
https://doi.org/10.1007/s11042-019-08453-9

Dropout vs. batch normalization: an empirical study
of their impact to deep learning

Christian Garbin1 ·Xingquan Zhu1 ·OgeMarques1

Received: 26 April 2019 / Revised: 3 September 2019 / Accepted: 7 November 2019 /

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Overfitting and long training time are two fundamental challenges in multilayered neu-
ral network learning and deep learning in particular. Dropout and batch normalization are
two well-recognized approaches to tackle these challenges. While both approaches share
overlapping design principles, numerous research results have shown that they have unique
strengths to improve deep learning. Many tools simplify these two approaches as a sim-
ple function call, allowing flexible stacking to form deep learning architectures. Although
their usage guidelines are available, unfortunately no well-defined set of rules or compre-
hensive studies to investigate them concerning data input, network configurations, learning
efficiency, and accuracy. It is not clear when users should consider using dropout and/or
batch normalization, and how they should be combined (or used alternatively) to achieve
optimized deep learning outcomes. In this paper we conduct an empirical study to inves-
tigate the effect of dropout and batch normalization on training deep learning models. We
use multilayered dense neural networks and convolutional neural networks (CNN) as the
deep learning models, and mix dropout and batch normalization to design different archi-
tectures and subsequently observe their performance in terms of training and test CPU time,
number of parameters in the model (as a proxy for model size), and classification accu-
racy. The interplay between network structures, dropout, and batch normalization, allow
us to conclude when and how dropout and batch normalization should be considered in
deep learning. The empirical study quantified the increase in training time when dropout
and batch normalization are used, as well as the increase in prediction time (important for
constrained environments, such as smartphones and low-powered IoT devices). It showed
that a non-adaptive optimizer (e.g. SGD) can outperform adaptive optimizers, but only
at the cost of a significant amount of training times to perform hyperparameter tuning,
while an adaptive optimizer (e.g. RMSProp) performs well without much tuning. Finally,
it showed that dropout and batch normalization should be used in CNNs only with cau-
tion and experimentation (when in doubt and short on time to experiment, use only batch
normalization).

� Xingquan Zhu
xzhu3@fau.edu

Extended author information available on the last page of the article.

Multimedia Tools and Applications (2020) 79:12777–12815

Published online: 22 January 2020

http://crossmark.crossref.org/dialog/?doi=10.1007/s11042-019-08453-9&domain=pdf
http://orcid.org/0000-0003-4129-9611
mailto: xzhu3@fau.edu


Keywords Deep learning · Overfitting · Dropout · Batch normalization · Optimization ·
Regularization

1 Introduction

Machine learning is a “generalization” process which learns mathematical models from
sample data (i.e. training data) to make accurate predictions on previously unseen data (i.e.
test data), without using explicitly programmed rules [5]. Many methods exist to carry out
learning on the training data, using supervised, unsupervised, or semi-supervised learning
paradigms [5] [34]. For all these learning algorithms, two commonly used measures to eval-
uate their performance are learning efficiency, i.e. model training speed, and prediction
accuracy. The former determines the scalability of the algorithms and defines how well they
can be applied to large-scale data, and the latter determines the utility of the model and its
usefulness for real-world usages.

When carrying out learning on the training data, conventional machine learning algo-
rithms, such as nearest neighbor classification [31], decision trees [19], multilayer percep-
trons [26], and support vector machines [3], require each training instance (or sample) to be
represented using some feature values, and the whole training data is provided in instance-
feature tabular format. Recently, deep learning approaches, such as convolutional neural
networks (CNN) [16], and recurrent neural networks (RNN) [18], are emerging as a new
machine learning paradigms that have shown tremendous performance gain compared to
conventional machine learning algorithms, especially for applications such as voice recog-
nition [4], image classification [13], video action recognition [32, 33], and spatio-temporal
data applications [14]. The power of deep learning stems from its feature representation
capability, which is able to repetitively learn new features from training data. This is
fundamentally better than conventional machine learning methods, because their feature
learning capabilities automatically extract features from the training data, leading to a better
separation of the training data and subsequently improved performance at test time.

For all deep learning algorithms, the repetitive parameter training, carried out across
different layers, is often a time-consuming process. As many stacked deep learning net-
work designs, such as stacked Boltzmann machines or stacked autoencoders, are becoming
increasingly popular, it is easy to have deep learning architectures with billions of parame-
ters which not only make the training time consuming, but are also vulnerable to overfitting.
As a result, many methods/approaches, such as layer-wise freeze training [2], dropout [28],
and batch normalization [7], have been proposed to ensure steady and efficient training of
reliable deep learning models.

1.1 Overfitting and dropout

Overfitting is a common challenge in training machine learning models [5]. In general,
overfitting happens when the model performs well on the training data, but performs poorly
on test data, i.e. the model has low training error and high test error. Regularization is a set of
techniques used to reduce overfitting [5]. Some of these techniques are model-specific, such
as preprunning and postprunning for decision trees, some techniques act on the gradient
descent optimization algorithms [25], and others act on the input data, artificially creating
new training data [24].

Multimedia Tools and Applications (2020) 79:12777–1281512778



Other techniques go beyond acting on only one model. One such technique is model
ensembling, combining the output of several models, each trained differently in some
respect, to generate one final answer. It has dominated recent machine learning competi-
tions [5]. Although model ensembling performs well, it requires a much larger training time
by definition (compared to training only one model). Each model in the ensemble has to be
trained either from scratch or derived from a base model in significant ways.

When tackling overfitting for deep learning, dropout [28] proposed to randomly change
the network architecture, to minimize the risks that the learned weight values are highly cus-
tomized to the underlying training data, and therefore cannot be generalized well to test data.
In essence, dropout simulates model ensembling without creating multiple networks. It has
been widely adopted since its publication, in part because it does not require fundamental
changes to the network architecture, other than adding the dropout layers.

Despite its simplicity, dropout still requires tuning of hyperparameters to work well in
different applications. The original paper [28] mentions the need to change the learning rate,
weight decay, momentum, max-norm, number of units in a layer, among others. Getting
dropout to work well for a given network architecture and input data requires experimen-
tation with these hyperparameters. Adding dropout to a network increases the convergence
time [28]. Then, after adding dropout, we need to train models with different combinations
of hyperparameters that affect its behavior, further increasing training time.

Another equally important, if not more significant, complicating factor is that existing
dropout evaluations were tested with the standard stochastic descent gradient (SGD) opti-
mizer (as it is done in most papers [25]). Most networks today use adaptive optimizers, e.g.
RMSProp [30], commonly used in Keras examples. Some of the recommendations in the
dropout paper [28], for example, learning rates and weight decay values, do not necessarily
apply when an adaptive optimizer is used.

This observation naturally leads to techniques focusing on improving the model training
efficiency by helping the models converge faster. One such technique commonly used for
deep learning is batch normalization [7].

1.2 Training efficiency and batch normalization

Before batch normalization [7] was introduced, the time to train a network to converge
depended significantly on careful initialization of hyperparameters (e.g. initial weight val-
ues) and on the use of small learning rates, which lengthened the training time. The learning
process was further complicated by the dependency of one layer on its preceding layers.
Small changes in one layer could be amplified when flowing through the other network lay-
ers. Batch normalization significantly reduces training time by normalizing the input of each
layer in the network, not only the input layer. This approach allows the use of higher learn-
ing rates, which in turn reduces the number of training steps the network need to converge
([7] reported 14 times fewer steps in some cases).

Similar to dropout, using batch normalization is simple: add batch normalization layers
in the network. Because of this simplicity, using batch normalization would be a natural
candidate to be used to speed up training of different combinations of hyperparameters
needed to optimize the use of dropout layers (it would not speed up each epoch during
training, but would help converge faster).

However, batch normalization also has a regularization effect that renders dropout
unnecessary in some cases, as documented in the original paper [7], in [20], and [9].

Multimedia Tools and Applications (2020) 79:12777–12815 12779



1.3 Dropout and batch normalization combination

With the overlapping and sometimes contradicting recommendations for dropout and batch
normalization usage, choosing the best architecture for a network, one that can be trained in
a short amount of time and generalizes well, now becomes a four-fold question:

1. How do dropout and batch normalization behave concerning different types of deep
learning architectures?

2. Should it use dropout or batch normalization? Both claim to regularize the network, but
do they regularize equally well, and at the same cost of training time and network size?

3. Should it use both dropout and batch normalization? Despite the claim in [7], other
experiments showed that they can be used together to improve a network [17].

4. Should it use any of them? Could an adaptive optimizer (e.g. RMSProp) be enough to
quickly converge to an acceptable accuracy for some problem spaces and input data?

Indeed, if dropout should be encouraged for some (if not all) deep learning architectures,
there are two more questions to answer:

– What values should be used for the hyperparameters that affect dropout (learning rate,
weight decay, momentum, optimizer, etc.)?

– What are reasonable dropout parameter settings to ensure performance gain of the
underlying models?

Motivated by the above observations, in this paper we conduct empirical studies to derive
some guidelines for using dropout and batch normalization to train deep learning models.
The experiments are performed in image classifications tasks (MNIST and CIFAR-10) using
multilayer perceptron networks (MLP) and convolutional neural networks (CNN). We carry
out controlled experiments to test networks without dropout or batch normalization to create
a baseline, followed by networks only with dropout, only with batch normalization and
with both. Each network was further tested with a combination of hyperparameters. The
hyperparameters selected for the tests are the ones mentioned in the dropout paper [28] and
the batch normalization paper [7].

Overall, our experiments draw valuable findings to answer the above questions.
For MLPs, our results show that:

– Dropout and batch normalization significantly increase training time.
– However, batch normalization converges faster. If used together with early stopping it

may reduce overall training time; without early stopping it will increase overall training
time by a large margin.

– Batch normalization also resulted in higher test (prediction) times. This may be an
important factor for applications in restricted environments, such as mobile devices and
low-powered IoT (Internet of Things) edge devices.

For CNNs, our results demonstrate that:

– Using batch normalization improves accuracy with only a small penalty for training
time. Therefore, it should be the first technique used to improve CNNs.

