the significance level
. Note that, based on (6), F,{T\(1()} is stochastically greater than or equal to the uni-
form distribution U(0, 1). Then, F}{T, (1)} may serve as the exact p value in testing the
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null hypothesis Hy : (o > pversus the alternative hypothesis Hy : g < ¢ and the lower
end of the one-sided 100(1 — «/2)% CI for p, can be found by inverting this exact test as
o = inf [p : Fi{Ty(1)} > /2]. Similarly, S,{T, (@)} is the exact p value in testing
Hj : pg < p versus Hy @ jtg > p and can be used to generate the upper end of the one-
sided CI of 119 as .,y = sup i : S5{T\(1)} = &/2]. Therefore, based on these two one-
sided exact CIs, we have an alternative expression of C,,q as (Lyr, 1)

Furthermore, since T, (1) has a discrete distribution, p,{ T, (1)} is a step function
with respect to (. In order to construct non-equal tailed CIs, which are potentially nar-
rower than equal tailed CIs, the p value function p,,(t) may be replaced by

E,(t) S,(t)
y ’l—y}’

pi(0) = min

for some y € (0, 1).

Although the validity of the proposed CIs does not depend on the choice of
{wi,...,wx}in T,,(n), the distribution of T, (1) does. It is reasonable to consider the
(asymptotically) optimal weights, which tend to generate relatively narrow Cls. Specifi-
cally, for the fixed-effects model (3), we propose to use the inverse of standard deviation
as the study-specific weight w; = 07!, and define

Ti(n) = gail{l(YiSM) —;}

This is intuitive in that less informative studies are down-weighted. Compared to fixed-
effects model, random-effects model (1) with 72 is widely used to deal with the study het-
erogeneity in meta-analysis. As to the cases with > = 72 known, we can use

wi={2+ 2} i=1,. K (®)

When 2 is unknown, we may replace 73 in (8) by an estimator of 72, which leads to an
extension of T,, with data-dependent weight components.

2.3. Extended test statistics and the corresponding exact confidence sets for .,

Similarly to previous developments, we first introduce the exact inference procedure in a
general form, and then discuss some specific choices of the test statistics. Consider an
extended version of T,,,

Ti(p) = Zwi(ﬂ){I(YiSM) —%}, ©)

where {w;(u)|i = 1,...,K} are positive and data-dependent. In order to construct exact
confidence sets based on Tj, (1), we impose the following condition:

e Condition A: Each component from the set of weights {w;(uo)li=1,...,K} is
independent of {I(Y; <pu,)li=1,...,K}.
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Then, we let

R =Y ww{vi- 1} 10

i=1
Under Condition A, we have the following key result of equivalence in distribution:

T (110) {1 (o), - - Wi (10)} ~ T (1) { Ya, -, Yic)

which is followed from the fact that
1Y
I(Y; < pg) ~ Bernoulh(i> ,i=1,...,K.

The construction of exact confidence sets of ji, is then proposed and justified in the
following theorem:

Theorem 2.2. For the random-effects model (1), consider the test statistic Ty (u)(9) and
the random variable T} (i) (10). Suppose that {w;(u)|i = 1,...,K} satisfy Condition A.
Let F(t,u) = Pr(Ty" (n) <t|Yy,...,Yx),S,(t, ) = Pr(Ty" (u) = £ Y1,...,Yx); and
define

pa(t, w) = 2min{F*(t, ), S, (£, ) }-

Then, the 100(1 — o)%confidence set of , can be constructed as
Coa = [ : pi{Tw(), 1} > . (11)

The rigorous proof of Theorem 2.2 is given in Appendix B. Here, p; { T (1), u} may
also serve as the exact two-sided p values for testing Hy : 1y = p versus Hy : (g # (L.
Since Ty () is not guaranteed to be monotone in u, the generated confidence set might
be a union of disjointed intervals. In practice, it is common to report the conservative
intervals (u; L, iy U), where

il = inf [ Fy (T (), 1} 2 5] s U = sup i+ 84" (T (), 1} = 5.

Note that (@ L, 4 U) is the shortest interval containing Cycx.
More specifically, we may modify the fixed weights (8) by using the asymptotically
optimal weights,

1

Tr(n) = Z {of + %Z(M)}%{I(Yz‘ <u) - 5}7

where 7%(11) is an estimator of 72. To meet Condition A, 7*(1,) is required to be indepen-
dent from {I(Y; <pu,)li=1,...,K}. Compared to T;(u), one natural advantage of T,
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(1) is that it delivers better performance when K is adequately large. When K is small, our
experience also suggests that the CIs based on T,(u) are no wider than those based on
Ty (w) (e.g. see Table 1).

Since 73, in the D-L method unfortunately does not satisfy Condition A, we propose
another moment estimator as a simple and valid choice of 7%(u),

K‘I{Z(Yi — ) ZU"Z}’O]'

i=1 =1

22 (n) = max

mom

Based on the fact that, under the random-effects model (1), the sign of Y; — p, is inde-
pendent of its magnitude | Y; — g |, foralli=1,...,K, 7 _2(n) always satisfies Con-
dition A.

