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Abstract

We describe an exact, unconditional, non-randomized procedure for producing

confidence intervals for the grand mean in a normal-normal random effects meta-

analysis. The procedure targets meta-analyses based on too few primary studies,

≤ 7, say, to allow for the conventional asymptotic estimators, e.g., DerSimonian

and Laird (1986), or non-parametric resampling-based procedures, e.g., Liu et al.

(2017). Meta-analyses with such few studies are common, with one recent sample

of 22,453 heath-related meta-analyses finding a median of 3 primary studies per

meta-analysis (Davey et al., 2011). Reliable and efficient inference procedures are

therefore needed to address this setting. The coverage level of the resulting CI is

guaranteed to be above the nominal level, up to Monte Carlo error, provided the

meta-analysis contains more than 1 study and the model assumptions are met. After

employing several techniques to accelerate computation, the new CI can be easily

constructed on a personal computer. Simulations suggest that the proposed CI typ-

ically is not overly conservative. We illustrate the approach on several contrasting

examples of meta-analyses investigating the effect of calcium intake on bone mineral

density.
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1 INTRODUCTION

The random effects model is often used to account for

between-study heterogeneity when conducting a meta-

analysis. When the distribution of the primary study treatment

effect estimates is approximately normal, the simple normal-

normal model is commonly used, and the DerSimonian-

Laird (“DL”) method and its variations are the most popular

approach to estimating the model’s parameters and perform-

ing statistical inference (DerSimonian and Laird, 1986). How-

ever, the DL method is based on an asymptotic approximation

and its use is only justified when the number of studies is large.

In many fields, the number of studies used in a meta-analysis

or sub-meta-analysis rarely exceeds 20 and is typically fewer

than 7 (Davey et al., 2011), leaving inferences based on

the DL estimator questionable. Indeed, extensive simulation

studies have found that the coverage probability of the

DL-based confidence interval (CI) can be substantially

lower than the nominal level in various settings (Kon-

topantelis et al., 2010; IntHout et al., 2014), leading to

false positives. One reason for this poor performance

is that the asymptotic approximation ignores the vari-

ability in estimating the heterogeneous variance, which

can be substantial when the number of studies is small

(Higgins et al., 2009).

Various remedies have been proposed to correct the

under-coverage of DL-based confidence intervals. Hartung

and Knapp (2001) proposed an unbiased estimator of the
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variance of the DL point estimator explicitly accounting for

the variability in estimating the heterogenous variance. Sidik

and Jonkman (2006) used the heavy-tailed 𝑡-distribution to

approximate the distribution of a modified Wald-type test

statistic based on the DL estimator. Using the more robust

𝑡- rather than normal distribution has also been proposed

(Raghunathan, 1993; Berkey et al., 1995; Follmann and

Proschan, 1999). Hardy and Thompson (1996), Vangel and

Rukhin (1999), Viechtbauer (2005), and Raudenbush (2009)

proposed procedures based on maximum-likelihood estima-

tion. Noma (2011) further improved the performance of the

likelihood-based inference procedure when the number of

studies is small by using a Bartlett-type correction. Zeng

and Lin (2015) describe a resampling procedure to approx-

imate the “large cluster” asymptotic distribution, i.e., as the

primary study sizes all grow. Bayesian approaches incorpo-

rating external information have been developed by many

authors (Smith et al., 1995; Higgins and Whitehead, 1996;

Bodnar et al., 2017). However, with few exceptions, most of

these methods still depend on an asymptotic approximation

and their performance with very few studies has only been

examined by specific simulation studies. To overcome these

difficulties, potentially conservative but “exact” inference pro-

cedures for the random effects model have been proposed

(Follmann and Proschan, 1999; Wang et al., 2010; Liu et al.,

2017; Wang and Tian, 2017). A permutation rather than the

asymptotic limiting distribution is used to approximate the

distribution of the relevant test statistics and thus the valid-

ity of the associated inference is guaranteed for any number

of studies. However, due to the discreteness of the permuta-

tion distribution, the highest significance level that may be

achieved without randomization depends on the number of

studies. For example, a 95% confidence interval can only be

constructed with more than 5 studies. While Bayesian meth-

ods also permit statistical inference with fewer studies, the

results are correspondingly sensitive to the choice of the prior

distributions.

