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Abstract Model selection strategies have been routinely employed to determine a model for data analysis

in statistics, and further study and inference then often proceed as though the selected model were the true

model that were known a priori. Model averaging approaches, on the other hand, try to combine estimators for

a set of candidate models. Specifically, instead of deciding which model is the ‘right’ one, a model averaging

approach suggests to fit a set of candidate models and average over the estimators using data adaptive weights.

In this paper we establish a general frequentist model averaging framework that does not set any restrictions on

the set of candidate models. It broadens the scope of the existing methodologies under the frequentist model

averaging development. Assuming the data is from an unknown model, we derive the model averaging estimator

and study its limiting distributions and related predictions while taking possible modeling biases into account.

We propose a set of optimal weights to combine the individual estimators so that the expected mean squared

error of the average estimator is minimized. Simulation studies are conducted to compare the performance of

the estimator with that of the existing methods. The results show the benefits of the proposed approach over

traditional model selection approaches as well as existing model averaging methods.
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1 Introduction

When there are several plausible models to choose from but no definite scientific rationale to dictate which

one should be used, a model selection method has been used traditionally to determine a ‘correct’ model

for data analysis. Commonly used model selection methods, such as Akaike information criterion (AIC),

Bayesian information criterion (BIC), stepwise regression, best subset selection, penalised regression, etc.,

are data driven and different methods may use different criteria (see, e.g., [10] and the reference therein).

Once a model is chosen, further analysis proceeds as if the model selected is the true one. This practice
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does not account for the uncertainty introduced in the process due to model selection, and can often lead

to faulty inference as discussed in [2,6,22], among others. Model averaging methods have been introduced

to incorporate different models during analysis (see, e.g., [3]). Instead of deciding which model is the

‘correct’ one, a model averaging method uses a set of plausible candidate models. The candidate models

are combined using some data-dependent weights to reflect the degree to which each candidate model is

trusted.

Our research on model averaging is motivated in part by a real life example on a prostate cancer study

where the relationship between the level of prostate-specific antigen and a number of clinical measures in

men who were about to receive a radical prostatectomy were investigated. The variables included in the

study are log cancer volume, log prostate weight, age, log of the amount of benign prostatic hyperplasia,

seminal vesicle invasion, log of capsular penetration, Gleason score, and percent of Gleason scores 4 or 5.

In analysis of such data, a common theme is that different model selection methods may choose different

models as the ‘true’ one. For example, AIC and BIC, two commonly used model selection criteria, may

pick two different models, as the criteria for selection are different. Such situations would certainly raise

many questions in practice. For example, if the estimator is selected by using a model selection criterion,

how would we address the possibility that the selection is a wrong model? Also, if different model selection

methods give us different results, we might wonder how trustworthy the model selection procedures are.

Instead of choosing one model using a model selection scheme, we can use an average of estimators from

different models.

In [11], Hjort and Claeskens provided a formal theoretical treatment of frequentist model averaging

approaches, which provided an in-depth understanding of the approaches. However, the development

in [11] had an assumption that any extra parameters not in its defined “narrow model” will shrink to

zero at an O(1/
√
n) rate. This assumption essentially requires that all candidate models are within an

O(1/
√
n) neighborhood of the true model. Although this assumption avoids a technical difficulty of han-

dling biased estimators, in reality we do not know the true model and thus excluding from consideration

those models that are beyond O(1/
√
n) neighborhood of the true model appears to be very restrictive

in practice. In this paper, we remove this restrictive assumption in [11] and develop frequentist model

averaging approaches under a more general framework. Our model averaging scheme allows us to use all

the potential candidate models available, even the ones that produce biased estimates.

The development is motivated by the familiar bias-variance trade-off. If we use an overly simple model,

the parameter estimates will often be biased, but it can also possibly have less variance, because there

are fewer parameters to estimate. Similarly, if a bigger model is used, the parameter estimates often have

low or no bias but increased variance. It is possible that biased estimators may end up having lower

mean squared errors than the bigger model or even the true model, and vice versa. In our development,

we study the delicate balance between bias and variance in all possible models and utilize the knowledge

to develop new frequentist model averaging approaches.

A key element of a model averaging method is selection of weights that help us build a combined model

averaging estimator. The weights proposed in our development are based on the aforementioned bias-

variance trade-off, anchoring on the mean squared error (MSE) of the overall model averaging estimator.

The weighing scheme is similar to but not the same as that discussed in [20], in which the authors only

focused on Gaussian linear regression models. Specifically, a consistent estimate of the mean squared error

of the model averaging estimator is proposed, and the weights are chosen such that the MSE estimate is

minimized.

A model averaging estimator combines a set of competing candidate models rather than choosing just

one. It also provides an insurance against selecting a poor model thus improving the risk in estimation.

In [3, 12], variable selection methods for the Cox proportional hazards regression model were discussed

along with the choice of weights. In [9] a new set of weights was derived using Mallow’s criterion. In [20],

Liang et al. proposed an unbiased estimator of the risk and a set of optimal weights was chosen by

minimizing the trace of the unbiased estimator. Further details about model selection and averaging

can also be found in [17, 21, 31–33]. The model averaging method has also been used in many areas of

applications, e.g., [4, 5] for forecasting stock market data, [25] for risk of using false models in portfolio
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management, [23] for analysis of the Hong Kong housing market, and [26] for a study of phylogenetics

in biology. Our development in this article extends the existing theoretical frequentist development to

a general framework so it can incorporate biased models under a general setting. Model averaging has

been also discussed in the Bayesian framework (see, e.g., [13, 27]). In a Bayesian approach, a weighted

average of the posterior distributions under every available candidate model was used for estimation and

prediction purposes. The weights were determined by posterior model probabilities. Model averaging in

a frequentist setup, as in [11] and also ours, precludes the need to specify any prior distributions, thus

removing any possible oversight due to faulty choice of priors. The question in a frequentist setting is

how to obtain the weights by a data-driven approach.

The rest of the article is organized as follows. In Section 2, we propose a general framework that covers

the framework of [11] as a special case and study asymptotic properties of model averaging estimators. We

also derive a consistent estimator for the mean squared error of the model averaging estimator and use it to

facilitate our choice of data-driven weights in Subsection 2.4. The development is illustrated in generalized

linear models and particularly in linear and logistic model setups. In Section 4, simulation studies are

carried out to examine the performance of the proposed estimator and to compare its performance with

existing methods.

2 General framework

2.1 Notation and setup

Consider n independent data points y = (y1, . . . , yn) sampled from a distribution having density of the

form f(y) ≡ f(y,β), where β is the unknown parameter of interest. Here, the parameter β can be written

as β = (θT,γT)T, where θ ∈ Θ ⊂ R
p, p > 0, are the parameters that are certainly included in every

candidate model and γ ∈ R
q is the remaining set of parameters that may or may not be included in the

candidate models. We assume that p and q are given. As a model averaging method, instead of choosing

one particular candidate model as the “correct” model, we consider a set of candidate models, say M,

in which each candidate model contains the common parameters θ and a unique γ′ that includes m of q

components of the parameter γ, 0 6 m 6 q.

The choice of M can vary depending on the problem that one is trying to solve. For example, the

candidate model set M can contain all possible 2q combinations of γ. Or, one can choose a subset of

the 2q possible models as M. In [9], a set of nested models has been used as candidate models, with

|M| = q + 1. In [11], M includes candidate models that are within an O(1/
√
n) neighborhood of the

true model. Our development encompasses both setups as there are no restrictions on M, and M can

include any number of candidate models between 1 and 2q. Similar setup was used in [20] where M is

also unrestricted, but the development there was done in the standard linear regression framework.

Let the parameters in the true model be given by βtrue = (θT
true,γ

T
true)

T. Let mtrue be the number

of components of γ that are present in the true model. Define M∈ as the collection of the candidate

models that contain the true model, thus every model in M∈ contains each and every one of the mtrue

components of γ. Define M/∈ = M − M∈ ⊂ M, so M/∈ contains candidate models for which at least

one of those mtrue components are not present. Clearly, M = M∈ ∪M/∈.

