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Summary

Synthetic microbial consortia have an advantage over isogenic synthetic microbes because they
can apportion biochemical and regulatory tasks among the strains. However, it is difficult to
coordinate gene expression in spatially extended consortia because the range of signaling
molecules is limited by diffusion. Here, we show that spatiotemporal coordination of gene
expression can be achieved even when the spatial extent of the consortium is much greater than
the diffusion distance of the signaling molecules. To do this, we examined the dynamics of a
two-strain synthetic microbial consortium that generates coherent oscillations in small colonies.
In large colonies, we find that temporally coordinated oscillations across the population depend
on the presence of an intrinsic positive feedback loop that amplifies and propagates intercellular
signals. These results demonstrate that synthetic multi-cellular systems can be engineered to
exhibit coordinated gene expression using only transient, short-range coupling among constituent

cells.
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Introduction

Synthetic biologists are now adept at engineering transcriptional gene circuits to create novel
phenotypes within microbes. To date, a large variety of synthetic genetic devices have been
developed, including toggle switches'?, oscillators®, and logic gates®’. In each of these,
transcription factors and their cognate promoters are rearranged in order to regulate gene
transcription within single cells. Intercellular signaling pathways have also been engineered to
regulate gene expression in populations of cells®. To do this, synthetic biologists have generally
used quorum sensing systems taken from Gram-negative bacteria that utilize N-acyl homoserine
lactones (HSLs)’. Synthetic versions of rewired intercellular pathways have allowed synthetic

biologists to generate multicellular systems that mediate intercellular communication'®, mimic
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predator-prey systems'', display population-level oscillations'>"?, and create spatial patterns
Such coordination of gene expression across time and space through intercellular signaling
pathways will be important if we are to use synthetic multicellular systems in complex
environments such as soils or the gut microbiome, or interface with materials and bioelectronics.
Existing multicellular synthetic microbial systems have been constructed to operate in
either well-mixed'*'?, or resource-limited environments'>'”. Intercellular signaling is simplified
in these environments, as either coupling between cells is uniform (in well-mixed environments),
or cells quickly go to stationary phase (in resource-limited environments). However, as the size
of synthetic multicellular systems increases it becomes important to consider environments that
are not well mixed, i.e. those in which intercellular signaling via small molecules has a limited

range within the population. Such considerations are important because large multicellular

synthetic systems will need to coordinate their behaviors across both space and time.



Some efforts have been made to coordinate gene expression in large synthetic colonies.
For instance, Prindle et al. showed that oscillations between colonies of synthetic bacteria could
be synchronized through engineered cell-cell communication mediated by hydrogen peroxide gas
exchange'®. However, gas exchange is not always the best option for cell-cell communication, as
non-vaporous chemical means (especially HSLs) are more commonly accessible, and do not
trigger native redox signaling pathways. Therefore, we need to better understand how to
temporally coordinate gene expression in spatially extended bacterial communities using
intercellular chemical signals.

Here, we show that gene expression within a spatially extended synthetic bacterial
consortium can be temporally coordinated through chemically mediated intercellular
communication. We examine the dynamics of a two-strain synthetic bacterial consortium in
which the two strains emit two orthogonal quorum sensing molecules to generate a regulatory
network with linked positive and negative feedback. When co-cultured in a small (~100pum)
microfluidic device, the two strains exhibit emergent transcriptional oscillations of genes within
the synthetic network. We find that when these two strains are co-cultured in a spatially extended
microfluidic trap (~2mm), synchronization of the entire population is possible even though the
diffusion of the signaling molecules provides only short-range interactions among the cells.
Through a combination of experimental perturbations and computational simulations, we find
that the temporal coordination of gene expression in our system depends on the regulatory
structure (i.e. the presence or absence of various transcriptional feedback loops) of the network
controlling intercellular signaling. In particular, a key positive feedback loop allows cells in an
oscillating consortium to amplify signals locally. This amplification can reduce the phase

difference between neighboring bacterial subpopulations, and is thus critical for synchronization



across a spatially extended system. This is in contrast to smaller, well-mixed populations, which
can exhibit synchronous oscillations for a variety of regulatory structures, including those
without intrinsic positive feedback. We thus show how molecular interactions within individual
cells are crucial for synchronization of spatially extended populations.

Our findings represent a major step towards the creation of large, synthetic, multicellular
systems. To be useful, such systems need to quickly coordinate their activity through a
distributed network of local interactions. The mechanisms we describe show how to design
communities of synthetic microbes to achieve this goal, and suggest how their counterparts in the

wild have evolved to do so.

Results

Microbial consortia in spatially extended chambers

To examine gene regulation and cell-cell signaling in spatially extended synthetic microbial
consortia, we turned to a two-strain synthetic consortium we developed previously'”. When co-
cultured, intercellular signaling pathways between the two cell types create a coupled positive
and negative feedback regulatory architecture that produces oscillations (see Fig. 1a). Briefly,
one strain acts as an “activator” and the other as a “repressor.” When the synthetic circuit within
the activator strain is ON (i.e. its promoters are active), it produces a cell-cell signaling molecule
(C4-homoserine lactone, C4HSL) that up-regulates the synthetic circuits in both strains.
Similarly, when the circuit within the repressor strain is ON, it produces an orthogonal cell-cell
signaling molecule (3-OHC14-HSL) that down-regulates the circuits in both strains. We refer to

C4HSL and 3-OHC14-HSL as the activating and repressing signals, respectively. When the two
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Figure 1 Dynamics of the two-strain oscillator in large microfluidic devices. (a) Circuit diagram
of the two-strain oscillator. (b) Simplified schematic of an extended “hallway” microfluidic
device (Supplementary Fig. 10b). This device is similar to the compact chamber used by Chen et
al, 2015", with the width of the chamber extended to 2000pum. (c) Representative fluorescence
images of cells growing in the extended hallway device (n=3 independent experiments). The
spatial arrangement of the two strains keeps fluctuating (red arrows point to two areas of high
fluctuation). (d) Simplified schematic of the extended “open” microfluidic device 2000um in
width (Supplementary Fig. 10a). The trap is open on all sides, allowing cells to align vertically,
and thus minimizing fluctuations in spatial arrangement of the two cell strains. (e) Representative
fluorescence images of cells growing in the open device (n=18 independent experiments). The
spatial arrangement of the cells eventually stabilizes, simplifying the spatio-temporal dynamics
of the two-strain oscillator. The images show times at which fluorescence is high.



strains are co-cultured, coupling between these positive and negative feedback loops leads to
oscillations in compact microfluidic chambers .

In the compact chamber we used in our previous study the diffusion time is much shorter
than the oscillatory period of the consortium'?. It takes approximately one minute for the HSLs

to diffuse through the compact chamber'*"

, whereas the oscillation period is 2hrs. Hence, the
signaling delay between strains is negligible and the consortium exhibits synchronous chamber-
wide oscillations.

