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ABSTRACT

Meta-analysis with fixed-effects and random-effects models provides
a general framework for quantitatively summarizing multiple
comparative studies. However, a majority of the conventional
methods rely on large-sample approximations to justify their
inference, which may be invalid and lead to erroneous conclusions,
especially when the number of studies is not large, or sample sizes of
the individual studies are small. In this article, we propose a set of
‘exact’ confidence intervals for the overall effect, where the coverage
probabilities of the intervals can always be achieved. We start with
conventional parametric fixed-effects and random-effects models, and
then extend the exact methods beyond the commonly postulated
Gaussian assumptions. Efficient numerical algorithms for
implementing the proposed methods are developed. We also conduct
simulation studies to compare the performance of our proposal to
existing methods, indicating our proposed procedures are better in
terms of coverage level and robustness. The new proposals are then
illustrated with the data from meta-analyses for estimating the efficacy
of statins and BCG vaccination.
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1. Introduction

Meta-analysis has been widely used to combine information from multiple studies, espe-

cially in medical research. One important objective is to make inference about the overall

effect often relative to a standard care of therapy. The fixed-effects and random-effects

models, often coupled with the DerSimonian and Laird (D-L) approach [1], are two most

commonly used statistical models in meta-analysis. However, the D-L method is subopti-

mal and may lead to too many statistically significant results when the number of studies

is small and there is moderate or substantial heterogeneity [2]. Depending on specific set-

tings, the coverage probability of the confidence interval (CI) by the D-L method may fail

to achieve the target level even when the number of studies is as high as 20–35 [2,3]. The

key reason is that the validity of the CI depends on large-sample approximation of the

combined point estimator. The goal of this paper is to propose a family of test statistics

for constructing exact CIs under fixed-effects and random-effects models, that are valid
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regardless of the number of studies. The validity of the proposal does not rely on large-

sample approximations and the corresponding coverage probabilities can always achieve

the specified nominal level.

This research is partially motivated by need of evaluating the efficacy of BCG vac-

cine in the prevention of tuberculosis. Though the use of BCG has a long history with

billions of doses given, there has been an on-going debate on its efficacy [4,5]. Multiple

clinical studies are identified for meta-analysis and the D-L approach was used to

combine the information [6]. However, given the limited number of studies, the results

based on the D-L method may not be reliable and hence more robust statistical

inference is wanted.

Indeed, various CI procedures aiming to correct the under-coverage of the D-L

method for random-effects model have been developed recently. Likelihood approaches,

such as constructing CIs by profile likelihood [7] and by the restricted maximum likeli-

hood method [8], are considered. Modifications are proposed to account for the

between-study variability, e.g. [9], and the Student’s t-distribution is also used [10].

Another approach is to centre the CI at the fixed-effects estimate with a robust variance

estimator [11]. In addition, there are some higher order asymptotical inference proce-

dures such as the Bartlett-type correction for the likelihood ratio statistics [12]. How-

ever, all these inferences are still asymptotic with respect to the number of studies. More

recently, confidence distribution (CD) [13–15] is proved to be a powerful vehicle in

developing new meta-analysis methods [16–18]. But again, these CD-based methods are

asymptotic procedures.

Some exact methods, including Tian et al.’s method of combining CIs [19] and Liu

et al.’s method of combining p value functions [20], have been developed. Mainly focusing

on meta-analysis of rare events, both of these methods can be unified under the general

framework of combining CDs [21]. Nevertheless, they are developed under the setting of

fixed-effects models. We are interested in developing an exact inference procedure for

both fixed-effects and random-effects models without relying on exact test for each study.

The most related work is the permutation method proposed by Follmann and Proschan

[22]. However, its implementation is slow except for very small number of studies.

The problem considered here is also closely related to the well-known Behrens-Fisher

(B-F) problem, i.e. comparing the means of two Gaussian distributions with unknown

variances. Specifically, the Gaussian fixed-effects model in Section 2 is directly related to

the B-F problem, and the random-effects model is even more complicated. Compared to

the exact solutions to the B-F problem, which need a second stage sampling [23–25], our

proposed solution is much more direct and simpler. In addition, our method can also be

extended beyond the fixed-effects model and even the parametric distribution

assumptions.

In the rest of the article, we first propose procedures of constructing the exact CIs

for conventional Gaussian fixed- and random-effects models. We show that the cover-

age probabilities of the resulting CIs can always achieve the target level, regardless of

the number of studies. Some easy-to-implement computation algorithms are provided

for constructing the corresponding exact confidence intervals. Then, we consider gen-

eralized fixed- and random-effects models, where the Gaussian assumptions can be

relaxed. Lastly, we report results from the conducted simulation studies and two real

life meta-analyses.
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2. Exact inference with Gaussian fixed-effects and random-effects models

2.1. Model settings and review of the D-L method

Suppose that we have K independent studies and the ith study has a summary statistic

(observed treatment effect) Yi for the true study-specific treatment effect ui. The standard

meta-analysis random-effects model assumes that, independently,

Yi j ui»N ui; s
2
i

� �

; ui »N m0; t
2

� �

; i ¼ 1; . . . ;K; (1)

which is equivalent to the parametric model

Yi»N m0; s
2
i þ t2

� �

; i ¼ 1; . . . ;K: (2)

Here, m0 is the overall effect, s
2
i is the within-study variance and t2 is the between-study

variance which is generally unknown.

The D-L method [1] is to estimate m0 by

m̂DL ¼

PK
i¼1ŵiYi
PK

i¼1ŵi

;

where ŵi ¼ ðs2
i þ t̂

2

DLÞ
�1 is the inverse-variance weight, t̂2DL is a moment estimate of t2,

given by

t̂DL ¼ max

PK
i¼1s

�2
i Yi � m̂Fð Þ2

� �

� K � 1ð Þ
PK

i¼1s
�2
i �

PK
i¼1s

�4
i =
PK

i¼1s
�2
i

; 0

( )

;

and

m̂F ¼

PK
i¼1s

�2
i Yi

PK
i¼1s

�2
i

is an initial estimator for m0. Given Yi; sið Þ j i ¼ 1; . . . ;Kf g, the normal approximation

m̂DL � m0ð Þ»N 0; 1=
PK

i¼1ŵi

� �

leads to 100 1� að Þ% CI for m0,

m̂DL � za=2
X

K

i¼1

ŵi

 !�1=2

; m̂DL þ za=2
X

K

i¼1

ŵi

 !�1=2
2

4

3

5

where za=2 is the a=2 upper quantile of the standard normal. The validity of this CI relies on

the large-sample approximations with the assumption that the number of studies, K, goes to

infinity. When K is small, t̂2DL can be inaccurate but the D-L method does not account for its

randomness. See also [26] and [27] for insightful discussions on related challenges.

In the remaining of this section, we construct the exact CIs for m0 by inverting appro-

priate exact tests. Note that when t2 ¼ 0, the random-effects model (1) degenerates into

the simple fixed-effects model, independently,

Yi»N m0; s
2
i

� �

; i ¼ 1; . . . ;K: (3)
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As a special case of random-effects models, the fixed-effects model requires that

u1 ¼ � � � ¼ uK ¼ m0 and the usual estimate of m0 is simply m̂F . It is not difficult to see

that all proposed CIs for m0 in this article are valid under both fixed- and random-effects

models. We shall avoid repeating this observation when each individual CI is discussed

later. Throughout the developments, we let Vi»Bernoulli 1
2

� �

; i ¼ 1; . . . ;K:

2.2. Proposed test statistics and exact CIs for m0

Motivated by the ‘exact’ hypothesis testing procedure on median, we propose to consider

the test statistics.

