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1 | INTRODUCTION

Abstract

We describe an exact, unconditional, non-randomized procedure for producing
confidence intervals for the grand mean in a normal-normal random effects meta-
analysis. The procedure targets meta-analyses based on too few primary studies,
< 7, say, to allow for the conventional asymptotic estimators, e.g., DerSimonian
and Laird (1986), or non-parametric resampling-based procedures, e.g., Liu et al.
(2017). Meta-analyses with such few studies are common, with one recent sample
of 22,453 heath-related meta-analyses finding a median of 3 primary studies per
meta-analysis (Davey et al., 2011). Reliable and efficient inference procedures are
therefore needed to address this setting. The coverage level of the resulting CI is
guaranteed to be above the nominal level, up to Monte Carlo error, provided the
meta-analysis contains more than 1 study and the model assumptions are met. After
employing several techniques to accelerate computation, the new CI can be easily
constructed on a personal computer. Simulations suggest that the proposed CI typ-
ically is not overly conservative. We illustrate the approach on several contrasting
examples of meta-analyses investigating the effect of calcium intake on bone mineral
density.
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than 7 (Davey et al., 2011), leaving inferences based on
the DL estimator questionable. Indeed, extensive simulation

The random effects model is often used to account for
between-study heterogeneity when conducting a meta-
analysis. When the distribution of the primary study treatment
effect estimates is approximately normal, the simple normal-
normal model is commonly used, and the DerSimonian-
Laird (“DL”) method and its variations are the most popular
approach to estimating the model’s parameters and perform-
ing statistical inference (DerSimonian and Laird, 1986). How-
ever, the DL method is based on an asymptotic approximation
and its use is only justified when the number of studies is large.
In many fields, the number of studies used in a meta-analysis
or sub-meta-analysis rarely exceeds 20 and is typically fewer

studies have found that the coverage probability of the
DL-based confidence interval (CI) can be substantially
lower than the nominal level in various settings (Kon-
topantelis et al., 2010; IntHout et al., 2014), leading to
false positives. One reason for this poor performance
is that the asymptotic approximation ignores the vari-
ability in estimating the heterogeneous variance, which
can be substantial when the number of studies is small
(Higgins et al., 2009).

Various remedies have been proposed to correct the
under-coverage of DL-based confidence intervals. Hartung
and Knapp (2001) proposed an unbiased estimator of the

Biometrics. 2019;75:485-493.

wileyonlinelibrary.com/journal/biom

© 2019 International Biometric Society | 485



MICHAEL ET AL.

—— .

L wiLey-7. Hiomelrics
variance of the DL point estimator explicitly accounting for
the variability in estimating the heterogenous variance. Sidik
and Jonkman (2006) used the heavy-tailed #-distribution to
approximate the distribution of a modified Wald-type test
statistic based on the DL estimator. Using the more robust
t- rather than normal distribution has also been proposed
(Raghunathan, 1993; Berkey et al., 1995; Follmann and
Proschan, 1999). Hardy and Thompson (1996), Vangel and
Rukhin (1999), Viechtbauer (2005), and Raudenbush (2009)
proposed procedures based on maximum-likelihood estima-
tion. Noma (2011) further improved the performance of the
likelihood-based inference procedure when the number of
studies is small by using a Bartlett-type correction. Zeng
and Lin (2015) describe a resampling procedure to approx-
imate the “large cluster” asymptotic distribution, i.e., as the
primary study sizes all grow. Bayesian approaches incorpo-
rating external information have been developed by many
authors (Smith et al., 1995; Higgins and Whitehead, 1996;
Bodnar et al., 2017). However, with few exceptions, most of
these methods still depend on an asymptotic approximation
and their performance with very few studies has only been
examined by specific simulation studies. To overcome these
difficulties, potentially conservative but “exact” inference pro-
cedures for the random effects model have been proposed
(Follmann and Proschan, 1999; Wang et al., 2010; Liu et al.,
2017; Wang and Tian, 2017). A permutation rather than the
asymptotic limiting distribution is used to approximate the
distribution of the relevant test statistics and thus the valid-
ity of the associated inference is guaranteed for any number
of studies. However, due to the discreteness of the permuta-
tion distribution, the highest significance level that may be
achieved without randomization depends on the number of
studies. For example, a 95% confidence interval can only be
constructed with more than 5 studies. While Bayesian meth-
ods also permit statistical inference with fewer studies, the
results are correspondingly sensitive to the choice of the prior
distributions.