The main contribution of this paper is to propose a set

of new methods for constructing exact, unconditional, non-

randomized frequentist CIs for the location parameter of

the normal-normal model by inverting exact tests. The cov-

erage level of the resulting CI is guaranteed to be above

the nominal level, up to Monte Carlo error, as long as the

meta-analysis contains more than 1 study. After employing

several techniques to accelerate computation, the new CI can

be easily constructed on a personal computer. Simulations

suggest that the proposed CI typically is not overly conserva-

tive. In Section 2, we present our procedure for constructing

exact CIs for the population mean; in Section 3, we report

results from comprehensive simulation studies; in Section 4,

we illustrate the proposed method with a real data exam-

ple; and in Section 5 we conclude the paper with additional

discussion.

2 METHOD

The observed data consist of 0 =
{
𝑌𝑘, 𝑘 = 1,… , 𝐾

}
, where

𝑌𝑘 follows a random effects model,

𝑌𝑘 ∣ 𝜃𝑘
𝑖𝑛𝑑.
∼ 𝑁(𝜃𝑘, 𝜎

2
𝑘
), 𝜃𝑘

𝑖𝑛𝑑.
∼ 𝑁(𝜇0, 𝜏

2
0
), 𝑘 = 1,… , 𝐾,

with the variances 𝜎2
𝑘
> 0, 𝑘 = 1,… , 𝐾 , assumed known. The

random effects model implies the simple parametric model

𝑌𝑘
𝑖𝑛𝑑.
∼ 𝑁(𝜇0, 𝜎

2
𝑘
+ 𝜏2

0
), 𝑘 = 1,… , 𝐾. (1)

In the context of a meta-analysis, the pairs (𝑌𝑘, 𝜎
2
𝑘
), 𝑘 =

1,… , 𝐾 , are interpreted as observed effects and known

within-study variances drawn from 𝐾 studies, respectively.

The unobserved population effect and between-study variance

are 𝜇0 and 𝜏2
0
, respectively. The goal is inference on the loca-

tion parameter 𝜇0, viewing 𝜏2
0

as a nuisance parameter. The

typical number of studies depends on the area of research and

can be small, e.g., 𝐾 ≤ 10.

With 𝜏2
0

known, the uniformly minimum variance unbi-

ased estimator of 𝜇0 under (1) is given by

∑𝐾
𝑘=1 𝑌𝑘(𝜏

2
0
+ 𝜎2

𝑘
)−1

∑𝐾
𝑘=1(𝜏

2
0
+ 𝜎2

𝑘
)−1

.

As 𝜏2
0

is unknown, DerSimonian and Laird (1986) propose

substituting a simplified method of moments estimator,

𝜏2
𝐷𝐿

= max

{
0,

∑𝐾
𝑘=1(𝑌𝑘 − 𝜇̂𝐹 )

2∕𝜎2
𝑘
− (𝐾 − 1)

∑𝐾
𝑘=1 𝜎

−2
𝑘

− (
∑𝐾
𝑘=1 𝜎

−4
𝑘
)∕(

∑𝐾
𝑘=1 𝜎

−2
𝑘
)

}
,

where

𝜇̂𝐹 =

∑𝐾
𝑖=1 𝑌𝑘𝜎

−2
𝑘∑𝐾

𝑖=1 𝜎
−2
𝑘

is the minimum variance unbiased estimator of 𝜇0 under a

fixed effects model, i.e., when 𝜏2
0
= 0. The resulting estimator

is known as the “DerSimonian-Laird” estimator of 𝜇0:

𝜇̂𝐷𝐿 =

∑𝐾
𝑘=1 𝑌𝑘(𝜏

2
𝐷𝐿

+ 𝜎2
𝑘
)−1

∑𝐾
𝑘=1(𝜏

2
𝐷𝐿

+ 𝜎2
𝑘
)−1

.

By an analogous substitution, a level 1−𝛼 confidence interval

for 𝜇0 is given by

⎧
⎪⎨⎪⎩
𝜇̂𝐷𝐿 − 𝑧1−𝛼∕2

(
𝐾∑
𝑘=1

(𝜏2
𝐷𝐿

+ 𝜎2
𝑘
)−1

)−1∕2

,
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𝜇̂𝐷𝐿 + 𝑧1−𝛼∕2

(
𝐾∑
𝑘=1

(𝜏2
𝐷𝐿

+ 𝜎2
𝑘
)−1

)−1∕2⎫⎪⎬⎪⎭
. (2)

