
zD: A Scalable Zero-Drop Network Stack at End Hosts
Yimeng Zhao

Georgia Institute of Technology
Ahmed Saeed

Massachusetts Institute of Technology

Ellen Zegura
Georgia Institute of Technology

Mostafa Ammar
Georgia Institute of Technology

ABSTRACT
Modern end-host network stacks have to handle tra�c from tens
of thousands of ⇥ows and hundreds of virtual machines per single
host, to keep up with the scale of modern clouds. This can cause
congestion for tra�c egressing from the end host. The e⇤ects of this
congestion have received little attention. Currently, an over⇥owing
queue, like a kernel queuing discipline, will drop incoming packets.
Packet drops lead to worse network and CPU performance by in⇥at-
ing the time to transmit the packet as well as spending extra e⇤ort
on retansmissions. In this paper, we show that current end-host
mechanisms can lead to high CPU utilization, high tail latency, and
low throughput in cases of congestion of egress tra�c within the
end host. We present zD, a framework for applying backpressure
from a congested queue to tra�c sources at end hosts that can scale
to thousands of ⇥ows. We implement zD to apply backpressure
in two settings: i) between TCP sources and kernel queuing disci-
pline, and ii) between VMs as tra�c sources and kernel queuing
discipline in the hypervisor. zD improves throughput by up to 60%,
and improves tail RTT by at least 10x at high loads, compared to
standard kernel implementation.

CCS CONCEPTS
• Networks ⌅ Network architectures; • Software and its en-
gineering ⌅ Communications management.

KEYWORDS
Network Architecture, Backpressure, Queuing Architecture, Con-
gestion Control

ACM Reference Format:
Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar. 2019. zD:
A Scalable Zero-Drop Network Stack at End Hosts. In The 15th International
Conference on emerging Networking EXperiments and Technologies (CoNEXT
’19), December 9–12, 2019, Orlando, FL, USA. ACM, New York, NY, USA,
13 pages. https://doi.org/10.1145/3359989.3365425

1 INTRODUCTION
For years, improved chips added more cores rather than more ca-
pacity per core [34]. Rather than relying on improved performance

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro⇧t or commercial advantage and that copies bear this notice and the full citation
on the ⇧rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci⇧c permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00
https://doi.org/10.1145/3359989.3365425

Src 1 Src 2 Src N...Traffic Sources

Source
Buffers

Scheduled
Buffers

To Lower Layer
or NIC

Consumes packets from sources
and outputs them according to
scheduling policy; when

overflowing, drops packets.

Figure 1: Schematic of queue architecture at end hosts.

through increased per-core performance, parallel execution be-
came the only way of making use of the new chips [4, 15]. From the
perspective of the networking stack, this meant that rather than
having to serve a few connections per machine, new networking
stacks have to cope with requirements in the tens of thousands
of connections per machine (e.g., reports mention servers han-
dling up to 50k ⇥ows per end host [28]). This is further enabled by
advancements in virtualization and containerization that allows ap-
plications belonging to di⇤erent users to coexist and share network
resources on the same end host (e.g., reports mention 120 VMs per
end host [23]). This scale sparked interest in improved scheduling
and prioritization between these applications through the intro-
duction of e�cient packet processing and scheduling mechanisms
[1, 3, 23, 28, 29]. Processing of egress tra�c in such stacks relies on
holding packets in a cascade of queues pending their processing
and eventual scheduling to be transmitted on the wire.

Packet queues at an end host serve as bu⇤ers between produc-
ers and consumers with di⇤erent speeds. There are two types of
bu⇤ers we are interested in: source bu�ers and scheduled bu�ers.
Source bu�ers hold packets prepared by tra�c sources while await-
ing consumption by the underlying layer in the stack. Scheduled
bu�ers consume packets from multiple tra�c sources and then
determine the order of their transmission according to their con⇧g-
ured scheduling policy. While most components of the networking
stack have evolved to cope with the growing scale of applications,
handling of over⇥owing scheduled bu⇤ers which can lead to packet
drops has received little attention.

Figure 1 shows how packets ⇥ow in a typical system. Packets
are ⇧rst sent from source bu⇤ers (e.g., TCP socket bu⇤ers) to a
scheduled bu⇤er (e.g., Qdisc [7]). Packets from di⇤erent sources
accumulate in the scheduled bu⇤er. If a scheduled bu⇤er runs out of
space, packets are dropped. Examples of such end-host congestion
exists in large scale public clouds where a single end host is shared
between multiple applications [14].

220

https://www.acm.org/publications/policies/artifact-review-badging/#available

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

In general, packet drops are ine�cient. Resources used on pro-
cessing the dropped packet (e.g., CPU) have to be used again to
send the retransmission.Moreover, drops increase latency by adding
more processing time to attempt retransmissions. Finally, drops
can also induce severe reaction from congestion control which cuts
its window in reaction to packet loss, leading to lowered through-
put. When packet drops occur inside the network, then this type
of ine�ciency is unavoidable because of the need for end-to-end
signaling. However, if packets are dropped inside the source host
in the manner described in the scenario of Figure 1, then they can
be handled through signaling within the host. For this latter type
of loss we ⇧nd that they are responsible for a up to 14% increase in
CPU utilization and an order of magnitude increase in tail latency
(§2). Our goal is to consider how signaling within the host can
recover from these packet drops faster (in nanoseconds to microsec-
onds as opposed to microseconds to milliseconds) while avoiding
the CPU overhead.

A few proposals attempt to avoid packet drops of egress tra�c
at end hosts. However, their approaches have poor performance
when handling a large number of senders. For example, the simplest
approach is to increase the queue size which is a known cause of
bu⇤erbloat [8]. TCP Small Queue (TSQ) is one attempt to partially
address this problem by limiting the number of packets per TCP
socket to two packets [12]. This approach requires having O(N)
queue size at the end host, where N is the number of senders. TSQ
works well for cases where N is between hundreds to a couple of
thousands of ⇥ows. However, as N grows, TSQ can still su⇤er from
bu⇤erbloat issues as the number of packets in the queue grows
(§2.3). Delayed-completion [28] was proposed as an approach to
leverage the bene⇧ts of TSQ outside the scope of the kernel stack
(e.g., in a userspace stack [1]). However, this approach inherits
TSQ’s scalability problem (i.e., requiring O(N) queue size).

In this paper, we introduce the design, implementation, and
evaluation of zD, a new architecture for handling congestion of
scheduled bu⇤ers. zD has three components (§3): 1) a source bu⇤er
regulator that allows a congested scheduled bu⇤er to pause and
resume a tra�c source, ii) a CPU e�cient backpressure interface to
de⇧ne the interaction between the congested scheduled bu⇤er and
the tra�c sources, and iii) a scheduler for paused ⇥ows to make sure
that zD does not interfere with the scheduling policy implemented
in the scheduled bu⇤er. zD allows network operators to set a ⇧xed
queue size that is independent of the number of ⇥ows, eliminating
bu⇤erbloat issues at scale. zD maintains CPU e�ciency by de⇧ning
a backpressure interface that triggers packet dispatch from senders
only when the scheduled bu⇤er has room for new packets1. The
task performed by zD can be viewed as controlling access to the
scheduled bu⇤er rather than leaving it the CPU scheduler. Thus, zD
also reduces contention in accessing the scheduled bu⇤er, further
saving CPU resources. zD avoids interfering with the scheduling
policy implemented in the packet queue (e.g., Qdisc policy) by
scheduling ⇥ows in a way that is consistent with the underlying
packet scheduling policy. To achieve CPU e�cient scheduling, zD
leverages recent developments in software schedulers introduced
by the Ei⇤el system [29].

1Note that drops due to packet corruption can still happen.

VM userspace

VM kernel

Application

TCP

Qdisc
Queue

vNIC TX
Queue

Physical host
TUN-TAP

Bridge

Qdisc
Queue

NIC TX
Queue

Socket
buffer

Vhost-net

Push

Feedback (start/stop
pushing)

Pull (by interrupts)

Figure 2: Architecture of queues in end hosts.

We implement zD2 (§5) in the Linux kernel to handle backpres-
sure for two cases: 1) when the queues and tra�c sources are within
the kernel stack (i.e., in the same virtual or physical machine), and
2) when the tra�c sources are in the virtual machine and the queues
are in the hypervisor. We ⇧nd that zD can signi⇧cantly improve
network performance at high loads (§6). In particular, zD improves
throughput by up to 60%, reduces retansmission by up to 1000x,
and improves tail RTT by at least 10x at high loads. Furthermore,
zD improves CPU utilization spent on the networking stack by up
to 2x at the end host by reducing the e⇤ort spent on resending
packets that have been dropped. We also ⇧nd that zD is lightweight
as it does not incur extra overhead when the system is operating at
low utilization. The only downside to zD is that in some scenarios
it can increase the CPU overhead inside the hypervisor.