The main contribution of this paper is to propose a set
of new methods for constructing exact, unconditional, non-
randomized frequentist CIs for the location parameter of
the normal-normal model by inverting exact tests. The cov-
erage level of the resulting CI is guaranteed to be above
the nominal level, up to Monte Carlo error, as long as the
meta-analysis contains more than 1 study. After employing
several techniques to accelerate computation, the new CI can
be easily constructed on a personal computer. Simulations
suggest that the proposed CI typically is not overly conserva-
tive. In Section 2, we present our procedure for constructing
exact CIs for the population mean; in Section 3, we report
results from comprehensive simulation studies; in Section 4,
we illustrate the proposed method with a real data exam-
ple; and in Section 5 we conclude the paper with additional
discussion.

2 | METHOD

The observed data consist of ¥y = {¥;,k = 1,..., K }, where
Y, follows a random effects model,

Yol 0% N@wo?), 0, Nug, ), k=1,...,K,

with the variances ai >0,k=1,..., K, assumed known. The
random effects model implies the simple parametric model

VR NGoop ) k=Ko )

In the context of a meta-analysis, the pairs (Y}, o—i), k =
1,...,K, are interpreted as observed effects and known
within-study variances drawn from K studies, respectively.
The unobserved population effect and between-study variance
are u, and 72, respectively. The goal is inference on the loca-
tion parameter p,, viewing 13 as a nuisance parameter. The
typical number of studies depends on the area of research and
can be small, e.g., K < 10.

With Tg known, the uniformly minimum variance unbi-
ased estimator of y under (1) is given by

K 2 2y\—1
Qe Y (75 + o)

K —
Zk=1(T§ + U]%) 1

As Tg is unknown, DerSimonian and Laird (1986) propose

substituting a simplified method of moments estimator,

o S (Y = ap)? /ol — (K - 1)
Tpy =max 0, — = ra— 5 (-
21 0 = Qe 0 (i 00)

where

K v
. Xz Yioy
HF = —x

-2
210

is the minimum variance unbiased estimator of y, under a
fixed effects model, i.e., when 15 = 0. The resulting estimator
is known as the “DerSimonian-Laird” estimator of y:

K ~2 2y-1
_ i Yelip +0)

HpL = K
Zk:l(T%)L + 61%)_1

By an analogous substitution, a level 1 — & confidence interval
for g is given by

k=1

X -1/
R A2 2\~1
HpL = Z1—a/2 <Z(TDL +0}) > ’
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The justification of the CI given in (2) relies on the
asymptotic approximation

K

Tolu: V) = (fipr — Ho)* D (35, + 0™ = 4f  (3)
k=1

as the number of studies, K, grows to infinity and
max{o; }/ min{o; } is uniformly bounded. However, the exact
distribution of Ty(yy; V) depends on rg and may be very
different from a )(12 distribution when K is moderate or
small (Hoaglin, 2016). Consequently, the finite-sample per-
formance of the CI given by (2) is often unsatisfactory. We
propose constructing an exact CI for y, by first construct-
ing an exact confidence region for (,uo,rg). To this end,
let T {(;4, 12); yo} denote a scalar test statistic, which may
depend on the null parameter (u, 72), for the simple hypothe-
sis (g, Tg) = (u, 7). The specific choice of T {(u,7%); Yy }
will be discussed later and here we only assume that a high
value of T {(y, 12); yo} represents grounds for rejection. For
a given choice of T {(/,t, 12); yo}, a1l — a level CI for y can
be constructed as follows:

(1)Obtain bounds 4, Hay] and [2, .72

max
2.
(2)For each pair of y and 7% in an R X R grid of points on
[Iumin* /’lmax] X [Tr%lin’ Tr%zax]’
(a)Compute the null

T {(u,7); Y(u, %)}, where

] for pg and

distribution of

V(u, 1) = {?k,k= 1,...,K}

with ¥, " N, o2 + 72, k= 1,... . K.
(b)Compute  the  p-value p, 2(Yy) =
PT{(u,7): Yo} > T {(u, 7 Y(u, 7))} ].
(3)Obtain a confidence region for (4, Tg) as Q_,(Yy) =
{1, 7)1 p2(V) > a}.
(4)Project Q,_,(Y,) onto the y axis to obtain a CI for g, :
{u: (M,Tz) € Q_ Iyl

We discuss below the selection of appropriate bounds for the
first step; here, we assume their existence for purposes of
illustration.

This method generates the exact CI for y, in the sense that

pr(mo € {p 2 (u.7?) €Q_,(V}) 2 1 —a.

7.2 Biomelrigs-WriLEY

This is due to the fact that

pr (/’l() € {/’l : (#712) € Ql—a(y())})
>pr {(ﬂoﬁé) €Q_,}

=pr {2 V0) 2 |
=pr(U 2a)=1-a,

where the random variable U follows the unit uniform distri-

bution. Here, we assume that 7, € (2. 72 1.If 72. and
min max min

72 are chosen depending on the data in such a way that

p’rn(agrznm <7< Tr%lax) > 1 — p, then the guaranteed coverage
probability of the proposed Clis 1 —a — f ~ 1 — « for very
small g. The error of the approximation, i.e., the magnitude of
f, can be made arbitrarily small by methods described further
below.

The cumulative distribution function of
T {(u.7); Y(u,7%)} may not be analytically tractable,
but it is well defined for any given grid point (u, 72) and can
always be approximated by a Monte Carlo simulation. To be
specific, given (u, %), we may approximate the distribution
of T {(u, 7%); Y(u, %)} in 2a as follows:

2)@) Forb=1,...,B,

ind.
(a)Generate e*l‘b, e e”I‘(b ' N(,1).

(b)Let Y}, = u+ (o} + )€, k= 1,...,K,
andlet Yy = {Y} k=1,...,K}.

(©Let T; = T {(u,7%); V; } be the correspond-
ing test statistic based on the generated data
)7;‘. The empirical distribution of {TF, ... ,T;}
can be used to approximate the distribution of

T {(u. %) Y(u, %)}

Since the estimation of the null distribution in 2a does not
depend on any asymptotic approximation, both the p-value,
pﬂ,,z(yo), and the confidence region, Q,_,(Y,), are “exact” if
we can safely ignore the errors of the grid approximation and
the Monte Carlo simulation above, which can be controlled
by increasing the grid density and B in step 2a, respectively.

Because the data Y, k = 1,..., K, are distributed as
N(,u,ai + Té), k = 1,...,K, whenever the shifted data
Y, — u.k = 1,...,K, are distributed as N(0, o-i + Té),
k = 1...,K, we restrict our focus to equivariant statis-
tics (Lehmann and Romano, 2006), that is, T satisfying
T {(u.7*: Yo} = T{0.7%),Yy— pu}, where ¥y — pu =
{Y,—u, k=1,...,K}. Inthis situation, testing the null H; :
(Mo Tg) = (u,72) based on the data Y, is the same as test-
ing the null Hy : (4, 102) = (0, %) based on the shifted data
Yo — 1. When the test statistic is equivariant, the computa-
tions in step (2)(a) need only be performed once for each
72 in the grid rather than each pair (u,72). Thus, although
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a 2-dimensional grid is used in the algorithm, the compu-
tational complexity remains linear in the grid size, R. More
specifically, steps (2)—-(3) become:

2! For each 72 of an R-sized grid on [ rzmn, T,%mx]

(a)Compute the distribution of
T {(0,72); Y(0,7%)}.
(b)Compute ¢q;_,..2, the 1 — a quantile of

T {(0,7%); Y(0,7%)} .