– Using dropout, on the other hand, reduces accuracy in our tests. Other papers (e.g. [17])
reported that dropout helps accuracy, but not in all cases. The conclusion is to apply
dropout carefully, not assuming that it will always improve the results.

Multimedia Tools and Applications (2020) 79:12777–1281512780



Finally, we found out that a non-adaptive optimizer (such as SGD), frequently used in
papers [25], performs better than an adaptive optimizer (such as RMSProp), but only if
hyperparameters are carefully tuned. Therefore, papers that publish results using a non-
adaptive optimizer should document the value of all hyperparameters to be reproducible,
and practitioners, in general, should use an adaptive optimizer to save the large amount of
training time required to fine-tune a non-adaptive one. They should use that time to focus
on more consequential decisions instead (e.g. the network architecture).

We also made the framework used for the experiments available in GitHub,1 to expose
all details of the tests to other researchers, and to make the experiments reproducible for
confirmation or enhancements for future investigations.

The remainder of the paper documents the findings in details and is structured as follows.
Section 2 reviews related works on hyperparameters configuration for neural networks,
dropout, batch normalization and works that investigate both of them together. Section 3
describes the most important design parameters that affect the experiments performed in this
paper, starting with the recommendations from the original dropout and batch normaliza-
tion works. Section 4 describes the datasets, network architectures, hardware and software
configurations used in the experiments. Section 5 reports the results of the experiments,
documents conclusions and recommendations derived from these experiments, and suggests
topics for future investigations. Section 6 reviews the goals of the work and its results.

2 Related work

2.1 Parameter settings for deep learning

Due to the complex nature of the underlying deep learning architecture and the large num-
ber of parameters involved in the training, finding proper parameter settings has always
been a practical challenge for the deep learning community. In order to optimize gradient-
based training of deep architectures, Bengio [1] introduced a practical guide to optimizing
hyperparameters. It emphasizes the need to choose a good learning rate as the main decision
when optimizing networks.

Because the majority of deep learning architectures rely on gradient descent principle
for optimization and a variety of approaches have been proposed, a literature review [25]
summarizes the different optimizers and documents guidelines to choose one. The sur-
vey also recommends the use of adaptive learning-rate optimizers for sparse data, and
names RMSProp, Adadelta and Adam as good choices, with Adam slightly outperforming
RMSProp towards the end of the optimization. It also notes that many recent papers use a
simple SGD optimizer (no momentum and only simple learning rate annealing schedules),
even though an adaptive optimizer could have been a better choice. This points to the need
for more investigations of results published in papers using SGD as the optimizer.

Despite the recommendation to start with an adaptive learning-rate optimizer from [25],
a well-tuned SGD optimizer may outperform an adaptive optimizer in some applications.
However, this can only be determined by trying out network configurations with the SGD
optimizer. Smith [27] makes several recommendations to help speed up the training phase.

1https://github.com/fau-masters-collected-works-cgarbin/cap6619-deep-learning-term-project

Multimedia Tools and Applications (2020) 79:12777–12815 12781

https://github.com/fau-masters-collected-works-cgarbin/cap6619-deep-learning-term-project


Specifically for SGD optimizers, it makes recommendations for learning rate, momentum,
and weight decay, all major contributors to the convergence time. It recommends the use
of cycling learning rates with cyclical momentum and a quick grid search to determine the
weight decay, in all cases closely watching the test and validation losses of the network to
prune inefficient combinations of values early on in the training cycle.

Even with guidelines to choose the initial values for hyperparameters [1] and guidelines
to tune parameters during training [27], verifying that those initial values and modifications
during training are indeed helping the network converge faster takes time. In [6] the authors
propose to start the training phase with a lower dimension version of the input data. For
example, when training with images, first start with images resized to a smaller resolution,
then increase the resolution in later phases, once it has been confirmed that the hyperpa-
rameter settings are helping the network to converge. The results prove that this method
reduces the time to verify that the network is converging (or not). Since it does not overlap
with other hyperparameter tuning strategies, it can be used as a complementary approach to
those strategies.

2.2 Dropout and batch normalization

Because deep learning architectures often have a large number of weight values for tuning,
whereas the training process only has a limited number of samples, overfitting becomes
a significant challenge. On the other hand, existing approaches to avoid overfitting, such
as decision tree pruning or constrained optimization, are either too specific or too expen-
sive, therefore cannot be applied to general deep learning frameworks. Finding simple and
effective approaches to avoid overfitting for deep learning is a practical challenge.

To prevent neural networks from overfitting, Srivastava et al. [28] introduced dropout
and described how specific hyperparameters (learning rate, momentum, max-norm, etc.)
affect its behavior and provided detailed recommendations on how to train networks using
dropout. Most of the recommendations are given in ranges of values for each hyperparame-
ter. For example increase learning rate by 10 to 100 times, use momentum between 0.95 and
0.99, apply max-norm with values from 3 to 4, etc. The dropout rate itself is recommended
as a range between 0.5 and 0.8 (for hidden layers). Mixing this number of hyperparameters
and their ranges result in a large matrix of combinations to try during training.

To accelerate the deep network training, Ioffe and Szegedy [7] introduced batch normal-
ization. It shows that batch normalization enables higher learning rates by reducing internal
covariate shift, but does not prescribe a value or a range to be used. It also recommends
to reduce L2 weight regularization and to accelerate learning rate decay. Finally, it recom-
mends removing dropout altogether and count on the regularization effect provided by batch
normalization. This claim has been studied in more recent articles (some of them are refer-
enced below). These additional investigations resulted in recommendations to use dropout
together with batch normalization in some scenarios.

Noticing the success of the dropout and batch normalization for deep learning, [17] rec-
onciles dropout and batch normalization for some applications and shows that combining
them reduces the error rate in those applications. Its specific recommendation is to apply
dropout after batch normalization, with a small dropout rate.

In order to better understand regularization in batch normalization, [20] shows that using
dropout after batch normalization layers is beneficial if the batch size is large (256 samples
or more) and a small (0.125) dropout rate is used (similar to the findings in [17] in this
respect). It also hypothesizes that dropout did not work in [7] because it was tested with a
small batch size.

Multimedia Tools and Applications (2020) 79:12777–1281512782



Fig. 1 A conceptual view of dropout. Instead of using a fixed network structure, dropout randomly removes
units from a fully connected network (left) to create a sub-model (right)

In summary, while there is empirical research of dropout and batch normalization, with
some practical recommendations for settings for each of them, our research work reported
in this paper differs from existing works in two main aspects:

1. Our work not only investigates the effect of the dropout and batch normalization lay-
ers, but also studies how do they behave with respect to different optimizers: the
SGD optimizer, commonly used in publications, and an adaptive optimizer (RMSProp),
commonly used in commercial applications.

2. Our research investigates the efficiency and effectiveness of the networks using dropout
and batch normalization combined training. The networks are measured in terms of the
time to train the networks, the time a trained network takes to predict values, and the
memory consumption of the network. These factors are important for real-life applica-
tions, where the best possible accuracy is not the only deciding factor to adopt a deep
neural network architecture.

3 Empirical study framework and designs

3.1 Dropout

Dropout [28] is a technique to reduce overfitting. Its central idea is to take a model that
is overfitting and train sub-models derived from it by randomly removing units for each
training batch. A conceptual view of the standard dense network vs. the network structure
after applying dropout is shown in Fig. 1.

By repeatedly eliminating random units, dropout forces the units to be more robust, learn-
ing feature on their own, without depending on other units. In this context it can be thought
of as simplified model ensembling.

The number of units to retain is controlled by a new hyperparameter, the dropout rate.2

The recommended values for the dropout rate are 0.1 for the input layer and between 0.5
and 0.8 for internal layers.

Using dropout requires some adjustments to the hyperparameters. The more significant
changes are:

2Note that the Keras API uses this parameter to control the number of units to remove (the opposite meaning
of what is used in the dropout paper). This paper follows the Keras API, i.e. units to remove.

Multimedia Tools and Applications (2020) 79:12777–12815 12783



– Increase the network size: dropout removes units during training, reducing the capac-
ity of the network. To compensate for that the number of units has to be adjusted by
the dropout rate, i.e. the number of units has to be multiplied by 1/(dropout rate). For
example, if the dropout rate is 0.5, it will double the number of units.

– Increase learning rate and momentum: dropout introduces noise in the gradients,
causing them to cancel each other sometimes. Increasing the learning rate by 10-100x
and adding momentum between 0.95 and 0.99 compensate that effect.

– Add max-norm regularization: increasing the learning rate and adding momentum
may result in large weight values. Adding max-norm regularization counteracts that
effect.

It is worth noting that in the original paper studying dropout [28], the authors have tested
some of these guidelines with a regular, non-adaptive SGD optimizer. They may not apply
exactly as described for adaptive optimizers.

3.2 Batch normalization

During training of a neural network, the distribution of the input values of each layer is
affected by all layers that come before it. This variability reduces training speed (lower
learning rates). Batch normalization [7] was created to resolve this variability and speed up
learning.

Normalizing the values of each sample before using it to the network’s input layer is
already a well-known technique. Batch normalization goes one step further and normalizes
every layer of the network, not only the input layer. The normalization is computed for each
mini-batch. A conceptual view of the standard dense network vs. the network structure after
applying Batch normalization is shown in Fig. 2.

This normalization allows the use of higher learning rates during training (although the
batch normalization paper [7] does not recommend a specific value or a range).

The way batch normalization operates, by adjusting the value of the units for each batch,
and the fact that batches are created randomly during training, results in more noise during
the training process. The noise acts as a regularizer. This regularization effect is similar
to the one introduced by dropout. As a result, dropout can be removed completely from
the network or should have its rate reduced significantly if used in conjunction with batch
normalization.