The justification of the CI given in (2) relies on the

asymptotic approximation

𝑇0(𝜇0;) = (𝜇̂𝐷𝐿 − 𝜇0)
2

𝐾∑
𝑘=1

(𝜏2
𝐷𝐿

+ 𝜎2
𝑘
)−1 ⇝ 𝜒2

1
(3)

as the number of studies, 𝐾 , grows to infinity and

max{𝜎𝑘}∕min{𝜎𝑘} is uniformly bounded. However, the exact

distribution of 𝑇0(𝜇0;) depends on 𝜏2
0

and may be very

different from a 𝜒2
1

distribution when 𝐾 is moderate or

small (Hoaglin, 2016). Consequently, the finite-sample per-

formance of the CI given by (2) is often unsatisfactory. We

propose constructing an exact CI for 𝜇0 by first construct-

ing an exact confidence region for (𝜇0, 𝜏
2
0
). To this end,

let 𝑇
{
(𝜇, 𝜏2);0

}
denote a scalar test statistic, which may

depend on the null parameter (𝜇, 𝜏2), for the simple hypothe-

sis (𝜇0, 𝜏
2
0
) = (𝜇, 𝜏2). The specific choice of 𝑇

{
(𝜇, 𝜏2);0

}
will be discussed later and here we only assume that a high

value of 𝑇
{
(𝜇, 𝜏2);0

}
represents grounds for rejection. For

a given choice of 𝑇
{
(𝜇, 𝜏2);0

}
, a 1 − 𝛼 level CI for 𝜇0 can

be constructed as follows:

(1)Obtain bounds [𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥] and [𝜏2
𝑚𝑖𝑛
, 𝜏2𝑚𝑎𝑥] for 𝜇0 and

𝜏2
0
.

(2)For each pair of 𝜇 and 𝜏2 in an 𝑅 ×𝑅 grid of points on

[𝜇𝑚𝑖𝑛, 𝜇𝑚𝑎𝑥] × [𝜏2
𝑚𝑖𝑛
, 𝜏2𝑚𝑎𝑥],

(a)Compute the null distribution of

𝑇
{
(𝜇, 𝜏2);(𝜇, 𝜏2)

}
, where

(𝜇, 𝜏2) =
{
𝑌𝑘, 𝑘 = 1,… , 𝐾

}

with 𝑌𝑘
𝑖𝑛𝑑.
∼ 𝑁(𝜇, 𝜎2

𝑘
+ 𝜏2), 𝑘 = 1,… , 𝐾 .

(b)Compute the p-value 𝑝𝜇,𝜏2(0) ∶=

𝑃
[
𝑇
{
(𝜇, 𝜏2);0

}
> 𝑇

{
(𝜇, 𝜏2);(𝜇, 𝜏2)

}]
.

(3)Obtain a confidence region for (𝜇0, 𝜏
2
0
) as Ω1−𝛼(0) ∶=

{(𝜇, 𝜏2) ∶ 𝑝𝜇,𝜏2(0) > 𝛼}.

(4)Project Ω1−𝛼(0) onto the 𝜇 axis to obtain a CI for 𝜇0 ∶

{𝜇 ∶ (𝜇, 𝜏2) ∈ Ω1−𝛼(0)}.

We discuss below the selection of appropriate bounds for the

first step; here, we assume their existence for purposes of

illustration.

This method generates the exact CI for 𝜇0 in the sense that

pr
(
𝜇0 ∈ {𝜇 ∶ (𝜇, 𝜏2) ∈ Ω1−𝛼(0)}

)
≥ 1 − 𝛼.

This is due to the fact that

pr
(
𝜇0 ∈ {𝜇 ∶ (𝜇, 𝜏2) ∈ Ω1−𝛼(0)}

)

≥pr
{
(𝜇0, 𝜏

2
0
) ∈ Ω1−𝛼(0)

}

=pr
{
𝑝𝜇0,𝜏20

(0) ≥ 𝛼
}

=pr(𝑈 ≥ 𝛼) = 1 − 𝛼,

where the random variable 𝑈 follows the unit uniform distri-

bution. Here, we assume that 𝜏0 ∈ [𝜏2
𝑚𝑖𝑛
, 𝜏2𝑚𝑎𝑥]. If 𝜏2

min
and

𝜏2𝑚𝑎𝑥 are chosen depending on the data in such a way that

pr(𝜏2
𝑚𝑖𝑛

< 𝜏2 < 𝜏2𝑚𝑎𝑥) ≥ 1 − 𝛽, then the guaranteed coverage

probability of the proposed CI is 1 − 𝛼 − 𝛽 ≈ 1 − 𝛼 for very

small 𝛽. The error of the approximation, i.e., the magnitude of

𝛽, can be made arbitrarily small by methods described further

below.