(©Compute  Q_,(z%:Yy) = {7 |
T{(u.t): X} = T{O;YVy—u} <
ql—a;r2 }

3’.Compute a (1 — a)-level confidence region for (y, ré)
as
U Q.
fze[rmm Trznax]

We propose the test statistics
T{(n. 7)Y} =Tou; V) + Ty {7 Y}, (@)

where Ty (y; V) is the same Wald-type test statistic used in the
Dersimonian-Laird procedure,

Ty { (. 7)Y} =

v | )
-3 Z l% +log {27(s3, + 02)}]

k=1 L Tprt o
K

1| (Y 2 2
;E lﬁ+log{2ﬂ(f +O'k)} ,

and ¢, is a tuning parameter controlling the relative contribu-
tions of these two statistics. While Tj,(u; V) directly focuses
on the location parameter ), T};; {(/4, 12); y}, similar to the
likelihood ratio test statistic, targets the combination of g and
75 and helps to construct a narrower CI of u, when the num-
ber of studies is small. The proposed test statistics satisfy the
equivariance condition, ensuring speedy computation when
carrying out the procedure on a typical personal computer.

A further simplification afforded by this choice of test
statistics is that step 2’c may be carried out by solving the
quadratic inequality

A(T)ps + B(t)ug + C(2) < 0,

K 2 2 2 .
c Y, °+0 (Y, — fip;)?
C(r) = ZEO l k + log k2 K DL

2 2 22 ~2 2
=1 °to, Th T o, Thr T op
-« 1
+'aDL Z 2 ~ d1—q;22- (%)

2
k=17Tpr + o

As a result, the confidence interval of y, when 7y = 7,
Q,_, (% V), is simply the segment with endpoints

—B(t) - A2 —B(x) + A(x)'/?
2A(7) ’ 2A(7) ’

when A(r) = B(r)? — 4A(7)C(z) >
otherwise.

To choose rrznm and riax in step (1) of the algorithm, we
may use the endpoints of a 100(1 — #)%, e.g., 99.9%, confi-
dence interval of rg. This CI can be constructed by inverting
the pivotal statistic

0, and an empty set,

Ty(r) = (WY) {WE@W'} ™ (WY),

where Y = Xy, ... Y, X(7) =
: 2 2 2 2
dlag{O'1 +15,. 0+ T },and
R e B YL o/ Tir o7
we| /X o/ 35 o ot/ Zisy o)
o7/ Ty 07 o/ B, o7 o2/ i o7t~ 1

The pivot follows a 112(_] distribution when 72 = Tg.

Since our goal is a CI for u, the shape of the confi-
dence region is crucial to its performance: the projection
of Q,_,(Y,) onto the u axis should be as small as possi-
ble, relative to the area of the confidence region. Figure 1
plots two confidence regions with the same confidence coeffi-
cient, but substantially different projected lengths. To avoid
an overly conservative CI, we prefer a confidence region
with boundaries parallel to the r—axis, or nearly so. The
shape of Q;_,(}),) is determined by the way we combine
To(u; Y) and Ty {(u,7%); Y} or, more generally, by the
choice of T {(u, 72); Y’} Because the proposed statistics (4)
are quadratic in u, the resulting confidence regions are a
union of intervals with similar centers and tend not to pro-
duce overly conservative CIs when the tuning parameter c is
chosen appropriately.

The proposed test statistic was chosen to balance per-
formance and computation costs. For example, the true
likelihood ratio test statistic under model (1) may be
more informative than Tj;; {(;4,72);)7}, but its evaluation
involves computing the maximum likelihood estimate and
is substantially slower. The proposed algorithm is eas-
ily parallelized, so further gains in computing speed are
available.



MICHAEL ET AL.

10

FIGURE 1 The projection of the confidence region; the solid and
dashed thick lines are boundaries of two confidence regions.