In [11], a common parameter is also present in all the candidate models. But the treatment of γ is

different. In particular, the model containing just θ is called a “narrow model” and the true model is

chosen of the form f(y) = f(y,θ,γ0 + δ/
√
n). Here, parameter δ determines how far a candidate model

can vary from the narrow model and γ0 is a given value of γ for which any extended model reduces down

to the narrow model. Thus, this choice of true model essentially requires that the all candidate models are

within an O(1/
√
n) neighborhood of the true model. Any model that is beyond O(1/

√
n) neighborhood

of the true model is excluded from the analysis. In this paper, we remove this rather restrictive constraint.

Indeed, we assume the parameter for the true model is βtrue = (θT
true,γ

T
true)

T, where γtrue may or may

not have any of the q components, and the candidate model set M can be a subset or contain all possible

2q combinations of γ. Thus in our model setup there are no restrictions on the choice of true model or
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on the set of candidate models as in [11]. Furthermore, we can treat the setup considered in [11] as a

special case of ours by restricting γtrue so that all the candidate models have a bias of order O(1/
√
n) or

less.

Note that every candidate model includes a unique γ that may or may not include all q components.

Thus the numbers of parameters from different candidate models may be different. For ease of presenta-

tion and following [9], we introduce an augmentation scheme to bring all of them to the same length. We

first illustrate the idea using the regression example considered by Hansen [9]: y is the vector of responses,

X is the design matrix with full column rank p + q and the candidate models are nested models. We

further assume the first p columns of X are always included in the candidate models; the special case

with p = 0 goes back to the setup of [9]. It follows that the k-th candidate model includes the first p+ k

columns of X, k = 0, . . . , q. Denote by β̂k the estimated regression parameters corresponding to the k-th

candidate model. Then the (p+ k)× 1 vector β̂k can be augmented to a (p+ q)× 1 vector (β̂T
k ,0

T)T, by

adding (q − k) 0’s. The augmented estimator for the k-th candidate model is given by

β̃k = (β̂T
k ,0

T)T =

[
(XT

k Xk)
−1XT

k y

0

]
(2.1)

(see, e.g., [9] adopted this augmentation on a set of nested candidate models).

More generally, let βk be the parameter for the k-th model in M. Assume the length of βk is p+mk,

where mk depends on k. Define the log-likelihood for the i-th observation in the k-th model as

ℓk;i(βk) = log f(yi,βk).

The maximum likelihood estimate (MLE) of βk with the k-th model is β̂k = argmaxβk
ℓk(βk), where

ℓk(βk) =
∑n

i=1 ℓk;i(βk). Write the score function of the k-th model as Sk(β). As in the example above,

the vector βk for the k-th model can be augmented to a (p+ q)× 1 vector (βT
k , c

T
k )

T, where ck is a fixed

value used for augmentation to hold spaces. The augmented maximum likelihood estimator is given by

β̃k = (β̂T
k , c

T
k )

T. The fixed value augmentation does not affect the parameter, and only appends the

length of the parameter. In the linear model example above the values ck = 0. Some examples of ck ̸= 0

can be found in [24]. Similarly, βtrue can be augmented to a (p+ q)× 1 vector (βT
true, c

T)T for a certain

fixed set of c without altering the true model. Thus, without loss of generality and from now on, we

assume βtrue is a (p+ q)× 1 vector in the sense that some of the elements may be augmented to fill the

space.

For the model k ∈ M, let us define β∗
k ∈ R

p+mk as the solution of the equation ESk(β) = 0, where

Sk(β) is the score function of the k-th model having p +mk parameters. Define, as before, β̃∗
k ∈ R

p+q

as the c-augmented version of β∗
k. Since the score function is Fisher consistent, β̃k → β̃∗

k under usual

regularity conditions. But this β̃∗
k may not be close to βtrue.

Let µ : Rp+q → R
ℓ be a general function that is 1st order partially differentiable and µ = µ(βtrue) is

the parameter of interest. Then, the model averaging estimator of µ is defined as

µ̂ave =
∑

k∈M

wkµ(β̃k), (2.2)

where the weights 0 6 wk 6 1, ∀ k, and ∑k∈M wk = 1. In the remainder of this section, we derive the

asymptotic properties of the model averaging estimator (2.2) for any given set of weights wk.

2.2 Main results

We assume the usual regularity conditions under which the familiar likelihood asymptotic arguments

apply (see the conditions listed in Appendix A). See also [18, 19,30] for more details.
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Let ∇µ ∈ R
ℓ×(p+q) be the first order derivative of the R

p+q → R
ℓ function µ. Define

Hk = lim
n→∞

1

n
E[ℓ′′k(β

∗
k)],

and assume it is invertible. We also assume

(A1) lim
n

1

n

n∑

i=1

E
[
max
k∈M

∥∇µ(β̃∗
k)H

−1
k ℓ′k;i(β

∗
k)∥2I

{
max
k∈M

∥∇µ(β̃∗
k)H

−1
k ℓ′k;i(β

∗
k)∥ >

√
nϵ
}]

= 0,

for any ϵ > 0, where I{·} is the indicator function. We have the following theorem. Its proof is given in

Appendix A.

Theorem 2.1. Let β̃k be the c-augmented MLE as defined in (2.1) for the k-th model in M. Let

0 6 wk 6 1 for k ∈ M be model weights such that
∑

k wk = 1. Assume Condition (A1) holds. Then, the

asymptotic distribution of the model averaging estimator for µ(βtrue) is given as,

√
n
∑

k∈M

wk{µ(β̃k)− µ(βtrue)} −
√
n
∑

k∈M

wk{µ(β̃∗
k)− µ(βtrue)} D−→ N(0,Σw), (2.3)

where the variance Σw is given by

Σw = lim
n→∞

1

n

n∑

i=1

E

[{∑

k

wk∇µ(β̃∗
k)

TH−1
k ℓ′k;i

}⊗2]
. (2.4)

Condition (A1) implies that the contribution of ∇µ(β̃∗
k)H

−1
k ℓ′k;i(β

∗
k) to the total variance, for each

model k in the set M and for each 1 6 i 6 n is asymptotically negligible, and it is satisfied in a wide

array of cases. We provide a set of sufficient conditions under which it is satisfied, and we also provide

such examples in the cases of linear and logistic models in Subsection 2.4. See further discussions of the

condition in Subsection 2.4.

In our general framework, there is no guarantee that β̃∗
k = βtrue, neither does ∥β̃∗

k − βtrue∥ → 0

asymptotically, particularly when k ∈ M/∈. So µ(β̃∗
k)−µ(βtrue) is not necessarily 0, even asymptotically.

But we can view it as a measurement of the bias by the k-th model. Thus, with the second term on the

left-hand side of (2.3) serving as a bias correction term, Theorem 2.1 states that the model averaging

estimator still retains the usual form of asymptotic normality after the bias correction.

Note that, in the theorem, the weights are fixed and non-random, which is different from [11] which

also considered random weights. In practice (see Subsection 2.4), we often estimate the weights using

data. Strictly speaking, the result in the theorem does not directly apply to our proposed model averaging

estimator. Nevertheless, it is still useful in motivating the practical estimator by choosing weights that

minimize the asymptotic variance.

All the candidate models have θ in common. We can use Theorem 2.1 to construct asymptotic

convergence results for the common parameter θ. If we consider a function from (θT,γT)T 7→ θ to

extract the θ parameter, then by a direct application of Theorem 2.1 we can derive the asymptotic

distribution of θ̂ as given below in Corollary 2.2.

Corollary 2.2. Let θ be the common parameter for all candidate models in M. Let β∗
k = (θ∗

k
T,γ∗

k
T)T

and β̂k = (θ̂T
k , γ̂

T
k )

T. Then under the same setup as in Theorem 2.1,

√
n
∑

k∈M

wk(θ̂k − θtrue)−
√
n
∑

k∈M

wk(θ
∗
k − θtrue)

D−→ N(0,Σw), (2.5)

where the variance is given by

Σw = lim
n→∞

1

n

n∑

i=1

E

{(∑

k

wk[Ip,0]H
−1
k ℓ′k;i

)⊗2}
.
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2.3 Connection to the development in [11]: Hjort and Claeskens (2003)

The development of [11] required that all candidate models are within an O(1/
√
n) neighborhood of the

true model. We broaden this framework in our development. In particular, we show in this subsection

that the results described in [11] can be obtained as a special case of our result. Again, we would like to

point out that the latter theoretically allows random weights while in the paper we require the weights to

be non-random. Thus, technically we only recover the result in [11] when the weights are deterministic.

