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ABSTRACT

Due to the current limitations of sequencing technologies, de novo genome assembly is typ-
ically carried out in two stages, namely contig (sequence) assembly and scaffolding. While
scaffolding is computationally easier than sequence assembly, the scaffolding problem can
be challenging due to the high repetitive content of eukaryotic genomes, possible mis-joins in
assembled contigs, and inaccuracies in the linkage information. Genome scaffolding tools
either use paired-end/mate-pair/linked/Hi-C reads or genome-wide maps (optical, physical,
or genetic) as linkage information. Optical maps (in particular Bionano Genomics maps)
have been extensively used in many recent large-scale genome assembly projects (e.g., goat,
apple, barley, maize, quinoa, sea bass, among others). However, the most commonly used
scaffolding tools have a serious limitation: they can only deal with one optical map at a time,
forcing users to alternate or iterate over multiple maps. In this article, we introduce a novel
scaffolding algorithm called OMGS (Optical Map-based Genome Scaffolding) that for the
first time can take advantages of multiple optical maps. OMGS solves several optimization
problems to generate scaffolds with optimal contiguity and correctness. Extensive experi-
mental results demonstrate that our tool outperforms existing methods when multiple op-
tical maps are available and produces comparable scaffolds using a single optical map.

Keywords: combinatorial optimization, de novo genome assembly, optical maps, scaffolding.

1. INTRODUCTION

GENOME ASSEMBLY IS A FUNDAMENTAL PROBLEM in genomics and computational biology. Due to the
current limitations of sequencing technologies, the assembly is typically carried out in two stages,
namely contig (sequence) assembly and scaffolding. Scaffolds are arrangements of oriented contigs with
gaps representing the estimated distance separating them. The scaffolding process can vastly improve the
assembly contiguity and can produce chromosome-level assemblies. Despite significant algorithmic prog-
ress, the scaffolding problem can be challenging due to the high repetitive content of eukaryotic genomes,
possible mis-joins in assembled contigs, and the inaccuracies of the linkage information.

Genome scaffolding tools either use paired-end/mate-pair/linked/Hi-C reads or genome-wide maps. The
first group includes scaffolding tools for second generation sequencing data, such as Bambus (Pop et al.,
2004; Koren et al., 2011), GRASS (Gritsenko et al., 2012), MIP (Salmela et al., 2011), Opera (Gao et al.,
2011), SCARPA (Donmez and Brudno, 2012), SOPRA (Dayarian et al., 2010), and SSPACE (Boetzer
et al., 2010) and the scaffolding modules from assemblers ABySS (Simpson et al., 2009), SGA (Simpson
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and Durbin, 2012), and SOAPdenovo2 (Luo et al., 2012). Since the relative orientation and approximate
distance between paired-end/mate-pair/linked/Hi-C reads are known, the consistent alignment of a suffi-
cient number of reads to two contigs can indicate their relative order, their orientation, and the distance
between them. An extensive comparison of scaffolding methods in this first group of tools can be found in
Hunt et al. (2014).

The second group uses genome-wide maps such as genetic maps (Tang et al., 2015), physical maps, or
optical maps. According to the markers provided by these maps, contigs can be anchored to specific po-
sitions so that their order and orientations can be determined. The distance between contigs can also be
estimated with varying degree of accuracy depending on the density of the map.

The optical mapping technologies currently on the market (e.g., BioNano Genomics Irys systems and
OpGen Argus) allow computational biologists to produce genome-wide maps by fingerprinting long DNA
molecules (up to 1 Mb), using nicking restriction enzymes (Samad et al., 1995). Linear DNA fragments are
stretched on a glass surface or in a nanochannel array, and then the locations of restriction sites are
identified with the help of dyes or fluorescent labels. The results are imaged and aligned to each other to
map the locations of the restriction sites relative to each other. While the assembly process for optical
molecules is highly reliable, there is clear evidence that a small fraction of the optical molecules is chimeric
(Jiao et al., 2017).