Using batch normalization requires some adjustments to the hyperparameters. The more
significant changes are:

Fig. 2 A conceptual view of batch normalization. Instead of using the values from the previous layer
unchanged (a), batch normalization normalizes the input values to have mean of zero and variance of one
(b): x̂ = x−mean√

variance
= x−E[x]√

V ar[x] . γ and β are newly-introduced, learnable parameters that scale and shift the

normalized values

Multimedia Tools and Applications (2020) 79:12777–1281512784



Fig. 3 Empirical study framework and designs. We systematically test four combinations to train deep
neural networks, including No dropout, no batch normalization (NDNB); with dropout, no batch normaliza-
tion (WDNB); no dropout, with batch normalization (NDWB); and with dropout, with batch normalization
(WDWB), and comparatively study the impact of dropout and batch normalization for deep neural network
learning

– Increase the learning rate: the normalization stabilizes the training process, allowing
higher learning rates.

– Remove dropout or use lower dropout rates: batch normalization also has a regu-
larization effect. This effect reduces the need for dropout to the point it is no longer
needed. If it is used, it should be used with lower rates.

3.3 Empirical study framework

In order to study the interplay between dropout, batch normalization, and deep neural net-
work training, we carry out an empirical study by following the framework shown in Fig. 3.
Given a benchmark dataset and a deep learning algorithm (detailed in Section 4), we system-
atically test four combinations: No dropout, no batch normalization (NDNB); with dropout,
no batch normalization (WDNB); no dropout, with batch normalization (NDWB); and with
dropout, with batch normalization (WDWB). By empirically testing each of the four com-
binations using different parameter settings (the feedback loop showing in Fig. 3), and
collecting outcomes of the trained models, including training times, classification accuracy,
number of parameters, our study intends to understand how dropout and batch normalization
behave to improve (or negatively impact) the deep learning architectures.3

In the following section, we will detail experimental settings, including benchmark data,
deep learning algorithms, and performance measures, followed by detailed experimental
results and analysis in Section 5.

3The source code used in the experiments is available in Github at https://github.com/
fau-masters-collected-works-cgarbin/cap6619-deep-learning-term-project

Multimedia Tools and Applications (2020) 79:12777–12815 12785

https://github.com/fau-masters-collected-works-cgarbin/cap6619-deep-learning-term-project
https://github.com/fau-masters-collected-works-cgarbin/cap6619-deep-learning-term-project


4 Experiments and settings

4.1 Benchmark datasets

We carry out experiments and comparisons on two benchmark image classification datasets:
MNIST [15] and CIFAR-10 [10].

4.1.1 MNIST: handwritten digits

MNIST (Modified National Institute of Standards and Technology) [15] is a set of 60,000
training and 10,000 test images of handwritten digits from 0 to 9. All images are 28×28
pixels in grayscale, with the digits centered in the image.

It was created by combining a subset of two NIST digit sets, one containing digits from
employees of the Census Bureau, and one containing digits from high-school students.
These sets were chosen to provide a mix of samples that are considered easy to classify (the
ones from the Census Bureau employees) and samples that are relatively harder to classify
(the ones from the high-school students).

To make the validation process more meaningful the training and test sets were split by
the original writers in a way that they do not overlap (digits from a given writer are either
in the training set or the test set, but not in both) and the two types of writers are equally
represented (half of the samples in the training and test set comes from the Census Bureau
employees, the other half from the high-school students). This careful split results in a robust
evaluation of a trained model (it will be presented with samples from writers it has not been
trained on).

Figure 4 shows a sample of the MNIST dataset.

4.1.2 CIFAR-10: natural images

CIFAR-10 (Canadian Institute For Advanced Research) dataset [10] is a collection of natural
images that are commonly used to train machine learning and computer vision algorithms.
The dataset contains 50,000 training images and 10,000 test images. All images are 32×32
pixels in color (RGB channels). The dataset has 10 classes of images, representing airplanes,

Fig. 4 Sample handwritten digits of the MNIST (Modified National Institute of Standards and Technology)
dataset. Each row represents a digit written in different styles

Multimedia Tools and Applications (2020) 79:12777–1281512786



Fig. 5 Samples images of the CIFAR-10 (Canadian Institute For Advanced Research) dataset [12]. Each
row represents a type of objects (airplanes, cars, birds, cats, deer, dogs, frogs, horses, ships, or trucks) under
different background or visual appearance

cars, birds, cats, deer, dogs, frogs, horses, ships, and trucks, as shown in Fig. 5. The training
set has 5,000 images in each class, and the test set has 1,000 images in each class.

The set was created from images collected from the Internet and manually labeled by
humans. The creation process ensured that no duplicates or synthetically-created images are
present in the set.

Figure 5 shows a sample of the CIFAR-10 dataset.

4.2 Deep learning algorithms

We carry out comparisons using two types of deep learning architectures, multilayer
perceptron networks (MLPs) and convolutional neural networks (CNNs) with different
hyperparameter configurations. The architectures of the networks are detailed in Section 5.

4.2.1 MLP: multilayer perceptron network

Multilayer perceptron networks are networks composed of several fully connected layers.
An example is shown in Fig. 6.

The MNIST dataset was used to test the MLP networks and hyperparameters combina-
tions. MNIST was chosen for this test because the original dropout paper [28] also used
MNIST in their MLP tests and formulated their guidelines for hyperparameters based on

Multimedia Tools and Applications (2020) 79:12777–12815 12787



Fig. 6 MLP-NDNB: Sample
standard MLP network
architecture used in the tests
(without dropout and without
batch normalization)

that. The dropout paper [28] recommends ranges of values for hyperparameters, including
number of layers (2 to 4), number of units in the hidden layer (1024 to 4096 and a special
case of 8192), learning rate (10x to 100x what would normally be used without dropout),
max-norm (3 to 4), among others.

We tested these combinations to document the effect they have on the network. The goal
is to test combinations of the recommendations from that paper, verifying how they affect
the training performance and the accuracy of the training model of an MLP network.

4.2.2 CNN: convolutional neural network

Convolutional neural networks are networks composed of several convolution and max-
pooling layers. An example is shown in Fig. 11.

CNN was used to test the CIFAR-10 dataset in the dropout paper [28]. The batch nor-
malization paper [7] used the ImageNet dataset for a similar test. For simplicity, given
the hardware and time available for the tests performed here, CIFAR-10 (instead of Ima-
geNet) was used for the batch normalization tests. Since the goal is to compare the relative
performance of the strategies and hyperparameters, using CIFAR-10 should suffice in this
application.

4.3 Performancemetrics

In order to comparatively study the model performance, the following performance mea-
surements are collected in our experiments.

Multimedia Tools and Applications (2020) 79:12777–1281512788



4.3.1 Training CPU time

Training CPU time records the total CPUs and GPUs time used to run all training epochs.
Our goal is to measure how much system resources a network configuration uses during the
training phase.

This performance metric is used to understand how taxing the training phase is for a
network configuration. Lower values are desirable to allow efficient use of expensive GPUs
and to speed up the experimental phase, where different hyperparameter combinations have
to be tried to find an optimal one.

In our experiments, we collected the training CPU time using the Python time package,
which measures the time to it took to execute Keras’ model.fit(...) function for the
network configuration.

It is worth noting that for systems with more than one CPU or GPU this is not the same as
clock (wall) time. Using a simplified example: if a network needs 20 seconds to be trained,
in a system with two CPUs the training will complete in about 10 seconds. This item will
report 20 seconds in this case. Measuring total CPU and GPU utilization gives a better view
of the utilization of systems resources. Measuring only the clock time (10 seconds in this
example) would not give an idea of how taxing the training phase really is on the system.

4.3.2 Test CPU time

Test CPU time records the total amount of time used across all CPUs and GPUs to evaluate
the trained network using the test set. Our goal is to capture the amount of system resources
the trained network uses when it is evaluating samples.

Test CPU time can help understand how efficient (or not) the trained network is on the
end-users’ systems. Lower values are desirable here to be responsive to the end-user and,
perhaps more importantly nowadays, to make efficient use of batteries in portable devices
(e.g. smartphones).

Similar to the training CPU time, we collect the test CPU time using Python time pack-
age, measuring the time to it took to execute Keras’ model.evaluate(...) function on
the trained network. (similar to the training CPU time, this is not the same as clock (wall)
time. See the note in the Training CPU time section for more details).

4.3.3 Number of parameters in the model

Number of model parameters record the number of parameters the model has. Our goal is
to evaluate and compare how much memory the models use.

While deep learning normally emphasizes the model accuracy, the model size, in terms
of the number of parameters, provides a second metric to decide among models that have
the same accuracy. The model with fewer parameters should be used because it will be
faster to experiment with (run more training experiments), will use less memory on an end-
user’s device (and thus contribute to overall performance device by not forcing the operating
system to eject other processes from memory) and use less battery (because it executes
fewer calculations to predict the output).

In the experiments, we use Keras’ model.count_params() function, called on the
model object after all layers have been created. Note that this number includes non-trainable
parameters, such as auxiliary variables used in batch normalization. Therefore size at test
time is an approximation (but it is close enough).

Multimedia Tools and Applications (2020) 79:12777–12815 12789



4.3.4 Training loss, validation loss and accuracy for each epoch

This performance metric records the training loss and shows whether the network is improv-
ing as training progresses and how fast it is doing so. The validation loss checks if the
network is overfitting or underfitting. Our goal is to measure how fast the network converges
and if the network will perform well on unseen data.

Given two models that have the same accuracy, the one that achieves that accuracy faster
(fewer epochs) saves system resources at training time (assuming a technique to decide that
in real-time, such as early stopping, is being used) and allows faster experimentation cycles.
Therefore, this measure allows us to have a measurement for training efficiency among the
models tested.

In the experiments, we collect the results by setting the parameter validation_data
when executing Keras’ model.fit(...). Keras returns a History object when valida-
tion data is supplied. This object contains the training and validation loss and accuracy for
each training epoch. Note that the code uses the test portion of the datasets for this purpose.
Since the code is not making decisions based on that (e.g. early stopping [22] or annealing
the learning rate), this is an acceptable practice. KerasTeam [8] has a similar discussion for
this usage pattern in the Keras examples.

4.4 Testing environment

All experiments reported were carried out on a Google Cloud virtual machine with the
following specification

4.4.1 Machine configuration

– Machine type: n1-standard-4
– Number of CPUs: 4
– Memory: 15 GB
– GPU: 1 x NVIDIA Tesla P100

The base image used for this virtual machine was Intel® optimized Deep Learning image,
described by Google Cloud as A Debian based image with TensorFlow (With CUDA 10.0
and Intel® MKL-DNN, Intel® MKL) plus Intel® optimized NumPy, SciPy, and scikit-learn.