Condition A is a mild requirement in practice. It is satisfied as long as #*(j1) is only a
function of |Y; — 1 |’s, which are independent of I(Y; <p,)’s under model (1). For
example, a robust alternative to %Iznom( ) is the solution to the equation.

mom

(Y — )’
o? + 72

median{ |i:1,...,K}:cK,

where cx = E[median (Zf, ces ,Zf()] and Z,...,Zx are iid standard normal random
variables. However, if the distribution of 0; is not symmetric at its centre, this condition
may be violated.

Remark 1. Based on the Hodges-Lehmann estimator [28], we consider another test
statistic

Ta()= Y [I{%(w,-(m(nsu)+wj<u>(Yj5u))so}—ﬂ.
1<i<j<K
Let
T = 3 [1{[(vi—;)wi<u)|msm+(Vi—;)wj(u)msu|}so}—ﬂ.

1<i<j<K

Then, under Condition A, we also have

T (o) [{91 (140) [ Y1 < el -+ Wi (ko) | Yie < e} ~ T (o) [{ Y1, -, Yic -

The exact confidence set for [, can be constructed by the same procedure shown in
Theorem 2.2. One typical example corresponding to the weight components proposed in
T>(w) is that
1 Yi—u Yi—n

5 N 1/2
e | P\ + 20N (o 2]

1/2 =0

| =

T5(n) =
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Remark 2. Based on the previous developments, it is clear that any construction of
{wi(w))i=1,...,K} only via {|Y; — u||i=1,...,K} should meet Condition A. Our
method can be conveniently extended to the D-L estimator by considering the test statistic
S
T. =) —— Y, — u},
s(1) ZG? = (Y- )

i=1

whose null distribution can be approximated by

K
T;(n) =2 "{Vi—}.

= o+ (n) 2

Follmann and Proschan (F-P) proposed a similar CI procedure [22]. However, in
approximating the null distribution of the test statistics, the moment estimator t>(j1) is
updated based on permuted samples {(2V; — 1)|Y; — u| + uli = 1,...,K}. This unneces-
sary step introduces nontrivial computational burden compared with our method.

2.4. Numerical computation

In the following, we present relevant numerical algorithms to calculate the proposed Cls.
First, the computation of the exact confidence interval C,,, (7) is straightforward and may
serve as the cornerstone for others. To this end, one may use the following simple algo-
rithm for small Ks.

[Algorithm A]

1) Compute all 2K values in the set {Zf(: (i —1/2)wi, (vi,...,vk) € {0, I}K}.
2) Find the (o/2)th lower quantile of the set, denoted by g, (c«r/2). Let the («/2)th

upper quantile g, («/2) = —q;,(a/2).
3) Compute the CI (i, U,i)> Where the lower and upper bounds are

foyr, = inf [0 2 (i) = g (@/2)]; gy = sup [ To(ie) < gy (@/2)].

The overall computational complexity of the algorithm is in the order of O(2%).
Furthermore, we rewrite the Hodges-Lehmann estimator-based test statistic as

T () = Y10 =) - CEY,

Then, it is easy to see that T}j; (1) is uniformly distributed over the set

{Zivi —@,(vl,...,m’ € {O,I}K},

which is independent of x. Here R;(1t) is the rank of the ith element of

{wi(u)|Y; —p|,i=1,...,K}.
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Therefore, in order to construct the corresponding CI, denoted as CH' we only need to
modify Algorithm A slightly as following:

[Algorithm A”]

1) Compute all 2X values in the set {Zf(: LiVi —@, (v, ..., ) € {0, I}K}.

2) Find the a/2 lower quantile of 2K values in the set, denoted by Qi (/2). Let gy

(2/2) = _CI;IL,L(O‘/Z)-
3) Compute the CI CIIt = (,U,?L, MIJL), where the lower and upper bounds are

it = inf s T () = i1 (/2) |5 Y = sup [+ T (1) < g ol@/2)).

Since the cut-off values {qyy;(e/2), qfy y(/2)} only depend on K, one
may compute and store them in advance for different Ks to further accelerate the
computation.

The construction of the confidence set C; ¢ (11) can be more complicated due to the
fact that the distribution of T} (1) can depend on w. Therefore, we propose the following
algorithm for computing the shortest interval (14,1, iy,¢) containing Cig:

[Algorithm B]

1) For each fixed 11, compute all 2X values in the set
K
QK(M) = {Z Viwi(uf) - SO(M), (Vla LR VK)/ € {07 I}K}a
i=1

where Sy(p) = 0.525(:113’1‘(/’«)-

2) Find the (a/2)th lower quantile of Qg(u), denoted by gqi,(u,/2). Let

Gu(a/2) = — g5 (1 /2).
3) Repeat Steps 1) and 2) over a grid of values u € {u,,m = 1, ..., M} ranging
from min{Y;, ..., Yx}tomax{Y;, ..., Yx}. Compute (i;1,isyu) as

Myr = min [Mm : TW(Mm) = q:ivL(vaa/Z)};
Py = max|ty, : Ti () < qhy(lm a/2)].