A few scaffolding algorithms that use optical maps are available. SOMA appears to be the first published
tool that can take advantage of optical maps, but it can only deal with a nonfragmented optical map
(Nagarajan et al., 2008). The scaffolding tool proposed in Saha and Rajasekaran (2014) was used for two
bacterial genomes Yersinia pestis and Yersinia enterocolitica, but the software is no longer publicly
available. In the last few years, Bionano optical maps have become very popular and have been used to
improve the assembly contiguity in many large-scale de novo genome assembly projects (e.g., goat, apple,
barley, maize, quinoa, and sea bass) (Pendleton et al., 2015; Bickhart et al., 2017; Daccord et al., 2017;
Mascher et al., 2017). To the best of our knowledge, the main tools used to generate scaffolds using
Bionano optical maps are SEWINGMACHINE from KSU (Shelton et al., 2015) and HYBRIDSCAFFOLD from
Bionano Genomics (unpublished, 2016). SEWINGMACHINE seems to be favored by practitioners over
HYBRIDSCAFFOLD.

Both HYBRIDSCAFFOLD and SEWINGMACHINE have, however, a serious limitation: they can only deal
with one optical map at a time, forcing users to alternate or iterate over optical maps when multiple maps
are available. In this article, we introduce a novel scaffolding algorithm called OMGS (Optical Map-based
Genome Scaffolding) that for the first time can take advantage of any number of optical maps. OMGS
solves several optimization problems to generate scaffolds with optimal contiguity and correctness.

2. PROBLEM DEFINITION

The input to the problem is the genome assembly to be scaffolded (represented by a set of assembled
contigs) and one or more optical maps (represented by a set of sets of genomic distances). We use
C={c¢li=1, ..., 1} to denote the set of contigs in the genome assembly, where each c; is a string over the
alphabet {A, C, G, T}. Henceforth, we assume that the contigs in C are chimera free.

An optical map is composed by a set of optical molecules, each of which is represented by an or-
dered set of positions for the restriction enzyme sites. As said, optical molecules are obtained by an
assembly process similar to sequence assembly, but we will reserve the term contig for sequenced contigs.
We use M={m;|i=1, ..., n} to denote the optical map, where each optical molecule m; is an ordered set
of integers, corresponding to the distances in base pairs between two adjacent restriction enzyme sites
on molecule m;. By digesting in silico the contigs in C using the same restriction enzyme used to produce
the optical map and matching the sequence of adjacent distances between sites, one can align the contigs
in C to the optical map M. If one is given multiple optical maps obtained using different restriction
enzymes, M will be the union of the molecules from all optical maps. In this case, each genomic location is
expected to be covered by multiple molecules in M. As said, high quality alignments allow one to anchor
and orient contigs to specific coordinates on the optical map. When multiple contigs align to the same
optical map molecule, one can order them and estimate the distance between them. By filling these gaps
with a number of N’s equal to the estimated distance, longer DNA sequences called scaffolds can be
obtained.



Downloaded by Uc Riverside Libraries University of California Riverside from www .liebertpub.com at 04/04/20. For personal use only.

OMGS: OPTICAL MAP-BASED GENOME SCAFFOLDING 3

A series of practical factors make the problem of scaffolding nontrivial. These factors include impre-
cisions in optical maps (e.g., mis-joins introduced during the assembly of the optical map) (Jiao et al.,
2017), unreliable alignments between contigs and optical molecules, and multiple inconsistent anchoring
positions for the same contigs. As a consequence, it is appropriate to frame this scaffolding problem as an
optimization problem.

We are now ready to define the problem. We are given an assembly represented by a set of contigs C, a
set of optical map molecules M, and a set of alignments A={ay, 1, a1,2, ...a;,} of Cto M, where g, ; is the
alignment of contig c¢; to optical map molecule o0, The problem is to obtain a set of scaffolds
S={s1, 52, ...sg} where each s; is a string over the alphabet {A, C, G, T, N}, such that (i) each contig ¢; is
contained/assigned to exactly one scaffold, (ii) the contiguity of S is maximized, and (iii) the conflicts of §
with respect to A are minimized. This optimization problem is not rigorously defined unless one defines
precisely the concepts of contiguity and conflict, but this description captures the spirit of what we want to
accomplish. In genome assembly, the assembly contiguity is usually captured by statistical measures like
the N50/L50 or the NG50/LG50. The notion of conflict is not easily quantified, and even if it was made
precise, this multi-objective optimization problem would be hard to solve. We decompose this problem into
two separate steps, namely (1) scaffold detection and (2) gap estimation, as explained below.

3. METHODS

As said, our proposed method is composed of two phases: scaffold detection and gap estimation. In the
first phase, contigs are grouped into scaffolds, and the order of contigs in each scaffold is determined. In the
second phase, distances between neighboring contigs assigned to scaffolds are estimated. The pipeline of
the proposed algorithm is illustrated in Figure 1.