3 | NUMERICAL STUDY

In this section, we study the small-sample performance of
the proposed method through a comprehensive simulation
study. Observed data are simulated under the random effects
model

Y, ~ N(ug, 7 +03), k=1,....K,

where oy,...,0g, are K equally spaced points in the
interval [1,5], that is, o, = 1+ 4(k — 1)/(K — 1),k =
I,..., K. The population variance Tg takes values 0, 12.5,
and 25 to mimic settings with low, moderate, and high
study heterogeneity, respectively. The corresponding 1> mea-
sures of heterogeneity are approximately 0, 50%, and 70%,
respectively.

In the first set of simulations, we examine the effect of
the tuning parameter ¢, on the performance of the proposed
method. For each set of simulated data, we construct a series
of CIs using the proposed method with ¢, ranging from 0
to 2.5 in increments of 0.1, and the number of studies K
ranges from 3 to 20. Based on results from 10,000 simulated
datasets under each combination of settings, we calculate the
empirical coverage levels and average lengths of the result-
ing 95% ClIs. In all settings, the empirical coverage levels
of the proposed Cls are above the nominal level and there-
fore we optimize power by selecting the value of ¢, with
the shortest CI lengths. When K > 10, the choice of ¢
does not have a pronounced effect on CI length. When K
is between 3 and 6, the setting of primary interest, assign-
ing more weight to the likelihood ratio-type statistic typically

— e .

7.2 Biomelris WL E Y-
reduces the length of the CIs. We summarize the value of
¢o achieving the minimum mean 95% CI length in Figure 2.
Based on these results, we suggest for a tuning parameter ¢, =
1.2 for meta-analyses with fewer than 6 studies, ¢, = 0.6 for
meta-analysess with 6-10 studies, ¢y = 0.2 for meta-analysis
with 10-20 studies, and ¢ = O for analysis with more than 20
studies.

In the second set of simulations, we compare the per-
formance of the proposed CIs with existing alternatives. For
10,000 replicates at each data-generation setting described
above, we construct CIs using the DerSimonian-Laird, Sidik-
Jonkman, and restricted maximum likelihood asymptotic
variance estimates, as well as the proposed CI with the rec-
ommended tuning parameter. In Figure 3 we summarize the
average coverage and lengths of these Cls. In the presence
of moderate heterogeneity, I, = 0.5, the empirical cover-
age level of the DL method is below 90% when K < 10,
with the lowest coverage ~ 75% when the number of stud-
ies is 3. The ClIs based on the Sidik-Jonkman estimator have
better coverage, but still drop below 90% when K < 5. In
contrast, the proposed exact Cls using the recommended tun-
ing parameter settings do not fall below the nominal 95%
coverage level. Morover, the coverage level is not overly
conservative even for small Ks. The length of the 95% CI
is comparable to the lengths of the asymptotic CIs, when
these match the nominal coverage level, e.g., K = 20. When
I? = 0, i.e., the random effects model degenerates to the
fixed effects model, all methods, including the asymptotic
estimators, control the Type 1 error. Sidik-Jonkman’s CI is
overly conservative even for moderate K values, while the
proposed ClIs, also overly conservative at lower values of
K, improve steadily as K increases. When I = 0.70, only
the proposed Cls maintain the proper coverage level, while
other methods fall below the nominal level for K as large as
10-20.

Several other common estimators, including Hedges-
Olkin, Hunter-Schmidt, and maximum likelihood, were also
tested, with performance found to be generally interme-
diate between the performance of the DerSimonian-Laird
and Sidik-Jonkman estimators. These other comparisons are
reported in the Supplementary Materials. Also reported in
the Supplementary Materials are results for a Bayesian esti-
mator using a non-informative prior, as recently imple-
mented by Rover (2017). The simulation results of the
Bayesian estimator are on the whole comparable to our
estimator but slightly more conservative. However, its the-
oretical basis is somewhat incomplete and our evaluation
of its performance is limited to the investigated simulation
settings.