The complexity of the algorithm is in the order of O(M2K). The computation becomes
time-consuming even for moderate K. However, when we are only interested in construct-
ing the 95% CI, as commonly the case, the aforementioned algorithm can be greatly
improved. Take K = 9 as an example, we only need to compare the observed test statistic
T () with the smallest 12 values in (1) to determine whether 1 belongs to C;,(0.95).
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Without the loss of generality, we assume that w;(u) < - - <wo(u). It can be

shown that the set ngo,ozs(ﬂ) = flo(u) U fll(,u) U Qz(,u) UQ3(u) contains the smallest
12 values of Qo (), where

2
E
I
—~—
§>
=
+
§>
E
+
§>
E
|
&
E
I
W
S
Ings

Therefore, instead of calculating 2° = 512 different values in Qo(u), one only needs
computing 20 values in 99’0_025(/1) for each given w in constructing the 95% CI. The
rational is that any number not belonging Q9,0‘025(,u) is greater than at least 12 members
from Qo (). For example, (i) + ws(u) — So(e) is always greater than —Sp(u), w;i()
—So(m),i=1,...,5and w;(u) + wr(u) — So(u), G, k) = (1,2),...,(1,5),(2,3),(2,4).
Consequently, in computing the 95% exact CI based on T} (1), one may replace the first
two steps of Algorithm B by

1) For each fixed , compute all values in the set Q K.0.025 (1)

2) Find the [2X x 0.025]th smallest value in Qg g.025(1t), denoted by g%, (i,0.025),
where [x] represents the largest integer no greater than x. Let g, (1, 0.025) = —qj;,;
(1,0.025).

Similar to the quantiles of Tjj; (1), the membership of QKyo.ozs(,u) is independent of u,
and can be calculated for a sequence of Ks and stored in advance. Therefore, the computa-
tional complexity for a specified data-set can be quite low, although the implementation
seems to be involved. Since the cardinality of Q k.0.025 () is much smaller than that of Qg
(1), the computation speed can be greatly improved.

To compare the computational efficiency of our proposed algorithms together with the
permutation procedure (the F-P method [22]), we conduct a small experiment on the
computation speed and the results are shown in Figure 1. The computation of CI based
on T3(u) is substantially faster than others, while the computation of the F-P interval is
the slowest as anticipated. For example, when K = 18, the speed of computing CH is
1959 times faster than the improved Algorithm B for computing C;« based on T ().
This improved Algorithm B is eleven times faster than the original counterpart, which is
still four times faster than computing the F-P interval. Note that the F-P interval can be
obtained by using appropriately modified Algorithm B.

The faster computation speed of our methods comes from two sources: (i) for each given
permutation, we do not need to update #*(1+) while F-P method recalculates 7* each time,
which is a nontrivial computational burden; (ii) since 7°(u) is a constant, we only need to
consider 2K /20 ~ 2K /10 selected permutations instead of all 2X permutations to identify the
2.5 percentile of the null distribution of the test statistics using the improved Algorithm B.
The proposed methods are implemented in a newly developed R package ‘RandMeta.’

Remark 3. When K is large, e.g. greater than 20, the Monte-Carlo simulation can be used
for approximating the quantiles of the appropriate test statistics. For example, g, («/2)
in Algorithm A can be estimated by the («/2)th lower quantile of a large number of cop-
ies of T?, obtained by repeatedly simulating V; ~ Bernoulli(}),i=1,...,K.
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log(elapse time, 2)

8 10 12 14 16 18 20

number of studies

Figure 1. The computational speed of the proposed algorithms: Algorithm A* for C based on T3 (i)
(solid line); improved Algorithm B for C;,« based on T, () (dotted line); Algorithm B for C;,« based on
T>() (dashed line); and modified Algorithm B for the Cl proposed by Follmann—Proschan (dash-dotted
line).

3. Exact inference on generalized fixed-effects and random-effects models

In practice, the Gaussian assumptions are not always satisfied. Furthermore, 1t, may not
be limited to be the population mean. It can be other location measures for a distribution
such as median and other quantiles. By carefully examining the developments in the pre-
vious sections, we note that, to guarantee the validity of C;«, the key requirements are

o {wi(u)|i = 1,..., K} satisfy Condition A;
e I(Y;<p,)~Bernoulli(}), i = 1,...,K

For the validity of CI', one additional requirement is
e I(Y;<pg) and |Y; — u,| are independent, fori = 1,..., K.

Based on these observations, we generalize the proposed exact inference procedure to
more general settings beyond Gaussian models. Specifically, we assume that, indepen-
dently,

Yi~Fii=1,...,K; (12)

where {F;,i =1,...,K} is a set of distributions sharing a common location parameter of
interest

Mo = Mo(fi)~
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For instance, denoting by F;(t) the CDF of F;, u, could be the population mean
(Fi) = [tdF(t), the population median F; '(1/2) or any quantile F; '(p) for given p €
(0,1).

To generalize the model assumptions for the random-effects model, we consider

e Assumption I: Pr(Y; <o) > p, i 1,..., K, foraknown p € (0, 1).
e Assumption IL: Pr(Y; > o) >q, i = 1,..., K, foraknownq € (0, 1).