2 BACKGROUND AND MOTIVATION
2.1 Packet Queuing at End Hosts
We start by giving an overview of the packet queuing architecture
at end hosts. We focus on a common architecture used in modern
data centers. In particular, we focus on the case where the end host
is running a Linux virtualized environment, where the IO driver
interface between the guest and host is handled by virtio [27]
and vhost [33]. virtio is an I/O para-virtualized (PV) standard
used for connecting the guest and host. To avoid context switching
in the host, vhost allows the dataplane of the guest to be mapped
directly into the kernel space of the host. The queuing architecture
is shown in Figure 2. We focus on queues in the packet path and
di⇤erentiate between queues where it is possible to have packet
drops and those that already have a form of backpressure.

The user space application in the VM generates a packet and
copies it into the kernel space socket bu⇤er. The return value of the
socket system call indicates whether the socket bu⇤er is full. This
operation is lossless (i.e., zero drop). Packets from the socket bu⇤er
are then queued into a Queuing Discipline (Qdisc). Packet drops
can happen if the Qdisc is full. This happens when sockets push
packets faster than the Qdisc transmission speed. Next, the Qdisc

2zD Code and a tutorial for using it are available at https://zd-linux.github.io/

221

zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

sends the packet to the vNIC TX queue. The vNIC TX queue does
not drop packets. In particular, when there is no available space in
the vNIC TX queue, the Qdisc will be paused until the queue length
drops below the threshold, making the Qdisc the primary location
for drops in the VM.

The hypervisor processes packets generated by the VM through
vhost which starts a kernel thread that performs busy polling
on the queue between the hypervisor and the VM. There can be
multiple such queues, called vrings with a di⇤erent vhost thread
assigned for each vring. The vhost process polls the packet and
sends it through the TAP device then to a Bridge device. Packets
received in the virtual bridge will be forwarded to the Qdisc in
the physical machine and then transmitted to the NIC TX queue.
Note that in this setting, the TAP and Bridge devices do not hold
or drop packets, delivering all packets they process in order to the
Qdisc in the hypervisor. The Qdisc, or its counter part in a more
complicated architecture (e.g., OpenVSwitch [24]), is the main place
where packets can be dropped due to congestion in the hypvervisor.
We mark the existing backpressure mechanism (i.e., zero drop) with
solid red arrows in Figure 2.

We choose this setting because it is a stripped-down, yet general-
purpose, virtualized network stack. This architecture shares the
same queuing components with more complicated architectures.
For instance, consider Andromeda [14], Google’s virtual network
stack. Andromeda relies on a similar basic architecture and aug-
ments it with an e�cient fast path. Note that packet drops can only
happen at Andromeda itself which corresponds to the Qdisc in
the above architecture. Furthermore, the architecture we consider
here, unlike DPDK-based stacks, does not require a spinning core
dedicated for network processing. This allows us to perform ⇧ne
grain measurements of CPU e�ciency (e.g., experiments where the
VM runs on a single core). This architecture also captures the major
characteristics of other stacks in terms of potential for packet drops
at the end host. For instance, vhost used in our architecture has an
analogous vhost-user used in DPDK-based stacks where packet
queues will be in the userspace network processing system. In
cases where OpenVSwitch [24] is used, the TAP and Bridge devices
are replaced by OpenVSwitch. Hence, we ⇧nd that the conceptual
building blocks we develop in this paper for solving the congestion
problem apply to other settings.

Ingress tra�c:Most packet drops of egress tra�c can be han-
dled by coordination within the sender. However, drops of ingress
tra�c can require end-to-end coordination [9, 17] or careful alloca-
tion of CPU resources [22]. We focus on packet drops that occur
due to congestion that can be handled through signaling within the
end host, which are mostly egress tra�c packet drops.

2.2 Types of Packet Drops
In-network packet drops are easily de⇧ned as packets being dis-
carded by a network element (e.g., switch). This singular de⇧nition
typically has some well de⇧ned reaction from the source associ-
ated with it (e.g., retransmission of the lost packet and congestion
control reacting by adjusting its window). However, at end hosts
we ⇧nd that there are two types of packet drops. Both types of
drops are expensive because a packet is processed for transmission,
destroyed, and a replacement packet has to be generated which

leads to higher CPU cost as well as higher latency. However, the
two types di⇤er in the reaction of the tra�c source.

Virtual Packet Drops: In such cases the tra�c source is aware
that the packet was dropped at the end host. This type of drop is
only feasible when transmission through the stack is performed
through a series of nested function calls. The return value of these
functions indicates whether the packet was successfully transmitted
or dropped by one of these functions. If a packet is virtually dropped,
the caller becomes aware of the location of the drop, allowing it to
react appropriately. For instance, the reaction of TCP to a detected
virtual packet drop is to simply attempt to resend the dropped
packet without triggering its retransmission mechanisms and the
congestion control algorithms.

Physical Packet Drops: In such cases the tra�c source is un-
aware that the drop happened at the end host and consequently
reacts as if the packet was dropped in the network. For example,
the reaction of TCP to a physical packet drop will include trigger-
ing retransmission and congestion control algorithms. This type of
drop is more expensive as it can lead to reduced network utilization,
due to congestion control reaction (i.e., forcing ⇥ows to operate at
a low rate), in addition to the higher CPU cost and latency.

In the stack described in Figure 2, virtual packet drops happen
inside the VM where the TCP stack is aware of Qdisc packet drops.
In current implementations, TCP reacts to virtual packet drops
by immediately attempting to resend the dropped packet without
consideration to contention at the Qdisc. This is a CPU intensive
approach as we discuss in the next section. Physical packet drops
occur in the hypervisor Qdisc which does not explicitly report
drops to the guest kernel. Another important distinction between
the two types of drops is that physical packet drops can be com-
pletely avoided. However, virtual packet drops are necessary in
some cases. For example, a new ⇥ow cannot know whether the
queue is full or not until it probes the queue with a packet that can
be virtually dropped. Hence, the goal of a backpressure mechanism
is to minimize virtual packet drops and eliminate physical packet
drops.

2.3 Cost of Long Queues
A naive approach to avoid loss in queues is to increase the queue
size. Increasing the queue size exhibits fundamental limitation in
accommodating the increasing number of concurrent connections,
despite TCP Small Queue which attempts to combat bu⇤erbloat
[12]. To highlight these limitations, we conduct a simple experiment
within a VM, running a large number of TCP connections using
di⇤erent lengths for the queue used in the VM Qdisc. In particular,
we use neper [2] to generate 4000 TCP ⇥ows. The ⇥ows run in a
VM. Queue accumulation only happens in the guest by setting a
large rate for the VM in a queue not contended by any other VMs.
We use the pfifo Qdisc [19] in the guest kernel with di⇤erent
queue lengths, aiming at examining behavior in two cases: 1) TSQ
operation point where no packets are dropped (i.e., 2 packets are
enqueued per ⇥ow), leading to a queue length of 8k slots, and
2) a queue length of 1k slots representing queue sizes that avoid
bu⇤erbloat. We also compare using the two cases to zD to highlight
potential improvements. More details about our experimental setup
is presented in Section 6.1.

222

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

(a) CDF of RTT (b) Zoomed in CDF of RTT

Figure 3: Bu⇥erbloat, when p⇤fo queue size is 8k slots, leads
to two orders of magnitude degradation in RTT. High con-
tention and virtual packet drop rates, when p⇤⇤o queue size
is 1k slots, leads to an order ofmagnitude degradation in tail
latency compared to zD.

We ⇧nd that longer queue length leads to longer RTT, implying
that relying on TSQ leads to performance degradation as the number
of ⇥ows grows. Figure 3a compares the RTT of TCP ⇥ows with a
p⇧fo queue with two queue length values. The result shows that
excess bu⇤ering in a long queue increases latency as well as causing
packet delay variation (long tail in Figure 3b). We also repeat the
experiment with Fair Queue (FQ) Qdisc [13] and observes that FQ
has similar RTT as p⇧fo for a queue size of 8k slots. This behavior
occurs despite FQ attempting to reduce the variance in RTT using
round robin scheduling of active ⇥ows.