In a third set of simulations, we compare the performance
of the proposed estimator to other common estimators under
misspecifications of the model, such as a skew or heavy-tailed
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FIGURE 2 The choice of ¢, achieving the minimum mean 95% CI length is plotted against the number K of studies, at 3 levels of between-study

heterogeneity.

distribution. Specifically, rather than using a normal distribu-
tion, we used a centered chi-square variable (Supplementary
Material, Table 2), a Cauchy distribution (Supplementary
Material, Table 3), a centered exponential distribution (Sup-
plementary Material, Table 4), and a uniform distribution
on the interval [-5, 5] (Supplementary Material, Table 5) to
generate 6. We typically find that the coverage rate of the
proposed estimator is somewhat conservative, whereas the
asymptotic estimators fall below the nominal level, sometimes
significantly so. The bayesian estimator with non-informative
prior performs similarly to the proposed estimator, though
somewhat more conservatively, at least under the default
parameters of the selected implementation.

4 | EXAMPLE

Tai et al. (2015) conduct a random effects meta-analysis of 59
randomized controlled trials to determine if increased calcium
intake affects bone mineral density (“BMD”). Altogether,
these trials measured the changes in BMD at five skeletal
sites over three time points and measured the effect of cal-
cium intake on BMD from dietary sources and from calcium
supplements. We illustrate the proposed method using four
meta-analyses. The first meta-analysis investigates changes

in BMD of the lumbar spine and is based on the findings
of 27 trials that lasted fewer than 18 months. As shown in
Table 1, the 95% CI produced by the proposed exact method
does not differ very much from the 95% CI based on the
DL method. The two intervals have a similar length and are
centered around a BMD difference of about 1.2. We also
construct the exact CI by permuting a Hodge-Lehman type
estimator (Liu et al., 2018). The resulting interval is very
similar to the interval produced by the proposed method.
These similarities are to be expected since the normality
assumptions of the DL estimator may not be too unreason-
able for a meta-analysis based on this number of primary
studies.

Two of the other random effects meta-analyses investigate
changes in BMD in the hip and forearm for trials of size six
and five, respectively, that lasted for more than two years. The
fourth analysis we consider here is the meta-analysis of three
trials that lasted fewer than 18 months and measured changes
in BMD for the total body of subjects. For these three meta-
analyses, however, the number of studies is small, and the DL
method may be expected to fall short of the nominal level. In
the hip study, the proposed exact method and the DL method
both yield the same conclusion, producing 95% confidence
intervals rejecting the null of no change in BMD, although
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FIGURE3 Comparison by 95% CI coverage and length of the proposed estimator with 3 commonly used estimators based on asymptotic approx-
imations. Data was generated according to model (1) with the number of studies K varying between 3 and 20 and the ratio of between- to average

within-variance adjusted to give 3 levels of between-study heterogeneity. The proposed estimator achieves the nominal size at all configurations, with
overcoverage evident where the heterogeneity is low or the studies is very few (3—4).

the exact method produces confidence intervals that are wider
than their DL counterparts. In contrast, the DL 95% confi-
dence intervals for the forearm and total body studies find a
significant change in BMD whereas the exact method does
not, suggesting that the DL method may be giving a false
positive in these two cases. The intervals and their lengths
are given in Table 1. Note that the exact 95% CI based on
the permutation method is not available for the last two meta
analyses, since the number of studies is fewer than 6.

A table including confidence intervals obtained using

other common estimators of 72 is included in the Supplemen-
tary Materials.

5 | DISCUSSION

We have proposed a method to construct an exact CI for the
population mean under the normal-normal model commonly

TABLE 1 Random effects meta-analyses of the effect of calcium supplements on percentage change in bone mineral density (Tai et al.
(2015), Figs. 1, 3, and 7). The meta-analyses were carried out using the DerSimonian-Laird variance estimator (as in Tai et al. (2015)), the
permutation test of Wang and Tian (2018), applicable to meta-analyses with 6 or more studies, and the proposed exact method. A nominal
95% Cl is reported, with the length in parentheses. On the two smaller meta-analyses (K = 3, 5) the proposed exact method fails to reject the

null of no change, whereas the asymptotic DL method does reject.