We start with a description of the mis-specified model setup used in [11]. Let Y1, . . . , Yn be an inde-

pendent and identically distributed (i.i.d.) sample from density f of maximum p + q parameters. The

parameter of interest is µ = µ(f), where µ : Rp+q → R. The model that includes just p parameters,

say θ, is defined as the narrow model, while any extended model f(y,θ,γ) reduces to the narrow model

for γ = γ0; here the vector γ0 is fixed and known. For the k-th model with unknown parameters (θ,γk),

the MLE of µ is written as µ̂k = µ(θ̂k, γ̂k,γ0,kc), where kc refers to the elements that are not contained

in γk. Thus in this setup, if a parameter γj is not included in the candidate model, we set γj = γj,0, the

j-th element of γ0. The true model is assumed to be

ftrue(y) = f(y,θ0,γ0 + δ/
√
n), (2.6)

where δ signifies the deviation of the model in directions 1, . . . , q. So βtrue = (θT
0 ,γ

T
0 + δT/

√
n)T. Let

us write β0 = (θT
0 ,γ

T
0 )

T. We will also write µtrue = µ(βtrue), which is the estimand of interest. Under

this model setup, Hjort and Claeskens [11] derived asymptotic normality result for the model averaging

estimator
∑

k wkµ̂k. To describe their result, let us first define

S(y) =

[
U(y)

V (y)

]
=

[
∂
∂θ log f(y, θ,γ)
∂
∂γ log f(y,θ,γ)

] ∣∣∣∣∣
θ=θ0,γ=γ0

and var{S(Y )} =

[
J00 J01

J01 J11

]
= Jfull.

Let Un = n−1
∑

i U(Yi) and V n = n−1
∑

i V (Yi). Denote by Vk(Y ) and V n;k the appropriately subsetted

vectors obtained from V (Y ) and V n, with the subset indices corresponding to that of γ̂ in model k ∈ M,

respectively. Also, define Jk = var{U(Y ), Vk(Y )} for all k ∈ M. Hjort and Claeskens [11] showed that,

√
n

(∑

k

wkµ̂k − µtrue

)
D−→
∑

k

wkΛk, (2.7)

where

Λk =

(
∂µ(β0)/∂θ

∂µ(β0)/∂γk

)T{
J−1
k

(
J01δ

πkJ11δ

)
+ J−1

k

(
M

Nk

)}
−
(
∂µ(β0)

∂γ

)T

δ,

where (M,Nk) ∼ Np+q(0,Jk). Here, πk ∈ R
|Mk|×q is the projection matrix that projects any vector

u ∈ R
q to uk ∈ R

|Mk| with indices as given by Mk ∈ M.

The following corollary states that the result in (2.7) can be directly obtained from Theorem 2.1

and thus Theorem 2.1 covers the special setting (2.6) of [11]. A proof of the corollary can be found in

Appendix A.

Corollary 2.3. Under the mis-specification model (2.6), the asymptotic bias and variance in (2.7)

matches those in Theorem 2.1.

2.4 Selection of weights in frequentist model averaging

Model averaging acknowledges the uncertainty caused by model selection and tackles the problem by

weighting all models under consideration. To make it effective, it is desirable that the weights can

reflect the impact of each candidate model, which can be achieved by properly assigning a weight to each

candidate model. If model k′ is more likely to impact or is more plausible than the model k, its associated
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weight wk′ should be no smaller than wk for the model k. In our development, we propose to measure the

strength of a model by its mean squared error, based on which we obtain a set of data-adaptive weights

by minimizing the mean squared error of the combined model averaging estimator. A similar scheme was

developed in [20], where the authors minimized an unbiased estimator of mean squared error to obtain

their optimal weights. As in [20], we assume that the true model is included in the set of candidate

models in the development of our weighing scheme.

Recall Theorem 2.1, and the asymptotic mean squared error (AMSE) of µ(β̃k) is,

Q(w) = trace

([ ∑

k∈M

wk{µ(β̃∗
k)− µ(βtrue)}

]⊗2

+
1

n
Σw

)
, (2.8)

for any given set of weights. However, this quantity depends on some unknown parameters, so we instead

consider its estimate

Q̂n(w) = Q(w) |
βtrue=β̂cons, β̃∗

k=
ˆ̃
β∗

k,Σw=Σ̂w
.

Here, we assume that we can consistently estimate βtrue, β̃
∗
k and Σw, say, by β̂cons,

ˆ̃
β∗
k, Σ̂w, respectively.

Note that, to compute Q̂n(w), we only need a consistent estimate for βtrue and β̂cons does not need to

be efficient. So we often obtain it using the full model. For consistently estimating β̃∗
k and Σw in linear

and logistic models, we defer it to Subsections 3.1 and 3.2 with details. We propose to obtain a set of

data adaptive weights w∗
n by minimizing Q̂n(w):

w∗
n = argmin

w
Q̂n(w).

The numerical performance of the proposed averaging estimators will be evaluated in Section 4. In the

next section, we illustrate the procedure in the linear and logistic models in details.

3 Model averaging and weight selection in regression models

We now discuss the model averaging estimator described in Section 2 for generalized linear models (GLM).

Specifically, let Eyi = g(xT
i β), where g is a given link function connecting the mean and the linear

predictor ηi = xT
i β. We consider a set M of 2q models. Suppose we want to estimate a function µ(β)

and, as defined in (2.2), the final model averaging estimator is given by µ̂ave =
∑

k∈M wkµ(β̃k). Since

the set up for Theorem 2.1 is for a general parametric model, the same asymptotic convergence results

hold for GLM. In particular we verify Condition (A1) and discuss the data-driven weight choices below

in two special cases: linear and logistic regression models.

3.1 Prediction in linear regression models

We first derive the model averaging estimator in the linear regression framework:

y = Xβ + ε,

where X ∈ R
n×(p+1) is a non-random design matrix of full column rank; i.e., rank(X) = p + 1, and

ε ∼ N(0, σ2In).

Let M = {Mk}|M|
k=1 be the set of candidate models. Here, Mk denotes a particular set of features

having cardinality |Mk|. Define Xk ∈ R
n×|Mk|, 1 6 k 6 |M| as the design matrix of the k-th candidate

model with the features in Mk. We consider zero-augmentation of the parameter set βk for all k. Let

X̃k ∈ R
n×(p+1) be the augmented version of Xk with the missing columns replaced by the 0 vector. In

our analysis, all the candidate models contain the intercept term corresponding to β0. With the rest of

the p components, we can construct 2p candidate models, all of which are included in our analysis.

Let us fix an x∗ ∈ R
p+1. Define x∗

k ∈ R
|Mk| so that x∗

k consists of those components of x∗ indexed by

Mk ∈ M. Consider the particular choice of the function µ : Rp+1 → R so that for b ∈ R
p+1, µ(b) = x∗Tb.
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Clearly, we have ∇µ(β) = x∗. For the following discussion, we are interested in the model averaging

estimator of µ(βtrue) = x∗Tβtrue, which is given by µ̂ave =
∑

k wkx
∗
k
Tβ̂k with wk > 0 and

∑
k wk = 1. In

the simulations, we will use x∗ generated from the known covariate distribution, while for the real data,

we split the whole data set into a training set and a test set and x∗ will be set to be the covariate in the

test set.

For the k-th candidate model with βk ∈ R
|Mk|, the score function is given by ℓ′k(βk) = XT

k (y−Xkβk)

and Hk is given by Hk = −(1/n)XT
k Xk; note that this follows from the definition immediately preceding

Condition (A1). Thus our Hessian matrix satisfies the condition as it does not depend on y. Similarly

we note that regarding Condition (A1),

|∇µ(β̃∗
k)H

−1
k ℓ′k;i(β

∗
k)| = |(yi − [Xk]

T
i,·β∗

k) x
∗
k
T(XT

k Xk/n)
−1[Xk]i,·| = |cik(εi +Aik)|,

where cik = x∗
k
T(XT

k Xk/n)
−1[Xk]i,· and Aik = xT

i βtrue − [Xk]
T
i,·β∗

k are fixed constants, and [Xk]i,· is

the i-th column of the matrix XT
k .