3.1. Phase 1: detecting scaffolds

Phase 1 has three major steps. In Step 1, we align in silico-digested chimeric-free contigs to the optical
maps (e.g., for a Bionano optical map, we use REFALIGNER), but not all alignments are used in Step 2. We
only consider alignments that (i) exceed a minimum confidence level (e.g., confidence 15 in the case of
REFALIGNER); (ii) do not overlap each other more than a given genomic distance (e.g., 20 kbp); and (iii) do
not create conflict with each other. The method we use here to select conflict-free alignments was intro-
duced in our previous work (Pan et al., 2018). In Step 2, we compute candidate scaffolds by building the
order graph and formulating an optimization problem on it. In Step 3, either the exhaustive algorithm or a
log n-approximation algorithm is used to solve the optimization problem (depending on the size of the
graph) and produce the final scaffolds.
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FIG. 1. Pipeline of the proposed algorithm.
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3.1.1. Building the order graph. The order graph O is a directed weighted graph, in which each vertex
represents a contig. Given two contigs ¢; and ¢; aligned to an optical molecule o with alignments a; and a;, we
create a directed edge (¢;, ¢;) in O if (i) the starting coordinate of alignment a; (that we call a;. start henceforth)
is smaller than the starting coordinate of alignment a; (that we call a;. start henceforth), (ii) there is no other
alignment a; such that a;. start is between a;. start and a;. start, and (iii) there are no conflict sites between
a;.end and g;. start on the optical molecule, as defined below. For each alignment a between optical molecule
o and contig ¢, we compute the left overhang /, and right overhang 7, from o and the left overhang /. and right
overhang r.. from c. The left end of alignment a is declared a conflict site if (i) both [, and /. are longer than
some minimum length (e.g., 50 kbp) and (ii) at least one restriction enzyme site appears in both /, and /.. A
symmetric argument applies to the right end of the alignment, which determines the values for r, and r.,.

Directed edge (c;, ¢j) is assigned a weight equal to qual(o, g;.end, g;. start) * (conf(a;)+ conf(a))),
where (i) qual(o, a;. end, a;. start) is the quality of the region between g;. end and a;. start on molecule o
(higher is better, defined next), and (ii) conf (a) is the confidence score provided by REFALIGNER alignment
a (higher is better). The quantity qual(o, s, ?) is defined based on the length of a repetitive region between
coordinates (s, f). Based on our experience, assembly mis-joins on optical molecule almost always happen
in repetitive regions (Jiao et al., 2017). Given the length of repetitive region len_rep (o, s, f) in base pairs
(defined below), we define the quality of o in the interval (s, ) as qual(o, s, f)=e~ '"-"P(®: 5 /100,000
When a; and a; have a small overlap (e.g., shorter than 20 kbp), we set len_rep(o, s, 1)=0.

We recognize repetitive regions in optical molecules based on the distribution of restriction enzyme sites.
For a molecule o with n sites, let m; be the coordinate of the ith site fori=1, ..., n. As said, molecule o can
be represented as a list of positions {m;|i=1, ..., n}. To determine the repetitive regions in o, we slide a
window that covers k sites (e.g., k=10 sites). At each position j=1, ...,n—k+1, we select window
wj={mj, ..., mjr;_1}. While repetitive regions in genome can be highly complex (Zheng and Lonardi,
2005), we observed only two types of repetitive regions in optical molecules, namely single-site repeti-
tive region (Fig. 2A) and two-site repetitive region (Fig. 2B). It is entirely possible that more com-
plex repetitive regions exist: if they do, they seem rare. Based on this observation, to decide whether
window w; is repetitive, we first compute two lists of pairwise distances between sites, namely D; =
{mjri—mj1|l=1, ... k=1} and Djr={mjsjs1—mjs—1|I=1, ..., k—2} that we call distance lists,
then we apply the statistical test described next.