Bacteria in their native environments, however, are not always confined to microscopic
spaces. A chemical signal emitted at one point may reach only a small portion of a spatially
extended population, and even then with considerable delay. We therefore asked whether one
could engineer spatially extended microbial consortia to exhibit coherent dynamics despite these
obstacles. To address this question we designed and constructed a microfluidic device with a
growth chamber 20 times longer than the compact chamber we used previously (2,000um vs
100um) (Fig. 1b) . We found that in this hallway chamber, which had walls on three sides, the
spatial arrangement of the two strains kept fluctuating, making it difficult to analyze the resulting
dynamics of the microbial consortia (Fig. 1c and Supplementary Fig. 1). Thus, we constructed
and used another microfluidic device in which the trapping region was open to media flow on all
sides, and hence cells and signaling molecules could exit the chamber in any direction (Fig. 1d).
As shown in previous theoretical work'*?' and confirmed in a more extensive accompanying
experimental study””, this design supports a stable distribution of strains once the trap was filled.

Since diffusion time scales with the square of the distance, we expected that the HSL

signal would take roughly 20*=400 times longer to diffuse through this chamber than through the

smaller chamber used in our previous study. Thus a chemical signal emitted at one end of the



chamber would take several hours to reach the other end. Moreover, at steady state the
magnitude of a signal emanating from one position decays exponentially as a function of
distance from the source since extracellular HSL can diffuse out of the chamber. Thus, we
expected coupling between cells to be primarily local, making globally coherent oscillations
unlikely. However, we observed spatially synchronous oscillations in the extended chamber
(Supplementary Video 1; Fig. 1e and Supplementary Fig. 2). We next asked how and when such
synchrony is maintained despite the presence of steep gradients and delays in the chemical

signals coupling the strains.

Positive feedback is essential for global synchrony

Our observation of coherent oscillations in the consortium implied that cells could amplify a
signal received at the right time, translating local entrainment into global synchrony. How a
received signal is relayed, however, depends on the architecture of the synthetic circuits within
each cell. We therefore asked what features of the genetic circuits that drive the oscillations are
also responsible for the emergence of coherent spatio-temporal dynamics. To answer this
question, we examined consortia with four different circuit architectures obtained by removing
either or both of the intrinsic feedback loops (Fig. 2a-d). Specifically, we examined consortia in
which the positive feedback loop in the activator strain and/or the negative feedback loop in the
repressor strain were removed'’. We denote the four circuits as P;N; where the indices, 1,j = 1,2,
refer to the number of positive and negative regulatory links in the circuit graph, respectively.
As we reported previously', all four architectures exhibit robust, synchronous
oscillations in the compact chamber (Fig. 2e-h and Supplementary Fig. 3a-d). However, only the

P,N, and P,N; architectures supported oscillations that were spatially coherent across the
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Figure 2 Comparison of the dynamics of different circuit topologies in the compact and
extended microfluidic devices. (a-d) Simplified circuit diagram of the P,N,, P,N;, PN, and PN,
architectures. (e-1) Representative kymographs of four architectures in the compact hallway
chamber (e-h) and in the extended open chamber (i-1) (n=4 independent experiments for each of
these except (1) and (1) for which n=5). The kymographs of (e-h) were obtained by reanalyzing
data from our previous work® where the compact hallway chamber was used>. We observed
similar behavior in a compact open chamber (Supplementary Fig. 3m). See Supplementary Fig.
2 for an explanation of kymograph construction. (m-p) Experimentally measured order
parameters for each experiment in the compact (blue circles) and extended (red circles)
chambers. The mean order parameter does not differ between architectures with and without
positive feedback in the compact chamber (mean order parameters are 0.70 and 0.75 with and
without positive feedback respectively, p=0.33, two-sided Welch's t-test, n=8 independent
experiments). However, in the extended chamber the mean order parameters are 0.29 and 0.69
for architectures with and without positive feedback, and this difference is significant (p =
2.3x10™, two-sided Welch's t-test, n=9 independent experiments).
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extended chamber (Fig. 21, j and Supplementary Fig. 3e, f). Consortia with the P;N, and P|N;
architectures broke into smaller, locally synchronous, oscillating subpopulations (Fig. 2k, | and
Supplementary Fig. 3g, h).

We quantified the degree of spatial synchrony in the space—time diagrams (kymographs),
using an order parameter, Q (Fig. 2m-p; see Methods for details): Q ~ 1 indicates spatially

coherent oscillations, and Q ~ 0 disorganized behavior*>**

. By reanalyzing the data from our
previous study, we found that all four architectures supported spatially coherent oscillations
(high order parameters) in the compact hallway chamber. In contrast, only architectures with
intrinsic positive feedback (i.e. P,N, and P,N;) exhibited a high order parameter in the spatially
extended open chamber (Fig. 2m, n, similar results were obtained with other methods
Supplementary Fig. 3i-1; see Methods). We therefore concluded that the intrinsic positive

feedback loop in the activator strain was essential for spatial synchrony in spatially extended

populations.

A mathematical model captures consortium dynamics

We next developed a mathematical model to better understand the circuit mechanisms that
mediate coherent oscillations in spatially extended consortia. We built on a previously developed
model that successfully captured the transcriptional dynamics of consortia in the compact
chamber'. To describe the spatio-temporal dynamics of consortia in the extended chamber we
included a single spatial dimension corresponding to the long axis of the extended trap. The
resulting equations captured the dynamics of the genetic circuits, fluctuations in local strain

ratios, as well as the diffusion of extra-cellular signaling molecules that mediate interactions



between the strains (parameters were constrained by experimental observations, see Methods and
Supplementary Tables 1 and 2).

We used our model to examine how the four architectures influence the evolution of
initial phase differences. To do so, we initialized each of four sets of simulations (corresponding
to the four architectures) with the same set of 10° randomly generated initial phases with spatial
phase variance estimated from experimental data (Fig. 2i-1 and Supplementary Fig. 3e-h) (see
Methods). Our model successfully captured experimentally observed features of the spatio-
temporal dynamics in the extended chamber (Fig. 2i-1): Consortia without intrinsic positive
feedback exhibited spatially asynchronous oscillations (2 = 0.1940.04 for P;N, and Q0 =
0.18+0.04 for P|N,), while spatially coherent oscillations emerged in consortia with the positive
feedback (2 =0.73+0.2 for P,N,, and Q0 =0.74+0.15 for P,N)) (Fig. 3a).