The cumulative distribution function of

𝑇
{
(𝜇, 𝜏2);(𝜇, 𝜏2)

}
may not be analytically tractable,

but it is well defined for any given grid point (𝜇, 𝜏2) and can

always be approximated by a Monte Carlo simulation. To be

specific, given (𝜇, 𝜏2), we may approximate the distribution

of 𝑇
{
(𝜇, 𝜏2);(𝜇, 𝜏2)

}
in 2a as follows:

(2)(a) For 𝑏 = 1,… , 𝐵,

(a)Generate 𝑒∗
1𝑏
,… , 𝑒∗

𝐾𝑏

𝑖𝑛𝑑.
∼ 𝑁(0, 1).

(b)Let 𝑌 ∗
𝑘𝑏

= 𝜇 + (𝜎2
𝑘
+ 𝜏2)1∕2𝑒∗

𝑘𝑏
, 𝑘 = 1,… , 𝐾 ,

and let ∗
𝑏
=

{
𝑌 ∗
𝑘𝑏
, 𝑘 = 1,… , 𝐾

}
.

(c)Let 𝑇 ∗
𝑏

= 𝑇
{
(𝜇, 𝜏2);∗

𝑏

}
be the correspond-

ing test statistic based on the generated data

∗
𝑏

. The empirical distribution of {𝑇 ∗
1
,… , 𝑇 ∗

𝐵
}

can be used to approximate the distribution of

𝑇
{
(𝜇, 𝜏2);(𝜇, 𝜏2)

}
.

Since the estimation of the null distribution in 2a does not

depend on any asymptotic approximation, both the p-value,

𝑝𝜇,𝜏2 (0), and the confidence region, Ω1−𝛼(0), are “exact” if

we can safely ignore the errors of the grid approximation and

the Monte Carlo simulation above, which can be controlled

by increasing the grid density and 𝐵 in step 2a, respectively.

Because the data 𝑌𝑘, 𝑘 = 1,… , 𝐾 , are distributed as

 (𝜇, 𝜎2
𝑘
+ 𝜏2

0
), 𝑘 = 1,… , 𝐾 , whenever the shifted data

𝑌𝑘 − 𝜇, 𝑘 = 1,… , 𝐾 , are distributed as  (0, 𝜎2
𝑘
+ 𝜏2

0
),

𝑘 = 1… , 𝐾 , we restrict our focus to equivariant statis-

tics (Lehmann and Romano, 2006), that is, 𝑇 satisfying

𝑇
{
(𝜇, 𝜏2);0

}
= 𝑇

{
(0, 𝜏2),0 − 𝜇

}
, where 0 − 𝜇 =

{𝑌𝑘 −𝜇, 𝑘 = 1,… , 𝐾}. In this situation, testing the null𝐻0 ∶

(𝜇0, 𝜏
2
0
) = (𝜇, 𝜏2) based on the data 0 is the same as test-

ing the null 𝐻0 ∶ (𝜇0, 𝜏
2
0
) = (0, 𝜏2) based on the shifted data

0 − 𝜇. When the test statistic is equivariant, the computa-

tions in step (2)(a) need only be performed once for each

𝜏2 in the grid rather than each pair (𝜇, 𝜏2). Thus, although

3487



4 MICHAEL ET AL.

a 2-dimensional grid is used in the algorithm, the compu-

tational complexity remains linear in the grid size, 𝑅. More

specifically, steps (2)–(3) become:

2′.For each 𝜏2 of an 𝑅-sized grid on [𝜏2
𝑚𝑖𝑛
, 𝜏2𝑚𝑎𝑥],

(a)Compute the distribution of

𝑇
{
(0, 𝜏2);(0, 𝜏2)

}
.

(b)Compute 𝑞1−𝛼;𝜏2 , the 1 − 𝛼 quantile of

𝑇
{
(0, 𝜏2);(0, 𝜏2)

}
.

(c)Compute Ω1−𝛼(𝜏
2;0) = {(𝜇, 𝜏2) ∣

𝑇
{
(𝜇, 𝜏2);0

}
= 𝑇

{
(0, 𝜏2);0 − 𝜇

}
<

𝑞1−𝛼;𝜏2}.