In our statistical test we assume that the values in the distance lists that belong to repetitive regions are
independent and identically distributed as a Gaussian. We further assume that each specific distance list
(Dj.1 or D; ») is associated with a Gaussian with a specific mean y; , (¢ € {1, 2}). Finally, we assume that
the variance ¢? is globally shared by all molecules. An estimator of the meang; , i f; ,= Zf:_]q di/(k—q),
where d; € D; ; and k are the window sizes. To estimate o2, we first get an initial (rough) estimate of
the repetitive regions on all molecules. Given a particular D; 4, let dpax and dpi, be the maximum
and minimum distance in D; ,. We declare a distance list D; , to be estimated repetitive if diyax — dpin 18
smaller than a given distance (e.g., 1.5 kbp). We collect all estimated repetitive lists in set
R={D, is estimated repetitive[p=1, ..., P} and the estimated mean ji, for each distance list D, in the
set R, where P is the total number of estimated repetitive lists. Then, we define the log likelihood function L
as follows (additional details can be found in Section 1.2 of Appendix 1)

log 02 & 1 &
logL(e?)= === D)= 55> > (@di—i)
p=1

p=1deD,

0,2|5M 0.5M 0,?|5M

FIG. 2. Examples of single-site repetitive region (A) and two-site repetitive region (B) in optical maps. Observe the
small variations in the repetitive patterns in (B).
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By maximizing log L(¢?), the estimator for the variance becomes

P P
F="> (di—ﬂpf/Z\DA.

p=1 d;ED,,

Then, we carry out the test on the statistic dmax —dmin for each D; ;. The joint density function of
(dmax’ dmin) is

Lo, o s V) =000 = D)fs (), 0F 4, (v) = Fg,(u)]" 2

for —oo <u <v < +oo, where F; and f; are the distribution function and density function of
d; ~N(ﬂi’ o &2), respectively. The density function of dyax — dpmin 1S

fdmax*dmin(-x): / n(n— l)fd’,(y)fdi(x +y)[Fd,-(x+y) _Fdi(y)]nfzdy’

defined when x > 0 (additional details can be found in Section 1.3 of Appendix 1). Let now X be a random
variable associated with the distribution f;, g, If the p-value p(X > dmax —dmin) 1s greater than a pre-
defined threshold (e.g., 0.001), we accept the null hypothesis and declare that window w; is repetitive. The
repetitive regions for the entire molecule o are the union of all the windows w;’s recognized as repetitive
according to the test above.

Once the order graph of each optical molecule is built, we connect all the order graphs, which share the
same contigs using the association graph introduced in Pan et al. (2018). The association graph is an
undirected graph in which each vertex represents an optical molecule, and an edge indicates that the two
molecules share at least one contig aligned to both of them. We use depth first search (DFS) to first build a
spanning forest of the association graph. Then, we traverse each spanning tree and connect the corre-
sponding order subgraph to the final order graph. Every time we add a new graph, new vertices and new
edges might be added. If an edge already exist, the weights of the new edges are added to the weights of
existing edges.

3.1.2. Generating scaffolds. Once the order graph O is finalized, we generate the ordered sequence
of contigs in each scaffold. In the ideal case, each connected component O; of O is a directed acyclic graph
(DAG) because the genome is one-dimensional and the order of any pair of contigs is unique. In practice
however, O; may contain cycles caused by the inaccuracy of the alignments and mis-joins in optical
molecules. To convert each cyclic component O; into a DAG, we solve the Minimum Feedback Arc Set
problem on O;. In this problem, the objective is to find the minimum subset of edges (called feedback arc
set) containing at least one edge of every cycle in the input graph. Since the minimum feedback edge set
problem is APX hard, we use the greedy local heuristics introduced in Baharev et al. (2015) to solve it.

We then break each DAG G; of connected component O; into subgraphs as follows. In each subgraph, we
require the order of every pair of vertices to be uniquely determined by the directed edges. This allows us to
uniquely determine the order of the contigs for each scaffold. The formal definition of this optimization
problem is as follows.

Definition 1 (Minimum Edge Unique Linearization problem). Input: A weighted DAG G=(V, E).
Output: A subset of edges E' C E such that (i) in each connected component G’; of the graph
G'=(V, E—E') obtained after removing E’, the order of all vertices can be uniquely determined, and (ii) the
total weights of the edges in E’ are the minimum among all the subset of edges satisfying (i).

In Theorem 1 below, we show that the Minimum Edge Unique Linearization (MIN-EUL) problem is NP-
hard by proving that it is equivalent to the Minimum Edge Clique Partition (MIN-ECP) problem, which is
known to be NP-hard (Dessmark et al., 2007). In MIN-ECP, we are given a general undirected graph, and
we need to partition its vertices into disjoint clusters such that each cluster forms a clique and the total
weight of the edges between clusters is minimized.