Tw mð Þ ¼
X

K

i¼1

wi I Yi�mð Þ �
1

2

� �

; (4)

which is essentially a weighted sign test statistic. Here, w1; . . . ;wKf g is a set of positive

weights given a priori, and I ∙ð Þ is the indicator function. Model (2) implies that

Pr Yi�m0ð Þ ¼ 0:5, and Tw m0ð Þ, at the true value m0, is a weighted sum of K independent

Bernoulli random variables. Thus, we can define

T�
w ¼

X

K

i¼1

wi Vi �
1

2

� �

: (5)

Immediately, we have the key equivalence that Tw m0ð Þ has the same distribution of T�
w,

i.e.

Tw m0ð Þ»T�
w (6)

which leads to the construction of the exact CI for m0 shown in the following theorem.

The rigorous justification is provided in the Appendix A.

Theorem 2.1. For the random-effects model (1), consider the test statistic Tw mð Þ (4) and
the random variable T�

w (5). Define

pw tð Þ ¼ 2min F�
w tð Þ; S�w tð Þ

� �

;

where F�
w tð Þ ¼ Pr T�

w� t
� �

and S�w tð Þ ¼ Pr T�
w� t

� �

. Then, the 100 1� að Þ% CI for m0 can

be constructed as

Cwa ¼ m : pw Tw mð Þf g>a½ � (7)

Here, pw Tw mð Þf g can serve as the exact two-sided p value for testing H0 : m0 ¼ m ver-

sus HA : m0 6¼ m: Operationally, Cwa can be constructed by assembling all m’s over a

dense grid with the corresponding p value, pw Tw mð Þf g; greater than the significance level

a. Note that, based on (6), F�
w Tw m0ð Þf g is stochastically greater than or equal to the uni-

form distribution U(0, 1). Then, F�
w Tw mð Þf g may serve as the exact p value in testing the
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null hypothesis H0 : m0�mversus the alternative hypothesis HA : m0<m and the lower

end of the one-sided 100 1� a=2ð Þ% CI for m0 can be found by inverting this exact test as

mwL ¼ inf m : F�
w Tw mð Þf g�a=2

� 	

: Similarly, S�w Tw m0ð Þf g is the exact p value in testing

H0 : m0 �m versus HA : m0>m and can be used to generate the upper end of the one-

sided CI of m0 as mwU ¼ sup m : S�w Tw mð Þf g�a=2
� 	

: Therefore, based on these two one-

sided exact CIs, we have an alternative expression of Cwa as (mwL;mwU).

Furthermore, since Tw m0ð Þ has a discrete distribution, pw Tw mð Þf g is a step function

with respect to m. In order to construct non-equal tailed CIs, which are potentially nar-

rower than equal tailed CIs, the p value function pw tð Þ may be replaced by

pgw tð Þ ¼ min
F�
w tð Þ

g
;
S�w tð Þ

1� g

� �

;

for some g 2 0; 1ð Þ:
Although the validity of the proposed CIs does not depend on the choice of

w1; . . . ;wKf gin Tw mð Þ, the distribution of Tw m0ð Þ does. It is reasonable to consider the

(asymptotically) optimal weights, which tend to generate relatively narrow CIs. Specifi-

cally, for the fixed-effects model (3), we propose to use the inverse of standard deviation

as the study-specific weight wi ¼ s�1
i , and define

T1 mð Þ ¼
X

K

i¼1

s�1
i I Yi �mð Þ �

1

2

� �

This is intuitive in that less informative studies are down-weighted. Compared to fixed-

effects model, random-effects model (1) with t2 is widely used to deal with the study het-

erogeneity in meta-analysis. As to the cases with t2 ¼ t20 known, we can use

wi ¼ s2
i þ t20

� ��1
2; i ¼ 1; . . . ;K: (8)

When t2 is unknown, we may replace t20 in (8) by an estimator of t2, which leads to an

extension of Tw with data-dependent weight components.

2.3. Extended test statistics and the corresponding exact confidence sets for m0

Similarly to previous developments, we first introduce the exact inference procedure in a

general form, and then discuss some specific choices of the test statistics. Consider an

extended version of Tw,

Tŵ mð Þ ¼
X

K

i¼1

ŵi mð Þ I Yi�mð Þ �
1

2

� �

; (9)

where ŵi mð Þji ¼ 1; . . . ;Kf g are positive and data-dependent. In order to construct exact

confidence sets based on Tŵ mð Þ, we impose the following condition:

� Condition A: Each component from the set of weights ŵi m0ð Þji ¼ 1; . . . ;Kf g is

independent of I Yi �m0ð Þf ji ¼ 1; . . . ;Kg.
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Then, we let

T�
ŵ mð Þ ¼

X

K

i¼1

ŵi mð Þ Vi �
1

2

� �

: (10)

Under Condition A, we have the following key result of equivalence in distribution:

Tŵ m0ð Þ ŵ1 m0ð Þ; . . . ; ŵK m0ð Þf g»Tŵ
�
m0ð Þj j Y1; . . . ;YKf g

which is followed from the fact that

I Yi�m0ð Þ»Bernoulli
1

2


 �

; i ¼ 1; . . . ;K:

The construction of exact confidence sets of m0 is then proposed and justified in the

following theorem:

Theorem 2.2. For the random-effects model (1), consider the test statistic Tŵ mð Þ(9) and
the random variable T�

ŵ mð Þ (10). Suppose that ŵi mð Þji ¼ 1; . . . ;Kf g satisfy Condition A.

Let F�
ŵ t;mð Þ ¼ Pr Tŵ

� mð Þ� t jY1; . . . ;YKð Þ; S�ŵ t;mð Þ ¼ Pr Tŵ
� mð Þ� t jY1; . . . ;YKð Þ; and

define

pŵ t;mð Þ ¼ 2min Fŵ
� t;mð Þ; S�ŵ t;mð Þ

� �

:

Then, the 100 1� að Þ%confidence set of m0 can be constructed as

Cŵa ¼ m : pŵ Tŵ mð Þ;mf g>a½ �: (11)

The rigorous proof of Theorem 2.2 is given in Appendix B. Here, pŵ Tŵ mð Þ;mf g may

also serve as the exact two-sided p values for testing H0 : m0 ¼ m versus HA : m0 6¼ m:
Since Tŵ mð Þ is not guaranteed to be monotone in m, the generated confidence set might

be a union of disjointed intervals. In practice, it is common to report the conservative

intervals (mŵL;mŵU), where

mŵL ¼ inf m : Fŵ
� Tŵ mð Þ;mf g�

a

2

h i

;mŵU ¼ sup m : Sŵ
� Tŵ mð Þ;mf g�

a

2

h i

:

Note that (mŵL;mŵU) is the shortest interval containing Cŵa.