Note that even in the same chamber, depending on the initial phase differences among
strains, the level of synchrony (i.e. the order parameter) varies considerably. The green circles in
Fig. 3a highlight illustrative examples of high order parameters in the P,N, and P,N;
architectures, with corresponding kymographs shown in Fig. 3b-e. Small order parameters
corresponded to qualitatively different spatio-temporal patterns in consortia with and without the
positive feedback (e.g. red circles in Fig. 3a): In consortia of type P,N, and P,N; a low order
parameter reflected the emergence of two to three large, synchronized subpopulations oscillating
in anti-phase (Fig. 3f, g). In contrast, a low order parameter generally indicated the fracturing of
P;N; and P|N; type consortia into small subpopulations with shifting phase relationships (Fig.
3h, 1). These dynamics were consistent with those we observed experimentally in consortia with

corresponding architectures (Fig. 2i-1 and Supplementary Fig. 3e-h).
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Figure 3 The mathematical model reproduces the experimentally observed spatio-temporal
dynamics exhibited by the four regulatory architectures. (a) Calculated order parameters for
different initial conditions. The width of the shaded blue regions represents the empirical
probability density of the distribution of the individual results (dots). The same set of 10’ random
initial phases and ratios between two strains were used in simulations of all four architectures
(n=10’ independent simulations for each). The order parameters for the P,N; and P,N|
architectures were much higher than those for the P;N, and P;N, architectures. (b-¢)
Representative simulations using the same initial conditions (blue dots in (a)) that resulted in
high order parameters in the P,N, and P,N; architectures, but not in the P;N; and P|N;
architectures (n=10" independent simulations for each). (f-i) Representative simulations using the
same initial conditions (red dots in (a)) that resulted in low order parameters in each regulatory
architecture (n=10" independent simulations for each). Low order parameters in simulations with
P,N; and P;N; architectures reflected the emergence of 2-3 subpopulations oscillating in anti-
phase (f, g). In contrast, low order parameters reflected spatially disorganized behavior in P;N;
and PN, architectures (h, 1).



Positive feedback increases sensitivity to activator

We next used our model to probe the mechanisms by which intrinsic positive feedback mediates
global coherence of gene expression in spatially extended populations. As concentrations of the
signaling molecules decay quickly with distance from the source (Supplementary Fig. 4), distant
subpopulations in the chamber communicate only indirectly. Thus we conjectured that the
positive feedback is essential for effective long-range coupling.

To test our hypothesis, we first examined the effect of unidirectional coupling on two
oscillating, spatially localized subpopulations. To do this, we tracked the concentration of the
extracellular signals (i.e. both C14HSL and C4HSL) emitted by a receiving (driven)
subpopulation 50um (Fig. 4a; dashed box) from a sender (driving) subpopulation (Fig. 4a; solid
box). We then probed the effect of signals expressed by the sender subpopulation (Fig. 4b) on the
oscillation phase (@) of a receiving consortium (Fig. 4c and Supplementary Fig. 5a-f). The
receiving subpopulation’s constitutive strains were perturbed in response to the received signal.
This resulted in deviations in the oscillatory trajectory, and thus the phases, of the driven
consortium. By calculating the magnitude of the phase shift (A¢) as a function of the phase (¢)
when the input signal was received, we obtained the phase response curve (PRC)
(Supplementary Fig. 5g) *>*°; The PRC has positive values when the phase is advanced by the
input signal and negative values when the phase is delayed by the input signal (Fig. 4d, e; see
Methods for details). We defined phase ¢ = 0 as the point in the oscillatory cycle where the
activator promoter is fully activated and thus the released activator signal is at its maximum (Fig.
4c).

We can relate the shape of the computed PRC directly to the underlying molecular

mechanisms. The response of the receiving consortium is roughly independent of the presence or

10



logo([C4HSL]) (nM)
12 3 4

<0
a s

=3
1]

3 W] — C4HSL 1 P ) Ap
| @ [ —C14HSL ¢ S ; '1
2 g Ll |
I %Ez g inEut:l ||| ||
! . |
— 1] Yy | "
3?%1 g \ S A || IH
- Py ] \
I g 0 K_ rf{"\/ . _\\__" _;/'_ i .
0 100 200 0 1 2
] 1000 2000 : i
position (um) time (min) phase (¢)
d rel. Lacl conc. f h —
0s g e g
'.h © @ : @
e, . Q © 2]
- ] @ « 5
=0 - | SU—— LA - -
N ", £ £ £
o 0 o a & ;
.05 - . o g 0. : - 2 o_
input phase (¢) phase (¢) 8
=
o
e rel. Lacl conc. g i k -
05 . = > 1 = > 1 = 5 E
= 2 = 0
E ‘.1‘ g E E
= f-’; o] . o, g ‘Lﬁ E
: T 2 2 2 i
’, ® o ; [
03 0.5 1 05 1 O 1
input phase (¢) phase (¢) phase (¢) phase (¢)

Figure 4 Positive feedback changes the response to incoming signals. (a) Simulated
concentration of C4HSL emitted from a single source in the middle of a trap (solid box) as a
function of space and time (See Supplementary Fig. 4b for C14HSL). (b) Simulated rate of
change of the two HSLs in a receiving population at 50 um from their source (dashed box in (a)).
Also shown are the square pulses we used as approximations of these incoming signals for
further simulations. Shown are simulations obtained using the P,N, architecture. Results are
similar for other architectures (Supplementary Fig. 4). (c) Relative C4HSL concentration
produced by the receiving population (dashed box in (a)) in the presence (solid curve) and
absence (dashed curve) of the incoming signal (colored boxes). From these we estimated the
phase shift (Ag) of the receiving population. Here ¢=0 is defined as the phase at which the
C4HSL concentration of the receiving population is at its maximum. (d-e) The change in the
phase (A¢) of the receiving population as a function of the phase (¢) at which the driving signal
pulse is received for the P,N; (d) and P;N; (e) architectures. The highlighted points refer to
subsequent panels. (f-k) Relative transcriptional activity (solid green curve) of the Puyjiac
promoter of the PoN; (top) and Py, of the P;N; (bottom) architectures in response to signals
received at three different phases (red dots in (d) and (e)). The dashed line is the activity of the
promoter in the absence of the signal.



absence of the intrinsic positive feedback loop, except when 0.7<¢<0.8 (Fig. 4d, e; blue zones),
and has several stages. When 0<¢<0.5 Lacl is high (Fig. 4d and e; gray scale bars), the promoter
is repressed (Supplementary Fig. 5a and b), and the phase of the responding consortium is not
affected by an incoming signal (Fig. 4d, ). When 0.5<¢<0.7 Lacl begins to deplete and the
promoter is ready to be de-repressed (Supplementary Fig. 5a and b). Hence the repressor signal
prevents de-repression and delays the phase (Fig. 4f, g). When 0.7<¢<0.8 Lacl is depleted and
both promoters begin to turn on (Supplementary Fig. 5a and b). In the absence of positive
feedback (PN, architecture), the incoming repressor signal prevents the activation of the
promoters and delays the oscillation phase (Fig. 41). In contrast, positive feedback (P,N;
architecture) amplifies the impact of the incoming activator signal (Supplementary Fig. 6),
accelerating the activation of the promoter (e.g. Piiac) and advancing the phase of the oscillator
(Fig. 4h). When 0.8<¢<1 the promoter is active (Supplementary Fig. 5a and b). The incoming
repressor signal accelerates the deactivation of the promoter and advances the phase (Fig. 4j, k).
The qualitative shapes of the PRCs for both the P,N, and PN, architectures are similar to those
of the P,N; and P;N; architectures, respectively (Supplementary Fig. 7). In sum, the addition of a
positive feedback loop makes a consortium more sensitive to the activator signal by increasing
the range of phases at which the activator signal accelerates promoter activation. This in turn
extends the range over which an activator signal advances the phase of the responding
subpopulation.