2.4 Cost of Packet Drops
We characterize the cost of packet drops in terms of both CPU
utilization as well as tail latency. We ⇧nd that both metrics are
interconnected with a negative feedback loop where high CPU
cost leads to high tail latency, which in turns increases the CPU
cost further. In this section, we explain in detail the causes of this
peculiar behavior. We examine packet queues in the same setting
as the previous section (i.e., ⇥ows started inside a VM). This allows
us to examine CPU cost inside the stacks of both guest and host
kernels. To illustrate these costs, we contrast the performance of
the standard Linux implementation to our proposed system zD,
which does not su⇤er from the same issues. We use zD simply to
illustrate the ine�ciency of the current approach used in the Linux
kernel, explaining its details in subsequent sections.

CPU Cost: The CPU cost of packet queuing in the guest ker-
nel is caused by the contention between TCP ⇥ows competing to
acquire Qdisc lock and ⇧ll its limited space. This CPU overhead
is a well documented issue [26, 28]. This overhead is exacerbated
in cases where virtual or physical packet drops occur. In particu-
lar, a ⇥ow competes to acquire a lock to the Qdisc only to have it
dropped, forcing the ⇥ow to try to acquire the lock again for the
same packet. This overhead is shown in Figure 4a. The CPU cost
in the host kernel is similar to that of the guest kernel in terms
of contention to acquire Qdisc lock between multiple VMs. Fur-
thermore, the hypervisor runs a vhost thread per vring to process
tra�c generated by the VM. The CPU utilization of vhost-net
threads grows as the number of packets generated by a VM grows.
In our experiments, we have a single vring per VM. We ⇧nd that
avoiding packet drops and contention also reduces CPU cost of the
vhost-net thread (Figure 4b), recorded by pinning the thread to a
speci⇧c core and measuring the utilization of that core. In order to

(a) CPU usage in VM (b) CPU usage of vhost

Figure 4: zD reduces CPU usage in both VM and the physical
machine compared to standard kernel implementation for
TSQ (p⇤fo).

explain this behavior, we ⇧rst examine the cost of packet drops on
tail latency.

Latency Cost: Packet drops, in addition to time wasted on lock
contention, cause delays to packet transmission. In particular, a
packet has to successfully acquire the lock to the queue, and ⇧nd
room in the queue, in order to be transmitted. Otherwise, the packet
is dropped, either physically or virtually, and forced to reattempt the
process. This is clear in comparing zD, which avoids the mentioned
overhead, and standard kernel implementation with 1k slots, shown
in Figure 3. In particular, the impact of bu⇤erbloat explains the
behavior of the case when a queue size of 8k is used. However, the
improvements in tail latency provided by zD compared to standard
kernel implementation with 1k slots are explained by reducing
contention as well as avoiding packet drops.

Impact of RTT tail performance on vhost-net CPU: This
strange interaction is an artifact of years of optimization of the
TCP stack yielding unexpected scenarios. These optimizations are
summarized in [10]. We note that all optimizations wemention here
are enabled by default in the Linux kernel stack. They start with
TCP Segmentation O⌃oad (TSO), a mechanism to achieve low CPU
utilization at high networking speed by o⌃oading TCP segmenta-
tion to hardware. However, TSO, with ⇧xed segment size, may lead
to microbursts for ⇥ows with low rate, which is not desirable in
networks relying on merchant silicon switches with short bu⇤ers.
Here lies a tradeo⇤ between CPU and network performance; relying
on large ⇧xed segment size saves host CPU but results in a bursty
network and using small segment sizes increases CPU cost, through
processing of more packets, but yields better network performance.
The current approach used in Linux attempts a compromise by
automatically determining the size of TSO segments based on the
transmission rate.

TSO autosizing was introduced to decide the size of data in a
burst [13]. The goal of TSO autosizing is regulating the number
of packets transmitted by any single TCP ⇥ow by changing the
TSO size, and consequently reducing the burst size of the TCP
⇥ow. In particular, TSO autosizing aims at making TCP ⇥ows send
a packet every millisecond rather than a hundred packets every
100 milliseconds. The algorithm calculating TSO size relies on an
estimate of the rate of the ⇥ow calculated as 2 ◊ cwnd/RTT , where
cwnd is the congestion window size and RTT is a moving average
of the measured RTT value in the kernel. This means that a long
tailed RTT distribution leads to a smaller pacing rate, which means
the data will be chunked into smaller size. This leads to higher
CPU cost at the vhost-net thread, as shown in Figure 4b. A CDF

223

zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Figure 5: CDF of frame size, showing the impact of tail RTT
performance on the behavior of TSO autosizing algorithm.
Larger tail latency yields smaller packets, causing higher
CPU cost.

of packet sizes under standard kernel implementation and zD is
shown in Figure 5, where the di⇤erence between packet sizes can
be explained by the di⇤erence in tail RTT shown in Figure 3. Note
that when the CPU utilization of the core handling the vhost-net
reaches 100%, the latency faced by packet can increase, further
impacting packet sizes, leading to a negative feedback loop of bad
performance.

2.5 Related Work
Egress path congestion: TCP Small Queue (TSQ) [12] is the most
prominent backpressure mechanism in practice today, which we
have already thoroughly discussed. TSQ relies on signaling within
the kernel stack to maintain the per-⇥ow limit. More recent propos-
als extend TSQ signalling to enforce the per-⇥ow limit to queues
beyond the kernel stack. Carousel employs delayed delivery of com-
pletion signal from the NIC to the TCP stack to apply backpressure
from a userspace network processor to the kernel TCP stack [28].
While traditional completion is implemented as a signal from dri-
ver to transport stack in the same order of packets arriving at the
NIC, asking the transport stack to send more packets, Carousel
implements out-of-order completions and relies on TSQ to limit the
number of packets per ⇥ow. PicNIC [18] extends TSQ signalling to
allow backpressure from a hypervisor to tra�c sources inside a VM.
It also proposes a per VM budget of packets, for cases when a VM
doesn’t support the backpressure signal. Note that Carousel and
PicNIC exhibit the inherent TSQ issues discussed earlier as queues
have to accommodate O(N) packets for N ⇥ows. zD removes that
relationship between the number of active ⇥ows and queue size. In
particular, zD allows for setting a small queue size, handling a large
number of ⇥ows without causing any packet drops. End host queue
buildup can be handed in a similar manner to in-network queue
buildup through congestion control algorithms [16]. This approach
does not eliminate packet drops but helps improve tail latency.

Queue over⇥ow is not the only cause of congestion on the egress
path. Another cause of congestion is exhausting CPU resources.
Several systems proposed improve the CPU e�ciency of queuing
in the network stack, thus allowing it to handle more packets and
⇥ows. SENIC [26] improves rate limiting scalability by allowing for
software queues to make use of hardware to improve rate limiting
performance. Carousel [28] employs a time-based marking of pack-
ets and the timing wheel data structure to improve the performance
of software-only rate limiting. Ei⇤el [29] presents a software only

solution for general purpose packet scheduling. Several proposals
explore improving e�ciency of scheduling algorithms by o⌃oading
them to hardware [30, 31].

Ingress path congestion: In this paper, we focus on perform-
ing backpressure on egress tra�c at the end host. Recently several
proposals have looked at congestion control of the ingress path,
implementing scalable networking stacks [22, 25] and enforcing iso-
lation between receiving ⇥ows [14, 18]. Ingress path congestion at
the end host occurs when one receiver (e.g., VM or socket) receives
packets at a high rate so that it overwhelms the CPU at the receiver.
Congestion control of ingress tra�c typically requires ⇧ne grain
CPU scheduling to allocate enough resources to process incoming
packets for all receivers. Congestion can also happen due to incast
scenarios when ingress tra�c demand exceeds the NIC capacity at
receiver. Resolving incast issues in datacenter networks has been
an active area of congestion control research [5, 20, 21, 35].

3 zD DESIGN PRINCIPLES
Packet drops are caused by demand exceeding capacity. This means
that tra�c sources will get less bandwidth than their demand. The
only solution to this problem is to change capacity or demand.
However, congestion control aims at optimizing reaction to such
scenarios. Hence, the overarching goal of zD is to change the indi-
cator of congestion at end hosts from packet drops, and to conse-
quently achieve less throughput than demand, lowering throughput
without drops. This avoids sending an ambiguous signal, that does
not di⇤erentiate between end-host drops and in-network drops. It
also allows for better CPU and network performance as discussed
earlier. This high level goal has to be achieved in tandem with the
following objectives:
• Prevent drops due to scheduled bu⇥er over⌅ows: This is the
main objective of zD. As discussed in the previous section, packet
drops lead to poor network and CPU performance. zD allows
over⇥owing queues to apply backpressure to tra�c sources to
prevent them from enqueuing more packets.