More specifically, we may modify the fixed weights (8) by using the asymptotically

optimal weights,

T2 mð Þ ¼
X

K

i¼1

s2
i þ t̂

2
mð Þ

� ��1
2 I Yi�mð Þ �

1

2

� �

;

where t̂2 mð Þ is an estimator of t2. To meet Condition A, t̂2 m0ð Þ is required to be indepen-
dent from I Yi �m0ð Þf ji ¼ 1; . . . ;Kg. Compared to T1 mð Þ, one natural advantage of T2
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mð Þ is that it delivers better performance when K is adequately large. When K is small, our

experience also suggests that the CIs based on T2 mð Þ are no wider than those based on

T1 mð Þ (e.g. see Table 1).
Since t̂2DL in the D-L method unfortunately does not satisfy Condition A, we propose

another moment estimator as a simple and valid choice of t̂2 mð Þ,

t̂
2
mom mð Þ ¼ max K�1

X

K

i¼1

Yi � mð Þ2 �
X

K

i¼1

s2
i

( )

; 0

" #

:

Based on the fact that, under the random-effects model (1), the sign of Yi � m0 is inde-

pendent of its magnitude jYi � m0 j , for all i ¼ 1; . . . ;K , t̂mom2 mð Þ always satisfies Con-
dition A.

Condition A is a mild requirement in practice. It is satisfied as long as t̂2 mð Þ is only a
function of jYi � m0 j ’s, which are independent of I Yi�m0ð Þ’s under model (1). For

example, a robust alternative to t̂2mom mð Þ is the solution to the equation.

median
Yi � mð Þ2

s2
i þ t2

j i ¼ 1; . . . ;K

� �

¼ cK ;

where cK ¼ E median Z2
1 ; . . . ;Z

2
K

� �� 	

and Z1; . . . ;ZK are i.i.d standard normal random

variables. However, if the distribution of ui is not symmetric at its centre, this condition

may be violated.

Remark 1. Based on the Hodges–Lehmann estimator [28], we consider another test

statistic

THL mð Þ ¼
X

1� i� j�K

I
1

2
ŵi mð Þ Yi�mð Þ þ ŵj mð Þ Yj �m

� �� �

� 0

� �

�
1

2

� 


:

Let

T�
HL mð Þ ¼

X

1� i� j�K

I Vi �
1

2


 �

ŵi mð Þ jYi �m j þ Vi �
1

2


 �

ŵj mð Þ jYj �m j

� 


� 0

� �

�
1

2

� 


:

Then, under Condition A, we also have

THL m0ð Þ ŵ1 m0ð Þ Y1�mj j; . . . ; ŵK m0ð Þ YK �mj jf g»T�
HL m0ð Þ

�

�

�

� Y1; . . . ;YKf g:

The exact confidence set for m0 can be constructed by the same procedure shown in

Theorem 2.2. One typical example corresponding to the weight components proposed in

T2 mð Þ is that

T3 mð Þ ¼
X

1� i� j�K

I
1

2

Yi � m

s2
i þ t̂

2
mð Þ

� �1=2
þ

Yj � m

s2
j þ t̂

2
mð Þ

n o1=2

0

B

@

1

C

A
� 0

8

>

<

>

:

9

>

=

>

;

�
1

2

2

6

4

3

7

5
:
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Remark 2. Based on the previous developments, it is clear that any construction of

ŵi mð Þji ¼ 1; . . . ;Kf g only via jYi � m j ji ¼ 1; . . . ;Kf g should meet Condition A. Our

method can be conveniently extended to the D-L estimator by considering the test statistic

T4 mð Þ ¼
X

K

i¼1

1

s2
i þ t̂

2 mð Þ Yi � mf g;

whose null distribution can be approximated by

T�
4 mð Þ ¼ 2

X

K

i¼1

Yi � mj j

s2
i þ t̂

2
mð Þ

Vi �
1

2

� �

:

Follmann and Proschan (F-P) proposed a similar CI procedure [22]. However, in

approximating the null distribution of the test statistics, the moment estimator t̂2 mð Þ is

updated based on permuted samples 2Vi � 1ð Þ Yi � mj j þ mji ¼ 1; . . . ;Kf g. This unneces-
sary step introduces nontrivial computational burden compared with our method.

2.4. Numerical computation

In the following, we present relevant numerical algorithms to calculate the proposed CIs.

First, the computation of the exact confidence interval Cwa (7) is straightforward and may

serve as the cornerstone for others. To this end, one may use the following simple algo-

rithm for small Ks.

[Algorithm A]

1) Compute all 2K values in the set
PK

i ¼ 1 vi � 1=2ð Þwi; v1; . . . ; vKð Þ
0

2 0; 1f gK
n o

:

2) Find the a=2ð )th lower quantile of the set, denoted by q�wL a=2ð ). Let the a=2ð )th

upper quantile q�wU a=2ð Þ ¼ � q�wL a=2ð ).

3) Compute the CI mwL;mwUð Þ, where the lower and upper bounds are

mwL ¼ inf m : Tw mð Þ� q�wL a=2ð Þ
� 	

;mwU ¼ sup m : Tw mð Þ� q�wU a=2ð Þ
� 	

:

The overall computational complexity of the algorithm is in the order of O 2Kð Þ.
Furthermore, we rewrite the Hodges–Lehmann estimator-based test statistic as

THL mð Þ ¼
X

K

i¼1

I Yi�mð ÞRi mð Þ �
K K þ 1ð Þ

4
:

Then, it is easy to see that T�
HL mð Þ is uniformly distributed over the set

X

K

i¼1

ivi �
K K þ 1ð Þ

4
; v1; . . . ; vKð Þ

0

2 0; 1f gK
( )

;

which is independent of m. Here Ri mð Þ is the rank of the ith element of

ŵi mð Þ Yi � mj j; i ¼ 1; . . . ;Kf g:

8 S. LIU ET AL.



Therefore, in order to construct the corresponding CI, denoted as CHL
a we only need to

modify Algorithm A slightly as following:

[Algorithm A�]

1) Compute all 2K values in the set
PK

i ¼ 1ivi �
K Kþ1ð Þ

4
; v1; . . . ; vKð Þ 0 2 0; 1f gK

n o

:

2) Find the a=2 lower quantile of 2K values in the set, denoted by q�HL;L a=2ð Þ: Let q�HL;U

a=2ð Þ ¼ �q�HL;L a=2ð Þ:
3) Compute the CI CHL

a ¼ mHL
L ; mHL

U

� �

; where the lower and upper bounds are

mHL
L ¼ inf m : THL mð Þ� q�HL;L a=2ð Þ

h i

;mHL
U ¼ sup m : THL mð Þ� q�HL;U a=2ð Þ

h i

:

Since the cut-off values fq�HL;L a=2ð Þ; q�HL;U a=2ð Þg only depend on K, one

may compute and store them in advance for different Ks to further accelerate the

computation.