Study K DerSimonian-Laird
Lumbar spine 27 0.828-1.669 (0.841)

Total hip 6 0.502-1.847 (1.345)

Forearm 5 0.209-3.378 (3.169)

Total body 3

0.268-1.778 (1.511)

Permutation
0.788-1.758 (0.970)
0.000-2.298 (2.298)

Proposal
0.768-1.726 (0.958)
0.159-2.246 (2.087)
—0.459-4.124 (4.583)
—0.740-2.796 (3.536)
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used in meta-analysis. Appropriate coverage is guaranteed, up
to Monte Carlo error, even when the number of studies used in
the meta-analysis is as small as 2. As an important limitation,
the proposed “exact” inference procedure is developed under
stringent parametric assumptions, which cannot be effectively
examined from the data when the number of studies is small.
We have examined by simulation a few common misspecifica-
tions, but the results still need to be interpreted with extreme
caution. On the other hand, there is a practical need for meta-
analyses with few studies, where unverifiable assumptions are
unavoidable. The main objective of this paper is to propose
a valid statistical method when those assumptions hold true.
This incremental contribution is arguably warranted by the
frequency with which meta-analyses with few studies are con-
ducted using existing methods making the same parametric
assumptions.

While convenient, the normal assumption for the study-
specific treatment effect estimate may not be valid in other
settings. For example, the treatment effect estimate may
be an odds ratio from a 2 X 2 contingency table. If the
total sample sizes are small or if cell entries are close to
0, the normal assumption for the odds ratio may be inap-
propriate. More generally, Y, may be a quantity relevant
to a treatment effect with Y, |6, following a non-normal,
e.g., hypergeoemtric, distribution depending on the study-
specific parameter 6. In such a case, the model for 6,
and the corresponding inference procedure warrant further
research. More recently, there have been several new devel-
opments on confidence distribution and related generalized
fiducial inference that have facilitated new inference pro-
cedures for meta-analysis (Xie and Singh, 2013; Claggett
et al.,, 2014). These developments may also be promis-
ing directions for developing exact inference procedures for
meta-analysis.

ACKNOWLEDGEMENTS

The authors would like to thank the editor, associate edi-
tor, and two referees for their constructive comments.
This research is partially supported by ROl HLO089778
(NIH/NHLBI) and NSF-DMS 1513483, 1737857, and
1812048.

ORCID

Haben Michael {2} http://orcid.org/0000-0003-0587-1107
Lu Tian {12} http://orcid.org/0000-0002-5893-0169

REFERENCES

Berkey, C. S., Hoaglin, D. C., Mosteller, F., and Colditz, G. A. (1995).
A random-effects regression model for meta-analysis. Stat Med 14,
395-411.

Bodnar, O., Link, A., Arendacka, B., Possolo, A., and Elster, C. (2017).
Bayesian estimation in random effects meta-analysis using a non-
informative prior. Stat Med 36, 378-399.

Claggett, B., Xie, M., and Tian, L. (2014). Meta-analysis with fixed,
unknown, study-specific parameters. J Am Stat Assoc 109, 1660—
1671.

Davey, J., Turner, R. M., Clarke, M. J., and Higgins, J. P. (2011). Charac-
teristics of meta-analyses and their component studies in the cochrane
database of systematic reviews: A cross-sectional, descriptive analy-
sis. BMC Med Res Methodol 11, 160.

DerSimonian, R. and Laird, N. (1986). Meta-analysis in clinical trials.
Control Clin Trials 7, 177-188.

Follmann, D. A. and Proschan, M. A. (1999). Valid inference in random
effects meta-analysis. Biometrics 55, 732-737.

Hardy, R. J. and Thompson, S. G. (1996). A likelihood
approach to meta-analysis with random effects. Stat Med 15,
619-629.