Using a GPU is essential to explore the combination of hyperparameters described in
the following sections. Training is normally 30× faster on GPU platform, compared to a
relatively high-performing machine without a GPU (Intel i7 2.9 GHz, 16 GB RAM).

4.4.2 Programming tools

The following programming tools were used to implement the empirical study framework
and the experiment designs:

– Python 3.5.3
– Keras 2.2.4
– TensorFlow 1.12.0 (with GPU support enabled)

Multimedia Tools and Applications (2020) 79:12777–1281512790



5 Results and analysis

Based on the designed framework and the experimental settings detailed in the above sec-
tions, this section reports and analyzes the experiments and their results using multilayer
perceptron networks (MLPs) and convolutional neural networks (CNNs).

5.1 Multilayer perceptron network results

This section reports the experiments performed with multilayer perceptron networks and
analyzes the results under different settings.

5.1.1 MLP architectures, configurations, and parameter settings

Since the goal of our experiments is to compare the relative performance of the different
configurations tested, the baseline for those experiments is anMLP that does not use dropout
or batch normalization. This network is referred to as Standard MLP in the text. Therefore,
we use the following three network configurations for comparisons

1. MLP-NDNB (Standard MLP no dropout, no batch normalization: A standard mul-
tilayer perceptron network, with dense layers connected to each other without dropout
or batch normalization. This configuration is used as the baseline.

2. MLP-WDNB (MLP with dropout, no batch normalization): added dropout layers
to the standard network, following the guidelines in the dropout paper [28].

3. MLP-NDWB (MLP no dropout, with batch normalization): added batch normaliza-
tion layers to the standard network, following the guidelines in the batch normalization
paper [7].

For each of the above three network architectures, we test their performance with a
combination of these hyperparameters:

– Hidden layers: We use 2, 3 and 4 hidden layers. These numbers were chosen because
they were described in the dropout paper [28].

– Units in each hidden layer: we use 1,024 and 2,048 units in the experiments. These
numbers were chosen for the same reason as above.

– Batch size: 128 samples in each batch.
– Epochs:We use 5, 20 and 50 epochs in the experiments.
– Optimizer: a non-adaptive stochastic gradient descent (SGD) optimizer and

RMSProp [30]. The SGD optimizer was chosen because there are indications that most
published results use such an optimizer [25]. The RMSProp optimizer was chosen to
compare the performance of SGD with an adaptive optimizer.

– Activation function: ReLU [23] in all cases. It was chosen because the dropout paper
[28] and the batch normalization paper [7] also use it. A small-scale test was per-
formed with sigmoid to test its behavior and found that accuracy was comparable to the
ReLU (slightly lower, but not significantly). Because that test did not point to major
differences, the investigations proceeded only with ReLU.

Besides the list above, each network was also tested with different values for learn-
ing rate, weight decay, SGD momentum and max-norm values. These hyperparameters
depend on the network being tested. The range of values for them is documented within the
respective sections below.

Multimedia Tools and Applications (2020) 79:12777–12815 12791



5.1.2 MLP-NDNB: no dropout, no batch normalization

In this subsection, we report the results of MLP-NDNB, which are standard MLPs, without
dropout or batch normalization.

Network architecture A standard MLP network in this context is a network made of only
dense layers, without any dropout or batch normalization layer. Figure 6 shows an example
of a standard MLP network used in the tests.

Hyperparameter settings We use following hyperparameter settings in the experiments.

– Learning rates for SGD: the default Keras rate 0.01 and a higher rate 0.1 to compare
the behavior of this network with the dropout network (also tested with higher learning
rate).

– Learning rate for RMSProp: the default Keras rate 0.001 and a higher rate 0.002. The
higher rate is not as high as the SGD based on experiments. A 10x higher rate resulted
in low accuracy in small-scale tests.

– Decay for SGD: the default Keras value 0.0 (no decay applied) and a small decay
0.001 to compare with the dropout and batch normalization tests where decay was also
applied.

– Decay for RMSProp: the default Keras value 0.0 (no decay applied) and a small decay
0.00001 to compare with the dropout and batch normalization tests where decay was
also applied. The small decay value was chosen based on values used in the Keras
examples, then verified empirically with small-scale tests.

– Momentum for SGD: the default Keras value of 0.0 (no momentum applied) and
the value 0.95, also used in dropout and batch normalization test. Momentum is not
applicable to RMSProp.

– Max-norm constraint: no max-norm and a max-norm constraint with max value set to 2.

The combination of these hyperparameters and the hyperparameters applicable to all
MLP networks listed above resulted in 288 tests using the SGD optimizer and 144 tests with
the RMSProp optimizer.

Results The top 10 best results of these tests are listed in Table 1.

5.1.3 MLP-WDNB: with dropout, no batch normalization

In this subsection, we report the results of MLP-WDNB, which are MLPs with dropout
layers but without batch normalization.

Network architecture The MLP dropout network was modeled using a similar approach
as the original dropout paper [28]. The significant changes compared to the standard MLP
network are summarized as follows:

– A dropout layer was added after the input layer, using a lower dropout rate (compared
to the dropout rate in dense layers).

– A dropout layer was added after each dense layers, with a higher dropout rate, also as
recommended.

Figure 7 shows an example of a dropout network used in the tests.

Multimedia Tools and Applications (2020) 79:12777–1281512792



Ta
bl
e
1

To
p
10

te
st
ac
cu
ra
cy

fo
r
th
e
st
an
da
rd

M
L
P
ne
tw
or
k
M
L
P-
N
D
N
B
(n
o
dr
op
ou
to

r
ba
tc
h
no
rm

al
iz
at
io
n)
.A

ll
te
st
s
ex
ec
ut
ed

w
ith

a
ba
tc
h
si
ze

of
12
8
sa
m
pl
es

O
pt
im

iz
er

Te
st
ac
cu
ra
cy

H
id
de
n
la
ye
rs

U
ni
ts
pe
r
la
ye
r

E
po
ch
s

L
ea
rn
in
g
ra
te

D
ec
ay

SG
D
m
om

en
t.

m
ax
-n
or
m

Pa
ra
m
et
er
s
co
un
t

T
ra
in
in
g
tim

e
(s
)

Te
st
tim

e
(s
)

SG
D

0.
98
79

2
20
48

50
0.
1

0
0.
95

no
ne

5,
82
4,
52
2

13
7

0.
60
9

SG
D

0.
98
78

3
20
48

50
0.
1

0
0.
95

2
10
,0
20
,8
74

16
5

0.
67
7

SG
D

0.
98
69

3
20
48

50
0.
1

0
0.
95

no
ne

10
,0
20
,8
74

16
7

0.
65
0

SG
D

0.
98
66

4
20
48

50
0.
1

0
0.
95

no
ne

14
,2
17
,2
26

19
1

0.
69
6

SG
D

0.
98
65

2
20
48

5
0.
1

0.
00
1

0.
95

no
ne

5,
82
4,
52
2

17
0.
70
4

SG
D

0.
98
64

4
20
48

50
0.
1

0
0.
95

2
14
,2
17
,2
26

19
1

0.
69
8

SG
D

0.
98
63

2
10
24

50
0.
1

0
0.
95

no
ne

1,
86
3,
69
0

12
5

0.
58
4

SG
D

0.
98
61

3
20
48

50
0.
1

0.
00
1

0.
95

2
10
,0
20
,8
74

17
0

0.
78
7

R
M
Sp

ro
p

0.
98
60

2
20
48

20
0.
00
1

0.
00
00
1

0
2

5,
82
4,
52
2

69
0.
64
4

SG
D

0.
98
59

3
10
24

50
0.
1

0
0.
95

2
2,
91
3,
29
0

13
5

0.
58
3

Multimedia Tools and Applications (2020) 79:12777–12815 12793



Fig. 7 MLP-WDNB: Sample
dropout MLP network
architecture used in the tests
(with dropout but without batch
normalization)

Hyperparameter settings We use following hyperparameter settings in the experiments.

– Dropout rate for the input layer: 0.1, as recommended in [28].
– Dropout rate for hidden layers: 0.5, the high end of the rate recommended in [28].
– Learning rates for SGD: the default Keras rate 0.01 and 10x the default rate (0.1) as

recommended in [28].
– Learning rate for RMSProp: the default Keras rate 0.001 and a higher rate 0.01.

Although the standard MLP network did not use such a high rate, the 10x rate was used
here to test the recommendation in [28].

– Decay for SGD: the default Keras value 0.0 (no decay applied) and a small decay
0.001 to compare with the dropout and batch normalization tests where decay was also
applied.

– Decay for RMSProp: the default Keras value 0.0 (no decay applied) and a small decay
0.00001 to compare with the dropout and batch normalization tests where decay was

Multimedia Tools and Applications (2020) 79:12777–1281512794



also applied. The small decay value was chosen based on values used in the Keras
examples, then verified empirically with small-scale tests.

– Momentum for SGD: the default Keras value of 0.0 (no momentum applied) and the
two extremes of the range recommended in [28]: 0.95 and 0.99. Momentum is not
applicable to RMSProp.

– Max-norm constraint: no max-norm to test the behavior of the network when using the
same value as the standard MLP and two of the values recommended in [28]: 2 and 3.

The combination of these hyperparameters and the hyperparameters applicable to all
MLP networks listed above resulted in 648 tests using the SGD optimizer and 216 tests with
the RMSProp optimizer.

Results The top 10 results of these tests are listed in Table 2.

5.1.4 MLP-NDWB: no dropout, with batch normalization

In this subsection, we report the results of MLP-NDWB, which are MLPs without dropout
layers but with batch normalization.

Network architecture The MLP batch normalization network was modeled after the batch
normalization paper [7]. The significant change compared to the standard MLP network is
the addition of a batch normalization layer after the dense layers.

Figure 8 shows an example of a batch normalization network used in the tests.