Note that εi ∼ N(0, σ2). Then the key term in Condition (A1) can now be written, for any arbitrary

ϵ > 0, as

1

n

n∑

i=1

E
{
max
k∈M

|cik(εi +Aik)|
}2

I

{
max
k∈M

|cik(εi +Aik)| >
√
nϵ
}

6 max
16i6n

E
{
max
k∈M

|cik(εi +Aik)|
}2

I

{
max
k∈M

|cik(εi +Aik)| >
√
nϵ
}

6 max
16i6n

{
max

k
|cik|2

}
E
{
max
k∈M

|εi +Aik|
}2

I

{
max
k∈M

|εi +Aik| >
√
n
(
ϵ
/
max

k
|cik|

)}
.

Moreover, if |cik| 6 C for some fixed constant C > 0, then it would further suffice to prove that,

lim
n→∞

max
16i6n

E
{
max
k∈M

|εi +Aik|
}2

I

{
max
k∈M

|εi +Aik| >
√
nϵ′
}
= 0,

where ϵ′ = ϵ/C is a fixed constant. It is appropriate to note that we can have a bound of cik as

max
k

|cik| = max
k

|x∗
k
T(XT

k Xk/n)
−1[Xk]i,·| 6 ∥x∗∥∥xi∥max

k

1

λmin(XT
k Xk/n)

.

Here, λmin(B) denotes the smallest singular value of matrix B. Now by an application of the Cauchy-

Schwarz inequality,

E
{
max
k∈M

|εi +Aik|
}2

I

{
max
k∈M

|εi +Aik| >
√
nϵ′
}

6

{
Emax

k∈M
|εi +Aik|4

}1/2{
P
(
max
k∈M

|εi +Aik| >
√
nϵ′
)}1/2

6

{ ∑

k∈M

E(εi +Aik)
4

}1/2{ ∑

k∈M

P(|εi +Aik| >
√
nϵ′)

}1/2

6

{ ∑

k∈M

(A4
ik + 6A2

ikσ
2 + 3σ4)

}1/2{ ∑

k∈M

P(|εi| >
√
nϵ′ − |Aik|)

}1/2

. (3.1)

Thus it follows that for |M| finite, as n goes to infinity, the right-hand side of (3.1) goes to zero and thus

Condition (A1) is satisfied.

The MLE of βk in the k-th model is given by

β̂k = (XT
k Xk)

−1XT
k y.
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Let β∗
k be such that Eℓ′k(β

∗
k) = 0; Eℓ′k(βk) being the score function of the k-th model, solving which we

find that,

β∗
k = (XT

k Xk)
−1XT

k Xβtrue. (3.2)

As discussed in Subsection 2.1, the entire set of candidate models can be divided into two categories. The

1st category contains the ones that are biased and is denoted by M/∈ and the second category contains

ones that are not and is denoted by M∈. So, for k ∈ M∈ we have β∗
k = βtrue, whereas for k ∈ M/∈ we

have β∗
k ̸= βtrue. Therefore the bias term of model averaging estimator µ̂ave can be written as,

∑

k∈M/∈

wk(x
∗
k
T
β∗
k − x∗Tβtrue) =

∑

k∈M/∈

wkx
∗
k
T(XT

k Xk)
−1XT

k Xβtrue − x∗Tβtrue.

Since the weights assigned to the models are unknown, we propose an estimate of the mean squared error

(MSE) and minimize the MSE to obtain weights that would be assigned to the candidate models. From

Theorem 2.1, the asymptotic mean squared error (AMSE) of µ̂ave is given by

Q(w) =

[{ ∑

k∈M/∈

wk(x
∗
k
T
β∗
k − x∗Tβtrue)

}2

+
1

n2

∑

k∈M

∑

k′∈M

wkwk′x∗
k
T
H−1

k Eℓ′k(βtrue)ℓ
′
k′(βtrue)

TH−1
k′

T
x∗

k′

]
.

Since Hk does not depend on y, we focus on Eℓ′k(βtrue)ℓ
′
k′(βtrue)

T, which equals

XT
k E(y −Xβtrue)(y −Xβtrue)

TXk′ = σ2XT
k Xk′ .

It follows that

Q(w) =

{ ∑

k∈M/∈

∑

k′∈M/∈

wkwk′(x∗
k
T
β∗
k − x∗Tβtrue)(x

∗T
k′β∗

k′ − x∗Tβtrue)

+ σ2
∑

k∈M

∑

k′∈M

wkwk′x∗
k
T(XT

k Xk)
−1 XT

k Xk′ (XT
k′Xk′)−1x∗

k′

}
.

Define the estimates of β and σ as β̂full = (XTX)−1XTy and σ̂2
full = ∥y − Xβ̂full∥2/n, respectively.

Then (β̂full, σ̂full) are consistent estimates of (βtrue, σ) under mild conditions. We therefore propose to

estimate Q(w) by

Q̂(w) =
∑

k∈M

∑

k′∈M

wkwk′(x∗
k
T
β̂k − x∗Tβ̂full)(x

∗T
k′ β̂k′ − x∗Tβ̂full)

+ σ̂2
full

∑

k∈M

∑

k′∈M

wkwk′x∗
k
T(XT

k Xk)
−1 XT

k Xk′(XT
k′Xk′)−1x∗

k, (3.3)

where the second term above is an estimator of (1/n)Σw. We obtain the weights for model averaging

estimator w = (w1, . . . , w|M|) such that Q̂(w) in (3.3) is minimized.

3.2 Estimation in logistic regression framework

In this section we study the proposed model averaging estimation method under logistic regression models.

Let y ∈ R
n be n independent copies of a dichotomous response variable Y taking values 0/1. Let

X = (x1, . . . ,xn)
T ∈ R

n×(p+1) be a set of features. The logit model is given by,

pi = P(yi = 1 |X) =
exp(xT

i β)

1 + exp(xT
i β)

, ∀ i = 1, . . . , n,
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where β ∈ R
p+1 is the vector of unknown parameters of interest. The log-likelihood for the logistic

regression can be written as,

ℓk(β |y,X) = log
n∏

i=1

exp(yix
T
i β)

1 + exp(xT
i β)

=
n∑

i=1

yix
T
i β −

n∑

i=1

log(1 + exp(xT
i β)).

As before, let M = {Mk}|M|
k=1 be the set of candidate models. Here, Mk denotes a particular set of

features having cardinality |Mk|. Define Xk ∈ R
n×|Mk|, 1 6 k 6 |M| as the design matrix of the k-th

candidate model with the features in Mk. Denote by [Xk]i,· the i-th column of the matrix Xk, thus

[Xk]i,· ∈ R|Mk|. Let βk ∈ R
|Mk| be the parameter vector with components corresponding to the index

set Mk. We consider zero-augmentation of the parameter set βk for all k as was done for the linear

regression models.

Again, we consider estimation of a function of the form p : Rp+1 → R given by

p(β) =
exp(x∗Tβ)

1 + exp(x∗Tβ)
. (3.4)

Let the unknown true parameter in our model be βtrue ∈ R
p+1. Then

ptrue = p(βtrue) := exp(Xβtrue)/{1 + exp(Xβtrue)} ∈ R
n

calculated componentwise. To estimate the parameter ptrue = p(βtrue), we consider the model averaging

estimator given by p̂ave =
∑

k∈M wkp(β̃k), where β̃k is the 0-augmented version of the MLE β̂k of βk for

the k-th model. The score function for the k-th model is given by

ℓ′k(βk) =
∑

i

yi[Xk]i,· −
∑

i

exp([Xk]
T
i,·βk)

1 + exp([Xk]Ti,·βk)
[Xk]i,· = XT

k (y − pk), ∀ 1 6 k 6 |M|,

where pk = exp(Xkβk)/{1 + exp(Xkβk)} ∈ R
n. The second derivative of the log-likelihood is given by

ℓ′′k(βk) =

n∑

i=1

exp([Xk]
T
i,·βk)

{1 + exp([Xk]Ti,·βk)}2
[Xk]i,·[Xk]

T
i,· = XT

k Wk(In −Wk)Xk, ∀ 1 6 k 6 |M|,

where the weight matrix Wk ∈ R
n×n is a diagonal matrix defined as Wk = diag(pk;1, . . . , pk;n) with

pk;i = exp([Xk]
T
i,·βk)/{1 + exp([Xk]

T
i,·βk)}2 for i = 1, . . . , n.

Since ℓ′′k(βk) does not depend on y, we have Hk = (1/n)ℓ′′k(βk), for 1 6 k 6 |M|. By simple algebra, it

can be verified that Condition (A1) is satisfied for logistic regression model too.