The construction of the confidence set Cŵa (11) can be more complicated due to the

fact that the distribution of T�
ŵ mð Þ can depend on m. Therefore, we propose the following

algorithm for computing the shortest interval mŵL;mŵUð Þ containing Cŵa:

[Algorithm B]

1) For each fixed m, compute all 2K values in the set

VK mð Þ ¼
X

K

i¼1

viŵi mð Þ � S0 mð Þ; v1; . . . ; vKð Þ 0 2 0; 1f gK
( )

;

where S0 mð Þ ¼ 0:5
PK

i¼1ŵi mð Þ:

2) Find the a=2ð Þth lower quantile of VK mð Þ, denoted by q�ŵL m;a=2ð Þ: Let

q�ŵU m;a=2ð Þ ¼ � q�ŵL m;a=2ð Þ.
3) Repeat Steps 1) and 2) over a grid of values m 2 mmm ¼ 1; . . . ; Mf g ranging

from min Y1; . . . ; YKf g to max Y1; . . . ; YKf g: Compute mŵL;mŵUð Þ as

mŵL ¼ min mm : Tŵ mmð Þ� q�ŵL mm;a=2ð Þ
� 	

;

mŵU ¼ max mm : Tŵ mmð Þ� q�ŵU mm;a=2ð Þ
� 	

:

The complexity of the algorithm is in the order of O M2Kð Þ: The computation becomes

time-consuming even for moderate K. However, when we are only interested in construct-

ing the 95% CI, as commonly the case, the aforementioned algorithm can be greatly

improved. Take K ¼ 9 as an example, we only need to compare the observed test statistic

Tŵ mð Þ with the smallest 12 values in V mð Þ to determine whether m belongs to Cŵ 0:95ð Þ:

BIOSTATISTICS & EPIDEMIOLOGY 9



Without the loss of generality, we assume that ŵ1 mð Þ< � � � < ŵ9 mð Þ: It can be

shown that the set ~V9;0:025 mð Þ ¼ ~V0 mð Þ[ ~V1 mð Þ[ ~V2 mð Þ[ ~V3 mð Þ contains the smallest

12 values of V9 mð Þ, where

~V0 mð Þ ¼ �S0 mð Þf g;

~V1 mð Þ ¼ ŵi mð Þ � S0 mð Þi ¼ 1; . . . ; 9f g;

~V2 mð Þ ¼ ŵi mð Þ þ ŵj mð Þ � S0 mð Þ i; jð Þ ¼ 1; 2ð Þ; . . . ; 1; 6ð Þ; 2; 3ð Þ; 2; 4ð Þ; 3; 4ð Þ
� �

;

~V3 mð Þ ¼ ŵ1 mð Þ þ ŵ2 mð Þ þ ŵi mð Þ � S0 mð Þji ¼ 3; 4f g:

Therefore, instead of calculating 29 ¼ 512 different values in V9 mð Þ; one only needs

computing 20 values in ~V9;0:025 mð Þ for each given m in constructing the 95% CI. The

rational is that any number not belonging ~V9;0:025 mð Þ is greater than at least 12 members

from V9 mð Þ: For example, ŵ2 mð Þ þ ŵ5 mð Þ � S0 mð Þ is always greater than �S0 mð Þ; ŵi mð Þ
�S0 mð Þ; i ¼ 1; . . . ; 5 and ŵj mð Þ þ ŵk mð Þ � S0 mð Þ; j; kð Þ ¼ 1; 2ð Þ; . . . ; 1; 5ð Þ; 2; 3ð Þ; 2; 4ð Þ:
Consequently, in computing the 95% exact CI based on Tŵ mð Þ, one may replace the first

two steps of Algorithm B by

1) For each fixed m; compute all values in the set ~VK;0:025 mð Þ.
2) Find the 2K � 0:025½ �th smallest value in ~VK;0:025 mð Þ, denoted by q�ŵL m; 0:025ð Þ,

where x½ � represents the largest integer no greater than x. Let q�ŵU m; 0:025ð Þ ¼ �q�ŵL
m; 0:025ð Þ:

Similar to the quantiles of T�
HL mð Þ; the membership of ~VK;0:025 mð Þ is independent of m;

and can be calculated for a sequence of Ks and stored in advance. Therefore, the computa-

tional complexity for a specified data-set can be quite low, although the implementation

seems to be involved. Since the cardinality of ~VK;0:025 mð Þ is much smaller than that of VK

mð Þ; the computation speed can be greatly improved.

To compare the computational efficiency of our proposed algorithms together with the

permutation procedure (the F-P method [22]), we conduct a small experiment on the

computation speed and the results are shown in Figure 1. The computation of CHL
a based

on T3 mð Þ is substantially faster than others, while the computation of the F-P interval is

the slowest as anticipated. For example, when K ¼ 18, the speed of computing CHL
a is

1959 times faster than the improved Algorithm B for computing Cŵa based on T2 mð Þ:
This improved Algorithm B is eleven times faster than the original counterpart, which is

still four times faster than computing the F-P interval. Note that the F-P interval can be

obtained by using appropriately modified Algorithm B.

The faster computation speed of our methods comes from two sources: (i) for each given

permutation, we do not need to update t̂2 mð Þ while F-P method recalculates t̂2 each time,

which is a nontrivial computational burden; (ii) since t̂2 mð Þ is a constant, we only need to

consider 2K=20» 2K=10 selected permutations instead of all 2K permutations to identify the

2.5 percentile of the null distribution of the test statistics using the improved Algorithm B.

The proposed methods are implemented in a newly developed R package ‘RandMeta.’

Remark 3. When K is large, e.g. greater than 20, the Monte-Carlo simulation can be used

for approximating the quantiles of the appropriate test statistics. For example, q�wL a=2ð Þ
in Algorithm A can be estimated by the a=2ð Þth lower quantile of a large number of cop-

ies of T�
w obtained by repeatedly simulating Vi »Bernoulli 1

2

� �

; i ¼ 1; . . . ;K:
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3. Exact inference on generalized fixed-effects and random-effects models

In practice, the Gaussian assumptions are not always satisfied. Furthermore, m0 may not

be limited to be the population mean. It can be other location measures for a distribution

such as median and other quantiles. By carefully examining the developments in the pre-

vious sections, we note that, to guarantee the validity of Cŵa, the key requirements are

� ŵi mð Þj i ¼ 1; . . . ; Kf g satisfy Condition A;

� I Yi �m0ð Þ»Bernoulli 1
2

� �

; i ¼ 1; . . . ;K:

For the validity of CHL
a , one additional requirement is

� I Yi �m0ð Þ and Yi � m0j j are independent, for i ¼ 1; . . . ; K .

Based on these observations, we generalize the proposed exact inference procedure to

more general settings beyond Gaussian models. Specifically, we assume that, indepen-

dently,

Yi»F i; i ¼ 1; . . . ;K; (12)

where F i; i ¼ 1; . . . ;Kf g is a set of distributions sharing a common location parameter of

interest

m0 ¼ m0 F ið Þ:

Figure 1. The computational speed of the proposed algorithms: Algorithm A� for CHL
a based on T3 mð Þ

(solid line); improved Algorithm B for Cŵa based on T2 mð Þ (dotted line); Algorithm B for Cŵa based on
T2 mð Þ (dashed line); and modified Algorithm B for the CI proposed by Follmann–Proschan (dash-dotted
line).