In order to construct exact confidence sets, we impose the following condition on the
weight components:

e Condition B: There is a set of positive weights {w;(u)| i = 1,..., K} such that
{wi(uo)| i = 1,..., K} are independent of {I(Y; <pu,), I(Y;i> po)i = 1,...,
K}.

Then, we can make the exact inference for 14. Specifically, denote

Then, Condition B and Assumptions I and II imply that

T i (o) [{W1 (o), - -, Wi (1)} 2 Tpin™ (o) [{ Y1, - -, Yic}

and

Z o (10) {1 (o) - Wi (10)} 2 Zgs (o) [{ Y1, ., Y.

Here, ‘2’ indicates stochastic ordering of two random variables; i.e. U2 V means Pr
(U <t) <Pr(V <t) for all t. Based on the previous developments in Section 2, denote the
CDFs of Ty, (n)and Z, (u)given {Y1,..., Yx} by Fy, (-, i) and 1_::;@(‘7 W), respectively.
The exact CI for 1, may be constructed by

(inf[ﬂ : pr*{Tpﬁ/(/’L>7M} Za/z]?sup[ﬂ : ﬁqﬁv*{zqﬁ/(ﬂ)7ﬂ} 205/2]).

Then, the exact CI for p, can be constructed accordingly. We summarize the above
discussions in the following general theorem, which is a generalization of Theorem 2.2 to
more general cases:
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Theorem 3.1. Consider the generalized model (12) with Assumptions I and II. Under Con-
dition B, let Fp,(t,u) = Pr(Tps™ () <t|Yi,..., YK),F;V(Z, w) = Pr(Zg* (1) <
z|Yy,...,Yx)and

py(t,zipm) = 2min{Fpﬁ,*(t7 W), F;w(z, [,L)}

Then, a 100(1 — )% confidence set for i, can be constructed by
[ P A Tpi (1), Zgis(m)s 1} > ]

Similarly, the Hodges-Lehmann estimator-based approach can be generalized under
the following condition:

e Condition C: {|Y; — |, i = 1,...,K} are independent of {I(Y; < pu,), I(Y;>
/’LO)7 i = 17 R K}

Specifically, we let

1

T = 3 1 (00T~ )+ ) (5 - ) <0

Zuw =Y 1[1 (i) (Yi = ) + (1) (¥ — 1)) = 0}

1<i<j<K 2

Tra(w)= > IHI(éifp)*%}M(M)\Yf*uH{I(cfjfp)*%}%(M)IYJ*MI20]

1<i<j<K

and

Zym) = 3 1l{iez1-0 - w0 - u

l=i<j=<K

+{1(5j2 1-9) _%}WJ(W‘YJ — | =0].

The exact confidence set can then be constructed in a similar way of Theorem 3.1. The
details are omitted.

It may be difficult to verify Condition C in some cases. However, one typical example
satisfying it is the random-effects models with symmetrically and continuously distributed
6;, which is a direct generalization of the Gaussian assumptions. Specifically, consider model
(12) and assume that {F;,i = 1,...,K} are continuous and symmetric around 1,, which
is the parameter of interest. It is then easy to verify that, when p = g = 1/2, Assumptions I
and II and Condition B are satisfied.

Remark 4. Under Assumptions I and II, [)W{pr (1), Zgin(10); w} may still be used as the
two-sided exact p value for testing the null hypothesis Hy : (g = p versus Ha @ Lo # W, if
Conditions B is only satisfied for ;1o = L.
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4. Numerical studies
4.1. Simulations

Simulation 1. We first consider the standard random-effects model (1). The number of
studies K is chosen to be 8, 12 or 16. Fori =1,...,K,leto; =1+ 4(i—1)/(K — 1) and
simulate the observations Y; as follows:

0,""N(0725/2); Yl‘ | (9,’,0‘,‘) "‘N(QHO'IZ)

For comparisons, 95% Cls are constructed based on the proposed test statistics T;(u),i =
1,2,3,4, together with several commonly used conventional methods, e.g. the D-L
method and the Sidik-Jonkman method. Note that when K is small, the latter has been
especially recommended (see [29] for some detailed discussions). In addition, the F-P
(permutation) method is also implemented based on test statistics similar to T () and T,
(1), which are denoted as F-P(T,) and F-P(Ty), respectively. For each K, the empirical
coverage levels of the CIs, the average CI lengths, the standard deviation (std) of CI
lengths and the average elapsed time (in secs) from 5000 simulated data-sets are reported
in Table 1.