To understand the impact of the feedback-mediated increase in sensitivity on the spatial
coherence of oscillations we next examined the evolution of phase differences between coupled

25,26

subpopulations™ . We used the previously obtained PRCs to define a mapping from the phase
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difference between two interacting subpopulations on one cycle, Ag, to the phase difference
during the next cycle, Agyew (Fig. 5a, b and Supplementary Fig. 8a, b; see Methods for details).

The region for which phase differences between two coupled populations shrink from one
cycle to the next is larger for the P,N; architecture than the PN, architecture (the range in which
|Adnew|<|Ad) 1s highlighted in blue in Fig. 5a, b). To confirm this prediction, we simulated a
spatially extended, oscillating population separating it into two equal halves that are initially out
of phase. In agreement with the behavior of two spatially localized coupled subpopulations (Fig.
5a, b), the P,N; (Fig. 5c, e) architecture reached global synchrony for a wider range of initial
phase differences between the population halves than the P|N; architecture (Fig. 5d).
Specifically, when the two halves of the consortium start with a phase difference of |A¢|=0.1 they
reach approximate synchrony after one oscillatory cycle for both the P,N; (Fig. 5¢) and P;N;
(Fig. 5d) architectures. An initial phase difference (Fig. 5a, b; |A¢|=0.3) predicted to lead to
synchrony for P,N;, but not the P;N; architecture, lead to synchrony in the P,N; consortium (Fig.
5e), but resulted in a breakdown in spatiotemporal order in the P;N; consortium (Fig. 5f).
Furthermore, initial phase differences outside the blue (synchronization) regions in Fig. 5a and b
tended to approach a phase difference of |A@|=0.5 over subsequent oscillations, leading to anti-
phase oscillations between the two population halves (Fig. 51, g, h).

Our model suggests the biochemical mechanisms driving synchrony: When the leading
subpopulation releases a signal (i.e. HSL), the promoter of the trailing subpopulation must not be
repressed to allow its phase to be shifted. If this signal arrives before the promoter in the trailing
subpopulation is activated, then the positive feedback allows the signal to accelerate promoter
activation. This advances the trailing phase, and reduces the phase difference between the

populations (Fig. 5e). The opposite occurs in the absence of the positive feedback: Here the
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Figure 5 Intracellular positive feedback promotes synchronization between reciprocally coupled
consortia. (a and b) The mapping from A¢ to Agyew for the P,N; (2) and PN, (b) architectures. In
both cases the map has two stable fixed points: A¢g=0 (synchrony) and A¢=0.5 (anti-phase). For
that satisty [4¢,ew |<|4¢@| (the blue region), this map predicts
eventual synchrony. On the other hand, for initial phase differences that do not satisfy this
inequality (outside the blue region), the map predicts anti-phase oscillations. (c-h) We simulated
a spatially extended consortium in an extended trap with different initial phase differences
between the two consortium halves. We show results for the three initial values corresponding to
the red points in panels (a) and (b). The behavior of the extended population agrees with
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repressor signal dominates and delays the activation of the promoter of the trailing subpopulation
(the wide phase delay zone in Fig. 4e), increasing the phase difference between the
subpopulations (Fig. 51).

We observed the behavior predicted by this modeling approach when we reanalyzed our
data (Fig. 2i-1 and Supplementary Fig. 3e-h) to compare the evolution of phase differences in
each of the four architectures. Specifically, we tracked the evolution of phases of pairs of
subpopulations in the chamber from cycle to cycle. We defined a subpopulation as the part of the
consortium within a 167 pum wide region of the trap. We examined the evolution of phases for
subpopulations that were 67um apart (Fig. 6a), close to the distance we used to obtain PRCs (Fig
4a, b). By sliding the two 167um windows across the extent of the trap, we obtained 25 pairs of
subpopulations for each experiment (see Method for details). We next computed the phase
difference between the two subpopulations within each pair of windows across multiple
oscillations (Fig. 6b). This allowed us to determine how the phase difference between each pair
of neighboring subpopulations evolved from one cycle (A¢) to the next (A¢i+1). We
approximated the phase difference maps by relating the phase difference at the beginning and the
end of the same cycle (Fig. 6¢). Our analysis of the experimental data agrees with our theoretical
prediction (Fig. 5a, b): a reduction in the phase difference occurs, on average, for a much wider
range of input phase differences in consortia with a positive feedback loop (blue curve) than
those without (red curve) (Fig. 6¢).

Our model suggests that positive feedback increases a consortium’s sensitivity to the
activator signal by increasing the range of phases at which the activator signal accelerates
promoter activation. This extends the range over which an activator signal advances the phase of

the responding subpopulation, pulling interacting populations closer to synchrony (see
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Figure 6 Experimental estimation of the phase difference maps. (a) Kymograph of a P,N,
consortium with windows indicating the relative positions of two example subpopulations used
to calculate phase difference maps (n=5 independent experiments). The paired subpopulation
windows are 167um wide, and 67um apart. (b) Average total fluorescence as a function of phase
for the two subpopulations in the windows shown in (a). Here A¢; represents the phase difference
at the peak of the i cycle. The phase differences are decreasing and the two subpopulations
reach synchrony at the 6™ cycle. (¢) The mapping of phase differences (|A¢i+1| as a function of
|A¢; |) for different architectures (light symbols) was computed using the data presented in Fig.
2i-1 and Supplementary Fig. 3e-h. We obtained mean phase difference maps for each consortium
type by averaging groups of 10 phase differences sequentially, separately for consortia with (blue
curve) and without (red curve) a positive feedback loop. On average, phase differences shrink for
consortia with the positive feedback, as the blue curve lies below the diagonal. In contrast, phase
differences grow for consortia without the positive feedback, as the red curve is mostly above the
diagonal. Error bars represent standard error.



Supplementary Fig. 8 for further details about the mechanisms and extensions to multiple
populations). Interestingly, amplification via a positive feedback loop can also help coordination
in spatial trigger waves, despite slow diffusion’’. However, we note that the dynamics of spatial
oscillators and trigger waves are distinct, and details of the molecular mechanisms supporting

each are different.