To estimate the bias of the model averaging estimator, we define β∗
k as the solution of the equation

E[ℓ′k(βk)] = E{XT
k (y − pk)} = 0, i.e., β∗

k is a solution of

XT
k (ptrue − pk) = 0. (3.5)

Denote by p∗
k = exp(Xkβ

∗
k)/{1+ exp(Xkβ

∗
k)} ∈ R

n calculated componentwise. We have XT
k (ptrue −p∗

k)

= 0, and it follows that

Eℓ′k(β
∗
k)ℓ

′
k′(β∗

k)
T = XT

k E(y − p∗
k)(y − p∗

k′)TXk′

= XT
k E{(y − ptrue)− (p∗

k − ptrue)}{(y − ptrue)− (p∗
k′ − ptrue)}TXk′

= XT
k E(y − ptrue)(y − ptrue)

TXk′ = XT
k W

trueXk′

where W true = var(y − ptrue) = E(y − ptrue)(y − ptrue)
T. In addition, write W ∗

k = diag(p∗
k) ∈ R

n×n.
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The gradient ∇p is given by ∇p(β∗
k) = p∗k(1− p∗k)x

∗
k, 1 6 k 6 |M|. Thus, the MSE estimate is

Q(w) =
∑

k∈M

∑

k′∈M

wkwk′(p∗k − ptrue)(p
∗
k′ − ptrue)

+
∑

k∈M

∑

k′∈M

wkwk′p∗k(1− p∗k)x
∗
k
T{XT

k W
∗
k (In −W ∗

k )Xk}−1

×XT
k W

trueXk′{XT
k′W ∗

k′(In −W ∗
k′)Xk′}−1x∗

kp
∗
k(1− p∗k).

However, Q(w) involves unknown βtrue and β∗
k. As in the linear regression model case, we use the full

model to estimate βtrue and denote by the estimator β̂full. Then, compute p̂full = p(β̂full) and p̂full =

p(β̂full). The estimators p̂∗
k = exp(Xkβ̂k)/{1+exp(Xkβ̂k)} and p̂∗k = exp(x∗

k
Tβ̂k)/{1+exp(x∗

k
Tβ̂k)} are

obtained by solving the equation

XT
k (p̂full − pk) = 0, (3.6)

using iterative re-weighted least squares (IRLS) method (see, e.g., [14]). Specifically, let βk
(s) be the

solution of (3.6) at the s-th stage of the IRLS algorithm. The coefficients for the (s+ 1)-th stage is then

given by

βk
(s+1) = β

(s)
k + {XT

k Wk(In −Wk)Xk}−1XT
k

{
exp(Xβ̂full)

1 + exp(Xβ̂full)
− exp(Xkβk )

1 + exp(Xkβk )

} ∣∣∣∣
βk=βk

(s)

,

for s = 0, 1, 2, . . . When the algorithm converges, we obtain the estimate β̂k. Putting together, we

estimate Q(w) by

Q̂(w) =
∑

k∈M

∑

k′∈M

wkwk′(p̂∗k − p̂full)(p̂
∗
k′ − p̂full)

+
∑

k∈M

∑

k′∈M

wkwk′ p̂∗k(1− p̂∗k)x
∗
k
T{XT

k W
∗
k (In −W ∗

k )Xk}−1

× XT
k W

trueXk′{XT
k′W ∗

k′(In −W ∗
k′)Xk′}−1x∗

kp̂
∗
k(1− p̂∗k) |p∗

k=p̂∗

k;p
∗

k′=p̂∗

k′ ;ptrue=p̂full
. (3.7)

We can obtain w1, . . . , wN such that the estimated MSE Q̂(w) is minimized, similar to the development

done in linear regression setup. These weights can be assigned to individual models for developing the

model averaging estimator.

4 Simulation study and real data analysis

4.1 Simulation study I: Bias and variance tradeoff

We study both finite and large sample behavior of the model averaging estimator under a regression

setup: y = Xβ + ε where y, ε ∈ R
n and β ∈ R

p+1. In the study, p = 9 and β = (β0, β1, . . . , β9)
T,

where β0 is the intercept coefficient. We assume that 5 parameters (β0, . . . , β4)
T are always included

in all candidate models and the remaining parameters (β5, . . . , β9)
T may or may not be in a candidate

model. For simulation of y, first we set the true parameter (henceforth, referred to as β∗) as follows:

β∗ = (0.3, 0.3, 0.5, 0.1, 0.5︸ ︷︷ ︸
always included

, 0.0, 0.6, 0.0, 0.1, 0.0︸ ︷︷ ︸
candidate parameters

)T.

For the design matrix, the first column of X is chosen to be 1 (for intercept) and the rest are simulated

independently from N(0, 1) distribution. The final response y is obtained by adding independent Gaussian

error ϵi ∼ N(0, 1) to each row. We also simulate x∗ = (1, x∗
1, . . . , x

∗
9)

T so that each element x∗
j is simulated

from N(0, 1) and define our parameter of interest µ∗ = x∗Tβ∗.

Clearly, based on all possible choices of last 5 parameters, there are a total of 25 = 32 candidate
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models. For ease of calculations we will consider the following 6 nested set of candidate models and the

true/oracle model (represented pictorially):

(4.1)

Note that the true model is a sub-model of candidate models 1 and 2, and candidate model 6 only contains

the first 5 fixed parameters and none of the candidate parameters are included. We will consider two

cases. In Case A we will consider all 7 models in (4.1) comprising of the 6 nested models and the true

model. In Case B, we will only consider the first 6 nested models. We will compare our results with that

of the oracle estimate, where we know before-hand which parameters are non-zero and use a least squares

method to estimate β and consequently µ∗. We vary the sample size n from 100 to 1,000 and compare

the bias and variance between the proposed and the oracle method.

Case A: True model among candidates

MSEVarianceBias squared

0 0 0

Sample size Sample size Sample size

Case B: True model not among candidates

MSEVarianceBias squared

0 0 0

Sample size Sample size Sample size

Figure 1 Bias and variance movement for the proposed model averaging and the oracle estimator of µ∗. The true model
is a sub-model of (nested within) some of the candidate models, but not included in the candidate model set in Case B
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In Figure 1, we consider two cases: Case A where the true (or oracle) model is one of the candidate

models and Case B where the true model is not one of the candidate models. In Figure 1 we compare

the squared bias, variance and mean squared error movements as the sample size is increased. In the top

panel for Case A, the model-average estimator has smaller variance than the oracle estimate even for very

small sample sizes which is to be expected; the reason being that the candidate model set contains the

oracle as one of its candidates and further averaging reduces variances. In the bottom panel for Case B,

with the increase in the sample size, the variance of the proposed estimator decreases but is slightly

higher compared to oracle. In both cases, the bias matches the oracle very closely as the sample size

increases. It is suggestive from the plots in Figure 1 that in the linear regression setup, even when the

candidate models do not include the true set of parameters, model averaging approaches the performance

of the oracle estimator in terms of bias and variance. We want to stress that this close performance of the

model averaging estimator as compared to oracle is specific to this simple linear regression setup where

the true model is a sub-model of some of the candidate models. In general, the question of whether the

performance of the model averaging estimator is close to the oracle, would require separate investigation

specific to the model and data at hand.

4.2 Simulation study II: Comparison with existing model averaging methods

In this subsection we use both linear and logistic regression models to perform simulation studies to

compare the performance of the frequentist model averaging estimator with the proposed weights with

two existing model averaging methods by Hjort and Claeskens [11] and Liang et al. [20]. The method by

Hjort and Claeskens [11] using AIC based weights (which we refer to as the frequentist model averaging

(FMA) method) and the method by Liang et al. [20] (which we refer to as the optional weighting

(OPT) method) are two well-studied approaches and both are also close to ours. The FMA method

combines estimators from different models with the assumption that the data are coming from a local

mis-specification framework so the candidate model used has to have a bias of O(1/
√
n) or less. We do not

have this restriction in our proposed method. The OPT method proposes an unbiased estimate of MSE

of the model averaging estimator and then the model averaging weights are obtained by minimizing the

trace of the MSE estimate. The weight selection for OPT has been shown to exhibit optimality properties

in terms of minimizing the MSE. However, their development is limited only to linear regression setting.