As K increases, the CIs become narrower and the stds of CI length become smaller as
expected. But almost all conventional methods fail to achieve the desired level of coverage
95%, except the S-J method for K = 16. When K = 8, most of the empirical coverage prob-
abilities are below 90%. Instead, our proposed methods can always achieve the desired
coverage level for all the cases. Among our proposed methods, T4(1t) performs the best
with the shortest CIs and smallest stds of CI length. (The std for T4(i) is smaller than
that for the D-L method when K = 16). T5(u) is conservative with the actual coverage lev-
els being around 96%. Besides, T, (1) performs better than T;(u) when K = 12, 16, which

Table 1. The empirical coverage probabilities (Cov prob) of the 95% Cls, the average Cl lengths
(Length), the standard deviation of Cl lengths (std) and the average elapsed time in seconds (Avg.t) by
different methods in Simulation 1. (T;: the proposed exact methods based on T;(u),i = 1,2,3,4;D-
L: DerSimonian-Laird method; HE: Hedges method; H-S: Hunter-Schmidt method; S-J: Sidik-
Jonkman method; ML: maximum-likelihood estimator; REML: restricted maximum-likelihood estimator;
EB: empirical Bayes estimator; F-P(T;): Follmann-Proschan permutation method based on T;(u),
i = 2or4).

K=8 K=12 K=16
Method Covprob Length(std) avgt Covprob Length(std) Avgt Covprob Length(std) Avg.t

D-L 0.887 5.90(1.88)  0.006 0.916 4.96 (1.24) 0.006 0.923 4.32(0.93) 0.005
HE 0.861 5.87 (2.11)  0.005 0.894 4.93 (1.42) 0.005 0.904 4.32 (1.06) 0.006
H-S 0.848 5.15(1.56)  0.005 0.892 4.57 (1.11) 0.005 0.902 4.07 (0.86) 0.006
S-J 0.934 6.54 (1.59)  0.005 0.946 5.43 (1.04) 0.005 0.953 4.71(0.77) 0.006
ML 0.848 5.40(1.81)  0.011 0.894 4.72 (1.19) 0.011 0.907 4.16 (0.89) 0.011
REML 0.888 591(1.89) 0.011 0.915 4.99 (1.22) 0.011 0.922 4.33 (0.90) 0.012
EB 0.890 6.00 (1.88)  0.010 0.916 5.03 (1.23) 0.010 0.923 4.36 (0.90) 0.011
Ty 0.954 9.16 (3.22)  0.010 0.950 7.48 (2.60) 0.042 0.950 6.22 (2.00) 0.763
T, 0.954 9.16 (3.22)  0.033 0.950 7.01(2.18) 0.381 0.950 5.90(1.79) 0.901
T3 0.962 835(239) 0.026 0.959 6.18 (1.44) 0.026 0.962 5.23(1.07) 0.018
Ty 0.955 7.79(220) 0.034 0.950 5.77 (1.28) 0.381 0.951 4.80(0.91) 0.892
F-P( T3) 0.953 835(270) 0.739 0.952 6.48(1.88) 11.8 0.950 5.48(1.52) 3120

F-P( T4) 0.951 7.75(2.27) 0745 0.951 591(1.48) 121 0.953 490 (1.11) 3193
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indicates the advantage of using the asymptotically optimal weights even with a moderate
number of studies.

In addition, although the F-P permutation CIs can also achieve the desired level, Ty(u)
has smaller sample std of the CI length suggesting more stable performance. When K =
12, 16, T4() has narrower CIs compared with the F-P method. More importantly, it is
obvious that our proposed methods (T;(),i = 1,2,3,4) are much faster than the F-P
method, which presents an important practical advantage.

Simulation 2. In the second set of simulations, K again is chosen to be 8, 12 or 16, and for
i=1,...,K,0;,=1+4(i —1)/(K — 1). The observations Y; are then simulated as fol-
lows:

0;~1t,;Y; | (0;,0) ~N(9,-,orf),

where t, is the Student’s t-distribution with degree of freedom 2. Since the treatment
effects are generated from a ¢-distribution with much heavier tails than Gaussian distribu-
tion, the robustness of various methods against outlier study at the tail is of the primary
interest. As in the first set of simulation, 5000 data-sets are simulated and 95% ClIs are
obtained for each K. Results including the empirical coverage levels and the average
lengths the CIs are reported in Table 2.

Among the conventional methods, the S-J method is the only option that can achieve
the desired coverage level. However, it is overly conservative and the actual coverage levels
are above 97% even for K = 16, which results in unnecessarily wider CIs. Among our pro-
posals, in terms of coverage level and the interval length, T,(x) and T5(u) perform the
best when K = 8 and K = 12, 16, respectively. Especially, when K = 12 and 16, T5(u) can
achieve 95% coverage level with ClIs narrower than the S-J’s, and its std’s of CI length are
smaller than all other methods’. Compared to the F-P’s CIs, T5(it)’s CIs have better cover-
age for all cases but also wider length except for K = 16.

Table 2. The empirical coverage probabilities (Cov prob) of the 95% Cls, the average Cl lengths
(Length), the standard deviation of Cl lengths (std) and the average elapsed time in seconds (Avg.t) by
different methods in Simulation 2. (T;: the proposed exact methods based on Ti(u),i = 1,2,3,4; D-
L: DerSimonian-Laird method; HE: Hedges method; H-S: Hunter-Schmidt method; S-J: Sidik-
Jonkman method; ML: maximum-likelihood estimator; REML: restricted maximume-likelihood estimator;
EB: empirical Bayes estimator; F-P(T;): Follmann-Proschan permutation method based on T;(u),
i = 2or4).