Theorem 1 MIN-EUL is equivalent to MIN-ECP.
Proof. First, we show that MIN-EUL polynomially reduces to MIN-ECP. Given an instance G=(V, E) of
MiIN-EUL, we build an instance G'=(V’, E') of MIN-ECP as follows. Let V/=V. For each pair of vertices
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u,v € V' where v is reachable from u, we define an undirected edge between u and v in E'. For each
directed edge (u,v) € E, set the weight of the corresponding undirected edge (u,v) € E' as 1. Set the
weights of the other edges in E’ as 0. Then it is easy to see that a MIN-EUL solution to G’ is equivalent to a
MiN-ECP solution to G and vice versa.

Now we show that MiN-ECP polynomially reduces to MIN-EUL. Given an instance G'=(V’, E’) (as-
suming G’ is connected) of MIN-ECP, we build an instance G=(V, E) of MIN-EUL as follows. Let V=V".
Pick any total linear order O of all vertices in V’. For each undirected edge (u, v) € E' where rank (1) <
rank(v) in O, we define a directed edge from u to v in E and set its weight to be the same as its
corresponding undirected edge in E’. For any two vertices u,v € V, where rank(u) < rank(v) and
(u, v) &€ EPrime, add a new vertex x,, € V with rank(x,,) = rank(v) and a directed edge u to x,,, of weight 1
in E. Now for each pair of vertices u, v € V where rank (1) < rank(v) and (u, v) € E, add a directed edge u
to v with weight zero in E. Then it is easy to see that a MIN-EUL solution to G corresponds to a MIN-ECP
solution to G’ and vice versa.

Given the complexity of MIN-EUL, we propose an exponential time exact algorithm and a polynomial
time log n-approximation algorithm for solving it. To describe the exact algorithm, we need to introduce
some notations. A conjunction vertex in a DAG is a vertex which has more than one incoming edge or
outgoing edge. A candidate edge is an edge which connects at least one conjunction vertex. In Theorem 2
below, we prove that the optimal solution E’ of MIN-EUL must only contain candidate edges. Let E, be the
set of all candidate edges in the DAG G; for each subset E’; of E. we check whether the graph
G=(V,E —E’j) satisfies requirement (i) in Definition 1 after removing E’ j from G. Among all the feasible
E';, we produce the set of edges with minimum total weights. To check whether E'; is feasible, we use a
variant of topological sorting, which requires one to produce a unique topological ordering. To do so, we
require that in every iteration of topological sorting, the candidate node to be added to sorted graph is
always unique. Details of this algorithm are shown as Algorithm 1 in Section 1.1 of Appendix 1.

Theorem 2 The optimal solution E' of MIN-EUL only contains candidate edges.

Proof. For sake of contradiction, we assume that E’ contains noncandidate edges (u, v). Since E’ is op-
timal, G'=(V, E—E’) satisfies condition (i) in Definition 1. Since both u and v are conjunction vertices,
u has only one incoming edge and v has only one outgoing edge. Therefore, by adding (u,v) to G'=
(V,E—E"), we still satisfy condition (i) in Definition 1. Since the weight of (u, v) is positive, the total
weight of E—E'+ {(u, v)} is larger than E—E'. Therefore E'—{(u, v)} is optimal, contradicting the opti-
mality of E’.

As said, MIN-EUL is equivalent to MIN-ECP (Theorem 1). In addition, the authors of Dessmark et al.
(2007) showed that for any instance of MIN-ECP one can find an equivalent instance of the MINIMUM
DISAGREEMENT CORRELATION CLUSTERING problem. As a consequence, any algorithm for the Minimum
Disagreement Correlation Clustering problem could be used to solve MIN-EUL. In our tool OMGS, we
implemented a O(logn)-approximation algorithm based on linear programming, originally proposed in
Demaine and Immorlica (2003). Standard linear programming packages (e.g., GLPK or CPLEX) are used
to solve the linear program. We use the exact algorithm for DAGs with no more than 20 candidate edges
and the approximation algorithm for larger DAGs. |

3.2. Phase 2: estimating gaps

Let s={c;|i=1, ..., h} be one of the scaffolds generated in Phase 1 where each c; is a contig. In Phase 2,
we estimate the length /; of the gap between each pair ¢; and ¢; | of adjacent contigs. We estimate all gap
lengths L={/;|i=1, ..., h—1} at the same time using the distances between the contigs provided by the