Linear regression. In the linear regression setup, we work with a design similar to the one we

described in Subsection 4.1. In particular, in the setup y = Xβ + ε where y, ε ∈ R
n and β ∈ R

p, we

take p = 4 and n = 100; we denote β = (β0, β1, β2, β3) with β0 being the coefficient for the intercept. In

this setup the fixed parameter is β0 (i.e., k = 1) and the rest may or may not appear in the model (i.e.,

m = 3). As before, we use β∗ to denote the true parameter. The elements of the design matrix X are

simulated independently from an N(0, 1) distribution and the elements of the error vector ε are simulated

independently as N(0, 1).

In this simulation setup, the estimand of interest is the following:

µ∗ = x∗Tβ∗, where x∗ ∼ Np(0, I4).

For our specific example, we have x∗ = (1,−1.855445,−1.018565,−1.045111) and the true parameter

β∗ = (0.3, 0.1, 0.3, β∗
3). In the following we will consider two cases as before: Case A, where we will vary

the value of β∗
3 in the set {0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5} and Case B, where we will vary β∗

3 in the

set {0.001, 0.005, 0.01, 0.05, 0.1, 0.5}. Note that we have not included the case β∗
3 = 0 for Case B in order

to make sure that the true model is not included among the candidates. As before, we will consider two

different sets of candidate models:

Case A. {β0}, {β0, β1}, {β0, β1, β2}, {β0, β1, β2, β3};
Case B. {β0}, {β0, β1}, {β0, β1, β2}.

(4.2)
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Table 1 (Linear regression) Mean squared error for estimation of µ∗ for the (a) model averaging estimator with proposed
weights, (b) model averaging estimator with Liang’s weights [20], (c) Hjort’s model [11] averaging estimator with AIC based
weights, and (d) oracle estimator. Here, in the top table, the candidate models include the true set of parameters (Case A)
and in the bottom table the true set of parameters is not included (Case B)—as described in (4.2)

Case A. True model among candidates

β∗

3
µ∗

(a) Proposed (b) OPT (c) FMA (d) Oracle

Estimate Error Estimate Error Estimate Error Estimate Error

0 −0.191 −0.164 0.333 −0.070 0.313 0.167 0.384 −0.236 0.315

0.001 −0.192 −0.164 0.333 −0.071 0.313 0.167 0.384 −0.241 0.334

0.005 −0.196 −0.167 0.333 −0.075 0.314 0.165 0.387 −0.245 0.334

0.010 −0.202 −0.172 0.335 −0.079 0.315 0.164 0.391 −0.251 0.334

0.050 −0.243 −0.211 0.339 −0.132 0.319 0.154 0.420 −0.292 0.334

0.100 −0.296 −0.259 0.344 −0.162 0.339 0.146 0.461 −0.345 0.334

0.500 −0.714 −0.697 0.343 0.064 0.803 0.128 0.851 −0.763 0.334

Case B. True model not among candidates

β∗

3
µ∗

(a) Proposed (b) OPT (c) FMA (d) Oracle

Estimate Error Estimate Error Estimate Error Estimate Error

0.001 −0.192 −0.143 0.330 0.038 0.336 0.206 0.416 −0.241 0.334

0.005 −0.196 −0.145 0.331 0.038 0.339 0.205 0.420 −0.245 0.334

0.010 −0.202 −0.148 0.331 0.039 0.342 0.205 0.424 −0.251 0.334

0.050 −0.243 −0.168 0.334 0.041 0.371 0.199 0.458 −0.292 0.334

0.100 −0.296 −0.180 0.341 0.043 0.412 0.191 0.501 −0.345 0.334

0.500 −0.714 −0.134 0.654 0.063 0.802 0.128 0.852 −0.763 0.334

Table 2 (Logistic regression) Estimation of p∗ for the (a) model averaging estimator with proposed weights, (b) FMA:
Hjort’s model [11] averaging estimator with AIC based weights, and (c) oracle estimator. Here, in the top table, the
candidate models include the true set of parameters (Case A) and in the bottom table the true set of parameters is not
included (Case B)—as described in (4.2)

Case A. True model among candidates

β∗

3
p∗

(a) Proposed (b) FMA (c) Oracle

Estimate Error Estimate Error Estimate Error

0 0.452 0.469 0.130 0.510 0.106 0.436 0.127

0.001 0.452 0.468 0.131 0.510 0.105 0.443 0.144

0.005 0.451 0.468 0.131 0.510 0.106 0.443 0.144

0.010 0.450 0.466 0.133 0.510 0.107 0.441 0.145

0.050 0.439 0.454 0.129 0.506 0.110 0.424 0.139

0.100 0.427 0.444 0.132 0.505 0.119 0.412 0.141

0.500 0.329 0.371 0.144 0.521 0.208 0.331 0.133

Case B. True model not among candidates

β∗

3
p∗

(a) Proposed (b) FMA (c) Oracle

Estimate Error Estimate Error Estimate Error

0.001 0.452 0.475 0.124 0.528 0.109 0.443 0.144

0.005 0.451 0.475 0.124 0.529 0.110 0.443 0.144

0.010 0.450 0.473 0.126 0.529 0.111 0.441 0.145

0.050 0.439 0.463 0.121 0.530 0.121 0.424 0.139

0.100 0.427 0.464 0.127 0.531 0.131 0.412 0.141

0.500 0.329 0.466 0.170 0.533 0.218 0.331 0.133

Note that in Case A, the true parameter set is included in the model while in Case B, the true parameter

set is not included. In fact, Case B represents a typical scenario where the researcher is not even aware of

the presence of the existence of the feature corresponding to β3 and hence is working under a mis-specified

model.

In Table 1 the performances of different methods are compared for Case A (at the top) and Case B

(bottom). For each separate choice of β∗
3 , we performed 100 simulations and reported their averages

in Table 1 along with the root mean squared error. Specifically the error for this simulation setup was
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defined as,

Error =

√√√√(1/100)
100∑

k=1

|µ̂k − µ∗|2,

where µ̂k is the estimate corresponding to a specific method at the k-th simulation. In Case A of Table 1,

we compare the methods when β3 is included in the largest candidate model while in Case B, β3 is not

considered in any of the candidate models. From Case A of Table 1, it can be seen that in the finite

sample framework (n = 100), the performances of the proposed model-average estimator and OPT are

similar and both outperform FMA. Moreover with the increase in magnitude of β∗
3 to 0.5, the proposed

model averaging method outperforms both FMA and OPT. On the other hand, the setup in Case B

of Table 1 shows that with the increase in β∗
3 , the estimation error increases consistently for all three

methods. Nevertheless, our proposed method clearly outperforms the competing methods in this scenario

for all β∗
3 values. We also remark that the proposed method performs well up till β3 = 0.1, but the error

jumps for the larger signal with β3 = 0.5. This is expected since β3 is not considered in any of the

candidate models and the extent of model mis-specification is large at β∗
3 = 0.5.

Logistic regression. We now describe the efficacy of the proposed methodology for the logistic

regression setup and compare its performance with Hjort’s FMA method with AIC-based weights [11].

The logit model is given by

pi = P(yi = 1 |X) =
exp(xT

i β)

1 + exp(xT
i β)

, ∀ i = 1, . . . , n, (4.3)

where

X = [x1, . . . ,xi, . . . ,xn]
T ∈ R

n×p, xi ∈ R
p and β ∈ R

p.

We take n = 100 and p = 4 where the intercept is always included (k = 1) and the rest of the parameters

can be varied in forming candidate models (m = 3). As in the linear regression simulation setup, the

elements of X are simulated independently from N(0, 1) distribution. In this setup, the true value of the

parameter β is set as β∗ = (0.3, 0.1, 0.3, β∗
3). As in the linear regression setup, we consider two cases

namely, Case A and Case B; see (4.2) for more details. We vary the value of β∗
3 (as before) in the set

{0, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5} for Case A and {0.001, 0.005, 0.01, 0.05, 0.1, 0.5} for Case B. For this

logistic regression setup, our estimand of interest is as follows:

p∗ = exp(η∗)/(1 + exp(η∗)) where η∗ = x∗Tβ∗ and x∗ ∼ N4(0, I4). (4.4)

As in the regression setup, we set

x∗ = [1.0,−1.86,−1.019,−1.045].

Note that the specifics of model averaging estimator for the estimand in (4.4) has been described in detail

in Subsection 3.2. Specifically, (3.7) describes the MSE function to be minimized for optimal weights.