K=8 K=12 K=16
Method Covprob Length(std) avgt Covprob Length(std) Avgt Covprob Length(std) Avg.t

D-L 0.917 4.62(3.88)  0.006 0.923 3.87 (2.98) 0.006  0.929 3.43 (2.49) 0.006
HE 0.898 4.81(4.14)  0.006 0.904 4.00 (2.87) 0.006 0914 3.50(2.37) 0.006
H-S 0.896 412(3.19)  0.006 0.902 3.60 (2.66) 0.006 0917 3.25(2.30) 0.005
S 0.971 5.68 (3.88)  0.006 0.971 4.73 (2.66) 0.006  0.974 4.14 (2.18) 0.005
ML 0.893 424 (3.78) 0.012 0.906 3.63 (2.71) 0.012 0.917 3.27 (2.26) 0.010
REML 0.914 4.64 (4.05) 0.011 0.921 3.86 (2.83) 0.012 0.930 342 (2.33) 0.011
EB 0.918 4.79 (4.07)  0.010 0.923 3.98 (2.83) 0.011 0.932 3.50(2.33) 0.009
Ty 0.952 7.09 (499) 0.010 0.941 5.14 (3.63) 0.048  0.946 4,02 (1.43) 0.816
T, 0.952 7.09 (4.99) 0.038 0.942 4.89 (1.73) 0418  0.948 4.02 (1.34) 1.35
T; 0.962 6.86 (4.43)  0.031 0.952 4.71 (1.46) 0.025 0.953 3.75 (1.00) 0.023
T4 0.953 6.29 (4.26)  0.044 0.946 4.54 (2.45) 0416 0,948 3.81(1.98) 1.31
F-P( T3) 0.951 6.45 (4.09)  0.857 0.940 452(1.87) 137 0.944 3.74(1.20) 3626
F-P( T4) 0.951 6.18 (4.26)  0.833 0.945 451(3.02) 125 0.952 3.78(2.21)  364.1
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In conclusion, the simulation results demonstrate that when K is small, most conven-
tional methods almost constantly fail to achieve the nominal coverage level except S-J
method, whose actual coverage level can be erratic: sometimes substantially higher and
sometimes lower than the nominal level. In contrast, the empirical performance of the
proposed exact Cls is much more reliable in terms of both coverage level and the interval

length.

4.2. Real data example: effect of statins in cholesterol reduction

Statins are the first line choices for reducing high blood cholesterol level, which increases
the cardiovascular risk. There are ample evidences on the benefit of statins for patients
with a history of cardiovascular disease. However, it is not entirely clear whether statins
should be used as the primary prevention for people without history of cardiovascular dis-
ease. A systematic review is conducted to evaluate both the potential benefit and risk of
statins for the primary prevention. Eighteen randomized controlled studies with 56,934
patients comparing statins with usual care are identified. The details of those studies are
reported in [30]. Here, we focus on the meta-analysis for estimating the effect of statins in
reducing the cholesterol level among participants without history of cardiovascular dis-
ease. Fourteen studies contributed data on measurements of total cholesterol level. The
study specific results from these 14 studies are presented in Table 3. In the meta-analysis,
we let Y; be the observed group difference in changes of total cholesterol level during the
follow-up. The within-study variance o7 can be calculated from the reported 95% CI
reported in [30]. Because of the clear study heterogeneity, we adopt the random-effects
model (1). The parameter of interest, 1, presents the mean difference in the total choles-
terol level between statin and usual care groups. We first construct the 95% equal-tailed
ClIs of 14 based on D-L method. The resulting CI is (—1.36, —0.74) with a point estimator
of —1.05 indicating highly statistically significant treatment effect. Here, the point esti-
mate is the p value that yields the largest p value for testing Hy : 1y = i, i.e. the least sig-
nificant testing result. When there are multiple s with the same largest p value, the point
estimator is set to be their average. We then construct the proposed exact Cls, which are

Table 3. The average change in total cholesterol levels by treatment arm and the observed treatment
effects for 14 randomized clinical trails in the statins example.

Statin group Control group Mean difference

Study Mean (SD) Mean (SD) Mean (95% Cl)

MEGA study —0.72 (0.8) —0.14 (0.8) —0.58 (—0.62, —0.54)
ASPEN 2006 —0.51(0.8) —0.04 (0.8) —0.47 (—0.54, —0.40)
CAIUS 1996 —1.01 (1.04) 0.18 (0.87) —1.19 (—1.41, —0.97)
CARDS 2008 —1.24 (0.84) —0.07 (0.87) —1.17 (—1.23, —-1.11)
CELL A 1996 —0.89 (0.86) —0.18 (0.72) —0.71 (—0.92, —0.50)
CELL B 1996 —0.86 (2.01) —0.07 (0.64) —0.93 (—1.31, —0.55)
CERDIA 2004 —1(0.86) 0.14 (0.85) —1.14 (—1.39, —0.89)
Derosa 2003 —1.63(0.51) —0.83 (0.58) —0.80 (—1.11, —0.49)
HYRIM 2007 —0.56 (0.12) 0(0.11) —0.56 (—0.61, —0.51)
JUPITER 2008 —1.1(0.8) 0.8 (0.8) —1.90 (—1.92, —1.88)
KAPS 1995 —1.5 (0.66) 0 (0.66) —1.50 (—1.63, —1.37)
METEOR 2010 —2.02 (0.77) 0(0.7) —2.02 (—2.13, —-1.91)
PHYLLIS 2004 —1.1(0.07) —0.13 (0.06) —0.97 (—0.98, —0.96)

( ( (=

PREVEND IT 2004 —-1(N —0.2 (1.05) —0.80 (—0.94, —0.66)
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Table 4. The point estimates (Est) and 95% Cls for the parameter of interest in real data examples
under the Gaussian random-effects model.