Hyperparameter settings We use following hyperparameter settings in the experiments.

– Learning rates for SGD: the default Keras rate 0.01 and 10x the default rate (0.1). Ioffe
and Szegedy [7] recommends a higher learning rate but does not give a range of values.
These values were chosen to match the ones used in the dropout MLP tests, making the
comparison more meaningful.

– Learning rate for RMSProp: the default Keras rate 0.001 a higher rate 0.005. Although
the standard MLP network did not use such a high rate, Ioffe and Szegedy [7]
recommends a higher rate.

– Decay for SGD: the default Keras value 0.0 (no decay applied) and a small decay 0.001
to compare with the other tests where decay was also applied.

– Decay for RMSProp: the default Keras value 0.0 (no decay applied) and a small decay
0.00001 to compare with the other tests where decay was also applied. The small decay
value was chosen based on values used in the Keras examples, then verified empirically
with small-scale tests.

– Momentum for SGD: the default Keras value of 0.0 (no momentum applied) and the
two extremes of the range recommended in [28]: 0.95 and 0.99. Momentum is not
applicable to RMSProp.

– Max-norm constraint: no max-norm to test the behavior of the network when using the
same value as the standard MLP and two of the values recommended in [28]: 2 and 3.

The combination of these hyperparameters and the hyperparameters applicable to all
MLP networks listed above resulted in 144 tests using the SGD optimizer and 72 tests with
the RMSProp optimizer.

Results The top 10 results of these tests are listed in Table 3.

Multimedia Tools and Applications (2020) 79:12777–12815 12795



Ta
bl
e
2

To
p
10

te
st
ac
cu
ra
cy

fo
r
th
e
dr
op
ou
tM

L
P
ne
tw
or
k
M
L
P-
W
D
N
B
.A

ll
te
st
s
ex
ec
ut
ed

fo
r
50

ep
oc
hs
,w

ith
a
ba
tc
h
si
ze

of
12
8
sa
m
pl
es
.D

ro
po
ut

ra
te
fo
r
th
e
in
pu
tl
ay
er

is
0.
1
an
d
0.
5
fo
r
th
e
hi
dd
en

la
ye
rs

O
pt
im

iz
er

Te
st
ac
cu
ra
cy

H
id
de
n
la
ye
rs

U
ni
ts
pe
r
la
ye
r

L
ea
rn
in
g
ra
te

D
ec
ay

SG
D
m
om

en
t.

m
ax
-n
or
m

Pa
ra
m
et
er
s
co
un
t

T
ra
in
in
g
tim

e
(s
)

Te
st
tim

e
(s
)

SG
D

0.
98
81

2
20
48

0.
01

0.
00
1

0.
99

3
20
,0
37
,6
42

24
4

0.
70
1

SG
D

0.
98
79

3
20
48

0.
01

0
0.
95

3
36
,8
18
,9
54

33
5

0.
77
9

SG
D

0.
98
79

4
20
48

0.
01

0.
00
1

0.
99

2
53
,6
00
,2
66

42
9

0.
80
8

SG
D

0.
98
76

3
10
24

0.
01

0
0.
95

no
ne

10
,0
20
,8
74

18
0

0.
72
5

SG
D

0.
98
76

4
20
48

0.
01

0.
00
1

0.
99

3
53
,6
00
,2
66

42
9

0.
82
6

SG
D

0.
98
75

2
10
24

0.
01

0.
00
1

0.
99

no
ne

5,
82
4,
52
2

16
1

0.
66
2

SG
D

0.
98
75

2
20
48

0.
1

0
0

3
20
,0
37
,6
42

24
1

0.
73
0

SG
D

0.
98
75

4
10
24

0.
01

0
0.
95

no
ne

14
,2
17
,2
26

20
4

0.
67
1

SG
D

0.
98
74

2
20
48

0.
01

0
0.
95

2
20
,0
37
,6
42

24
2

0.
72
2

SG
D

0.
98
74

3
20
48

0.
01

0.
00
1

0.
99

3
36
,8
18
,9
54

34
0

0.
77
1

Multimedia Tools and Applications (2020) 79:12777–1281512796



Ta
bl
e
3

To
p
10

te
st
ac
cu
ra
cy

fo
r
th
e
ba
tc
h
no
rm

al
iz
at
io
n
M
L
P
ne
tw
or
k
M
L
P-
N
D
W
B
.A

ll
te
st
s
ex
ec
ut
ed

fo
r
50

ep
oc
hs
,w

ith
a
ba
tc
h
si
ze

of
12
8
sa
m
pl
es

O
pt
im

iz
er

Te
st
ac
cu
ra
cy

H
id
de
n
la
ye
rs

U
ni
ts
pe
r
la
ye
r

L
ea
rn
in
g
ra
te

D
ec
ay

SG
D
m
om

en
t.

Pa
ra
m
et
er
s
co
un
t

T
ra
in
in
g
tim

e
(s
)

Te
st
tim

e
(s
)

SG
D

0.
98
68

4
20
48

0.
01

0
0.
95

14
,2
43
,8
50

39
4

0.
93
3

SG
D

0.
98
67

2
10
24

0.
1

0.
00
01

0.
95

1,
87
0,
85
8

24
1

0.
76
5

R
M
Sp

ro
p

0.
98
67

4
20
48

0.
00
1

0.
00
01

0
14
,2
43
,8
50

43
9

0.
92
7

SG
D

0.
98
65

3
10
24

0.
1

0.
00
01

0.
95

2,
92
3,
53
0

29
3

0.
85
7

SG
D

0.
98
64

2
20
48

0.
1

0.
00
01

0.
95

5,
83
8,
85
8

25
5

0.
79
5

SG
D

0.
98
64

4
20
48

0.
01

0.
00
01

0.
95

14
,2
43
,8
50

38
8

0.
90
1

R
M
Sp

ro
p

0.
98
62

3
10
24

0.
00
1

0.
00
01

0
2,
92
3,
53
0

12
5

0.
86
8

SG
D

0.
98
60

2
20
48

0.
01

0
0.
95

5,
83
8,
85
8

25
5

0.
78
0

SG
D

0.
98
60

4
20
48

0.
01

0
0.
95

14
,2
43
,8
50

16
1

0.
92
7

SG
D

0.
98
59

2
20
48

0.
01

0
0.
95

5,
83
8,
85
8

10
1

0.
76
4

Multimedia Tools and Applications (2020) 79:12777–12815 12797



Fig. 8 MLP-NDWB: Sample
batch normalization MLP
network used in the tests (with
batch normalization but without
dropout)

5.1.5 MLP result analysis

We compare and analyze the MLP results using classification accuracy, CPU time, model
sizes, and combination of hyperparameters.

Classification accuracy All networks resulted in similar accuracy, with a small edge for
dropout.

Figure 9 shows that the accuracy is not reached at the same time. The figure plots the
training (blue, dotted line) and test (solid orange line) loss during training.

The batch normalization network (MLP-NDWB) (see Fig. 9c) reaches its lower value
much earlier than other networks, as expected, given that one of its purposes is to accelerate
learning [7]. This can be taken advantage of to shorten training times when very high accu-
racy is not needed. Early stopping would stop training with the batch normalization sooner
than with the other networks.

Multimedia Tools and Applications (2020) 79:12777–1281512798



Fig. 9 Model training and test
loss with respect to epochs for
the top network in each category
(MLP-NDNB, MLP-WDNB, and
MLP-NDWB). All networks
configured with 2,048 units in
the hidden layers, trained with an
SGD optimizer for 50 epochs.
Parameters specific to a network
noted under each graph

Multimedia Tools and Applications (2020) 79:12777–12815 12799



Fig. 10 Training time in seconds for MLP-NDNB (Standard MLP), MLP-WDNB (MLP with only dropout),
and MLP-NDWB (MLP with only batch normalization) networks using two hidden layers, 2,048 units in
each layer, trained for 50 epochs. The vertical axis shows the training time (time to execute all epochs) in
seconds. The horizontal axis shows the test executed, with different hyperparameters (MLP-WDNB has more
tests because of its larger combination of hyperparameters to test)

Training and test CPU time, parameter count To evaluate the training and test CPU and
parameter count, the best results of each network configuration using two hidden layers was
extracted into Table 4.4

It shows these behaviors of the different networks:

– Training CPU time: dropout increases training time by approximately 17% (line 2 in
Table 4). Batch normalization increases training time by approximately 86% (line 3 in
4). As shown in Fig. 10, this increase in training time happens in all combinations of
hyperparameters. It is not the product of a specific set of hyperparameters. From that we
can make the general statement that batch normalization training time is approximately
80% longer than the standard and dropout networks.

– Test CPU time: batch normalization is significantly slower (30+%) at test time (line 3
in Table 4). This result is surprising, given that the network architecture is effectively
the same. It could be a fluctuation of the environment. It needs some further research.
If it does indeed increase the test time by this much, it has significant implications
for uses in restricted environments, e.g. mobile phones, were battery conservation is a
high-priority concern.

– Parameter count: as expected, batch normalization (line 3 in Table 4) uses more param-
eters than the standard MLP and dropout and therefore more memory (parameter count
is used as a proxy for memory usage). However, the increase is small (less than 1%)
and occurs only at training time (where usually more memory is available).

Combination of hyperparameters Inspecting the top 10 results for each network reveals
some patterns.

4Note that the dropout network is listed in the top 10 results as “1,024 hidden units”. The number of units is
adjusted by the dropout rate, 0.5 in this case. The adjustment results in a dropout network configured to run
with 1,024 units in a layer to effectively have 2,048 units in that layer.

Multimedia Tools and Applications (2020) 79:12777–1281512800



Table 4 Performance evaluation comparing networks with two hidden layers and 2,048 hidden units (note
that dropout is divided by 0.5, the dropout rate). All tests were done with 50 epochs, SGD optimizer, 0.1
learning rate and 0.99 momentum for dropout, 0.95 for the other networks

Network Accuracy Training time (s) Test time (s) Parameters count

Standard 0.9879 137 0.609 5,824,522

Dropout 0.9875 161 0.662 5,824,522

Batch normalization 0.9864 255 0.795 5,838,858

The non-adaptive optimizer SGD performed unexpectedly well compared to the adaptive
RMSProp. However, changing the default learning rate and adding momentum were needed
to achieve that performance. Adding a max-norm constraint was needed in most cases as
well.