We compare our prposed method with Hjort’s FMA method with AIC-based weights [11] and the oracle

estimate. The results for both Cases A and B are summarized in Table 2. We define the error metric,

based on 100 simulations, as,

Error =

√√√√(1/100)

100∑

k=1

|p̂k − p∗|2,

where p̂k is the estimate corresponding to a specific method at the k-th simulation. As in the linear

regression setup, for the logistic regression as well, we see that the proposed method performs better than

Hjort’s method using AIC-based weights in both cases across all β∗
3 values. For Case A, the performance

of our proposed method matches that of the oracle and the differences are within the margin of error. For

Case B, the performance of our proposed method tracks the oracle well until the signal strength of β∗
3 is

increased to 0.5, in which case the estimation error increases.
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Table 3 Prediction error for different methods for prostate cancer data

Method used test error

Model selection (best subset regression) 0.487

Model averaging (proposed weights) 0.453

Model averaging (AIC weights) 0.987

Full model 1.272

Figure 2 Actual and predicted level of lpsa (level of prostate-specific antigen) based on the prostate cancer data from [28].
In the x-axis the indices of the 30 observations are noted. In the y-axis we note the lpsa values. The circle points indicate
actual (observed) values while the triangle points indicate predicted values based on average of 50 replications. The gray
band denotes the 90% confidence interval

4.3 Analysis of prostate cancer data

The data for this example come from a study by Stamey et al. [28]. They examined the relationship

between the level of prostate-specific antigen and a number of clinical measures in men who were about

to receive a radical prostatectomy. As a regression problem, the response variable is lpsa, the level

of prostate-specific antigen, with values ranging from −0.43 to 5.58. The predictor variables (clinical

measures) are log cancer volume (lcavol), log prostate weight (lweight), age, log of the amount of benign

prostatic hyperplasia (lbph), seminal vesicle invasion (svi), log of capsular penetration (lcp), Gleason score

(gleason), and percent of Gleason scores 4 or 5 (pgg45). Here, svi is a binary variable, and gleason is an

ordered categorical variable.

As the response variable lpsa is continuous, we have used a standard linear regression model as the

base method for applying proposed model averaging procedure which was developed in Subsection 3.1.

We considered 8 nested and an intercept-only model as candidate models for applying the proposed (as

well as competing) model averaging methods. The candidate models are shown pictorially in (4.5) below:

(4.5)

We considered a best-subset model selection approach using an all-subsets search. In this model

selection approach, the estimated prediction error is obtained using a crude cross-validation method: the
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dataset is divided randomly into a training set of size 67 and a test set of size 30. The training set is

used to select a model and then the test set is used to compute the prediction error, averaging over all 30

points. We repeat the process five times and average over the five prediction errors. We also considered

the model averaging method using two different sets of weights: the proposed weights and also AIC-based

weights. Using the proposed weights, the proposed approach assigned the most weights to the model with

features lcavol, lweight, svi, pgg45, lcp, gleason and lbph and the model with lcavol, lweight, svi, pgg45,

lcp, gleason, lbph and age. The procedure with AIC-based weights gives more weight to a smaller model

containing lcavol and lweight. We used the same crude cross-validation method as in the best-subset

model selection approach, with a training set of size 67 and a test set of size 30. The training set is used

to obtain the model averaging estimates and then the test set is used to compute the prediction error,

averaging over all 30 points. We repeat the process five times and average over the five prediction errors.

Table 3 summarizes the numerical results using the above methods, plus a regression analysis including

all covariate variables (full model). It shows that the model averaging method using the proposed weights

has the smallest empirical average prediction error on the testing samples among all methods.

Finally, as an illustration, we also plotted in Figure 2, a set of 90% prediction intervals of antigen levels

for one test dataset in one of our simulation runs. The x-axis is the index of the 30 observations in the

test dataset. In order to get the prediction interval, we kept the test dataset fixed while in 50 different

replications we selected a random subset of 50 observations from the training data (of original size 67)

and applied the model averaging method to analyze the training data of size 50 and use the result to

predict the lpsa values for the test dataset. In order to construct the prediction interval we added to each

predicted mean, a Gaussian noise with mean 0 and standard error equal to the estimated standard error

from the full model denoted as σ̂full (see (3.3)). In this case the estimate was σ̂full = 0.599. The upper

and lower limits of the prediction band were calculated based on quantiles. As is clear from the plots,

most of the observations fall within the 90% prediction interval.

5 Discussion

In this paper, we propose a more general framework where the choice of true model is not fixed. The

truth can be any one or a mixture of the candidate models. Models that have large biases are not

excluded from our analysis. We study the behavior of frequentist model averaging estimator with an

optimal weighting scheme to combine all the individual candidate models. As an illustration, we derive

the model averaging estimator in the linear and logistic regression framework. We also implement the

weighting scheme proposed by Liang et al. [20] and compare their performance to the FMA method with

AIC based weights as in [11]. The simulation results indicate that under certain model specifications, the

proposed estimator works better than FMA estimator with AIC-weights from [11].

There are many ways a regression model can be mis-specified. Mis-specification in most cases is often

interpreted as a case of left out variables or when the functional form of the model is not correctly

specified. In these instances, the normality assumption among random errors are violated. This results

in the estimates being biased as discussed in [8]. These estimates can harm the decision making process, so

one should be very attentive while fitting and choosing models in the presence of mis-specification. Many

methods have been used to measure and limit mis-specification in model fitting. Ramsey regression

equation specification error test, discussed in [29], may help provide a test that is useful in a linear

regression setup.

In model averaging, if the true model is not included in the set of candidate models, we end up using

an estimate that is biased. If all the models are mis-specified, the weights derived by AIC or by using a

consistent or unbiased estimator of mean squared error are not optimal and should be with care. When

the true model is not included in the analysis thus all the candidate models are wrong, there have been

developments in model selection that takes care of the bias resulting from selection (see [15,16]). Penalized

versions of AIC and BIC have been derived that perform better than other selection criteria. One can

follow a similar path and derive the model averaging weights based on a slightly modified criterion. Zhang

et al. [35] derived a KL-based criterion and proposed a model averaging estimator, which is proved to
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be asymptotically optimal (see also [7,34,36] for the related works). However, it is unclear whether their

strategies can be used in our framework and this warrants a further study.

Another problem with model averaging is that the number of optional parameters in analysis could

be very high. For example, if there are 30 parameters we could end up using as many as 230 candidate

models. This may be time consuming and not ideal in certain fields of study. However, as suggested in

this paper, a statistician can choose to use all or very few candidate models as per the scope of the study.

This could be explored in further developments.
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Appendix A

Appendix A.1 Regularity conditions and assumptions

In this appendix we state the regularity conditions that were used throughout the paper. We assume

that the density function satisfies the following conditions:

(a) Θ is an open subset of Rp, and the support of the density f(y,β) is independent of β.

(b) The true parameter value is an interior point of the parameter space.

(c) ℓ′k;i and ℓ′′k;i(β
∗
k) exist and ℓ′k;i is a continuous function of β.

(d) E[ℓ′k;i] = 0 and E[ℓ′k;iℓ
′T
k;i] = −E[ℓ′′k;i(β

∗
k)]. These conditions are standard conditions for asymptotic

normality of maximum likelihood estimators.

(e)

lim
n→∞

1

n
[ℓ′′k(β

∗
k)] = Hk

and Hk is positive definite.

(f) For some ϵ > 0, ∑

i

E|λ′ℓ′k;i(βtrue)|2+ϵ/n(2+ϵ)/2 → 0 for all ϵ ∈ R.

(g) There exist ϵ > 0 and random variables Bi(yi),

sup{|ℓ′′k;i(β∗
k)| : ∥t− βtrue∥ 6 ϵ} 6 Bi(yi)

and E|Bi(yi)|1+δ 6 K, where δ and K are positive constants.

We also assume that the variance matrix of the score statistic is finite and positive definite.

Consider a functional µ : Rp+q → R. Define µ(drop) : Rp+m → R as the same function as µ with only the

(q−m) corresponding arguments dropped. For any b = (b1, . . . , bp, bp+1, . . . , bp+m) with 1 6 m 6 q define

the c-augmented version of b as b̃ = {bT, cT}T ∈ R
p+q with some fixed c ∈ R̄

q−m inserted at the place

of missing components. Let the indices of the missing components be {p+ i1, . . . , p+ iq−m}. We define

µ̃ : Rp+m → R as the restriction of µ : Rp+q → R subject to bp+i1 = c1, . . . , bp+iq−m = cq−m. Clearly

then µ(b̃) = µ̃(b). Given a function µ, the fixed value c is chosen in such a way that µ(b̃) = µ(drop)(b).