Discussion

We demonstrated that local coupling in synthetic bacterial communities can synchronize
oscillations in a spatially extended population. Interestingly, in our system positive feedback
within an activator strain of the population was necessary to achieve this. Without such feedback,
the intercellular signals that couple the constituent cells are not amplified, and the limited spatial
range of diffusion hinders the emergence of globally synchronous oscillations.

Positive feedback plays a critical role in generating robust oscillations in synthetic
oscillators constructed in single, isogenic cellular populations**®. However, in a previous study
we found that, in a small chamber, the addition of a negative feedback loop was needed to
maintain robust oscillations in the face of fluctuating population ratios between activator and
repressor strains of a consortium'>. We have designed the spatially extended chamber to
minimize such fluctuations in population ratios, and observed robust oscillations even in the
absence of the negative feedback (Figs. 1 and 2). Therefore, different features of the gene circuit
architecture may be responsible for supporting robust local dynamics, and globally coherent
dynamics on the population level.

Various natural systems also achieve spatially coherent oscillations using only local

coupling®. Interestingly, many of them appear to use intracellular positive feedback loops to
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achieve such synchrony, in accord with our findings. For instance, after starvation, a population
of Dictyostelium is driven to aggregate via synchronous oscillations in cAMP signaling®®. The
spatial scales of the chemical gradients of cAMP are small compared to the size of the
population, and thus distant cells communicate only indirectly. Dictyostelium has been shown to
use a local positive feedback loop to amplify local signals: the extracellular cAMP inhibits the
degradation of intracellular cAMP, which triggers local excitation (i.e. amplification)’*>
allowing for the signal to propagate more effectively. A second example is provided by the
interlinked positive and double-negative feedback loops among Cdk1/Weel A/Cdc25C that lead
to the spatially coordinated mitosis in the large, fertilized X. laevis egg™. Finally, the master
circadian clock located in the suprachiasmatic nucleus consists of ~20,000 individual oscillators
coupled via various excitatory and inhibitory neurotransmitters. The circadian clock generates

synchronized oscillations and functions as a timekeeper of our body>*>°

. Interestingly, each
individual circadian oscillator has an intracellular transcriptional positive feedback loop
mediated by Rors’’, although its role in achieving globally coherent rhythms has not been
investigated. These examples suggest that signal amplification through local positive feedback is
used by a variety of biological systems to drive emergent behaviors in spatially extended

systems. We have shown that a similar mechanism can be used to engineer spatially extended

synthetic microbes that exhibit collective behavior even when they interact only locally.
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Figure Captions

Figure 1 Dynamics of the two-strain oscillator in large microfluidic devices. (a) Circuit diagram

of the two-strain oscillator. (b) Simplified schematic of an extended “hallway” microfluidic

device (Supplementary Fig. 10b). This device is similar to the compact chamber used by Chen et

al, 2015", with the width of the chamber extended to 2000pum. (c) Representative fluorescence

images of cells growing in the extended hallway device (n=3 independent experiments). The

spatial arrangement of the two strains keeps fluctuating (red arrows point to two areas of high

fluctuation). (d) Simplified schematic of the extended “open” microfluidic device 2000um in

21



width (Supplementary Fig. 10a). The trap is open on all sides, allowing cells to align vertically,
and thus minimizing fluctuations in spatial arrangement of the two cell strains. (e) Representative
fluorescence images of cells growing in the open device (n=18 independent experiments). The
spatial arrangement of the cells eventually stabilizes, simplifying the spatio-temporal dynamics

of the two-strain oscillator. The images show times at which fluorescence is high.

Figure 2 Comparison of the dynamics of different circuit topologies in the compact and
extended microfluidic devices. (a-d) Simplified circuit diagram of the P,N,, P,N;, PN, and PN,
architectures. (e-1) Representative kymographs of four architectures in the compact hallway
chamber (e-h) and in the extended open chamber (i-1) (n=4 independent experiments for each of
these except (i) and (1) for which n=5). The kymographs of (e-h) were obtained by reanalyzing
data from our previous work® where the compact hallway chamber was used>. We observed
similar behavior in a compact open chamber (Supplementary Fig. 3m). See Supplementary Fig.
2 for an explanation of kymograph construction. (m-p) Experimentally measured order
parameters for each experiment in the compact (blue circles) and extended (red circles)
chambers. The mean order parameter does not differ between architectures with and without
positive feedback in the compact chamber (mean order parameters are 0.70 and 0.75 with and
without positive feedback respectively, p=0.33, two-sided Welch's t-test, n=8 independent
experiments). However, in the extended chamber the mean order parameters are 0.29 and 0.69
for architectures with and without positive feedback, and this difference is significant (p =

2.3x10™, two-sided Welch's t-test, n=9 independent experiments).

22



Figure 3 The mathematical model reproduces the experimentally observed spatio-temporal
dynamics exhibited by the four regulatory architectures. (a) Calculated order parameters for
different initial conditions. The width of the shaded blue regions represents the empirical
probability density of the distribution of the individual results (dots). The same set of 10’ random
initial phases and ratios between two strains were used in simulations of all four architectures
(n=10’ independent simulations for each). The order parameters for the P,N; and P,N
architectures were much higher than those for the P;N, and P;N; architectures. (b-¢)
Representative simulations using the same initial conditions (blue dots in (a)) that resulted in
high order parameters in the P,N; and P,N; architectures, but not in the P;N; and P;N;
architectures (n=10" independent simulations for each). (f-i) Representative simulations using the
same initial conditions (red dots in (a)) that resulted in low order parameters in each regulatory
architecture (n=10" independent simulations for each). Low order parameters in simulations with
P,N; and P,N; architectures reflected the emergence of 2-3 subpopulations oscillating in anti-
phase (f, g). In contrast, low order parameters reflected spatially disorganized behavior in PN,

and PN, architectures (h, 1).

Figure 4 Positive feedback changes the response to incoming signals. (a) Simulated
concentration of C4HSL emitted from a single source in the middle of a trap (solid box) as a
function of space and time (See Supplementary Fig. 4b for C14HSL). (b) Simulated rate of
change of the two HSLs in a receiving population at 50 pm from their source (dashed box in (a)).
Also shown are the square pulses we used as approximations of these incoming signals for
further simulations. Shown are simulations obtained using the P,N, architecture. Results are

similar for other architectures (Supplementary Fig. 4). (c) Relative C4HSL concentration
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produced by the receiving population (dashed box in (a)) in the presence (solid curve) and
absence (dashed curve) of the incoming signal (colored boxes). From these we estimated the

phase shift (Ag) of the receiving population. Here ¢=0 is defined as the phase at which the

C4HSL concentration of the receiving population is at its maximum. (d-e) The change in the
phase (A¢) of the receiving population as a function of the phase (¢) at which the driving signal
pulse is received for the P,N; (d) and PN, (e) architectures. The highlighted points refer to
subsequent panels. (f-k) Relative transcriptional activity (solid green curve) of the Puyjiac
promoter of the PoN; (top) and Py, of the P;N; (bottom) architectures in response to signals
received at three different phases (red dots in (d) and (e)). The dashed line is the activity of the

promoter in the absence of the signal.