• Maintain CPU e�ciency: Preventing drops can lead to cases
where the tra�c sources are constantly busy polling on avail-
able slots in the queue. This behavior trades CPU e�ciency for
network e�ciency. zD avoids this type of behavior.

• Maintain consistencywith packet scheduling policies:Back-
pressure is a form of controlling access to a congested scheduled
bu⇤er. zD should avoid scenarios where its coordination of access
to the queue con⇥icts with the scheduling algorithm performed
by the queue itself. An example of such con⇥ict is an over⇥owing
queue that has room for low priority tra�c and no room for
high priority tra�c. zD ensures that only high priority packets
get enqueued by applying backpressure to ⇥ows in a way corre-
sponding to the scheduling algorithm of the queue which can be
con⇧gured when the scheduled bu⇤er is con⇧gured.
We ⇧nd that these objectives can be achieved through a struc-

turing of the queuing architecture at end hosts that implements the
following mechanisms (Figure 6):
1. Source Bu⇥er Regulator (§4.1): The source bu⇤er should keep
a copy of packets still being processed by the networking stack
until it is fully transmitted. The source bu⇤er should also support
an interface that allows the underlying stack to pause and resume

224

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

Src 1 Src 2 Src N...Traffic Sources

Source
Buffers

Scheduled
Buffers

To Lower Layer
or NIC

Backpressure Interface

Probe

Resume/
Pause

Paused-Flows
Queue

Regulator

Figure 6: Schematic of zD architecture at end hosts.

transmission of packets from that bu⇤er (e.g., TSQ). This augmen-
tation of source bu⇤ers allows for avoiding physical packet drops
by always retaining a copy of dispatched packets till they are actu-
ally consumed. It also provides an interface for the backpressure
mechanism to pause and resume packet dispatch.
2. Backpressure Interface (§4.2): To eliminate physical drops,
packet queues should be able to pause senders when they are full.
Furthermore, senders should be able to probe for room in the queues.
Such interaction between the packet queues and senders should
be well de⇧ned through a backpressure interface. Furthermore, it
should be CPU e�cient, to avoid CPU being the bottleneck of the
networking stack.
3. Paused-Flows Queue (§4.3): Backpressure should be applied in
a way that does not change the intended scheduling behavior of the
packet queue. Hence, zD schedules access to the packet queue by
keeping paused ⇥ows in a queue that is sorted in a way consistent
with that of the underlying packet scheduling policy.

The design of zD and TSQ share the regulator. Both zD and TSQ
employ a mechanism that pauses and resumes source bu⇤ers. The
di⇤erence between zD and TSQ lies in how the pause and resume
decisions are made. In the case of TSQ, pause and resume decisions
are made by the source bu⇤er. TSQ forces source bu⇤ers to maintain
a maximum of two dispatched packets per ⇥ow, leading to queue oc-
cupancy that grows as the number of active ⇥ows grow. This limits
the e⇤ectiveness of TSQ backpressure in handling bu⇤erbloat as it
ignores the occupancy of the scheduled bu⇤er. Furthermore, access
to the scheduled bu⇤er becomes dependent on CPU scheduling
of sender bu⇤ers and their ability to gain the lock to the sched-
uled bu⇤er. In the previous section, we show that these limitations
in TSQ lead to signi⇧cant performance degradation. zD mitigates
these problems by extending the regulator as well as providing a
Backpressure Interface and a Paused-Flows Queue.

4 zD OVERVIEW
zD applies backpressure from packet queues, which can over⇥ow
and drop packets, to source bu⇤ers from which packets are dis-
patched. It provides a layer between the sender bu⇤er and the
scheduled bu⇤er. Instead of continuously pushing packets into the
scheduled bu⇤er only to drop them when the queue is full, zD adds
a set of additional steps in the path of a packet. First, a copy of the
packet is created to avoid physical packet drops. Then, the packet
copy is used to probe the packet queue to check if it has room, and
proceeds normally if the packet queue has empty slots. However, if

Algorithm 1 zD Flow Algorithm

1: procedure P⌥� ⌦↵↵F���(Flow F, Packet p, Queue q)
2: if F .pause then return //Re�ulator
3: if !q.probe() then //Backpressure Inter f ace
4: F .pause � true //Re�ulate
5: PausedFlowsQ .append(F)
6: else
7: if !F .sendTwo() or PausedFlowsQ .empty() then
8: enqueue(F, p)
9: else
10: F .pause � true

11: PausedFlowsQ .append(F)
12: procedure R⌦↵�✏⌦F���(Flow F)
13: F � GQ .popFront()
14: F .pause � f alse

15: F .resume()

the packet queue has no empty slots, the packet copy is dropped,
causing only a virtual packet drop. This is used as a backpressure
signal to the source bu⇤er of that packet. The backpressure signal
pauses the backpressued ⇥ow and registers it with zD so that it
can be resumed when there is room for its packets. Figure 6 sum-
marizes modi⇧cations to the current queue architecture. The zD
logic is summarized in Algorithm 1. For the rest of this section, we
elaborate on each step described in this algorithm.

zD mechanisms can be applied to multiple settings where there
are source bu⇤ers and scheduled bu⇤ers. In this paper, we focus on
two such settings: 1) the TCP/IP kernel stack, where TCP bu⇤ers
are the source bu⇤ers and Qdisc is the scheduled bu⇤er, and 2) the
hypervisor networking stack in the kernel, where the vrings of
the VM are the source bu⇤er and the Qdisc is the scheduled bu⇤er.
The details of our implementation of zD in these two settings are
presented in Section 5.

Memory overhead: zD has no data-plane memory overhead
except for the packets copies used to probe scheduled queue oc-
cupancy. Such packets copies are only copies of packet descriptor
which are commonly used for di⇤erent purposes in networking
stacks. In our Linux implementation, we use one of the copies
already created by the kernel’s stack, incurring no exta memory
overhead. Backpressure keeps data in the application bu⇤er thus
preventing the creation of new packets. The control plane overhead
of zD is limited to the Paused-Flows Queue that keeps a per-⇥ow
descriptor. In our Linux implementation in a 64 bit machine, with
20k ⇥ows, the memory overhead is less than 160KB.

4.1 Source Bu⇥er Regulator
This module has two functions: 1) de⇧ne pause/resume operations,
and 2) keep a copy of the dispatched packet until its transmission
to the wire is con⇧rmed. A ⇥ow can have two states “Active” and
“Paused”. The reaction of the stack to each state, and consequently
the implementation of pause/resume functions depend on whether
the stack is push-based or pull-based. In cases of a push-based stack
(e.g., TCP/IP kernel stack), marking a ⇥ow as “Paused” implies that
no further packets are pushed by that ⇥ow. New packets generated
by the application are queued in the source bu⇤er. Once the ⇥ow is

225

zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

resumed (i.e., marked as “Active”), packets residing in the source
bu⇤er are pushed to the lower layer. On the other hand, a pull-based
stack already has to sleep when it has no packet to process. We
follow a similar approach by forcing the pull-based stack to sleep
when it has no active ⇥ows. Note that a busy-polling stack on a
dedicated core (e.g., DPDK) does not need to sleep, making the
implementation of these functions a simple marking operation.

Like TSQ, zD keeps the number of packets enqueued by a single
⇥ow to a maximum of two packets. Limiting the number of packets
per ⇥ow is necessary to avoid head of line blocking, where a single
⇥ow enqueues a large number of packets in the queue, slowing other
⇥ows. We found that further limiting to a single packet per ⇥ow
causes performance degradation. In particular, there can be a delay
between a ⇥ow becoming active and the processing of its packet.
In the case of push-based model, this delay is caused by the multi-
threaded nature of a push-based stack, where marking a ⇥ow as
“Active” does lead to the immediate dispatch of packet by that ⇥ow.
Typically, once a ⇥ow is marked as active a thread is started to kick-
start packet dispatch for that ⇥ow. This approach has a processing
delay associated with delaying the dispatch of packets. In the case of
a pull-based stack, marking a ⇥ow as “Active”might happen during a
sleep cycle. zD amortizes this delay over multiple packets bymaking
sure that an active ⇥ow has two packets pushed to the scheduled
bu⇤er before it is paused again. Note that when a ⇥ow becomes
active, it has to check the number of its packets still in the scheduled
queue and make sure that it never exceeds two packets. We found
that this approach, and speci⇧cally limiting the number of packets
to only two, provides a good compromise between amortizing the
cost of pause/resume operations and unfairness (i.e., less than two
packets leads to under utilization and more than two pakcets leads
to head of line blocking and unfairness).