alignments and the corresponding order subgraphs. We assume that each /; is chi-square distributed with o;
degrees of freedom. The choice of chi-square distribution is due to its additive properties, namely the sum
of independent chi-squared variables is also chi-squared distributed. Recall that each order subgraph O,
provides an unique ordering x;={c;[j=1, ..., r} of the contigs aligned to molecule o;, while the coor-
dinates of the alignment provide the distances between all pairs of adjacent contigs ¢; and c¢;;; as
yk=1{dj|j=1, ..., r—1}. We use the distances d; as samples to estimate gap lengths [;. If edge (¢;, ¢j+1) in
Oy is removed in the order graph O when solving MIN-EUL in Phase 1, d; will be considered not reliable
and removed from yy.
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In the ideal case, d; should be a sample of a single /; (i.e., ¢jcj+1 in x; corresponds to ¢,c,+1 in ). In
practice, however, cjcj;1 in x; will correspond to a different pair c,c, in s where ¢ >p+1 (e,
Cp+1---Cq—1 are missing from the order subgraph because some alignments with low confidence were
removed in Step 1 of Phase 1). In this situation, after subtracting the length of missing contigs from d,
di— ZE":‘E‘PH lc| is a sample of Z?;pl I; where |c| represents the length of contig c. Since 1, ..., l,— are
independent chi-square random variables, Z?;Pl [; is chi-square distributed with degree of freedom

l.q:_pl o;, so that the log likelihood of this sample is

logl=(ﬁ—1)logy—%—ﬂ]og2— log I'(B).

Where f= Ziq:_pl %, y=dj— 3. . Il and T is the gamma function (additional details can be found in
Section 1.4 of Appendix 1). The total log likelihood is the sum of the log likelihoods across all samples. To
find the o; maximizing the total log likelihood, we use the Broyden-Fletcher-Goldfarb-Shanno (BFGS)
algorithm (Avriel, 2003). Since the mean of a chi-square distribution equals its degree of freedom, we
obtain the estimated gaps I;=4;. For the case in which the ; is pre-estimated as negative in the first step, the
second and third steps are ignored and the pre-estimated distances are used as final estimates.

X Finally, we add |—Zi—| nucleotides (represented by Ns) between each pair of contigs ¢; and c;+;. When

l; < 0, we add exactly 100 Ns between c; and c; 41, which is the convention for a gap of unknown length.

4. EXPERIMENTAL RESULTS

We compared OMGS against KSU SEWINGMACHINE (version 1.0.6, released in 2015) and Bionano
HYBRIDSCAFFOLD (version 4741, released in 2016) which, to the best of our knowledge, are the only
available scaffolding tools for Bionano Genomics optical maps. All tools were run with default parame-
ters, unless otherwise specified. We collected experimental results on scaffolds of (i) cowpea (Vigna
unguiculata) and (ii) fruit fly (Drosophila melanogaster).

4.1. Experimental results on cowpea

Cowpea is a diploid with a chromosome number 2rn =22 and an estimated genome size of 620 Mb. We
sequenced the cowpea genome using single-molecule real-time sequencing (Pacific Biosciences RSII). A
total of 87 single molecule real time (SMRT) cells yielded about 6 M reads for a total of 56.84 Gbp
(91.7 x genome equivalent). We tested the three scaffolding tools on a high-quality assembly produced by
CaNu (Berlin et al., 2015; Koren et al., 2017) with parameters corMhapSensitivity=high and cor-
OutCoverage = 100, then polished it with QUIVER. We used CHIMERICOGNIZER to detect and break chi-
meric contigs, using seven other assemblies generated by CANU, FALCON (Chin et al., 2016), and ABRUUN
(Lin et al., 2016) as explained in Pan and Lonardi (2019).

In addition to standard contiguity statistics (N50*, LSOT), total assembled size, and scaffold length
distribution, we determined incorrect/chimeric scaffolds by comparing them against the high-density ge-
netic map available from Mufioz-Amatriain et al. (2017). We BLASTed 121-bp long design sequence for
the 51,128 genome-wide single nucleotide polymorphisms (SNPs) described in Mufloz-Amatriain et al.
(2017) against each assembly, then we identified which contigs had SNPs mapped to them, and what
linkage group (chromosome) of the genetic map those mapped SNPs belonged to. Chimeric contigs were
revealed when their mapped SNPs belonged to more than one linkage group. The last line of Tables 1 and 2
reports the total size of contigs in each assembly for which (i) they have at least one SNP mapped to it and
(ii) all SNPs belong to the same linkage group (i.e., likely to be nonchimeric).