Figure 5 Intracellular positive feedback promotes synchronization between reciprocally coupled
consortia. (a and b) The mapping from A¢ to Adyew for the PN, (2) and P;N; (b) architectures. In
both cases the map has two stable fixed points: A¢g=0 (synchrony) and A¢=0.5 (anti-phase). For
initial phase differences (4¢) that satisty |4 @ | <|4¢| (the blue region), this map predicts
eventual synchrony. On the other hand, for initial phase differences that do not satisfy this
inequality (outside the blue region), the map predicts anti-phase oscillations. (c-h) We simulated
a spatially extended consortium in an extended trap with different initial phase differences
between the two consortium halves. We show results for the three initial values corresponding to
the red points in panels (a) and (b). The behavior of the extended population agrees with

predictions from the analysis of two coupled localized populations (a, b).
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Figure 6 Experimental estimation of the phase difference maps. (a) Kymograph of a P,N,
consortium with windows indicating the relative positions of two example subpopulations used
to calculate phase difference maps (n=5 independent experiments). The paired subpopulation
windows are 167um wide, and 67um apart. (b) Average total fluorescence as a function of phase
for the two subpopulations in the windows shown in (a). Here A¢; represents the phase difference
at the peak of the i cycle. The phase differences are decreasing and the two subpopulations
reach synchrony at the 6" cycle. (¢) The mapping of phase differences (|A¢ii;| as a function of
|A¢; |) for different architectures (light symbols) was computed using the data presented in Fig.
2i-1 and Supplementary Fig. 3e-h. We obtained mean phase difference maps for each consortium
type by averaging groups of 10 phase differences sequentially, separately for consortia with (blue
curve) and without (red curve) a positive feedback loop. On average, phase differences shrink for
consortia with the positive feedback, as the blue curve lies below the diagonal. In contrast, phase
differences grow for consortia without the positive feedback, as the red curve is mostly above the

diagonal. Error bars represent standard error.

Online Methods
Calculation of the Order parameter
To quantify the synchrony of CFP and YFP oscillations across the chamber, we used the order

parameter () introduced by Shinomoto and Kuramoto®**

. First, we partitioned the image of the
chamber horizontally into 600 rectangular compartments, each approximately 3.33um in width.

We then computed the average CFP and YFP intensities in each compartment. We denote by

XS (t,) and XY (t;) the CFP and YFP intensity, respectively in the & compartment (k=1, 2,
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...,600) at time #; (i=1, 2, ... ,T) where T is the number of times at which measurements were
taken at 6 min intervals. After centering the data by defining

AOER AP b
where j = CorY and < X ,i > is the average of X ,i over time, we estimated the phase qb,{ of X ,ﬁ
by using the Hilbert Transform. The phase qb,{ lies between 0 and 1 and is 0 at the time at which

X] achieves its peak value.

The phases, ¢%, of compartments that do not contain the activator strain and phases, ¢y,
in compartments with no repressor strain should not be used in determining the order parameter.
Thus, we tracked the density of activator and repressor strains in each compartment: We denote
by Nf and N} the numbers of compartments (among 600 total compartments) that contained
activator and repressor strains, respectively, at time 7. We denoted the /™ compartment of each of
the N£ and N} compartments of the two types by kf (1) and kf (1), respectively. We then
calculated the order parameter of CFP and YFP oscillations using

N¢ N¢ N¢

e
[ iy c o C .Y
i z :ezm¢,ig(l)(t) n iz : ezm(bkg(l)(t) _ (iz : equbkg(l)(t) + 1 ezm(j)k{(l)(t))
Ntc NtY Ntc = NtY z

=1 =1 =1

where angle brackets indicate an average over time.
The order parameter is close to 0 when different portions of the chamber or different

strains are out of phase with each other, or in the absence of oscillations™**

. The parameter is

close to 1 when the oscillations of both CFP and YFP across the chamber are synchronous and
in-phase. While we lumped the order parameters of both CFP and YFP together for simplicity

(Fig. 2m-p of the main text), they can be calculated individually by separating CFP and YFP

terms in the order parameter equation. The individually computed order parameters behave
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similarly to the combined order parameter: the absence of the positive feedback loop leads to low
values. Specifically, Q of YFP is 0.33 + 0.21, 0.36 + 0.17, 0.71 + 0.24, and 0.76 + 0.18 for P|Ny,
P;N,, P,Nj, and P;N,, respectively, and Q of CFP is 0.45 + 0.14, 0.42 £ 0.15, 0.64 £ 0.17, and

0.65 £ 0.2 for PNy, PNy, PNy, and P,Ny, respectively.

Correlation matrix analysis
We also used correlation matrix analysis® to quantify the synchrony of CFP and YFP
oscillations across the chamber (Fig. 2 and Supplementary Fig. 3). We first centered and

normalized X§ (t;) and XY (t;) as follows:

wherej = C orY and < X ,i >, and a,{ are the mean and standard deviation of X ,i over time,
respectively. Using the normalized timeseries, we defined the equal-time correlation matrix C as:
Con = Diea (X () + Xy () (X5 (8) + X3 (8)),
where m, n=1, 2, ... 600. The eigenvalues of the correlation matrix are real and their sum is equal
to the dimension of the matrix (i.e. 600)®. If the oscillations are independent across the chamber
and between the strains then C has small off-diagonal elements, and is thus be close to the
identity matrix. In this case its eigenvalues are clustered around 1. On the other hand, if
oscillations are synchronous between the strains and across the chamber, then all entries in C all
equal 1. The maximal eigenvalue thus equals the dimension of the matrix (600 in this case).
Thus, the value of the maximal eigenvalue divided by 600 (Amax) is close to 0 when strains in
different portions of the chamber are out of phase, and close to 1 when they are synchronous. For
the compact chamber, m, n=1, 2, ... 100 and thus the maximal eigenvalue is divided by 100

(Supplementary Fig. 3i-1).