Unlike TSQ, the sender bu⇤er regulator can pause a ⇥ow that
does not have less than two packets in the scheduled bu⇤er. This is
critical in order to decouple the queue length from the number of
⇥ows, avoiding bu⇤erbloat scenarios in cases where there is large
number of ⇥ows.

4.2 Backpressure Interface
This interface de⇧nes the interaction between source bu⇤ers and the
scheduled bu⇤er. In particular, it de⇧nes three operations: probe,
pause_flow, and resume_flow. probe informs the sender bu⇤er
on whether it can push packets to the scheduled bu⇤er. Scheduled
bu⇤ers with di⇤erent scheduling policy should have di⇤erent im-
plementation of probe function. For example, with the simplest
First-in-⇧rst-out (FIFO) queue, the probe function returns false
when the number of packets in the queue is equal to or larger than
the queue capacity and returns true otherwise. For more compli-
cated scheduling policies such as fair queue, the probe function
needs to classify the ⇥ow ⇧rst and then checks whether the ⇥ow
exceeds its assigned share of the scheduled bu⇤er.

If probe returns false, implying no room for that ⇥ow in the
scheduled queue, pause_flow is invoked. pause_flow marks the
⇥ow as “Paused” triggering the logic of the sender bu⇤er regulator.
It also adds the ⇥ow to the Paused-⇥ows queue. When a sched-
uled bu⇤er has room (i.e., a packet is transmitted), resume_flow
is invoked. resume_flow fetches the highest ranked ⇥ow in the

...

1

...

2

x ...
3

Sender
Buffer

Scheduled
Buffer

Enqueue
packet

Drop Enqueue
packet

(a) Steps of Backpressure in TCP/IP Stack

...

1

...

2

...

3

Enqueue
packet

Pause

Paused-Flows
QueueEnqueue

flow

...

4

a. Resume
flow

b. Enqueue
packet

(b) Steps of Backpressure in zD

Figure 7: Illustration of di⇥erent backpressure steps.

Paused-⇥ows queue. Then, marks it as “Active”, trigger the resume
logic of the sender bu⇤er regulator. Note that this logic is deadlock-
free.

The advantage of this interface is that a ⇥ow is only active if
either the scheduled bu⇤er has room for packet or it is ⇧rst attempt
of that ⇥ow to access a congested scheduled bu⇤er. This is unlike
existing attempts where ⇥ows are always active causing either phys-
ical or virtual packet drops by continuously attempting to enqueue
packets to the scheduled bu⇤er. Hence, the backpressure interface
improves both CPU and network performance by avoiding drops
as well as only doing work when useful. The di⇤erence between
the two approaches is summarized in Figure 7.

It should be noted that the granularity of the scheduled bu⇤er de-
cides the granularity of Backpressure Interface. For example, in our
implementation of backpressure in the hypervisor, the backpressure
is performed per VM because packets lose ⇥ow-level information
when it passes through from the VM to the hypervisor. The Qdisc
in the physical machine treats all tra�c from a VM as an aggregate
⇥ow and probe API provides information at the granularity of VMs.

4.3 Paused-Flows Queue
The aforementioned building blocks rely the ability of zD to track
paused ⇥ows. This tracking function is performed by the Paused-
⇥ows queue. The paused-⇥ows queue is a global queue accessible
to all stack threads through a global lock. The order in which ⇥ows
are sorted within this global queue determines the overall sched-
uling policy for tra�c going through the stack. zD implements a
library of Paused-Flows Queuing Disciplines that correspond to
the queuing disciplines implemented in the scheduled queue. The
network operator has to install a Paused-Flows Queuing Discipline
that corresponds to their chosen queuing discipline in the scheduled
queue. This operation can be simpli⇧ed by a simple network utility
application. We note that the focus of our work on zD is managing
congestion due to queue over⇥ow of packets. Hence, in this work

226

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

we implement only a small library of Paused-Flows Queuing Disci-
plines (i.e., FIFO and rate limiting disciplines). Complex queuing
disciplines can be implemented to extend the functionality of zD.
E�cient implementation of such disciplines is critical to avoid con-
gestion due to high CPU utilization. Such e�cient implementation
is feasible relying on building blocks proposed in our earlier work
on e�cient per-⇥ow scheduling [29].

5 IMPLEMENTATION
We implement backpressure in two places: (1) the Linux TCP/IP
stack, and (2) the vHost stack in the Linux hypervisor stack. Our
implementation is based on Linux kernel 4.14.67, however it is not
restricted to that speci⇧c version. While the zD design described in
Section 4 can be generally applied to both cases, we focus on these
two settings as discussed earlier.

5.1 TCP/IP Stack Implementation
Implementing zD requires modifying the way that the TCP stack
interacts with the IP stack. We start by giving an overview of the
transmission path (Tx path) of the standard TCP/IP stack implemen-
tation in the kernel. In the TCP Tx path, data from the userspace
application is pushed into the Socket Bu⇤er (skb) and all paths
of function calls end up calling tcp_write_xmit function regard-
less of whether the TCP socket is sending a packet for the ⇧rst
time or is retransmitting a packet. In the tcp_transmit_skb func-
tion, each skb is cloned so that TCP can always keep a copy of
the original data until the packet is ACKed by the receiver. The
tcp_transmit_skb function calls dev_xmit_skb, which tries to
queue the packet into the corresponding Qdisc (i.e., the scheduled
bu⇤er). If the Qdisc queue is full, the skb will be virtually dropped.
In particular, the pointer to the next packet to send, sk_send_head,
will not be advanced.

Under the standard kernel implementation, when an skb is vir-
tually dropped, TCP will attempt to resend it immediately unless
the socket is throttled by TSQ. TSQ reduces the number of TCP
packets in the Tx path by limiting the amount of memory allocated
to the socket, forcing sk->sk_wmem_alloc to not grow above a
given limit. By default, if a socket already has two TSO packets in
⇥ight, the socket will be throttled until at least one of the packets
is freed. Note that TSQ can be viewed as sender bu⇤er regulator. A
socket paused by TSQ will be resumed by a callback function when
a skb is free (i.e., when skb_free function is executed), with the
assumption that if an skb is destroyed, an extra space in the queue
is available. This approach means that when a slot in the queue is
freed, its replacement is noti⇧ed. This implies that the approach of
reattempting to send a dropped skb immediately can only make
congestion at the Qdisc worse. Our implementation is shown in
Figure 8, where the yellow blocks show function calls we modi⇧ed.
Probe: Before dev_xmit_skb function pushes the packet into the
queue according to the queueing discipline, it checks whether the
packet should be passed to the next scheduled bu⇤er through our
extended probe API. We implement probe for the three most basic
scheduling algorithms: pfifo_fast as the default qdisc for Linux
interfaces, classful multiqueue (mq) for multiqueue devices, and
token bucket ⇧lter (TBF) as a tra�c shaper.

tcp_write_xmit

tcp_transmit_skb

dev_xmit_skb

q->enqueue

check q

vfree_skb
full

not full

stop

kfree_skb

with zD Implementation

paused
flows

resume
socket

tasklet

resume

update

…...

Figure 8: Flow chart describing TCP/IP stack with zD

Pause: If the probe returns false, instead of resuming the socket,
we mark the socket as stopped and place a pointer of the socket
into a global queue shared by all sockets. Access to the global list
is serialized through a global lock.
Resume: After an skb is consumed by the driver, the global list
dequeues a socket and marks the socket as nonstop. To ensure the
socket is resumed immediately, we use a tasklet to schedule the re-
transmission operation as soon as the CPU allows. We use a tasklet
as a per-CPU variable for performance considerations. As indicated
earlier, the existing TSQ interface for handling ⇥ow pause and re-
sume is not very helpful for zD. In particular, TSQ relies on the
sk_wmem_alloc ⇧eld of struct sock to make decision on throt-
tling the socket. However, our implementation keeps increasing
the value sk_wmem_alloc until has_room returns true. Hence, TSQ
cannot properly decide whether the ⇥ow should be throttled. There-
fore, we disable TSQ and implement our ⇥ow activation algorithm
discussed in the previous section.