BIOSTATISTICS & EPIDEMIOLOGY 11



For instance, denoting by Fi tð Þ the CDF of F i, m0 could be the population mean m0

F ið Þ ¼
R

tdFi tð Þ; the population median F�1
i 1=2ð Þ or any quantile F�1

i pð Þ for given p 2
0; 1ð Þ:
To generalize the model assumptions for the random-effects model, we consider

� Assumption I: Pr Yi�m0ð Þ� p; i ¼ 1; . . . ; K; for a known p 2 0; 1ð Þ:
� Assumption II: Pr Yi�m0ð Þ� q; i ¼ 1; . . . ; K; for a known q 2 0; 1ð Þ:

In order to construct exact confidence sets, we impose the following condition on the

weight components:

� Condition B: There is a set of positive weights ŵi mð Þj i ¼ 1; . . . ; Kf g such that

ŵi m0ð Þj i ¼ 1; . . . ; Kf g are independent of I Yi�m0ð Þ; I Yi �ðf m0Þ i ¼ 1; . . . ;
Kg:

Then, we can make the exact inference for m0. Specifically, denote

ξ i»U 0; 1ð Þ; i ¼ 1; . . . ;K:

We may let

~T pŵ mð Þ ¼
X

K

i¼1

ŵi mð ÞI Yi �mð Þ; ~Zqŵ mð Þ ¼
X

K

i¼1

ŵi mð ÞI Yi �mð Þ;

T�
pŵ mð Þ ¼

X

K

i¼1

ŵi mð ÞI ξ i � pð Þ;Z�
qŵ mð Þ ¼

X

K

i¼1

ŵi mð ÞI ξ i � 1� qð Þ:

Then, Condition B and Assumptions I and II imply that

~T pŵ m0ð Þ ŵ1 m0ð Þ; . . . ; ŵK m0ð Þf g0Tpŵ
�
m0ð Þ

�

�

�

� Y1; . . . ;YKf g

and

~Zqŵ m0ð Þ ŵ1 m0ð Þ; . . . ; ŵK m0ð Þf g0Zqŵ
�
m0ð Þ

�

�

�

� Y1; . . . ;YKf g:

Here, ‘0’ indicates stochastic ordering of two random variables; i.e. U0V means Pr

U � tð Þ� Pr V � tð Þ for all t: Based on the previous developments in Section 2, denote the

CDFs of T�
pŵ mð Þand Z�

qŵ mð Þgiven Y1; . . . ;YKf g by F�
pŵ �;mð Þ and F

�
qŵ �;mð Þ, respectively.

The exact CI for m0 may be constructed by

inf m : Fpŵ
� ~T pŵ mð Þ;m
� �

�a=2
� 	

; sup m : Fqŵ
� ~Zqŵ mð Þ;m
� �

�a=2
� 	� �

:

Then, the exact CI for m0 can be constructed accordingly. We summarize the above

discussions in the following general theorem, which is a generalization of Theorem 2.2 to

more general cases:
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Theorem 3.1. Consider the generalized model (12) with Assumptions I and II. Under Con-

dition B, let F�
pŵ t;mð Þ ¼ Pr Tpŵ

� mð Þ� t jY1; . . . ;YK

� �

; F
�
qŵ z;mð Þ ¼ Pr Zqŵ

� mð Þ�
�

z jY1; . . . ;YKÞand

~pŵ t; z;mð Þ ¼ 2min Fpŵ
� t;mð Þ; F

�
qŵ z;mð Þ

n o

:

Then, a 100 1� að Þ% confidence set for m0 can be constructed by

m : ~pŵ
~T pŵ mð Þ; ~Zqŵ mð Þ;m
� �

>a
� 	

Similarly, the Hodges–Lehmann estimator-based approach can be generalized under

the following condition:

� Condition C: jYi � m0 j ; i ¼ 1; . . . ;Kf g are independent of I Yi �m0ð Þ; I Yi�ðf
m0Þ; i ¼ 1; . . . ; Kg:

Specifically, we let

~THL mð Þ ¼
X

1� i� j�K

I
1

2
ŵi mð Þ Yi � mð Þ þ ŵj mð Þ Yj � m

� �� �

� 0

� 


~ZHL mð Þ ¼
X

1� i� j�K

I
1

2
ŵi mð Þ Yi � mð Þ þ ŵj mð Þ Yj � m

� �� �

� 0

� 


T�
p;HL mð Þ ¼

X

1� i� j�K

I I ξ i � pð Þ �
1

2

� �

ŵi mð Þ Yi � mj j þ I ξ j� p
� �

�
1

2

� �

ŵj mð Þ jYj � m j � 0

� 


and

Z�
q;HL mð Þ ¼

X

1� i� j�K

I I ξ i� 1� qð Þ �
1

2

� �

ŵi mð Þ Yi � mj j

�

þ I ξ j � 1� q
� �

�
1

2

� �

ŵj mð Þ Yj � m
�

�

�

�� 0�:

The exact confidence set can then be constructed in a similar way of Theorem 3.1. The

details are omitted.

It may be difficult to verify Condition C in some cases. However, one typical example

satisfying it is the random-effects models with symmetrically and continuously distributed

ui; which is a direct generalization of the Gaussian assumptions. Specifically, consider model

(12) and assume that F i; i ¼ 1; . . . ;Kf g are continuous and symmetric around m0; which
is the parameter of interest. It is then easy to verify that, when p ¼ q ¼ 1=2; Assumptions I

and II and Condition B are satisfied.

Remark 4. Under Assumptions I and II, ~pŵ
~T pŵ mð Þ; ~Zqŵ mð Þ;m
� �

may still be used as the

two-sided exact p value for testing the null hypothesis H0 : m0 ¼ m versus HA : m0 6¼ m, if

Conditions B is only satisfied for m0 ¼ m.
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4. Numerical studies

4.1. Simulations

Simulation 1. We first consider the standard random-effects model (1). The number of

studies K is chosen to be 8, 12 or 16. For i ¼ 1; . . . ;K , let si ¼ 1þ 4 i� 1ð Þ= K � 1ð Þ and
simulate the observations Yi as follows:

ui»N 0; 25=2ð Þ;Yi j ui; sið Þ»N ui; s
2
i

� �

:

For comparisons, 95% CIs are constructed based on the proposed test statistics Ti mð Þ; i ¼
1; 2; 3; 4; together with several commonly used conventional methods, e.g. the D-L

method and the Sidik–Jonkman method. Note that when K is small, the latter has been

especially recommended (see [29] for some detailed discussions). In addition, the F-P

(permutation) method is also implemented based on test statistics similar to T2 mð Þ and T4

mð Þ; which are denoted as F-P(T2) and F-P(T4), respectively. For each K, the empirical

coverage levels of the CIs, the average CI lengths, the standard deviation (std) of CI

lengths and the average elapsed time (in secs) from 5000 simulated data-sets are reported

in Table 1.

As K increases, the CIs become narrower and the stds of CI length become smaller as

expected. But almost all conventional methods fail to achieve the desired level of coverage

95%, except the S-J method for K = 16. When K = 8, most of the empirical coverage prob-

abilities are below 90%. Instead, our proposed methods can always achieve the desired

coverage level for all the cases. Among our proposed methods, T4 mð Þ performs the best

with the shortest CIs and smallest stds of CI length. (The std for T4 mð Þ is smaller than

that for the D-L method when K = 16). T3 mð Þ is conservative with the actual coverage lev-

els being around 96%. Besides, T2 mð Þ performs better than T1 mð Þ when K = 12, 16, which

Table 1. The empirical coverage probabilities (Cov prob) of the 95% CIs, the average CI lengths
(Length), the standard deviation of CI lengths (std) and the average elapsed time in seconds (Avg.t) by
different methods in Simulation 1. (Ti: the proposed exact methods based on Ti mð Þ, i ¼ 1; 2; 3; 4; D-
L: DerSimonian–Laird method; HE: Hedges method; H-S: Hunter–Schmidt method; S-J: Sidik–
Jonkman method; ML: maximum-likelihood estimator; REML: restricted maximum-likelihood estimator;
EB: empirical Bayes estimator; F-P(Ti): Follmann–Proschan permutation method based on Ti mð Þ,
i ¼ 2 or 4).