Getting to that performance level requires experimentation with those hyperparameters,
which translates in more training time. The small gain in accuracy compare to RMSProp
may not justify the time invested.

5.1.6 Recommendations and discussions

The MLP results suggest the following findings and recommendations:

– Use batch normalization if the convergence time is more important than absolute
accuracy (Fig. 9). Together with early stopping, it could significantly reduce training
time.

– But be aware of batch normalization’s training time increase (Table 4). Unless it can
be shown that it is helping converge faster during training, it may not be worth using it
for experiments. Each experiment will take significantly longer to complete. It may be
better to start with a standard network to run experiments faster, then switch to batch
normalization in a later phase.

– Start with an adaptive optimizer (e.g. RMSProp). The experiments show that a non-
adaptive SGD optimizer can be fine-tuned to outperform an adaptive one, but that
comes at the cost of trying combinations of hyperparameters to find one that performs
well (see for example the varying learning rate, decay, momentum and max-norm of
the entries in Table 2). This adds to the training time. The accuracy of the adaptive
optimizer with its default settings is not much lower. Starting with that configuration
quickly provides a baseline for the tests and frees up time to experiment with other
hyperparameters (e.g. the number of hidden layers, batch size, etc.).

Future investigations Considering the results so far and what was learned in producing
this paper, these are some improvements that could be done in the experiments and data
collection process:

– Batch normalization test time validation: tests showed that batch normalization test
time is significantly higher than the standard MLP and dropout. This is unexpected and
warrants more investigations.

– Force overfitting in each test: to better evaluate the effect of the hyperparameters, the
test should begin by verifying that overfitting is taking place and where it does so
(which epoch). Forcing overfitting would have triggered more differences in accuracy
across the network types, providing more actionable recommendations for the readers.

Multimedia Tools and Applications (2020) 79:12777–12815 12801



Once the network is overfitting we can verify if the hyperparameter changes resolve the
overfitting and how soon it does so (which epoch). A possible way to force overfitting
in these tests is to reduce the number of samples in the training set.

– Effect of different dropout rates: the tests were performed with the dropout rates rec-
ommended in [28] because of the limited amount of time. Since the dropout rate is a
key hyperparameter, another investigation path could be to explore its effect on the top
10 results (e.g. could we improve the dropout network further with different dropout
rates?).

– Capture tensorboard data: Keras can save data during training into a format that tensor-
board can read. Making the data available in this format allows a deeper, more detailed
exploration of the results by other readers, potentially resulting in more insights.

5.2 Convolutional neural network results

This section reports empirical studies using convolutional neural networks. CNNs are one of
the most commonly used deep learning architectures. Convolution and max-pooling layers
are their main feature, followed by flattening and dense layers before an output layer.

5.2.1 CNN architectures, configurations, and parameter settings

Since the goal of these experiments is to compare the relative performance of the different
configurations tested, the baseline for those experiments is a CNN that does not use dropout
or batch normalization. This network is referred to as Standard CNN. In summary, we use
the following five network configurations for comparisons:

– CNN-NDNB (Standard CNN no dropout, no batch normalization): a standard
CNN, with convolution and max-pooling layers, without using any dropout or batch
normalization layer. This configuration is used as the baseline. This CNN was based
on the official Keras example [29] and similar to the CNN used in [28] for the Google
Street View House Numbers tests. Figure 11 shows this network configuration.

– CNN-WDNBd (CNN with dropout, no batch normalization): This architecture adds
dropout before the dense layer. Starting with the standard CNN, added a dropout layer
right before the dense layer. No other dropout or batch normalization layer was added.
Figure 12 shows this network configuration.

– CNN-WDNBa (CNN with dropout, no batch normalization): This architecture
includes dropout after all layers. Starting with the standard CNN, added dropout to the
convolutions and also before the dense layer. The dropout layer was added after the
max-pooling layers. Figure 13 shows this network configuration.

– CNN-NDWB (CNN no dropout, with batch normalization): starting with the
standard CNN, added batch normalization layers between the convolution and the
max-pooling layers. Although [7] adds batch normalization before the non-linearity,
subsequent experiments reported that adding batch normalization after the non-linearity
improves accuracy [21]. Because of such reports, tests were executed with the batch
normalization layer after the non-linearity layer. Figure 14 shows this network config-
uration.

– CNN-WDWB (CNN with dropout and batch normalization): This architecture
includes both dropout and batch normalization networks. Figure 15 shows this network
configuration. Dropout was applied after batch normalization, following the recommen-
dation from [17], with the variation that we add dropout after each batch normalization
layer.

Multimedia Tools and Applications (2020) 79:12777–1281512802



All tests were executed with data augmentation using Keras ImageDataGenerator
using these transformations:

– Random vertical shift with a factor of 0.1 (of total height), filling the new pixels with
the nearest neighbor.

– Random horizontal shift with a factor of 0.1 (of total width), filling the new pixels with
the nearest neighbor.

– Random horizontal flipping of images.

Hyperparameter settings Each of these networks was tested with a combination of the
hyperparameters listed below, using the CIFAR-10 dataset.

Because testing a CNN with a meaningful data set such as CIFAR-10, even with a small
number of layers, is time-consuming, a small combination of hyperparameters was tested
(compared to the MLP test).

– Optimizer: all tests used RMSProp. Although testing with SGD may have provided
a useful contrast between an adaptive optimizer (RMSProp) and a non-adaptive one
(SGD), time and resources considerations limited the tests to RMSProp.

– Learning rate: all CNNs were tested with learning rates 0.0001, the default Keras value.
In addition to that the dropout CNNs were tested with 0.001 (the 10x value recom-
mended in the dropout paper [28]); batch normalization CNNs were tested with 0.0005,
a higher rate as recommended in general terms (without providing specific values) in
[7]. The standard CNN was tested with 0.001 and 0.0005 for comparison.

– Units in the dense layer: All CNNs were tested with 512 units in the dense layer, as
shown in the official Keras example. In addition to that test, the dropout CNNs were
tested with 1024 units to follow the recommendation in [28] to adjust the number of
units based on the dropout rate (0.5 in this case).

– Epochs: all networks were tested with 50 epochs. This number was chosen to let the
networks stabilize and to have a reasonable test execution time. Even with this rela-
tively small number of epochs, training one network in a GPU-enable machine took 20
minutes.

– Dropout rate: a dropout rate of 0.25 was used after convolution layers and 0.5 after
dense layers. A smaller dropout rate for the convolution layers was used as documented
in [28].

– Activation function: ReLU [23] in all cases. Krizhevsky et al. [11] showed that ReLU
speeds up the training significantly.

5.2.2 CNN result analysis

Results from the tests are summarized in Table 5.

Classification accuracy Adding batch normalization significantly improves the accuracy.
Dropout, on the other hand, was always detrimental to accuracy (as used in these experi-
ments - see the next section for recommendations).

Training CPU time and parameter count Adding batch normalization increased training
time, as expected. However, contrary to the MLP test, adding batch normalization did not
result in a large increase in training time. It increased training time by approximately 10%.

Multimedia Tools and Applications (2020) 79:12777–12815 12803



Fig. 11 CNN-NDNB: Standard
CNN network architecture used
in the tests (without dropout and
without batch normalization)

Multimedia Tools and Applications (2020) 79:12777–1281512804



Fig. 12 CNN-WDNBd : CNN
network architecture with
dropout after the dense layer
used in the tests

Multimedia Tools and Applications (2020) 79:12777–12815 12805



Fig. 13 CNN-WDNBa : CNN
network architecture with
dropout in all layers used in the
tests

Multimedia Tools and Applications (2020) 79:12777–1281512806



Fig. 14 CNN-NDWB: CNN
network architecture with batch
normalization in all layers used
in the tests

Multimedia Tools and Applications (2020) 79:12777–12815 12807



Fig. 15 CNN-WDWB: CNN
network architecture with
dropout and batch normalization
in all layers used in the tests

Multimedia Tools and Applications (2020) 79:12777–1281512808



Ta
bl
e
5

C
N
N
te
st
re
su
lts

an
d
co
m
pa
ri
so
ns
,t
ra
in
ed

fo
r
50

ep
oc
hs
.T

he
be
st
re
su
lt
fo
r
ea
ch

ne
tw
or
k
ar
ch
ite
ct
ur
e
is
hi
gh
lig

ht
ed

in
bo
ld

Te
st

N
et
w
or
k

Te
st
ac
cu
ra
cy

L
ea
rn
in
g
ra
te

U
ni
ts
in

de
ns
e
la
ye
r

Pa
ra
m
et
er
s
co
un
t

T
ra
in
in
g
tim

e
(s
)

1
C
N
N
-N

D
N
B
(S
ta
nd
ar
d
C
N
N
,n
o
dr
op
ou
t,
no

ba
tc
h
no
rm

al
iz
at
io
n)

0.
32
26

0.
00
1

10
24

2,
43
6,
13
8

29
20

2
C
N
N
-N

D
N
B
(S
ta
nd
ar
d
C
N
N
,n
o
dr
op
ou
t,
no

ba
tc
h
no
rm

al
iz
at
io
n)

0.
69
45

0.
00
05

51
2

1,
25
0,
85
8

28
78

3
C
N
N
-N

D
N
B
(S
ta
nd

ar
d
C
N
N
,n

o
dr
op

ou
t,
no

ba
tc
h
no

rm
al
iz
at
io
n)

0.
80
41

0.
00
01

10
24

2,
43
6,
13
8

28
84

4
C
N
N
-N

D
N
B
(S
ta
nd
ar
d
C
N
N
,n
o
dr
op
ou
t,
no

ba
tc
h
no
rm

al
iz
at
io
n)

0.
57
17

0.
00
1

51
2

1,
25
0,
85
8

28
72

5
C
N
N
-N

D
N
B
(S
ta
nd
ar
d
C
N
N
,n
o
dr
op
ou
t,
no

ba
tc
h
no
rm

al
iz
at
io
n)