5.2 Hypervisor Implementation
We implement zD in the hypervisor based on the zero-copy virtio
Tx path. Zero-copy transmit is e⇤ective in transmitting large pack-
ets between a guest VM to an external network without a⇤ecting
throughput, consuming lower CPU and introducing less latency
[11]. The vring, where virtio bu⇤ers packets, is a set of single-
producer, single-consumer ring structures that share scatter-gather
I/O between the physical machine and the guest VM. vring keeps
track of two indexes: upend_idx and done_idx. The indexes repre-
sent the last used index for outstanding DMA zerocopy bu⇤ers in
the vring and the ⇧rst used index for DMA done zerocopy bu⇤ers,
respectively. The vhost thread pulls packets from the vring and
attempts to enqueue them to the Qdisc.

When a process transmits data, the kernel must format the data
into kernel space bu⇤ers. Zero-copymode allows the physical driver
to get the external bu⇤er to directly access memory from the guest
virtio-net driver, hence reducing the number of data copies that
require CPU involvement. In the hypervisor, the vhost process
passes the userspace bu⇤ers to the kernel stack skb by pinning the
guest VM user space and allowing direct memory access (DMA)

227

zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

(a) Throughput (b) VM CPU (c) vHost CPU (d) TCP Retransmission

Figure 9: 10Gbps network speed with a qdisc of 100 slots in the hypervisor

for the physical NIC driver. The path of the skb in the hypervisor
is shown in Figure 2. The Tap socket associated with the vhost
process sends out the packet through the Tap device. Packets are
then received by the virtual bridge, and the packet is passed to Qdisc.
Finally, the packet is consumed by the physical NIC. Note that when
vhost pulls a packet from the vring, once the packet is processed,
the kfree_skb callback function will inform the vring to destroy
the packet, whether it was actually transmitted or dropped by Qdisc.

The Probe andResume steps are implemented in this setting in
a very similar fashion to that of the TCP/IP stack. Implementation
of Pause requires handling some corner cases. In particular, if the
Qdisc is full, instead of calling the kfree_skb function to free the
packet and mark the DMA as done, we mark the corresponding
VM as paused, stops polling from its vring. This step also requires
moving the upend_idx back to point to the position of the dropped
packet. A signi⇧cant di⇤erence between the hypervisor setting and
the TCP/IP stack setting is the potential existence of further packets
in-⇥ight from the VM that have been pulled from the vring before
the VM was marked as paused. The situation is further complicated
as those packets can reach the Qdisc and ⇧nd that it now has
room. This behavior can lead to introduction of out-of-order packet
delivery which can lead to TCP performance degradation. Hence,
all in-⇥ight packets between the vring and the Qdisc are dropped
to avoid such scenarios. Note that moving the upend_idx makes
sure that those packets are retransmitted later. We implement a
callback function to resume polling from the vring when a packet
is passed to the physical NIC driver.

6 EVALUATION
6.1 Experiments Setup
We conduct experiments between two Intel Xeon CPU E5-1620
machines, connected with a 10Gbps link. Both machines have four
cores, with CPU frequency ⇧xed to 3.6GHz. We generate tra�c
with neper [2], a network performance measurement tool that can
generate thousands of TCP ⇥ows. The TCP ⇥ows are generated
inside a virtual machine and are sent to a remote machine. We use
Qemu with KVM enabled as the hypervisor. For a baseline, both VM
and physical machines run Alpine Linux with kernel version 4.14.67.
We run a modi⇧ed version of that kernel with zD implementation.
In our experiments, we ran into a known issue of vhost where the
Rx path of a VM becomes bottlenecked on the Tx path, because
both are handled with the same thread [32]. The issue is inherent
in the current implementation of virtualization in the Linux kernel,
a⇤ecting baselines and zD. The bottleneck is resolved by allocating

more CPU to the receiving path or improving the receive path archi-
tecture [22, 25]. Hence, we perform our experiments in two settings,
one with 6 vCPUs assigned to the virtual machine (experimenting
with a bottleneck-free end host) and another with 1 vCPU assigned
to the virtual machine (exposing the Rx path bottleneck to evaluate
zD under a resource constrained end host). In the ⇧rst setting, we
tune CPU a�nity to assign 5 cores for the Rx path. None of the six
cores hit 100% thus eliminating the issue. The second setting can
still face that issue, however, we ⇧nd that zD alleviates pressure
on the Tx path, making the performance of the Rx path the main
bottleneck.

The default Tx queue length is set to 1000 in both the VM and
the hypervisor3. Experiments are run for 60 seconds each. Our
primary metrics are aggregate throughput of all ⇥ows, CPU utiliza-
tion inside the VM, vhost CPU utilization for its pinned core, TCP
retransmissions, and RTT. We track CPU utilization in the virtual
machine using dstat and track CPU utilization of the vhost pro-
cess in the physical machine using top. CPU utilization is recorded
every second. We track the number of TCP retransmissions using
netstat. In all experiments, machines are running only the applica-
tions mentioned here making any CPU performance measurements
correspond with network overhead.

6.2 Overall Performance
We start by reporting the overall performance of zD in a setting
where packet drops can occur in the VM and the hypervisor. These
experiments represent the general case of modern cloud infrastruc-
ture. In particular, we consider three cases: 1) a high bandwidth VM
with a short queue in the hypervisor, where we allocate the whole
10 Gbps to the VM but con⇧gure a short queue of 100 slots4, 2) a
high bandwidth VM with a long queue in the hypervisor, where
we allocate the whole 10Gbps to the VM and con⇧gure a queue of
1000 slots, and 3) a low bandwidth VM with a long queue, where
the hypervisor forces a 1 Gbps limit on the VM in a queue with 1k
slots. In the high bandwidth VM setting, we use a pfifo Qdisc in
the physical machine. In the low bandwidth VM setting we use tbf
to perform rate limiting in the hypervisor. We use the default queue
size 1000 for the qdisc inside the VM. The ⇧rst setting represents
strict performance requirements (i.e., small processing budget per
packet and high probability of packet drop, as shown in recent work
[18]), while the second and third represent the more general case.

3Earlier work with larger scale experiments used a queue length of 4000. Note that a
small queue length is also critical to avoid bu⇤erbloat.
4We choose a small queue length to force congestion in the hypervisor. This emulates
production scenarios where queue lengths are larger but the number of VMs per end
host will also be much larger, making the e⇤ective queue length per VM small.

228

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

(a) Throughput (b) VM CPU (c) vHost CPU (d) TCP Retransmission

Figure 10: 10Gbps network speed with a qdisc of 1000 slots in the hypervisor

(a) Throughput (b) VM CPU (c) vHost CPU (d) TCP Retransmission

Figure 11: 1Gbps network speed with a qdisc of 1000 slots in the hypervisor

(a) 10G network with 100 qlen (b) 10G network with 1000 qlen (c) 1G network with 1000 qlen

Figure 12: zD reduces the tail of RTT by 100x with both 10G network and 1G network

We vary the number of ⇥ows from 500 to 16k and measure through-
put, CPU utilization inside the VM, vhost CPU utilization and TCP
retransmissions. For both settings we measure the RTT at 4k ⇥ows.
We focus on cases with a single VM to be able to better analyze the
results. We further restrict the settings in the following sections,
to explain the value of individual zD mechanisms. We allocate 6
vCPUs to the VM to avoid having the Rx path being the bottleneck.
VM with less vCPUs will be evaluated in the micro-benchmark
section.

Figure 9 shows the performance of the standard kernel imple-
mentation and zD for the ⇧rst setting. zD performs better in terms
of all metrics. In particular, zD achieves around 50% improvement
on the aggregate throughput when there are more than 4k ⇥ows
(Figure 9a). Such improvements in throughput come from the elim-
ination of the vhost CPU utilization as the bottleneck (Figure 9c).
zD saves between 40% to 50% of the thread utilization of its CPU
core, which is 100% utilized in the standard implementation, making
it the performance bottleneck and leading to 50% loss in network
throughput. Furthermore, zD reduces tail latency by 80x from 4s
to 0.05s (Figure 12) which is mostly due to reduction of TCP re-
transmissions by 1000x (Figure 9d). There is a slight degradation
in median latency but such slight degradation is generally toler-
able to signi⇧cantly reduce the tail latency [6]. Note that in this

scenario zD is lightweight as at low loads it consumes less CPU and
achieves better network performance, compared to the standard
kernel implementation.