K = 8 K = 12 K = 16

Method Cov prob Length (std) avg.t Cov prob Length (std) Avg.t Cov prob Length (std) Avg.t

D-L 0.887 5.90 (1.88) 0.006 0.916 4.96 (1.24) 0.006 0.923 4.32 (0.93) 0.005
HE 0.861 5.87 (2.11) 0.005 0.894 4.93 (1.42) 0.005 0.904 4.32 (1.06) 0.006
H-S 0.848 5.15 (1.56) 0.005 0.892 4.57 (1.11) 0.005 0.902 4.07 (0.86) 0.006
S-J 0.934 6.54 (1.59) 0.005 0.946 5.43 (1.04) 0.005 0.953 4.71 (0.77) 0.006
ML 0.848 5.40 (1.81) 0.011 0.894 4.72 (1.19) 0.011 0.907 4.16 (0.89) 0.011
REML 0.888 5.91 (1.89) 0.011 0.915 4.99 (1.22) 0.011 0.922 4.33 (0.90) 0.012
EB 0.890 6.00 (1.88) 0.010 0.916 5.03 (1.23) 0.010 0.923 4.36 (0.90) 0.011
T1 0.954 9.16 (3.22) 0.010 0.950 7.48 (2.60) 0.042 0.950 6.22 (2.00) 0.763
T2 0.954 9.16 (3.22) 0.033 0.950 7.01 (2.18) 0.381 0.950 5.90 (1.79) 0.901
T3 0.962 8.35 (2.39) 0.026 0.959 6.18 (1.44) 0.026 0.962 5.23 (1.07) 0.018
T4 0.955 7.79 (2.20) 0.034 0.950 5.77 (1.28) 0.381 0.951 4.80 (0.91) 0.892
F-P( T2) 0.953 8.35 (2.70) 0.739 0.952 6.48 (1.88) 11.8 0.950 5.48 (1.52) 312.0
F-P( T4Þ 0.951 7.75 (2.27) 0.745 0.951 5.91 (1.48) 12.1 0.953 4.90 (1.11) 319.3
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indicates the advantage of using the asymptotically optimal weights even with a moderate

number of studies.

In addition, although the F-P permutation CIs can also achieve the desired level, T4 mð Þ
has smaller sample std of the CI length suggesting more stable performance. When K =

12, 16, T4 mð Þ has narrower CIs compared with the F-P method. More importantly, it is

obvious that our proposed methods Ti mð Þ; i ¼ 1; 2; 3; 4ð ) are much faster than the F-P

method, which presents an important practical advantage.

Simulation 2. In the second set of simulations, K again is chosen to be 8, 12 or 16, and for

i ¼ 1; . . . ;K , si ¼ 1þ 4 i� 1ð Þ= K � 1ð Þ: The observations Yi are then simulated as fol-

lows:

ui» t2;Yi j ui; sið Þ»N ui; s
2
i

� �

;

where t2 is the Student’s t-distribution with degree of freedom 2. Since the treatment

effects are generated from a t-distribution with much heavier tails than Gaussian distribu-

tion, the robustness of various methods against outlier study at the tail is of the primary

interest. As in the first set of simulation, 5000 data-sets are simulated and 95% CIs are

obtained for each K. Results including the empirical coverage levels and the average

lengths the CIs are reported in Table 2.

Among the conventional methods, the S-J method is the only option that can achieve

the desired coverage level. However, it is overly conservative and the actual coverage levels

are above 97% even for K = 16, which results in unnecessarily wider CIs. Among our pro-

posals, in terms of coverage level and the interval length, T4 mð Þ and T3 mð Þ perform the

best when K = 8 and K = 12, 16, respectively. Especially, when K = 12 and 16, T3 mð Þ can
achieve 95% coverage level with CIs narrower than the S-J’s, and its std’s of CI length are

smaller than all other methods’. Compared to the F-P’s CIs, T3 mð Þ’s CIs have better cover-
age for all cases but also wider length except for K = 16.

Table 2. The empirical coverage probabilities (Cov prob) of the 95% CIs, the average CI lengths
(Length), the standard deviation of CI lengths (std) and the average elapsed time in seconds (Avg.t) by
different methods in Simulation 2. (Ti: the proposed exact methods based on Ti mð Þ, i ¼ 1; 2; 3; 4; D-
L: DerSimonian–Laird method; HE: Hedges method; H-S: Hunter–Schmidt method; S-J: Sidik–
Jonkman method; ML: maximum-likelihood estimator; REML: restricted maximum-likelihood estimator;
EB: empirical Bayes estimator; F-P(Ti): Follmann–Proschan permutation method based on Ti mð Þ,
i ¼ 2 or 4).

K = 8 K = 12 K = 16

Method Cov prob Length (std) avg.t Cov prob Length (std) Avg.t Cov prob Length (std) Avg.t

D-L 0.917 4.62 (3.88) 0.006 0.923 3.87 (2.98) 0.006 0.929 3.43 (2.49) 0.006
HE 0.898 4.81 (4.14) 0.006 0.904 4.00 (2.87) 0.006 0.914 3.50 (2.37) 0.006
H-S 0.896 4.12 (3.19) 0.006 0.902 3.60 (2.66) 0.006 0.917 3.25 (2.30) 0.005
S-J 0.971 5.68 (3.88) 0.006 0.971 4.73 (2.66) 0.006 0.974 4.14 (2.18) 0.005
ML 0.893 4.24 (3.78) 0.012 0.906 3.63 (2.71) 0.012 0.917 3.27 (2.26) 0.010
REML 0.914 4.64 (4.05) 0.011 0.921 3.86 (2.83) 0.012 0.930 3.42 (2.33) 0.011
EB 0.918 4.79 (4.07) 0.010 0.923 3.98 (2.83) 0.011 0.932 3.50 (2.33) 0.009
T1 0.952 7.09 (4.99) 0.010 0.941 5.14 (3.63) 0.048 0.946 4.02 (1.43) 0.816
T2 0.952 7.09 (4.99) 0.038 0.942 4.89 (1.73) 0.418 0.948 4.02 (1.34) 1.35
T3 0.962 6.86 (4.43) 0.031 0.952 4.71 (1.46) 0.025 0.953 3.75 (1.00) 0.023
T4 0.953 6.29 (4.26) 0.044 0.946 4.54 (2.45) 0.416 0.,948 3.81 (1.98) 1.31
F-P( T2) 0.951 6.45 (4.09) 0.857 0.940 4.52 (1.87) 13.7 0.944 3.74 (1.20) 362.6
F-P( T4Þ 0.951 6.18 (4.26) 0.833 0.945 4.51 (3.02) 12.5 0.952 3.78 (2.21) 364.1
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In conclusion, the simulation results demonstrate that when K is small, most conven-

tional methods almost constantly fail to achieve the nominal coverage level except S-J

method, whose actual coverage level can be erratic: sometimes substantially higher and

sometimes lower than the nominal level. In contrast, the empirical performance of the

proposed exact CIs is much more reliable in terms of both coverage level and the interval

length.