As said, the three scaffolding tools were run on a chimera-free assembly of cowpea described above using
two available Bionano Genomics optical maps (the first obtained using the BspQI nicking enzyme, and the
second obtained with the BssSI nicking enzyme). Since SEWINGMACHINE can only use a single optical map,
we alternated the optical maps in input (BspQI map first, then BssSI and vice versa). SEWINGMACHINE
provides two outputs depending on the minimum allowed alignment confidence, namely ‘‘default” and

*Length for which the set of contigs/scaffolds of that length or longer accounts for at least half of the assembly size.
"Minimum number of contigs/scaffolds accounting for at least half of the assembly.
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“relax.” Mode ‘“‘relax” considers more alignments than ‘‘default,” but it has a higher chance of introducing
mis-joins. HYBRIDSCAFFOLD failed on the BssSI map, so we could not test it on alternating maps.

Table 1 shows that when using a single optical map, OMGS can generate comparable or better scaffolds
than SEWINGMACHINE and HYBRIDSCAFFOLD. With two optical maps, OMGS’ correctness (‘‘contigs/
scaffolds with 100% consistent LG’”) and contiguity (N50) are significantly better than other two tools.
Observe that OMGS’ correctness (‘‘contigs/scaffolds with 100% consistent LG”’) is even better than the
input assembly. This can happen when contigs with SNPs belonging to same linkage group are scaffolded
with contigs that have no SNP.

We also compared the performance of OMGS, SEWINGMACHINE, and HYBRIDSCAFFOLD when using
optical maps corrected by CHIMERICOGNIZER (on the same cowpea assembly). Observe in Table 2 that
OMGS, SEWINGMACHINE, and HYBRIDSCAFFOLD increased the correctness but decreased the contiguity
when the corrected BspQI optical map was used. The results on the corrected BssSI optical map or both
corrected optical maps did not change significantly. But again, OMGS produced better scaffolds than
SEWINGMACHINE and HYBRIDSCAFFOLD.

4.2. Experimental results on D. melanogaster

D. melanogaster has four pairs of chromosomes: three autosomes and one pair of sex chromosomes. The
fruit fly’s genome is about 139.5 Mb. We downloaded three D. melanogaster assemblies generated in
Solares et al. (2018) (https://github.com/danrdanny/Nanopore_ISO1). The first assembly (295 contigs, total
size 141 Mb, N50=3 Mb) was generated using Canu (Berlin et al., 2015; Koren et al., 2017) on Oxford
Nanopore (ONT) reads longer than 1kb. The second assembly (208 contigs, total size 132 Mb, N50=3.9
Mb) was generated using MINIMAP and MINIAsSM (Li, 2016) using only ONT reads. The third assembly
(339 contigs, total size 134 Mb, N50=10 Mb) was generated by PLATANUS (Kajitani et al., 2014) and
DBG20Lc (Ye et al., 2016) using 67.4 X of Illumina paired-end reads and the longest 30 X ONT reads. The
first and third assemblies were polished using NANOPOLISH (Loman et al., 2015) and PiLoNn (Walker et al.,
2014). The Bionano optical for D. melanogaster map was provided by the authors of Solares et al. (2018).
This BspQI optical map (363 molecules, total size=246 Mb, N50=_841kb) was created using IRYSSOLVE
2.1 from 78,397 raw Bionano molecules (19.9 Gb of data with a mean read length of 253 kb).

As said, all tools were run with default parameters, with the exception of OMGS’ minimum confi-
dence, which was set at 20 (default is 15). To evaluate the performance of OMGS, HYBRIDSCAFFOLD,
and SEWINGMACHINE, we compared their output scaffolds to the high-quality reference genome of
D. melanogaster (release 6.21, downloaded from FlyBase). We reported the total length of correct/non-
chimeric scaffolds as a measure of the overall correctness. To determine which scaffolds were incorrect/
chimeric we first selected BLAST alignments of the scaffolds against the reference genome which had an
e-value lower than le-50 and an alignment length higher than 30 kbp. We defined a scaffold S to be
chimeric if S had at least two high-quality alignments, which satisfied one or more of the following
conditions: (i) S aligned to different chromosomes; (ii) the orientation of S’s alignments was different; or
(iii) the difference between the distance of alignments on the scaffold and the distance of alignments on the
reference sequence was larger than 100 kbp.

Table 3 reports the main statistics for the three D. melanogaster scaffolded assemblies. Even with one
map, OMGS’ scaffolds are better than SEWINGMACHINE and HYBRIDSCAFFOLD.