Figure 10 shows the results for the second case. Compared with
the ⇧rst setting, TSQ achieves higher throughput and less retrans-
mission because of fewer drops on the hypervisor qdisc. But still,
zD achieves higher throughput, lower VM CPU usage, lower vHost
CPU usage, and fewer TCP retransmissions. We observe there is
less than 100 packet drops in the hypervisor qdisc so the improve-
ment mainly comes from the advantages of using zD in the VM.
The zD vHost CPU usage is lower than that of the standard (TSQ)
kernel when the number of ⇥ows is smaller than 16K. When there
are 16K ⇥ows, zD has higher vhost CPU usage because it pushes
much more tra�c than the standard kernel. The tail latency is
signi⇧cantly reduced from 8s to 0.05s (Figure 12).

Figure 11 shows the results for the third setting. zD again im-
proves all network metrics. In particular, zD improves throughput
by up to 5% (Figure 11a) and reduces retransmissions by 1000x
(Figure 11d). Most notably, zD reduces tail latency by 45x from 9s to
0.2s (Figure 12). zD also reduces VM CPU utilization by 15%. How-
ever, zD incurs higher vhost CPU cost by up to 40%. The higher
vHost CPU usage results from the extra work of vhost trying to
resend the packets dropped in the physical machine Qdisc instead

229

zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

(a) Throughput (b) VM CPU (c) vHost CPU (d) TCP Retransmission

Figure 13: Compared with Carousel, zD achieves higher throughput, lower VM CPU usage, lower vHost CPU usage, and fewer
TCP retransmissions

(a) Throughput (b) TCP retransmission

Figure 14: Compared with TSQ, zD achieves higher through-
putand and fewer TCP retransmissions when 1 vCPU is as-
signed to the VM.

of relying on the TCP socket in the VM to retransmit the packets.
This shows a tradeo⇤ between network performance and VM CPU
on one side and hypervisor CPU on the other side. We also envision
that userspace stacks can amortize the cost in the hypervisor due
to their busy polling nature [1, 3].

Comparison with Carousel: We use Carousel as a baseline to
examine if the combination of e�cient queuing data structure and
TSQ-like backpressure can improve on the performance of standard
Linux Qdiscs. We implemented Carousel in Linux Qdisc using a
more e�cient integer priority queue data structure [29] and com-
pared zD with carousel in the 10G network setting with a queue of
1000 slots in the hypervisor. Figure 13 shows that zD outperforms
Carousel in all metrics. While Carousel achieves higher CPU e�-
ciency and a higher throughput compared with TSQ, it does not
fundamentally solve the problem when queue runs out of space
with a large number of ⇥ows. As discussed earlier, Carousel relies
on TSQ-like backpressure to limit the number of packets per ⇥ow,
which works reasonably well with a small number of ⇥ows. Unfor-
tunately, with a large number ⇥ows, limiting two packets per ⇥ow
can still over⇥ow the queue, leading to performance degradation.

6.3 Microbenchmark
zD with VM-only bottleneck: In the previous section, we looked
at the general case where drops happen in both the VM and the
hypervisor. In this section, we look at cases where there is a single
bottleneck. We focus on the case where drops happen at the VM
because it is easier to test it at large scale (i.e., large number of
⇥ows) compared to the hypervisor which requires scaling to a
large number of VMs. We prevent drops in the hypervisor by a
long unscheduled queue (i.e., pfifo with 1k slots). Note that this
setting is convenient and allows for a better understanding of the
performance of zD because adding more VMs causes drops in the

Figure 15: CDF of ⌅ow RTT
with hypervisor-only zD.

Figure 16: Throughput un-
der di⇥erent Qdiscs

Drop in Qdisc TCP retransmission

TSQ 1.6 ◊ 105 1 ◊ 105
zD 562 110

Table 1: Drops and retransmission in case of hypervisor-
only zD implementation.

hypervisor, which results in a similar scenario as the one we studied
earlier.

We start by looking at the case where the VM is allocated 6 vC-
PUs, thus eliminating the Rx path bottleneck. The result is similar
to what we show in Figure 10. When we use a queue of 1000 slots
in the hypervisor, regardless whether zD is implemented in the hy-
pervisor or not, the performance is similar because the hypervisor
queue is not easily congested due to the high-speed NIC and the
low latency of the networking stack.

To highlight the value of zD, we rerun the experiment in the
setting where 1 vCPU is assigned to the virtual machine. zD’s value
is clear in its impact on throughput as shown in Figure 14a. In
particular, zD can maintain 43% higher throughput at 16k ⇥ows.
This signi⇧cant improvement is mostly due to reduction in retrans-
mission rate (Figure 14b). We ⇧nd that zD and the standard kernel
exhibit similar CPU performance for both the VM and the vhost
thread when the number of ⇥ow is larger than 2k. Both systems
have 100% VM CPU utilization and their vhost CPU utilization was
about 49% for kernel and 43% for zD. The reason of degradation of
kernel implementation moving from allocating 6 vCPUs to a single
vCPU is the higher retransmission rate in the later case. The is
mostly due to the Rx path congestion which leads ACK packets to
be delayed. This cases TCP spurious retransmissions, where senders
timeout and retransmit packets whose ACK is delayed. zD achieves
lower TCP retransmission by reducing the number of interrupts in
VM Tx path reducing the Rx path congestion.

zD with Hypervisor-only bottleneck: Next we quantify the
bene⇧t of zD when it is only implemented in the physical machine.

230

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Yimeng Zhao, Ahmed Saeed, Ellen Zegura, and Mostafa Ammar

Figure 17: CPU usage in VM under di⇥erent Qdiscs

Figure 18: CPU usage in VM under light tra�c load

We use tbf Qdisc to set a bandwidth limit of 1Gbps in the physical
machine with only 100 ⇥ows. This setting forces packet drops to
happen only in the hypervisor. In both settings, the ⇥ows achieve
the targetted aggregate rate. However, zD improves RTT by avoid-
ing packet drops. Figure 15 shows the CDF of ⇥ow RTT.With vanilla
kernel, the 99.99th percentile is large at around 0.8s. The 99.99th
percentile of zD is less than 0.1s. We present the number of drops in
Qdisc and the number of TCP retransmission for both the standard
kernel and zD in Table 1. zD reduces the TCP retransmission caused
by packet drop in Qdisc by 1000x. Note that CPU utilization is low
and comparable for both implementations due to the limited scale
of the experiment.

Interactionwith di⇥erent Qdisc:We explore zD performance
under di⇤erent Qdiscs to show that zD can operate with di⇤erent
underlying policies. We implement a FIFO policy for the Paused-
⇥ows Queue, which is compatible with all queuing policies used
here. However, each queuing policy requires a di⇤erent implemen-
tation of the has_room function. We conduct our experiments for
pfifo, mq, and tbf Qdiscs and measure the throughput and CPU
usage inside the VM with 4k ⇥ows. The chosen setting is similar to
the case where drops happen only at the VM.

Figure 16 shows that zD achieves around 12% throughput im-
provement with pfifo and around 8% throughput improvement
with tbf. With mq, both zD and the standard kernel have similar
throughput because the instances of vhost process scale as the
number of queues increases. Figure 17 shows the CDF of CPU us-
age in the VM under di⇤erent Qdiscs. zD reduces the CPU usage
by 7% under pfifo and by 25% under mq but has slightly higher
CPU usage under tbf. The higher CPU usage with tbf results from
the extra work performed by zD to stop and resume the vring. Al-
though dropping packets directly can save hypervisor CPU, the
dropped packets need to be recovered by the TCP retransmission
mechanism thus wasting CPU in the VM.

zD at light loads: zD achieves its goals by adding more coor-
dination between tra�c sources and packet queue, which might
cause signi⇧cant overhead at light loads. However, we ⇧nd that
this is not the case. To conduct experiments with low loads, we use

10 instances of iperf as tra�c generator, each generating 100 TCP
⇥ows. We control the load by setting a rate limit in the application
layer, reducing demand of individual ⇥ows. Figure 18 shows e⇤ect
of varying the TCP loads on CPU usage in VM. zD has similar CPU
usage as the standard kernel because there is little packet drop in
Qdisc when the tra�c load is light. Hence, no coordination between
tra�c sources and the packet queue is needed. As the tra�c load
increases, getting closer to an aggregate rate of 3 Gbps, the number
of drops in Qdisc also increases and zD starts to outperform the
standard kernel.