4.2. Real data example: effect of statins in cholesterol reduction

Statins are the first line choices for reducing high blood cholesterol level, which increases

the cardiovascular risk. There are ample evidences on the benefit of statins for patients

with a history of cardiovascular disease. However, it is not entirely clear whether statins

should be used as the primary prevention for people without history of cardiovascular dis-

ease. A systematic review is conducted to evaluate both the potential benefit and risk of

statins for the primary prevention. Eighteen randomized controlled studies with 56,934

patients comparing statins with usual care are identified. The details of those studies are

reported in [30]. Here, we focus on the meta-analysis for estimating the effect of statins in

reducing the cholesterol level among participants without history of cardiovascular dis-

ease. Fourteen studies contributed data on measurements of total cholesterol level. The

study specific results from these 14 studies are presented in Table 3. In the meta-analysis,

we let Yi be the observed group difference in changes of total cholesterol level during the

follow-up. The within-study variance s2
i can be calculated from the reported 95% CI

reported in [30]. Because of the clear study heterogeneity, we adopt the random-effects

model (1). The parameter of interest, m0, presents the mean difference in the total choles-

terol level between statin and usual care groups. We first construct the 95% equal-tailed

CIs of m0 based on D-L method. The resulting CI is (¡1.36, ¡0.74) with a point estimator

of ¡1.05 indicating highly statistically significant treatment effect. Here, the point esti-

mate is the m value that yields the largest p value for testing H0 : m0 ¼ m; i.e. the least sig-
nificant testing result. When there are multiple ms with the same largest p value, the point

estimator is set to be their average. We then construct the proposed exact CIs, which are

Table 3. The average change in total cholesterol levels by treatment arm and the observed treatment
effects for 14 randomized clinical trails in the statins example.

Statin group Control group Mean difference
Study Mean (SD) Mean (SD) Mean (95% CI)

MEGA study ¡0.72 (0.8) ¡0.14 (0.8) ¡0.58 (¡0.62, ¡0.54)
ASPEN 2006 ¡0.51 (0.8) ¡0.04 (0.8) ¡0.47 (¡0.54, ¡0.40)
CAIUS 1996 ¡1.01 (1.04) 0.18 (0.87) ¡1.19 (¡1.41, ¡0.97)
CARDS 2008 ¡1.24 (0.84) ¡0.07 (0.87) ¡1.17 (¡1.23, ¡1.11)
CELL A 1996 ¡0.89 (0.86) ¡0.18 (0.72) ¡0.71 (¡0.92, ¡0.50)
CELL B 1996 ¡0.86 (2.01) ¡0.07 (0.64) ¡0.93 (¡1.31, ¡0.55)
CERDIA 2004 ¡1 (0.86) 0.14 (0.85) ¡1.14 (¡1.39, ¡0.89)
Derosa 2003 ¡1.63 (0.51) ¡0.83 (0.58) ¡0.80 (¡1.11, ¡0.49)
HYRIM 2007 ¡0.56 (0.12) 0 (0.11) ¡0.56 (¡0.61, ¡0.51)
JUPITER 2008 ¡1.1 (0.8) 0.8 (0.8) ¡1.90 (¡1.92, ¡1.88)
KAPS 1995 ¡1.5 (0.66) 0 (0.66) ¡1.50 (¡1.63, ¡1.37)
METEOR 2010 ¡2.02 (0.77) 0 (0.7) ¡2.02 (¡2.13, ¡1.91)
PHYLLIS 2004 ¡1.1 (0.07) ¡0.13 (0.06) ¡0.97 (¡0.98, ¡0.96)
PREVEND IT 2004 ¡1 (1) ¡0.2 (1.05) ¡0.80 (¡0.94, ¡0.66)
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reported in Table 4. The exact CIs based on T3 mð Þ and T4 mð Þ are almost identical to that

derived from the D-L method. However, the validity of our proposals does not rely on the

large sample approximation with 14 studies.

4.3. Real data example: efficacy of BCG vaccine

BCG, or Bacille Calmette-Guerin, is a vaccine for tuberculosis (TB) prevention. In the

United States, BCG vaccination is currently recommended for certain groups of people,

such as children who have a negative tuberculin skin test and who are exposed to infection

risk. On BCG’s efficacy, more than one thousand articles or abstracts have been published.

To combine the information from multiple sources, [6] conducted a meta-analysis using

the random-effects model with D-L method. However, the number of studies involved is

relatively small and therefore the asymptotical inference result may not be reliable. In this

section, the proposed methods in Sections 2 and 3 are applied to make exact inferences.

Specifically, we consider eight independent 2� 2 tables (see Table 5), formed by pairs of

independent binomials Xi1;Xi0ð Þ; i ¼ 1; . . . ; 8; representing the number of TB incidence in

the treatment (BCG-vaccinated) and control (BCG-nonvaccinated) groups. Denote the cor-

responding sample sizes as Ni1;Ni0ð Þ with the underlying true event rates pi1;pi0ð Þ: For ith
study, the log-transformation of the study specific odds ratio (OR) is defined as

ui ¼ log
pi1= 1� pi1ð Þ

pi0= 1� pi0ð Þ

� �

and the observed log-OR is

Yi ¼ log
Xi1= Ni1 � Xi1ð Þ

Xi0= Ni0 � Xi0ð Þ

� �

:

Table 4. The point estimates (Est) and 95% CIs for the parameter of interest in real data examples
under the Gaussian random-effects model.

Est (95% CI)

Method Statins BCG vaccine

D-L ¡1.05 (¡1.36, ¡0.74) 0.49 (0.26, 0.91)
T1 mð Þ ¡1.05 (¡1.90, ¡0.56) 0.78 (0.23, 1.01)
T2 mð Þ ¡0.96 (¡1.19, ¡0.58) 0.50 (0.23, 1.01)
T3 mð Þ ¡0.97 (¡1.35, ¡0.76) 0.49 (0.23, 1.01)
T4 mð Þ ¡1.05 (¡1.34, ¡0.76) 0.49 (0.24, 1.00)

Table 5. The number of TB cases and group size by treatment arm in the BCG vaccine example. See
detailed data sources in [6].

BCG-vaccine group Control group

Study # of TB N1 # of TB N0

Canada 6 306 29 313
N USA 4 123 11 139
Chicago 17 1716 65 1665
Georgia I 5 2498 3 2341
Georgia II 27 16,913 29 17,854
UK 62 13,598 248 12,867
South Africa 29 7429 45 7277
Madras 505 88,391 499 88,391
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Based on large sample approximations, we first apply the random-effects model (1)

assuming both Yi j ui and ui are Gaussian random variables. For ith study, the within-

study variance s2
i is set as its consistent estimator.

s2
i ¼

1

Xi1
þ

1

Ni1 � Xi1
þ

1

Xi0
þ

1

Ni0 � Xi0
:

We first construct the 95% equal-tailed CIs of m0, which is the expectation of the log-

transformed study-specific OR, using the conventional D-L and our proposed methods.

Then, we obtain the 95% CIs of exp m0ð Þ; which is the median of the distributions for

study-specific OR’s, together with its point estimate. If the upper end of the constructed

CI is less than 1, we may conclude that the BCG vaccine significantly reduces the risk of

TB. The results are also reported in Table 4. The upper bound of the CI based on D-L

method is apparently lower than others, which implies that D-L method may overestimate

the significance of its efficacy. Among the proposed test statistics, T4 mð Þ yields the nar-
rowest CI with an upper end of 1.00. Furthermore, the CIs are closely related to the two-

sided test H0 : m0 ¼ m versus HA : m0 6¼ m as we discussed before. The test statistics and

corresponding p value for different m are shown in Figure 2.