3′.Compute a (1 − 𝛼)-level confidence region for (𝜇0, 𝜏
2
0
)

as

⋃
𝜏2∈[𝜏2

𝑚𝑖𝑛
,𝜏2𝑚𝑎𝑥]

Ω1−𝛼(𝜏
2;0).

We propose the test statistics

𝑇
{
(𝜇, 𝜏2);

}
= 𝑇0(𝜇;) + 00𝑇𝑙𝑖𝑘

{
(𝜇, 𝜏2);

}
, (4)

where 𝑇0(𝜇;) is the same Wald-type test statistic used in the

Dersimonian-Laird procedure,

𝑇𝑙𝑖𝑘
{
(𝜇, 𝜏2);

}
=

−
1

2

𝐾∑
𝑘=1

[
(𝑌𝑘 − 𝜇̂𝐷𝐿)

2

𝜏2
𝐷𝐿

+ 𝜎2
𝑘

+ log
{
2𝜋(𝜏2

𝐷𝐿
+ 𝜎2

𝑘
)
}]

+

𝐾∑
𝑘=1

1

2

[
(𝑌𝑘 − 𝜇)

2

𝜏2 + 𝜎2
𝑘

+ log
{
2𝜋(𝜏2 + 𝜎2

𝑘
)
}]

,

and 00 is a tuning parameter controlling the relative contribu-

tions of these two statistics. While 𝑇0(𝜇;) directly focuses

on the location parameter 𝜇0, 𝑇𝑙𝑖𝑘
{
(𝜇, 𝜏2);

}
, similar to the

likelihood ratio test statistic, targets the combination of 𝜇0 and

𝜏2
0

and helps to construct a narrower CI of 𝜇0 when the num-

ber of studies is small. The proposed test statistics satisfy the

equivariance condition, ensuring speedy computation when

carrying out the procedure on a typical personal computer.

A further simplification afforded by this choice of test

statistics is that step 2′c may be carried out by solving the

quadratic inequality

𝐴(𝜏)𝜇2
0
+ 𝐵(𝜏)𝜇0 + 𝐶(𝜏) < 0,

where

𝐴(𝜏) =

𝐾∑
𝑘=1

{
1

𝜏2
𝐷𝐿

+ 𝜎2
𝑘

+
00

2(𝜏2 + 𝜎2
𝑘
)

}
> 0,

𝐵(𝜏) = −

𝐾∑
𝑘=1

{
2𝜇0𝐷𝐿

𝜏0
2
𝐷𝐿 + 𝜎2

𝑘

+
00𝑌𝑘

𝜏2 + 𝜎2
𝑘

}
,

𝐶(𝜏) =

𝐾∑
𝑘=1

00
2

[
𝑌 2
𝑘

𝜏2 + 𝜎2
𝑘

+ log
𝜏2 + 𝜎2

𝑘

𝜏2
𝐷𝐿

+ 𝜎2
𝑘

−
(𝑌𝑘 − 𝜇̂𝐷𝐿)

2

𝜏2
𝐷𝐿

+ 𝜎2
𝑘

]

+𝜇̂2
𝐷𝐿

𝐾∑
𝑘=1

1

𝜏2
𝐷𝐿

+ 𝜎2
𝑘

− 𝑞1−𝛼;𝜏2 . (5)

As a result, the confidence interval of 𝜇0 when 𝜏0 = 𝜏,

Ω1−𝛼(𝜏
2;0), is simply the segment with endpoints

(
−𝐵(𝜏) − Δ(𝜏)1∕2

2𝐴(𝜏)
,
−𝐵(𝜏) + Δ(𝜏)1∕2

2𝐴(𝜏)

)
,

when Δ(𝜏) = 𝐵(𝜏)2 − 4𝐴(𝜏)𝐶(𝜏) ≥ 0, and an empty set,

otherwise.