0.
80
21

0.
00
01

51
2

1,
25
0,
85
8

28
66

6
C
N
N
-W

D
N
B

d
(C
N
N
w
ith

dr
op
ou
t,
no

ba
tc
h
no
rm

al
iz
at
io
n)

0.
74
26

0.
00
01

51
2

1,
25
0,
85
8

28
81

7
C
N
N
-W

D
N
B

d
(C
N
N
w
ith

dr
op
ou
t,
no

ba
tc
h
no
rm

al
iz
at
io
n)

0.
10
01

0.
00
1

10
24

2,
43
6,
13
8

28
94

8
C
N
N
-W

D
N
B

a
(C

N
N
w
it
h
dr
op

ou
t,
no

ba
tc
h
no

rm
al
iz
at
io
n)

0.
75
75

0.
00
01

51
2

1,
25
0,
85
8

29
04

9
C
N
N
-W

D
N
B

a
(C
N
N
w
ith

dr
op
ou
t,
no

ba
tc
h
no
rm

al
iz
at
io
n)

0.
32
26

0.
00
1

10
24

2,
43
6,
13
8

29
20

10
C
N
N
-N

D
W
B
(C

N
N
no

dr
op

ou
t,
w
it
h
ba

tc
h
no

rm
al
iz
at
io
n)

0.
84
47

0.
00
1

51
2

1,
25
3,
54
6

31
85

11
C
N
N
-N

D
W
B
(C
N
N
no

dr
op
ou
t,
w
ith

ba
tc
h
no
rm

al
iz
at
io
n)

0.
82
66

0.
00
01

51
2

1,
25
3,
54
6

31
74

12
C
N
N
-N

D
W
B
(C
N
N
no

dr
op
ou
t,
w
ith

ba
tc
h
no
rm

al
iz
at
io
n)

0.
83
95

0.
00
05

51
2

1,
25
3,
54
6

31
89

13
C
N
N
-W

D
W
B
(C
N
N
w
ith

dr
op
ou
ta
nd

ba
tc
h
no
rm

al
iz
at
io
n)

0.
80
02

0.
00
01

51
2

1,
25
1,
49
8

30
92

14
C
N
N
-W

D
W
B
(C

N
N
w
it
h
dr
op

ou
t
an

d
ba

tc
h
no

rm
al
iz
at
io
n)

0.
80
87

0.
00
1

10
24

2,
43
6,
77
8

30
94

15
C
N
N
-W

D
W
B
(C
N
N
w
ith

dr
op
ou
ta
nd

ba
tc
h
no
rm

al
iz
at
io
n)

0.
77
74

0.
00
05

51
2

1,
25
1,
49
8

30
83

Multimedia Tools and Applications (2020) 79:12777–12815 12809



Effects of learning rate Increasing the learning rate yields better accuracy only when batch
normalization is used. In all other cases it is detrimental to accuracy. Although not a sur-
prising result for the standard CNN, increasing the learning rate when dropout is used in all
layers (test 9) also resulted in much lower accuracy.

5.2.3 Recommendations and discussions

– Add batch normalization before attempting other changes: combined with increasing
the learning rate (see next item), adding batch normalization improved accuracy by a
significant value without a significant increase of training time (tests 10, 11 and 12 in
Table 5). Because it is simple to add batch normalization, it is recommended to add it
as a baseline for further improvements in the network performance, before attempting
more costly hyperparameter changes.

– Learning rate value: increase it only when using batch normalization. Ioffe and Szegedy
[7] recommends to increase it and it does make a significant difference. Tests 10 and
11 in Table 5 shows that increasing it by 10× improves accuracy by 3%, without any
other change in the test parameters. However, increasing it for any other configuration,
including dropout, reduces accuracy.

– Dropout rate and layer placement: try several dropout rates and dropout layer place-
ment. While the tests in this paper resulted in lower accuracy (Table 5 – tests 6 to 9,
using only dropout, and tests 13 to 15, where dropout cancels out the batch normaliza-
tion accuracy gains), [17] showed improved accuracy when dropout is used, but only
for specific dropout rates and in specific places in the network. The specific rates that
result in better accuracy vary by network configuration. Trial-and-error is still the best
method to find a good dropout rate and layer placement.

5.2.4 Future investigations

Based on the results collected so far, these are some areas that could be investigated further:

– The low accuracy of dropout combined with batch normalization: contrary to the tests
performed here, [17] reported that dropout can be used to improve accuracy. However,
the results depended on the dropout rate. While [17] tried several dropout rates, in this
report we tried a fixed rate. Investigating the reasons for the low accuracy with specific
dropout rates could provide more information to understand the interactions between
dropout and batch normalization.

– The low accuracy of dropout in general: this was perhaps the most unexpected result.
Several examples, including the official Keras example, add dropout to the network
with the assumed intention that it improves accuracy. Further tests should explore other
hyperparameters. Two places to start are increasing the batch size, as recommended in
[20], and reducing the dropout rate, as recommended in [17]. Together with the previous
item, future investigations in this area could reveal a pattern to choose dropout rates
for specific network configurations, saving valuable training time. Until then, trying
different dropout rates is still the best method to find an effective one.

– Add max-norm and momentum: as seen in the MLP results, max-norm and momentum
(when testing with a non-adaptive SGD optimizer) make a difference in the behavior of
the network. They were not used in the CNN tests due to the limited time (each CNN
test takes 20 minutes in a GPU-enabled system). These tests could help explain the low
accuracy when dropout is used.

Multimedia Tools and Applications (2020) 79:12777–1281512810



– Deeper networks: the CNN used in the tests is relatively shallow. Further tests should
be executed in deeper networks to verify these results.

– Batch normalization layer after the non-linear layer: although [21] showed that using
the batch normalization layer after the non-linear layer improves accuracy, it did not
happen for all network types. Testing with the batch normalization layer before the non-
linear layer, together with max-norm and momentum, could provide more insights on
the performance of CNNs.

– Capture tensorboard data: same as noted in the MLP recommendation. Making the data
available in this format allows a deeper, more detailed exploration of the results by
other readers, potentially resulting in more insights.

6 Conclusions

Deep neural network training commonly uses dropout, a popular regularization strategy,
and batch normalization, a mitigation to the gradient vanishing problem, to improve the
model performance. In many cases, dropout and batch normalization overlap in applications,
whereas guidelines to use them are sometimes contradicting and often lack in details. In this
paper, we carried out an empirical study to examine the impact of dropout and batch nor-
malization on multilayer perceptron networks (MLPs) and convolutional neural networks
(CNNs), both in isolation and together. The goal of the experiments is to analyze combina-
tions of hyperparameters mentioned in the dropout paper [28] and the batch normalization
paper [7], separately (only dropout or only batch normalization) or in combination (both
dropout and batch normalization).

Overall, our experiments and analysis resulted in the following major findings. For MLP
networks, the empirical study showed that:

– Training with dropout and batch normalization is slower, as expected. However, batch
normalization turned out to be significantly slower, increasing training time by over
80%.

– A non-adaptive optimizer (SGD) can outperform an adaptive optimizer (RMSProp).
But to do so it required experimentation with other hyperparameters (learning rate,
momentum, max-norm), consuming more training time. As a general guideline tests
should start with an adaptive optimizer because it will perform better with default
parameters. Switching to a non-adaptive optimizer should be reserved for a later phase,
when other major decisions have been made (e.g. validate the dataset, explore different
network architectures, etc.).

– Test (prediction) time of a network trained with batch normalization is approximately
30% higher. This may be a factor for some applications because it also results in more
energy consumption, draining batteries faster. This was an unexpected result of the tests
and needs further validation.

For CNNs, the empirical study showed that:

– Adding batch normalization improved accuracy without other observable side effects.
Since it can be added without major structural changes to the network architecture,
adding batch normalization should be one of the first steps taken to optimize a CNN.

– Increasing the learning rate, as recommended in the batch normalization paper [7]
improves accuracy by 2% to 3%. Because this is a simple step to take, it should be done
in the initial optimization steps, before investing time in more complex optimizations.

Multimedia Tools and Applications (2020) 79:12777–12815 12811



– Adding dropout reduced accuracy significantly. This could be a deficiency of the exper-
iments conducted here because other sources reported improvements when dropout was
used. At a minimum, it is a cautionary sign that using dropout in CNNs require care-
ful consideration. As a practical suggestion, one should consider removing all dropout
layers from the network, re-validate and confirm that dropout does not deteriorate the
peformance.

Acknowledgements This research is sponsored by the US National Science Foundation (NSF) through
Grants IIS-1763452 and CNS-1828181.