27



Description of the mathematical model
Previously, we proposed a system of 16 delay differential equations, which successfully captured
the dynamics of the intra-cellular genetic networks, and extra-cellular molecular signals of

bacterial consortia grown in the compact microfluidic chamber (see Chen et al. for details)'*:

dRa — nRO+77R1(HZ/KH)nH _ dCRa _dR
dt  1+HI/K,)" +(L,/K,)" K.+R,+A,+L +F,+M, ‘
dL, _Nwo +n, (1K) _ dcL, _dL
dt 1+ /K,)" K.+R,+A +L,+F+M, °
dA, M+ /KD" dcA, _dA
dt 1+ /K,)" K.+R, +A +L +F +M, ‘
dCr = 77C0-l_T’CI(F[:'/[(H)nH _ dCCr _dC
di  1+HI/K,)"+(L /K" K.+C.+A +L +Y. +M, '
dL, _Nwo +n, (/K" _ dcL, —dL
dt 1+(I7/K,)" K.+C +A +L +Y +M, '
dA, _Nao +n, (7 /K)" _ dcA, _dA (D
dt L+(IT/K)" K. +C +A +L +Y +M, '
dF;z — nFO +nF1(HZ /KH)nH _ dCF‘a _dF; —mF;
g 1+H/K,)"+(L, /K,)"* K.+R,+A +L +F +M,
M, g .M, L
dt K. +R,+A +L,+F +M,
ﬂz Myo + My (L, 1K) _ d.y, —dY. —mY,
d 1+ /K)"+(L /K)" K.+C +A+L +Y +M,
am, d.M

r

mY — -d
dt K. +C +A +L +Y +M,

See Supplementary Tables 1 and 2 for the description of variables and parameters. To describe

the spatio-temporal dynamics of consortia in the extended chamber we extended this model by
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adding a spatial dimension. In particular, we modeled how different quantities vary across the
horizontal direction of the chamber. We did not include a vertical dimension because signals
diffused virtually instantaneously in the vertical direction, and thus variations in concentration
are negligible in this direction. As noted in the main text, in the extended open chamber after a
transient period cells formed vertical strips (Fig. 1d, e). As a result, there was little variation in
strain ratio in the vertical direction.

To model the diffusion of the extra-cellular signaling molecules (H and 7 in Eq. (1)), we
extended the delay differential equations defining our earlier model to the following set of partial

delay differential equations,

OH, (x,t) 2 d,(x,t)
a—:: = DHV He(x, t) + de(jCC, t) T[H(Ha(x; t) — He(x, t))
d, (x,
dg g Ty (Hy (x, £) = He (x,6)) = peHe (x, )
oL (x,t) d (6o )
eX, t ) (xt
57 = DiViL(n D) + .0 (I (x, ) — L, (x, 1))
d,(x,
d g 3 (G, ) = 1o (x,0)) = pele (x, £)

Here, x indicates the horizontal location along the chamber. The subscripts of Hj(x,¢) and I)(x.?)
indicate whether a variable represents concentration within a strain or in extracellular space: For
instance, H,(x, 1), H/x, t), and H.(x, f) are the concentrations of C4HSL in the activator strain,
the repressor strain, and the extracellular space at location x in the chamber at time ¢,

respectively.
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In addition, D; is the diffusion coefficient in the chamber, m; is the transport rate through
cell membranes, and . is the extracellular dilution rate due to flow (i=H or /) (Supplementary
Table 2). The functions d,(x, t), d.(x, t), and d.(x, ) respectively describe the fraction of repressor
strain density, activator strain density, and extracellular density, respectively. Following previous
experimental measurement °, we set d.(x, 1)=0.2 and d,(x, f)+d,(x, 1)=0.8. We determined the
values of d,(x, f) and d,(x, f) from the spatio-temporal dynamics of bacterial populations in the
experiment (see below for details).

To simulate this system, we discretized space using Ax=20pm” to define a spatial mesh
with N,=100 elements (Supplementary Fig. 9). We then converted the partial delay-differential
equations into a system of N, coupled delay differential equations each of which described the
local dynamics within a section along the chamber. The individual equations within the system
of delay differential equations were coupled via a discrete diffusion operator, Dy (H,(x —
Ax,t)+H,(x + Ax,t) — 2H,(x,t))/Ax? and D, (I, (x — Ax,t) + I, (x + Ax, t) — 21,(x,t))/Ax?.
Reflecting boundary conditions at x=0 and x=2000um were used, consistent with the design of
the chamber (Fig. 1d). All simulations were performed using Mathematica 11.0 (Wolfram
Research, Champaign, IL) running on a cluster of 16x8-Ghz CPUs.

We generated initial spatial distributions (i.e. {d,(0, 0), d.(Ax, 0), d,(2Ax, 0), ... d(N; Ax,
0)} and {d(0, 0), d(Ax, 0), d(2Ax, 0), ... d(N:Ax, 0)}) and initial phase distributions randomly
by sampling from a normal distribution, N(0.4, 0.145) and N(0, 0.15), respectively, using the
standard deviation of initial spatial distributions and initial phase distributions across the
chamber obtained from experimental data (Fig. 2i-1 and Supplementary Fig. 3e-h). For
simplicity, spatial correlations of initial phase distributions were not considered. Furthermore, to

capture the temporal fluctuation of strain distributions observed in the experiment (Fig. 2i-1 and

30



Supplementary Fig. 3e-h), we assumed that the fraction of repressor and activator strain density
evolved according to a diffusion process:

d;(x, t + ) = d;(x,t) +v/TN(0,0.01),
where T = 1min and i = a or r. Strain ratio fluctuations are relatively low in the open chamber, as
noted above.

In our original model, we obtained 32 of the 39 parameters either from our own
experiments, or from previously published results. We kept these values in the present study
(Supplementary Table 2). In our previous study, we sampled the seven unknown parameters
randomly, and observed that the behavior of model was overall robust over a large region of the
parameter space’. We therefore selected one set of these seven parameters for simplicity: We set
the concentration of ClpXP is 1820 nM and Sk, Sc, Si, S4, Sr, and Sy (which determining the
basal production rates of Rhll, Cinl, Lacl, AiiA, CFP, and YFP) are 3.06, 37.23, 4.52, 9.54, 113,
and 6.8, respectively (Supplementary Table 2). Finally, Dx=4800pm*/min was obtained from a

previous study'” and by comparing the molecular weights of C4HSL (159g/mol) and C14HSL

(326g/mol)®, we estimated D;=,/159/326 x4800um?/min ~ 3360pm?/min.

Phase response curve (PRC)

In our simulations the population was partitioned into subpopulations which communicated via
HSL signals through the diffusion term, Dy V*H, (x, t) and D,;v*I,(x, t) in Eq. (2) (Supplementary
Fig. 9). Therefore, by simulating the input signal, which consists of both activator and repressor
signal from the neighboring populations, we could investigate the impact of signals from a
neighboring population on the phase of an observed population. Specifically, we calculated how

much the diffusion rate of activator and repressor signals (i.e. DyV*H,(x,t) and D,;V*I,(x,t) in the

31



model Eq. (2)) are increased by a signal from a neighboring population 50um away (Fig. 4a, b)
(we present results for SOum, but the qualitative results are similar provided the distance is small
enough for the driving signal to be sufficiently strong).