Est (95% Cl)
Method Statins BCG vaccine
D-L —1.05(—1.36, —0.74) 0.49 (0.26, 0.91)
Ti(w) —1.05 (—1.90, —0.56) 0.78 (0.23,1.01)
To(p) —0.96 (—1.19, —0.58) 0.50 (0.23, 1.01)
T3(w) —0.97 (—1.35, —0.76) 0.49 (0.23, 1.01)
Ty(i) —1.05 (—1.34, —0.76) 0.49 (0.24, 1.00)

reported in Table 4. The exact CIs based on T5(u) and Ty () are almost identical to that
derived from the D-L method. However, the validity of our proposals does not rely on the
large sample approximation with 14 studies.

4.3. Real data example: efficacy of BCG vaccine

BCG, or Bacille Calmette-Guerin, is a vaccine for tuberculosis (TB) prevention. In the
United States, BCG vaccination is currently recommended for certain groups of people,
such as children who have a negative tuberculin skin test and who are exposed to infection
risk. On BCG’s efficacy, more than one thousand articles or abstracts have been published.
To combine the information from multiple sources, [6] conducted a meta-analysis using
the random-effects model with D-L method. However, the number of studies involved is
relatively small and therefore the asymptotical inference result may not be reliable. In this
section, the proposed methods in Sections 2 and 3 are applied to make exact inferences.

Specifically, we consider eight independent 2 x 2 tables (see Table 5), formed by pairs of
independent binomials (X, Xi0),i = 1,...,8, representing the number of TB incidence in
the treatment (BCG-vaccinated) and control (BCG-nonvaccinated) groups. Denote the cor-
responding sample sizes as (N;;, Njp) with the underlying true event rates (7,1, ;). For ith
study, the log-transformation of the study specific odds ratio (OR) is defined as

0, = log{iml/(1 — ml)}
7o/ (1 — 7o)
and the observed log-OR is

L

Xio/ (Nio — Xio)

Table 5. The number of TB cases and group size by treatment arm in the BCG vaccine example. See
detailed data sources in [6].

BCG-vaccine group Control group

Study #0of TB Ny #of TB No

Canada 6 306 29 313
N USA 4 123 1 139
Chicago 17 1716 65 1665
Georgia | 5 2498 3 2341
Georgia l 27 16,913 29 17,854
UK 62 13,598 248 12,867
South Africa 29 7429 45 7277

Madras 505 88,391 499 88,391
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Based on large sample approximations, we first apply the random-effects model (1)
assuming both Y;|6; and 6; are Gaussian random variables. For ith study, the within-
study variance o7 is set as its consistent estimator.

, 1 S
e B R
" Xa Na—Xa Xo Nio—Xo

We first construct the 95% equal-tailed Cls of 1, which is the expectation of the log-
transformed study-specific OR, using the conventional D-L and our proposed methods.
Then, we obtain the 95% CIs of exp(u,), which is the median of the distributions for
study-specific OR’s, together with its point estimate. If the upper end of the constructed
CI is less than 1, we may conclude that the BCG vaccine significantly reduces the risk of
TB. The results are also reported in Table 4. The upper bound of the CI based on D-L
method is apparently lower than others, which implies that D-L method may overestimate
the significance of its efficacy. Among the proposed test statistics, T4(t) yields the nar-
rowest CI with an upper end of 1.00. Furthermore, the CIs are closely related to the two-
sided test Hy : uy = p versus Hy @y # p as we discussed before. The test statistics and
corresponding p value for different 1 are shown in Figure 2.

In the BCG example, we are especially interested in testing the null hypothesis that
there is no treatment effect, that is, the random vector (7;;, 7rj9) has the same distribution
as that of (7o, 77;1). Note that all the trials in the current example are approximately bal-
anced with n;; & nj, implying that under the aforementioned null hypothesis,

Pr(Y;<0)>1/2 and Pr(Y;>0)>1/2.

Thus, we can apply the development in Section 3 to perform the exact test for
this hypothesis without Gaussian assumptions for either Y;|6; or 6;. We consider the test

ul T2 T3 T4

Figure 2. Based on T7 (), To(1), Ts(ie) and T4(w), the p values (first row) and values of test statistics
(second row) corresponding to different values of log(OR) for the BCG meta-analysis under Gaussian
random-effects model.
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statistics { T (0), Zg3(0) } with two sets of weights.
w; = Ui_lor nil/z, fori=1,...,K.