References

1. Bengio Y (2012) Practical recommendations for gradient-based training of deep architectures
2. Brock A, Lim T, Ritchie JM, Weston N (2017) Freezeout: accelerate training by progressively freezing

layers. arXiv:1706.04983
3. Cortes C, Vapnik V (1995) Mach Learning, 273–297
4. Deng L, Hinton G, Kingsbury B (2013) New types of deep neural network learning for speech

recognition and related applications: an overview. https://doi.org/10.1109/icassp.2013.6639344
5. Goodfellow IJ, Bengio Y, Courville AC (2016) Deep learning. Adaptive Computation and Machine

Learning. MIT Press, Cambridge. http://www.deeplearningbook.org/
6. Hinz T, Navarro-Guerrero N, Magg S, Wermter S (2018) Speeding up the Hyperparameter Optimiza-

tion of Deep Convolutional Neural Networks. International Journal of Computation Intelligence and
Applications 17(2):1850008. https://doi.org/10.1142/s1469026818500086

7. Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing internal
covariate shift

8. KerasTeam (2016) Using test data as validation data during training. https://github.com/keras-team/
keras/issues/1753

9. Kohler JM, Daneshmand H, Lucchi A, Zhou M, Neymeyr K, Hofmann T (2018) Towards a theoretical
understanding of batch normalization, arXiv:1805.10694

10. Krizhevsky A (2009) Learning multiple layers of features from tiny images. https://www.cs.toronto.edu/
kriz/learning-features-2009-TR.pdf

11. Krizhevsky A, Sutskever I, Hinton GE (2012) In: Bartlett PL, Pereira FCN, Burges CJC,
Bottou L, Weinberger KQ (eds) Advances in neural information processing systems 25: 26th
annual conference on neural information processing systems 2012. Proceedings of a meeting
held December 3-6, 2012, Lake Tahoe, Nevada, USA, pp 1106–1114. http://papers.nips.cc/paper/
4824-imagenet-classification-with-deep-convolutional-neural-networks

12. Krizhevsky A, Nair V, Hinton G (2019) The cifar-10 dataset. https://www.cs.toronto.edu/kriz/cifar.html
13. Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neural

networks 60: 84. https://doi.org/10.1145/3065386
14. Längkvist M, Karlsson L, Loutfi A (2014) A review of unsupervised feature learning and deep learning

for time-series modeling 42: 11. https://doi.org/10.1016/j.patrec.2014.01.008
15. LeCun Y (1999) The mnist database of handwritten digits. http://yann.lecun.com/exdb/mnist/
16. LeCun Y, Bengio Y, Hinton G (2015) Deep Learning 521:436. https://doi.org/10.1038/nature14539
17. Li X, Chen S, Hu X, Yang J (2018) Understanding the disharmony between dropout and batch

normalization by variance shift
18. Lipton ZC, Berkowitz J, Elkan C (2015) A critical review of recurrent neural networks for sequence

learning
19. Loh WY (2014) Fifty years of classification and regression trees 82: 329.

https://doi.org/10.1111/insr.12016
20. Luo P, Wang X, Shao W, Peng Z (2018) Towards understanding regularization in batch normalization
21. Mishkin D, Sergievskiy N, Matas J (2017) Systematic evaluation of convolution neural network advances

on the imagenet. Comput. Vision Image Understanding. https://doi.org/10.1016/j.cviu.2017.05.007.
http://www.sciencedirect.com/science/article/pii/S1077314217300814

Multimedia Tools and Applications (2020) 79:12777–1281512812

http://arxiv.org/abs/1706.04983
https://doi.org/10.1109/icassp.2013.6639344
http://www.deeplearningbook.org/
https://doi.org/10.1142/s1469026818500086
https://github.com/keras-team/keras/issues/1753
https://github.com/keras-team/keras/issues/1753
http://arxiv.org/abs/1805.10694
https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/ kriz/learning-features-2009-TR.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks
https://www.cs.toronto.edu/ kriz/cifar.html
https://doi.org/10.1145/3065386
https://doi.org/10.1016/j.patrec.2014.01.008
http://yann.lecun.com/exdb/mnist/
https://doi.org/10.1038/nature14539
https://doi.org/10.1111/insr.12016
https://doi.org/10.1016/j.cviu.2017.05.007
http://www.sciencedirect.com/science/article/pii/S1077314217300814


22. Morgan N, Bourlard H (1989) In: Touretzky DS (ed) Advances in neural infor-
mation processing systems 2, [NIPS Conference, Denver, Colorado, USA, Novem-
ber 27-30, 1989]. Morgan Kaufmann, pp 630–637. http://papers.nips.cc/paper/
275-generalization-and-parameter-estimation-in-feedforward-nets-some-experiments

23. Nair V, Hinton GE (2010) In: Fürnkranz J, Joachims T (eds) Proceedings of the 27th international
conference on machine learning (ICML-10), June 21-24, 2010, Haifa, Israel. Omnipress, pp 807–814.
http://www.icml2010.org/papers/432.pdf

24. Perez L, Wang J (2017) The effectiveness of data augmentation in image classification using deep
learning

25. Ruder S (2016) An overview of gradient descent optimization algorithms
26. Rumelhart DE, Hinton G, Williams RJ (1985) Learning internal representations by error propagation.

https://doi.org/10.21236/ada164453
27. Smith LN, A disciplined approach to neural network hyper-parameters: part 1 – learning rate batchsize

momentum and weight decay (2018)
28. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple way to

prevent neural networks from overfitting. J Mach Learn Res 15(1):1929. http://dl.acm.org/citation.cfm?
id=2627435.2670313

29. Team K (2019) https://github.com/keras-team/keras/blob/master/examples/mnist cnn.py
30. Tieleman T, Hinton G (2012) Lecture 6.5—Rmsprop: divide the gradient by a running average of its

recent magnitude. COURSERA: Neural Networks for Machine Learning
31. University S (2018) Stanford university cs231n: convolutional neural networks for visual recognition.

http://cs231n.github.io/classification/#nn
32. Wang X, Gao L, Song J, Shen H, Beyond frame-level CNN (2017) Saliency-aware 3-

D CNN with lstm for video action recognition. IEEE Signal Process Lett 24(4):510.
https://doi.org/10.1109/LSP.2016.2611485

33. Wang X, Gao L, Wang P, Sun X, Liu X (2018) Two-stream 3-D convnet fusion for
action recognition in videos with arbitrary size and length. IEEE Trans Multimed 20(3):634.
https://doi.org/10.1109/TMM.2017.2749159

34. Zhu X (2005) Semi-supervised learning literature survey. Tech. Rep. 1530, Computer Sciences,
University of Wisconsin-Madison

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

ChristianGarbin has held software development, line and staff management positions in telecommunications
and financial industries, working with highly-available, high-performance servers. He is currently a senior
architect at a major IT company. He graduated from Florida Atlantic University (FAU) with a B.S. degree in
Computer Science in 2003. After following the development of artificial intelligence and machine learning
from a distance since then, he returned to FAU in 2018 to pursue his M.Sc. degree in Computer Science,
focusing on machine learning.

Multimedia Tools and Applications (2020) 79:12777–12815 12813

http://papers.nips.cc/paper/275-generalization-and-parameter-estimation-in-feedforward-nets-some-experiments
http://papers.nips.cc/paper/275-generalization-and-parameter-estimation-in-feedforward-nets-some-experiments
http://www.icml2010.org/papers/432.pdf
https://doi.org/10.21236/ada164453
http://dl.acm.org/citation.cfm?id=2627435.2670313
http://dl.acm.org/citation.cfm?id=2627435.2670313
https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
http://cs231n.github.io/classification/#nn
https://doi.org/10.1109/LSP.2016.2611485
https://doi.org/10.1109/TMM.2017.2749159


Xingquan Zhu is a Professor in the Department of Computer & Electrical Engineering and Computer Sci-
ence, Florida Atlantic University, Boca Raton, FL, USA. He received PhD degree in computer science from
Fudan University, Shanghai, China. His research interests include data mining, machine learning, and multi-
media systems. Since 2000, he has authored or co-authored over 250 refereed journal and conference papers
in these areas, including three Best Paper Awards and one Best Student Award. Dr. Zhu is an Associate Edi-
tor of the IEEE Transactions on Knowledge and Data Engineering (2008-2012, and 2014 - date), and an
Associate Editor of the ACM Transactions on Knowledge Discvoery from Data (2017- date).

Oge Marques is Professor of Computer Science and Engineering at the College of Engineering and Com-
puter Science at Florida Atlantic University (FAU) (Boca Raton, Florida, USA). He is Tau Beta Pi Eminent
Engineer, ACM Distinguished Speaker, and Leshner Fellow of the American Association for the Advance-
ment of Science (AAAS). Dr. Marques is the author of more than 100 publications in the area of intelligent
processing of visual information — which combines the fields of image processing, computer vision, image
retrieval, machine learning, serious games, and human visual perception—, including the textbook “Practical
Image and Video Processing Using MATLAB” (Wiley-IEEE Press). Professor Marques is Senior Member of
both the IEEE (Institute of Electrical and Electronics Engineers) and the ACM (Association for Computing
Machinery) and member of the honor societies of Sigma Xi, Phi Kappa Phi and Upsilon Pi Epsilon. He has
more than 30 years of teaching and research experience in different countries (USA, Austria, Brazil, France,
India, Spain, Serbia, and the Netherlands).

Multimedia Tools and Applications (2020) 79:12777–1281512814



Affiliations

Christian Garbin1 ·Xingquan Zhu1 ·OgeMarques1

Christian Garbin
cgarbin@fau.edu

Oge Marques
omarques@fau.edu

1 Department of Computer & Electrical Engineering and Computer Science, Florida Atlantic University,
Boca Raton, FL 33431, USA

Multimedia Tools and Applications (2020) 79:12777–12815 12815

http://orcid.org/0000-0003-4129-9611
mailto: cgarbin@fau.edu
mailto: omarques@fau.edu

	Dropout vs. batch normalization: an empirical study of their impact to deep learning
	Abstract
	Introduction
	Overfitting and dropout
	Training efficiency and batch normalization
	Dropout and batch normalization combination

	Related work
	Parameter settings for deep learning
	Dropout and batch normalization

	Empirical study framework and designs
	Dropout
	Batch normalization
	Empirical study framework

	Experiments and settings
	Benchmark datasets
	MNIST: handwritten digits
	CIFAR-10: natural images

	Deep learning algorithms
	MLP: multilayer perceptron network
	CNN: convolutional neural network

	Performance metrics
	Training CPU time
	Test CPU time
	Number of parameters in the model
	Training loss, validation loss and accuracy for each epoch

	Testing environment
	Machine configuration
	Programming tools


	Results and analysis
	Multilayer perceptron network results
	MLP architectures, configurations, and parameter settings
	MLP-NDNB: no dropout, no batch normalization
	Network architecture
	Hyperparameter settings
	Results

	MLP-WDNB: with dropout, no batch normalization
	Network architecture
	Hyperparameter settings
	Results

	MLP-NDWB: no dropout, with batch normalization
	Network architecture
	Hyperparameter settings
	Results

	MLP result analysis
	Classification accuracy
	Training and test CPU time, parameter count
	Combination of hyperparameters

	Recommendations and discussions
	Future investigations


	Convolutional neural network results
	CNN architectures, configurations, and parameter settings
	Hyperparameter settings

	CNN result analysis
	Classification accuracy
	Training CPU time and parameter count
	Effects of learning rate

	Recommendations and discussions
	Future investigations


	Conclusions
	References
	Affiliations