Hartung, J. and Knapp, G. (2001). On tests of the overall treatment effect
in meta-analysis with normally distributed responses. Stat Med 20,
1771-1782.

Higgins, J., Thompson, S. G., and Spiegelhalter, D. J. (2009). A re-
evaluation of random-effects meta-analysis. J R Stat Soc Series A:
Stat Soc 172, 137-159.

Higgins, J. and Whitehead, A. (1996). Borrowing strength from external
trials in a meta-analysis. Stat Med 15, 2733-2749.

Hoaglin, D. C. (2016). Misunderstandings about q and “cochran’s q test”
in meta-analysis. Stat Med 35, 485-495.

IntHout, J., Ioannidis, J. P., and Borm, G. F. (2014). The Hartung-
Knapp-Sidik-Jonkman method for random effects meta-analysis
is straightforward and considerably outperforms the stan-
dard DerSimonian-Laird method. BMC Medi Res Methodol
14, 25.

Kontopantelis, E., Reeves, D., et al. (2010). metaan: Random-effects
meta-analysis. Stata J 10, 395.

Lehmann, E. L. and Romano, J. P. (2006). Testing statistical hypotheses.
Springer Science & Business Media.

Liu, S., Lee, S., and Xie, M. (2017). Exact inference on meta-analysis
with generalized fixed-effects and random-effects models. Biostat
Epidemiol, 2, 1-22.

Noma, H. (2011). Confidence intervals for a random-effects meta-
analysis based on Bartlett-type corrections. Stat Med 30,
3304-3312.

Raghunathan, T. (1993). Analysis of binary data from a multicentre
clinical trial. Biometrika 80, 127—-139.

Raudenbush, S. W. (2009). Analyzing effect sizes: Random-effects mod-
els. The Handbook of Research Synthesis and Meta-analysis, Second
edition, 295-316.

Rover, C. (2017). Bayesian random-effects meta-analysis using the
bayesmeta R package. ArXiv e-prints.

Sidik, K. and Jonkman, J. N. (2006). Robust variance estimation
for random effects meta-analysis. Comput Stat Data Anal 50,
3681-3701.

Smith, T. C., Spiegelhalter, D. J., and Thomas, A. (1995). Bayesian
approaches to random-effects meta-analysis: A comparative study.
Stat Med 14, 2685-2699.

Tai, V., Leung, W., Grey, A., Reid, I. R., and Bolland, M. J. (2015).
Calcium intake and bone mineral density: Systematic review and
meta-analysis. BMJ 351, h4183.



MICHAEL ET AL.

Vangel, M. G. and Rukhin, A. L. (1999). Maximum like-
lihood analysis for  heteroscedastic ~ one-way  random
effects ANOVA in interlaboratory studies. Biometrics 55,
129-136.

Viechtbauer, W. (2005). Bias and efficiency of meta-analytic variance
estimators in the random-effects model. J Educ Behav Stat 30, 261—
293.

Wang, R., Tian, L., Cai, T., and Wei, L. (2010). Nonparametric inference
procedure for percentiles of the random effects distribution in meta-
analysis. Ann Appl Stat 4, 520.

Wang, Y. and Tian, L. (2018). An efficient numerical algorithm
for exact inference in meta analysis. J Stat Comput Simul 88,
646-656.

Xie, M.-g. and Singh, K. (2013). Confidence distribution, the frequentist
distribution estimator of a parameter: A review. Int Stat Rev 81, 3-39.

Zeng, D. and Lin, D. (2015). On random-effects meta-analysis.
Biometrika 102, 281-294.

7.2 Biomelrigs-WriLEY
SUPPORTING INFORMATION

Web Appendices, Tables, and Figures referenced in Sections
3 and 4 are available with this paper at the Biometrics website
on Wiley Online Library. Routines in the R programming lan-
guage for computing exact Cls for the population mean by the
method proposed in Section 2 are also available at the Bio-
metrics website on Wiley Online Library, and may also be
installed from CRAN as package rma.exact. Figure 1 was
generated using rma. exact.
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