To understand the effect of the input signal in simulations we increased the diffusion rate
of both repressor and activators in a similar way, and subsequently measured the resulting phase
shift in the receiver population (Fig. 4c and Supplementary Fig. 5a-g). Specifically, to obtain the
phase response curve (PRC) (Fig. 4d, e), we rescaled time so that the period of simulated
oscillations is normalized to 1 and thus every point on the oscillation could be assigned a phase
(0<¢<1). We chose the reference phase (¢ = 0) as the point at which the activator promoter is
fully activated and the released activator signal (C4HSL) is at its maximum (Fig. 4b, c). Thus the
point with phase ¢ corresponds to the point on the oscillation at a time =79 in the cycle, where T
is the oscillation period. When the input signal is given at a specific phase ¢, the oscillatory
trajectory is perturbed and thus the phase is shifted (Fig. 4c and Supplementary Figs. 5a-f).
Comparing the perturbed (solid line in Fig. 4c and Supplementary Figs. 5e-j) and unperturbed
trajectories (dashed line in Fig. 4c and Supplementary Figs. 5a-f) allowed us to measure the
phase shift. This allowed us to plot the effect of the input signal on the phase as a function of the
phase at which the signal was delivered (Supplementary Fig. 5g). If coupling is not too strong,
the evolution of the phase difference between such populations can be approximated using
PRCs obtained from unidirectional interactions®*°. Denoting the PRC by H, and the
phase difference between the two populations by A¢, after one cycle of oscillation the phase of
each of the two coupled subpopulation changes by H(A¢) and H(—A¢), respectively. Thus the

phase difference between the two populations after one cycle equals H(A@)—H(—Ag¢). The
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mapping of the phase difference, A¢, from one cycle, to the phase difference, A¢gnew, at the next

cycle can thus be written as Agnew=Ad+ H(AP)—H(—A¢) (Fig. 5a, b).

Experimental estimation of phase difference maps

We first partitioned the image of the chamber horizontally into 600 rectangular compartments
each 3.33um in width (see Calculation of the Order parameter section for details). Using this
partition we constructed two sliding windows: Each window consisted of 50 partition
compartments (~3.33um*50~167 pm) and each pair was separated by 20 compartments
(~3.33um*20~67um apart) (Fig. 6a). By sliding the two windows across the extent of the trap,
we obtained 25 window pairs: The first window encompassed the region from 67k um to
67k+167 pm, and the second from 67(k+1) +167um to 67(k+1)+334 um for k=0, 1, 2, ... 24
(note that 67x25+334um is approximately 2000um) (Fig. 6a). In each window, we averaged the
CFP and YFP intensities, and computed the times at which they peaked (Fig. 6b). We estimated
the phase differences by dividing the differences of the peak times between two windows by the

average period of oscillation in the two windows (Fig. 6b).

Construction of microfluidic devices

Microfluidic devices (Supplementary Fig. 10) were manufactured as previously described*.
Briefly, the molds for the devices were created with a 4” silicon wafer (Silicon Quest, San Jose,
CA) that was first cleaned with acetone and isopropyl alcohol, and then dried with compressed
nitrogen. Next, for each layer of the device, we coated the wafer with SU-8 series photoresist
(MicroChem, Newton, MA), and then evenly distributed the resist by spinning the wafer for 30

seconds in a spin coater (Brewer Instruments, Roala, MO). We baked the wafer at 95°C. After
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letting the wafer cool to room temperature, we mounted it and a photomask (CAD/Art Services,
Bandon, OR) to a mask aligner (SUSS, Germany). We exposed the resist to UV light for cross-
linking and then baked the wafer at 95°C to finalize cross-linking. Next, we used SU-8 developer
(MicroChem, Newton, MA) to remove Uncross-linked. After all layers were on the wafer, we
hard-baked the wafer at 150°C to solidify the resist. Finally, to ensure PDMS liftoff, we coated
wafer with release agent (((tridecafluoro-1,1,2,2-tetrahydrooctyl)-1-trichlorosilane), Pfaltz &
Bauer, Waterbury, CT) for 5 minutes under vacuum.

To create the devices from the molds, we first mixed polydimethylsiloxane (PDMS)
polymer base and curing agent (Sylgaard 184, Dow Corning, Midland, MI) at a 10:1 ratio until
completely mixed (~5 min) and removed all bubbles by degassing under vacuum. We next
poured the mixed PDMS onto the mold (wrapped in aluminum foil to contain the PDMS) and
again degassed the PDMS mixture before baking at 80°C for 2 hours. We removed the cured
PDMS monolith and punched ports for fluidic connections with a 0.5mm biopsy punch (GE
Healthcare, Pittsburgh, PA) before cutting individual chips from the monolith. We next sonicated
the individual chips in methanol for 8 minutes twice (using fresh methanol the second time) and
baked the chips at 80°C for 30 minutes to remove methanol. Before attaching the monoliths to
glass coverslips we first cleaned the monoliths with tape with tape (3M, St. Paul, MN) and rinsed
#1.5 coverslips (VWR, Radnor, PA) with isopropyl alcohol and dried them with compressed
nitrogen. We further cleaned the monoliths and coverslips in an UV/ozone oven (Jelight Co.,
Irvine, CA) for 3 minutes and immediately placed inverted monoliths onto the coverslips to bind.

We finally baked the completed devices at 80°C overnight to finalize binding.

Strain and plasmid preparation
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The strain and plasmids used for this study are fully described in Chen et al.”*, and the plasmids
are listed in Supplementary Table 3. Briefly, for each consortium, an activator plasmid (pC247
for P, or pC165 for P;) and the inverter plasmid pC239 were co-transformed into the E. coli
strain CY027 (BW25113 4dlacl AaraC AsdiA Py.c+-cinR Py.+rhiR) to create the activator strains.
A repressor plasmid pC365 and an inverter plasmid (pC239 for N, or pC235 N;) were
transformed into E. coli strain CY027 to create the repressor strains. After overnight culture in
LB media (supplemented with 50 pg/ml kanamycin and 100 pg/ml spectinomycin), each strain
was inoculated 1:200 into 5 ml fresh media. When the OD600 of each strain reached 0.4, cells
were spun down and mixed into 5 ml fresh LB media with antibiotics and 0.1% Tween 20 and
loaded into the microfluidic device. After the cells were loaded across the full chamber, fresh
media with antibiotics and 1 mM IPTG was added to the channel with a final flow velocity of 50
um/s through the widest part of the channel (a higher rate on just outside of the trapping
chamber, ~150pm/s). Phase contrast and fluorescence images were acquired at 14 positions

along the length of the trap every 6 minutes at 60X magnification.

Data Availability Statement
The datasets generated and analyzed during the current study are available from the

corresponding authors on reasonable request.
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