We assume that µ : Rp+q → R
ℓ is a function that is 1st order partially differentiable at βtrue. Note that
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by definition of c-augmentation, µ(β̃k) = µ(drop)(β̂k). For ease of reading, in the subsequent proof, we

omit the superscript ‘(drop)’.

Appendix A.2 Proof of Theorem 2.1

From usual regularity conditions on the log-likelihood, it can be shown that

√
n(β̂k − β∗

k) = −H−1
k

{
1√
n

n∑

i=1

ℓ′k;i(β
∗
k)

}
+ oP(1).

For more details and exact conditions, see [30, Chapter 5].

Now by application of Taylor expansion,

µ(β̂k)− µ(β∗
k) = ∇µ(β∗

k)
T(β̂k − β∗

k) + oP(∥β̂k − β∗
k∥),

so that

√
n(µ(β̂k)− µ(β∗

k)) = −∇µ(β∗
k)

T

[
H−1

k

{
1√
n

n∑

i=1

ℓ′k;i(β
∗
k)

}
+ oP(1)

]
+ oP(

√
n∥β̂k − β∗

k∥).

Thus it follows that for 0 6 wk 6 1 with
∑

k∈M wk = 1,

√
n
∑

k∈M

wk{µ(β̂k)− µ(βtrue)}

=
√
n
∑

k∈M

wk{µ(β∗
k)− µ(βtrue)}+

√
n
∑

k∈M

wk{µ(β̂k)− µ(β∗
k)}

=
√
n
∑

k∈M

wk{µ(β∗
k)− µ(βtrue)} −

∑

k∈M

wk∇µ(β∗
k)

TH−1
k

{
1√
n

n∑

i=1

ℓ′k;i(β
∗
k)

}

+ oP

( ∑

k∈M

√
n∥β̂k − β∗

k∥
)

=
√
n
∑

k∈M

wk{µ(β∗
k)− µ(βtrue)}+

1√
n

n∑

i=1

{
−
∑

k∈M

wk∇µ(β∗
k)

TH−1
k ℓ′k;i(β

∗
k)

}

+ oP

( ∑

k∈M

√
n∥β̂k − β∗

k∥
)

=
√
n
∑

k∈M

wk{µ(β∗
k)− µ(βtrue)}+

1√
n

n∑

i=1

Zi + oP

( ∑

k∈M

√
n∥β̂k − β∗

k∥
)
,

where we have used the definition that

Zi = −
∑

k∈M

wk∇µ(β∗
k)

TH−1
k ℓ′k;i(β

∗
k).

First, note that
√
n∥β̂k −β∗

k∥ = OP(1) via root-n consistency of MLE under our assumptions [30]. Note

that Zi’s are independent and EZi = 0. Now fix ϵ > 0. In order to prove the asymptotic normality of the

quantity (1/
√
n)
∑

i Zi we invoke the Lindeberg-Feller central limit theorem [1]. This requires verification

of the so-called Lindeberg’s condition, given by

(1/n)
n∑

i=1

EZ2
i I{|Zi| >

√
nϵ}.



Mitra P et al. Sci China Math February 2019 Vol. 62 No. 2 225

Let us denote Yki = ∇µ(β∗
k)H

−1
k ℓ′k;i. Now,

1

n

n∑

i=1

EZ2
i I{|Zi| >

√
nϵ} =

1

n

n∑

i=1

E

( ∑

k∈M

wkYki

)2

︸ ︷︷ ︸
=A, say

I

{∣∣∣∣
∑

k∈M

wkYki

∣∣∣∣ >
√
nϵ

}

︸ ︷︷ ︸
=B, say

6
1

n

n∑

i=1

E

[ ∑

k∈M

wkY
2
kiI

{
max
k∈M

|Yki| >
√
nϵ
}]

6
1

n

n∑

i=1

E
[
max
k∈M

|Yki|2I
{
max
k∈M

|Yki| >
√
nϵ
}]

.

Here, the inequality in the second line is derived by first noting that if A,B > 0 and A < C,B < D, then

AB < CD. Secondly, note that A = (
∑

k∈M wkYki) 6
∑

k∈M wkY
2
ki by Jensen’s inequality. Also since

√
nϵ <

∣∣∣∣
∑

k∈M

wkYki

∣∣∣∣ 6 max
k∈M

∑

k

|wk| = 1,

it follows that

I

{∣∣∣∣
∑

k∈M

wkYki

∣∣∣∣ >
√
nϵ

}
6 I

{
max
k∈M

|Yki| >
√
nϵ
}
.

Now take C =
∑

k∈M wkY
2
ki and D = I{maxk∈M |Yki| >

√
nϵ}.

Now by Condition (A1), the Lindeberg-Feller condition is satisfied for (1/
√
n)Zi’s whence it follows

that (1/
√
n)
∑n

i=1 Zi ∼ N(0, σ2
w), where σ2

w is given by

σ2
w = lim

n→∞

1

n

n∑

i=1

E

{∑

k

wk∇µ(β∗
k)

TH−1
k ℓ′k;i

}2

.

The theorem follows.

Appendix A.3 Proof of Corollary 2.3

Here, we show that the asymptotic variances are exactly the same for the two results. When we say

“asymptotic variance” we mean the first order term in the derived quantities, i.e., when
√
n is multiplied

to the estimator, we ignore all the o(1) terms.

As defined before, for the k-th candidate model, let β∗
k ∈ R

p+|Mk| be the solution of the equation

ESk(β) = 0, where Sk(β) is the score function for the k-th model. Let β0,k = (θT
0 , πkγ

T
0 )

T ∈ R
p+|Mk|.

Therefore, E{ℓ′k(β∗
k)} = 0. Then, by Taylor’s theorem and appropriate regularity conditions on the

density function, it follows that asymptotically, β∗
k −β0,k ≈ J−1

k E{ℓ′k(β0)}. Now note that following [11,

p. 37],

E{ℓ′k(β0)} =

(
J01δ/

√
n+ o(1/

√
n)

πkJ11δ/
√
n+ o(1/

√
n)

)
,

so that,

β∗
k − β0,k ≈ J−1

k

(
J01δ/

√
n

πkJ11δ/
√
n

)
. (A.1)

In order to prove the corollary, we first match the bias terms. Note that in Theorem 2.1, the bias term

is given by √
n
∑

k∈M

wk{µ(β∗
k, γ0,kc)− µ(βtrue)}.
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Thus consider term by term, the bias of the k-th component is given by

√
n{µ(β∗

k,γ0,kc)− µ(βtrue)} =
√
n{µ(β∗

k,γ0,kc)− µ(β0)} −
√
n{µ(βtrue)− µ(β0)}

≈
√
n(β∗

k − β0,k)
T

(
∂µ(β0)/∂θ

∂µ(β0)/∂γk

)
−
(
∂µ(β0)

∂γ

)T

δ

=

(
∂µ(β0)/∂θ

∂µ(β0)/∂γk

)T

J−1
k

(
J01δ

πkJ11δ

)
−
(
∂µ(β0)

∂γ

)T

δ,

where the last term follows from (A.1). This matches the bias term in (2.7). Looking at the rest, note

that from (2.3), the k-th term is given by {∇µ(β∗
k,γ0,kc)}TH−1

k (
∑n

i=1 ℓ
′
k;i(β

∗
k)/

√
n)+oP (1) (see also the

proof of Theorem 2.1). From (A.1), via Taylor’s theorem it follows that ∇µ(β∗
k,γ0,kc) ≈ ∇µ(β0). Also

note that from standard theory of maximum likelihood estimation,

H−1
k (β∗

k)

( n∑

i=1

ℓ′k;i(β
∗
k)

/√
n

)
≈

√
n(β̂k − β∗

k)

=
√
n(β̂k − β0,k)−

√
n(β∗

k − β0,k)

= J−1
k

( √
nUn√
nV n,k

)
− J−1

k

(
J01δ

πkJ11δ

)

= J−1
k

( √
n{Un − EUk(Y1)}√
n{V n,k − EVk(Y1)}

)
.

Now from [11, Lemmas 3.1 and 3.2], it follows that

√
n(UnEUk(Y1), V n,k − EVk(Y1))

D−→ (M,Nk),

and the result holds.
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