The resulting p values are 0.078 and 0.106, respectively. We have also performed the
tests based on D-L method and T;3(u) assuming the commonly used Gaussian random-
effects model for comparisons. The p value is 0.024 based on D-L method and 0.047 based
on T3(u). Therefore, after relaxing the Gaussian assumption, the significance level for the
efficacy of BCG vaccine reduces from approximately 5% to 10%.

5. Discussion

In this paper, we have proposed the exact inference procedures for fixed-effects and ran-
dom-effects models in meta-analysis. The proposed Cls guarantee the coverage probabili-
ties, while many other asymptotic methods including the commonly used D-L method
may be invalid, especially when the number of studies is not large. Our proposals have a
tight relationship with the nonparametric inference procedure by [31], whose validity
does not require parametric distribution assumption for 6; but is only justified asymptoti-
cally.

The normal assumption of 6; may be restrictive and in general is difficult to verify espe-
cially when K is small. The proposed method slightly alleviates this concern by ensuring
the validity of the inference procedure when the distribution of 6; is symmetric at (1. On
the other hand, when K is small and the information is limited, restrictive parametric
assumptions are not avoidable for effectively summarizing the data via a statistical model.
For example, even if all the o; = 0 and we observed 0;’s precisely, the statistical inference
still requires a parametric model if K is small. Therefore, while we are making statistical
inference under necessary model assumptions, we need to be cautious in interpreting the
results when K is small.

For smaller K, say K < 10, the exact method can be conservative and generates wider
CIs than the D-L method. In order to obtain narrower Cls, we propose specific choice of
weights in T, (1) and Ty (u), together with Ty (i) (more specifically, T5()). As demon-
strated in the simulation studies, T5() and Ty(jt) can provide narrower CIs maintaining
at least the same coverage levels of T)(u) and T,(u)-based Cls. Besides, T5(u) and
T4()-based Cls are shown to be robust, although they can be a little more conservative
in some cases.

The computation is a big obstacle for using many exact inference methods in practice.
To construct the exact Cls, fast and easy-to-implement computational algorithms are pro-
posed. Although the Follmann-Proschan’s permutation Cls can perform similarly as
T4(w)-based Cls, our methods can significantly reduce the computational burden, espe-
cially when K is more than 10. We recommend to use our proposed methods for K
between 6 and 20 (especially, when K < 10) or in the presence of substantial study hetero-
geneity, e.g. I, > 50%. Note that the smallest two-sided p value of the proposed method is
1/2K-1 and we need K > 6 to generate significant result at the level of 0.05.

For the Behrens-Fisher problem, it has been shown that there is no exact test that is
also the most powerful for all values of the variances [32]. We anticipate the same



20 (&) S.LIVETAL

statement will still hold for the inference problems under the more complicated settings
we considered. Although it is out of the scope of the current article, it will be of interest to
investigate whether the statement is correct in future research. Regardless, our proposals
here provide a simple and valid inference procedure for general meta-analysis problems
that are often encountered in medical research.
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Appendices
Appendix A. Proof of Theorem 2.1

Proof. One the one hand, Pr{T,, (i) <t} = F}(t). Define the inverse function,
F;'(v) = sup{t: F(t) <v},v € [0,1];

which implies F;{F;'(v)} <v. Thus, we have Pr[F;{T,(1o)} <% =Pr
{Tw(wo) <F,71 (%)} = Fi{F; (%)} < %. On the other hand, for Pr{T, (1) >t} =S,
(t), we may define

St (v) = inf{t: S, (t) <v},ve0,1],

and Pr[S; {T,(1to)} <@/2] = Pr[Tu(po) = S}, ' (@/2)] = S, {S;, "' }(@/2)} <e/2.
As a result, Pr(pg € Cuo) =1—Pr(ug ¢ Cyo) =1 — Pr[Fi{T,(1o)} </2] — Pr
(Si{Tw(no)} <a/2]>1—a/2—a/2=1—a.

Appendix B. Proof of Theorem 2.2
Proof. Based on the proof of Theorem 2.1, on the one hand, let Fj(t,u,) =Pr
{T" (ko) =tY1,..., Y} = Pr{T3 " (1o) <t|i1 (i), - .-, Wi(1to)} and  E;7H (v, po) =
sup{t : F;*(t, ;o) <v}, forve [0,1].  Since {I(Y; <pyg),...,I(Yk <po)} and
{w1(g), ..., wk(ro)} are independent,
* o, ~
Pr|Pr{Ty" (10) = Tlkto)} = 5 |1 (110), - wic(1to)|
o .
— Pr[Fy {Ta (o) 1o} = 5 W1 (1o). - (o)

= Pr[Tw(Mo) <F,! <%7Mo> wi (i), - - 71’AVK(/L0):|
T (@ o
:FW[FW 1(57#0)7#0} =< §:|
On the other hand, Pr [Pr{Tw*(lL()) > T (o)} < §wWi(to)s - -, WK(uO)]

the same arguments for Theorem 2.1, Pr[uy € Ciawi(ig), - - -, Wi ()]
implies that Pr{p, € Cpa} >1 — «.
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