In the BCG example, we are especially interested in testing the null hypothesis that

there is no treatment effect, that is, the random vector pi1;pi0ð Þ has the same distribution

as that of pi0;pi1ð Þ: Note that all the trials in the current example are approximately bal-

anced with ni1 � ni0, implying that under the aforementioned null hypothesis,

Pr Yi� 0ð Þ� 1=2 and Pr Yi� 0ð Þ� 1=2:

Thus, we can apply the development in Section 3 to perform the exact test for

this hypothesis without Gaussian assumptions for either Yijui or ui: We consider the test

Figure 2. Based on T1 mð Þ, T2 mð Þ, T3 mð Þ and T4 mð Þ, the p values (first row) and values of test statistics
(second row) corresponding to different values of log(OR) for the BCG meta-analysis under Gaussian
random-effects model.
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statistics ~T pŵ 0ð Þ; ~Zqŵ 0ð Þ
� �

with two sets of weights.

ŵi ¼ s�1
i or n

1=2
i ; for i ¼ 1; . . . ;K:

The resulting p values are 0.078 and 0.106, respectively. We have also performed the

tests based on D-L method and T3 mð Þ assuming the commonly used Gaussian random-

effects model for comparisons. The p value is 0.024 based on D-L method and 0.047 based

on T3 mð Þ. Therefore, after relaxing the Gaussian assumption, the significance level for the

efficacy of BCG vaccine reduces from approximately 5% to 10%.

5. Discussion

In this paper, we have proposed the exact inference procedures for fixed-effects and ran-

dom-effects models in meta-analysis. The proposed CIs guarantee the coverage probabili-

ties, while many other asymptotic methods including the commonly used D-L method

may be invalid, especially when the number of studies is not large. Our proposals have a

tight relationship with the nonparametric inference procedure by [31], whose validity

does not require parametric distribution assumption for ui but is only justified asymptoti-

cally.

The normal assumption of ui may be restrictive and in general is difficult to verify espe-

cially when K is small. The proposed method slightly alleviates this concern by ensuring

the validity of the inference procedure when the distribution of ui is symmetric at m0: On
the other hand, when K is small and the information is limited, restrictive parametric

assumptions are not avoidable for effectively summarizing the data via a statistical model.

For example, even if all the si ¼ 0 and we observed ui’s precisely, the statistical inference

still requires a parametric model if K is small. Therefore, while we are making statistical

inference under necessary model assumptions, we need to be cautious in interpreting the

results when K is small.

For smaller K, say K < 10, the exact method can be conservative and generates wider

CIs than the D-L method. In order to obtain narrower CIs, we propose specific choice of

weights in Tw mð Þ and Tŵ mð Þ, together with THL mð Þ (more specifically, T3 mð Þ). As demon-

strated in the simulation studies, T3 mð Þ and T4 mð Þ can provide narrower CIs maintaining

at least the same coverage levels of T1 mð Þ and T2 mð Þ-based CIs. Besides, T3 mð Þ and

T4 mð Þ-based CIs are shown to be robust, although they can be a little more conservative

in some cases.

The computation is a big obstacle for using many exact inference methods in practice.

To construct the exact CIs, fast and easy-to-implement computational algorithms are pro-

posed. Although the Follmann–Proschan’s permutation CIs can perform similarly as

T4 mð Þ-based CIs, our methods can significantly reduce the computational burden, espe-

cially when K is more than 10. We recommend to use our proposed methods for K

between 6 and 20 (especially, when K < 10) or in the presence of substantial study hetero-

geneity, e.g. I2� 50%: Note that the smallest two-sided p value of the proposed method is

1=2K�1 and we need K � 6 to generate significant result at the level of 0.05.

For the Behrens–Fisher problem, it has been shown that there is no exact test that is

also the most powerful for all values of the variances [32]. We anticipate the same
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statement will still hold for the inference problems under the more complicated settings

we considered. Although it is out of the scope of the current article, it will be of interest to

investigate whether the statement is correct in future research. Regardless, our proposals

here provide a simple and valid inference procedure for general meta-analysis problems

that are often encountered in medical research.
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Appendices

Appendix A. Proof of Theorem 2.1

Proof. One the one hand, Pr Tw m0ð Þ� tf g ¼ F�
w tð Þ. Define the inverse function,

F��1
w nð Þ ¼ sup t : F�

w tð Þ� n
� �

; n 2 0; 1½ �;

which implies F�
w F��1

w nð Þ
� �

� n. Thus, we have Pr F�
w Tw m0ð Þf g� a

2

� 	

¼ Pr

Tw m0ð Þ� F��1
w

a
2

� �� �

¼ F�
w F��1

w
a
2

� �� �

� a
2
: On the other hand, for Pr Tw m0ð Þ� tf g ¼ S�w

tð Þ; we may define

S��1
w nð Þ ¼ inf t : S�w tð Þ� n

� �

; n 2 0; 1½ �;

and Pr S�w Tw m0ð Þf g�a=2
� 	

¼ Pr Tw m0ð Þ� S��1
w a=2ð Þ

� 	

¼ S�w S��1
w

� �

a=2ð Þg�a=2:
As a result, Pr m0 2 Cwað Þ ¼ 1� Pr m0 =2 Cwað Þ ¼ 1� Pr F�

w Tw m0ð Þf g�a=2
� 	

� Pr

S�w Tw m0ð Þf g�a=2
� 	

� 1� a=2� a=2 ¼ 1� a:

Appendix B. Proof of Theorem 2.2

Proof. Based on the proof of Theorem 2.1, on the one hand, let F�
ŵ t;m0ð Þ ¼ Pr

Tŵ
� m0ð Þ� tY1; . . . ;YKf g ¼ Pr Tŵ

� m0ð Þ� tjŵ1 m0ð Þ; . . . ; ŵK m0ð Þf g and F��1
ŵ n;m0ð Þ ¼

sup t : Fŵ
� t;m0ð Þ� nf g; for n 2 0; 1½ �: Since I Y1 <m0ð Þ; . . . ; I YK <m0ð Þf g and

ŵ1 m0ð Þ; . . . ; ŵK m0ð Þf g are independent,

Pr Pr Tŵ
� m0ð Þ�Tŵ m0ð Þf g�

a

2
jŵ1 m0ð Þ; . . . ; ŵK m0ð Þ

h i

¼ Pr Fŵ
� Tŵ m0ð Þ;m0f g�

a

2
ŵ1 m0ð Þ; . . . ; ŵK m0ð Þ

h i

¼ Pr Tŵ m0ð Þ� F��1
ŵ

a

2
;m0

� �

ŵ1 m0ð Þ; . . . ; ŵK m0ð Þ
h i

¼ F�
ŵ F��1

ŵ

a

2
;m0

� �

;m0

h i

�
a

2

i

:

On the other hand, Pr Pr Tŵ
� m0ð Þ�Tŵ m0ð Þf g� a

2
ŵ1 m0ð Þ; . . . ; ŵK m0ð Þ

� 	

� a
2
: Following

the same arguments for Theorem 2.1, Pr m0 2 Cŵaŵ1 m0ð Þ; . . . ; ŵK m0ð Þ½ �� 1� a; which
implies that Pr m0 2 Cŵaf g� 1� a:
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