7 DISCUSSION
Limitations: We show that zD can improve network and CPU
performance by applying backpressure from the scheduled bu⇤er
to the source bu⇤ers. Our work on zD has some modest limitations.
In particular, the overhead of backpressure in the hypervisor can,
in some cases, cause the vhost thread to consume more CPU than a
standard implementation. We believe that with further engineering
this overhead can be eliminated completely. A minor limitation of
our evaluation approach is our focus on simple scheduling policies
in the Paused-⇥ows queue. However, we ⇧nd that recent work on
e�cient packet schedulers in software has thoroughly handled
the issue [29], allowing us to focus more on handling cases of
congestion.

zD for UDP, ingress tra�c, and userspace Stacks:We focus
in this paper on the TCP stack in the kernel, mostly due to the
ubiquity of such a setting. As QUIC gains a larger share of Internet
tra�c, handling backpressure on UDP ⇥ows becomes more im-
portant. Such backpressure is particularly important because UDP
packet drops are physical drops, as UDP does not provide reliability.
This puts more stress on the QUIC stack to recover these losses. We
do not envision any signi⇧cant engineering or research challenges
extending zD to the UDP stack. The situation is similar for ingress
tra�c where drops are caused by NIC bu⇤ers overwhelming a ker-
nel bu⇤er. We envision that CPU overhead can be saved if zD is
applied in such scenarios with minimal engineering e⇤orts. The
situation is di⇤erent for userspace Network Stacks (e.g., DPDK).
While we believe the building blocks of zD can be mapped to such
stacks, we envision that porting it will require engineering e⇤ort.

8 CONCLUSION
Packet queuing and scheduling is a standard operation at end hosts.
Congestion of scheduled queues at end hosts typically incurs packet
drops which lead to high CPU cost as well as degradation in net-
work performance. In this paper, we show that by augmenting
existing architectures with three simple mechanisms, CPU and net-
work performance can be signi⇧cantly improved under high loads,
improving tail latency by 100x. Our work on zD should extend the
scalability of current end-host stacks and motivate revisiting the
queuing architecture in other network elements.

9 ACKNOWLEDGEMENT
This work was funded in part by the National Science Foundation
grant NETS 1816331.

231

zD: A Scalable Zero-Drop Network Stack at End Hosts CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

REFERENCES
[1] 2014. Intel DPDK: Data plane development kit. https://www.dpdk.org/.
[2] 2016. neper: a Linux networking performance tool. https://github.com/google/

neper.
[3] 2017. BESS: Berkeley Extensible Software Switch. https://github.com/NetSys/

bess/wiki.
[4] Vikas Agarwal, MS Hrishikesh, StephenWKeckler, and Doug Burger. 2000. Clock

rate versus IPC: The end of the road for conventional microarchitectures. In ACM
SIGARCH Computer Architecture News, Vol. 28.

[5] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen
Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2011. Data
center tcp (dctcp). In Prof. of ACM SIGCOMM ’11.

[6] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,
and Masato Yasuda. 2012. Less is more: trading a little bandwidth for ultra-low
latency in the data center. In Prof. of USENIX NSDI ’12.

[7] W. Almesberger, J. H. Salim, and A. Kuznetsov. 1999. Di⇤erentiated services on
Linux. In Proc. of IEEE GLOBECOM ’99.

[8] Vint Cerf, Van Jacobson, Nick Weaver, and Jim Gettys. 2011. Bu⇤erBloat: What’s
Wrong with the Internet? ACM Queue 9 (2011).

[9] Yanpei Chen, Rean Gri�th, Junda Liu, Randy H Katz, and Anthony D Joseph.
2009. Understanding TCP incast throughput collapse in datacenter networks. In
Proc. of the ACM workshop on Research on enterprise networking (WREN ’09).

[10] Yuchung Cheng and Neal Cardwell. 2016. Making Linux TCP Fast. In Netdev 1.2
Conference.

[11] Hsiao-keng Jerry Chu. 1996. Zero-copy TCP in Solaris. In Proc. of USENIX ATC
’96.

[12] Eric Dumazet and Jonathan Corbet. 2012. TCP small queues. https://lwn.net/
Articles/507065/.

[13] Eric Dumazet and Jonathan Corbet. 2013. TSO sizing and the FQ scheduler.
https://lwn.net/Articles/564978/.

[14] Michael Dalton et al. 2018. Andromeda: Performance, Isolation, and Velocity at
Scale in Cloud Network Virtualization. In Proc. of USENIX NSDI ’18.

[15] David Geer. 2005. Chip makers turn to multicore processors. IEEE Computer 38
(2005).

[16] Keqiang He, Weite Qin, Qiwei Zhang, Wenfei Wu, Junjie Yang, Tian Pan,
Chengchen Hu, Jiao Zhang, Brent Stephens, Aditya Akella, and Ying Zhang.
2017. Low Latency Software Rate Limiters for Cloud Networks. In Proc. of ACM
APNet’17.

[17] Vimalkumar Jeyakumar, Mohammad Alizadeh, David Mazières, Balaji Prabhakar,
Albert Greenberg, and Changhoon Kim. 2013. EyeQ: Practical Network Perfor-
mance Isolation at the Edge. In Proc. of USENIX NSDI ’13.

[18] Praveen Kumar, Nandita Dukkipati, Nathan Lewis, Yi Cui, YaogongWang, Chong-
gang Li, Valas Valancius, Jake Adriaens, Steve Gribble, Nate Foster, and Amin
Vahdat. 2019. PicNIC: predictable virtualized NIC. In Proc. of ACM SIGCOMM
’19.

[19] Alexey N. Kuznetsov. 2002. p⇧fo-tc: PFIFO Qdisc. https://linux.die.net/man/8/
tc-p⇧fo/.

[20] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,
Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, and Minlan Yu. 2019.
HPCC: High Precision Congestion Control. In Proc. of ACM SIGCOMM ’19.

[21] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.
2015. TIMELY: RTT-based Congestion Control for the Datacenter. In Proc. of
ACM SIGCOMM ’15.

[22] Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and Hari Balakr-
ishnan. 2019. Shenango: Achieving High CPU E�ciency for Latency-sensitive
Datacenter Workloads. In Proc. of USENIX NSDI ’19.

[23] Ben Pfa⇤, Justin Pettit, Keith Amidon, Martin Casado, Teemu Koponen, and Scott
Shenker. 2009. Extending networking into the virtualization layer. In Proc. of
ACM HotNets-VIII.

[24] Ben Pfa⇤, Justin Pettit, Teemu Koponen, Ethan Jackson, Andy Zhou, Jarno Raja-
halme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, Keith Amidon, and
Martin Casado. 2015. The Design and Implementation of Open vSwitch. In Proc.
of USENIX NSDI ’15.

[25] George Prekas, Marios Kogias, and Edouard Bugnion. 2017. ZygOS: Achieving
Low Tail Latency for Microsecond-scale Networked Tasks. In Proc. of ACM SOSP
’17.

[26] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Abdul Kabbani,
George Porter, and Amin Vahdat. 2014. SENIC: Scalable NIC for End-Host Rate
Limiting. In Proc. of USENIX NSDI ’14.

[27] Rusty Russell. 2008. virtio: towards a de-facto standard for virtual I/O devices.
ACM SIGOPS Operating Systems Review 42 (2008).

[28] Ahmed Saeed, Nandita Dukkipati, Valas Valancius, Terry Lam, Carlo Contavalli,
and Amin Vahdat. 2017. Carousel: Scalable Tra�c Shaping at End-Hosts. In Proc.
of ACM SIGCOMM ’17.

[29] Ahmed Saeed, Yimeng Zhao, Nandita Dukkipati, Ellen Zegura, Mostafa Ammar,
Khaled Harras, and Amin Vahdat. 2019. Ei⇤el: E�cient and Flexible Software

Packet Scheduling. In Proc. of USENIX NSDI ’19.
[30] Vishal Shrivastav. 2019. Fast, Scalable, and Programmable Packet Scheduler in

Hardware. In Proc. of ACM SIGCOMM ’19.
[31] Brent Stephens, Aditya Akella, and Michael Swift. 2019. Loom: Flexible and

E�cient NIC Packet Scheduling. In Prof. of USENIX NSDI ’19.
[32] Jianfeng Tan, Cunming Liang, Huawei Xie, Qian Xu, Jiayu Hu, Heqing Zhu, and

Yuanhan Liu. 2017. VIRTIO-USER: A New Versatile Channel for Kernel-Bypass
Networks. In Proc. of the ACMWorkshop on Kernel-Bypass Networks (KBNets ’17).

[33] M Tsirkin. 2010. vhost-net and virtio-net: Need for Speed. In Proc. KVM Forum.
[34] M Mitchell Waldrop. 2016. The chips are down for Moore’s law. Nature News

530 (2016).
[35] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and
Ming Zhang. 2015. Congestion Control for Large-Scale RDMA Deployments. In
Proc. of ACM SIGCOMM ’15.

232