5. CONCLUSIONS

We presented a scaffolding tool called OMGS for improving the contiguity of de novo genome assembly
using one or multiple optical maps. OMGS solves several optimization problems to generate scaffolds with
optimal contiguity and correctness. Experimental results on V. unguiculata and D. melanogaster clearly
demonstrate that OMGS outperforms SEWINGMACHINE and HYBRIDSCAFFOLD both in contiguity and
correctness using multiple optical maps.
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Appendix 1

1.1. DIRECTED ACYCLIC GRAPH UNIQUE ORDERING

Algorithm 1 Sketch of the algorithm for checking whether a directed acyclic graph provides an unique ordering

1 procedure ORDER_UNIQUENESS_CHECK(G=(V, E))
2 S=nodes with no incoming edges

3 while S # () do

4 if [S| > 1 then

5: return False

6: remove a node n from S

7: for each node m with an edge e=(n, m) do
8 remove edge e from the £

9 if m has no other incoming edges then

0 insert m into S

1 return 7True
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1.2. STATISTICAL TEST FOR REPETITIVE REGIONS

Here we provide additional details for the estimation of ¢ during the analysis of repetitive regions.
Recall that we collect all estimated repetitive lists in set R={D,, is estimated repetitive|p=1, ..., P} and
the estimated mean ﬂp for each distance list D, in the set R, where P is the total number of estimated
repetitive lists. For each D), the distances d;’s are distributed as a Gaussian with mean ,&p and variance ¢2.

According to the density function of Gaussian distribution, the log likelihood of one D, is

D, D,|
—‘2—' g (2m)~ ' ZZZW 9%

dieD,

The total log likelihood is the sum of the log likelihoods across all D,’s in R, which is

P
log L(c%) = — r=! log o” — —Z (di—ﬂ,,)z,
after ignoring all terms not related to 2. To maximize log L(c?), we require that the derivative of total log
likelihood

Olog L(5?)

0a? =0,

that is,

Z Dy 1
p212 2(0’2)22 Z (d 'ul’) -

p=1d;eD,
After some simplification, the estimator for variance becomes

P A
6’2 _ Zp:l Zd,-EDp (dl - )up)z
=1 1]

1.3. DENSITY FUNCTION OF dp,x — dmin

Here we provide additional details for calculating the density function of dpax — dmin- It is well known
that the joint density function of order statistics is

n! i-1 j—1-i n—j
(—1)!(j—1—i)!(n—j)!ﬁC(u)fX(v)[FX(u)] [F.(v) - F(wY™ '[1-F.]"™ (1)

fxay, x¢y, v)=
for —oo < u < v < +00, where X(i) and X(j) are the ith and jth order statistics in Xy, ..., X,, and F, and f,
are the distribution function and density function of each X;, respectively. Using Equation (1), the joint
density function of (dpax,dmin) can be expressed as

Lo doin s V) =100 = D)fs )y, D) F g, (v) = F4,(w)]" 2

for —oo <u <v< +o00, where F; and f; are the distribution function and density function of
d;~N(il; ,» 6%), respectively.

Now, let X =dmnax —dmin and Y =dpin. Then dpax=X+Y and dnin =Y, and the corresponding Jacobian
determinant is

| Oddmax /OX 8dmax/8Y‘_‘l 1

Odmin/OX  Oduin /OY || 0 1‘21'
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Thus, the joint density function of (X, Y) is given by

T, v Y) = fis doin 4, W[ =000 = Df O, (x4 Y)[F 4, (x+y) = Fq, )" 72,

where x > 0 and —oco < y < +00. By integrating over Y, the density function of X =dax — dmin becomes

fdmax_dmin(x): / n(n_ l)fd,(y)fd,(x+y)[Fd,(x+)’)_Fd,(y)]nizdy’x Z 0

1.4. GAP ESTIMATION

Here we provide additional details for calculating the log likelihood function when estimating gaps.
Recall that /,, ..., l,_ are independent chi-square random variables, and Z?:_pl l; is chi-square distributed
with degree of freedom fopl ;. Since the density function of a chi-square random variable X with degree
of freedom £ is

(K/2=1,=x/2

1
fx(x)= HAT(k)2)

g-1

where I is the gamma function, the likelihood of > !_ ' I; with observation

Cq-1

y=di= Y |el
C=Cp+1
is
1
WB=1,-7/2
’rp’ ¢

where = Zf;pl 3. Therefore, the log likelihood function for one sample is
logl=(f—1)logy— % —Blog2— log ().

The total log likelihood is the sum of the log likelihoods across all samples.