To choose 𝜏2
𝑚𝑖𝑛

and 𝜏2𝑚𝑎𝑥 in step (1) of the algorithm, we

may use the endpoints of a 100(1 − 𝛽)%, e.g., 99.9%, confi-

dence interval of 𝜏2
0
. This CI can be constructed by inverting

the pivotal statistic

𝑇3(𝜏
2) = (𝐖𝐘)′

{
𝐖𝚺(𝜏)𝐖′

}−1
(𝐖𝐘),

where 𝐘 = (𝑌1,… , 𝑌𝐾 )
′, 𝚺(𝜏) =

diag
{
𝜎2
1
+ 𝜏2,… , 𝜎2

𝐾
+ 𝜏2

}
, and

𝐖 =

⎛
⎜⎜⎜⎜⎝

𝜎−2
1
∕
∑𝐾

𝑖=1
𝜎−2
𝑖

− 1 𝜎−2
2
∕
∑𝐾

𝑖=1
𝜎−2
𝑖

… 𝜎−2
𝐾
∕
∑𝐾

𝑖=1
𝜎−2
𝑖

𝜎−2
1
∕
∑𝐾

𝑖=1
𝜎−2
𝑖

𝜎−2
2
∕
∑𝐾

𝑖=1
𝜎−2
𝑖

− 1 … 𝜎−2
𝐾
∕
∑𝐾

𝑖=1
𝜎−2
𝑖

… … … …

𝜎−2
1
∕
∑𝐾

𝑖=1
𝜎−2
𝑖

𝜎−2
2
∕
∑𝐾

𝑖=1
𝜎−2
𝑖

… 𝜎−2
𝐾
∕
∑𝐾

𝑖=1
𝜎−2
𝑖

− 1

⎞
⎟⎟⎟⎟⎠
.

The pivot follows a 𝜒2
𝐾−1

distribution when 𝜏2 = 𝜏2
0
.

Since our goal is a CI for 𝜇0, the shape of the confi-

dence region is crucial to its performance: the projection

of Ω1−𝛼(0) onto the 𝜇 axis should be as small as possi-

ble, relative to the area of the confidence region. Figure 1

plots two confidence regions with the same confidence coeffi-

cient, but substantially different projected lengths. To avoid

an overly conservative CI, we prefer a confidence region

with boundaries parallel to the 𝜏–axis, or nearly so. The

shape of Ω1−𝛼(0) is determined by the way we combine

𝑇0(𝜇;) and 𝑇𝑙𝑖𝑘
{
(𝜇, 𝜏2);

}
or, more generally, by the

choice of 𝑇
{
(𝜇, 𝜏2);

}
. Because the proposed statistics (4)

are quadratic in 𝜇, the resulting confidence regions are a

union of intervals with similar centers and tend not to pro-

duce overly conservative CIs when the tuning parameter 00 is

chosen appropriately.

The proposed test statistic was chosen to balance per-

formance and computation costs. For example, the true

likelihood ratio test statistic under model (1) may be

more informative than 𝑇𝑙𝑖𝑘
{
(𝜇, 𝜏2);

}
, but its evaluation

involves computing the maximum likelihood estimate and

is substantially slower. The proposed algorithm is eas-

ily parallelized, so further gains in computing speed are

available.
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FIGURE 1 The projection of the confidence region; the solid and

dashed thick lines are boundaries of two confidence regions.

3 NUMERICAL STUDY

In this section, we study the small-sample performance of

the proposed method through a comprehensive simulation

study. Observed data are simulated under the random effects

model

𝑌𝑘 ∼ 𝑁(𝜇0, 𝜏
2
0
+ 𝜎2

𝑘
), 𝑘 = 1,… , 𝐾,

where 𝜎1,… , 𝜎𝐾 , are 𝐾 equally spaced points in the

interval [1, 5], that is, 𝜎𝑘 = 1 + 4(𝑘 − 1)∕(𝐾 − 1), 𝑘 =

1,… , 𝐾 . The population variance 𝜏2
0

takes values 0, 12.5,

and 25 to mimic settings with low, moderate, and high

study heterogeneity, respectively. The corresponding 𝐼2 mea-

sures of heterogeneity are approximately 0, 50%, and 70%,

respectively.

In the first set of simulations, we examine the effect of

the tuning parameter 00 on the performance of the proposed

method. For each set of simulated data, we construct a series

of CIs using the proposed method with 00 ranging from 0

to 2.5 in increments of 0.1, and the number of studies 𝐾

ranges from 3 to 20. Based on results from 10,000 simulated

datasets under each combination of settings, we calculate the

empirical coverage levels and average lengths of the result-

ing 95% CIs. In all settings, the empirical coverage levels

of the proposed CIs are above the nominal level and there-

fore we optimize power by selecting the value of 00 with

the shortest CI lengths. When 𝐾 ≥ 10, the choice of 00
does not have a pronounced effect on CI length. When 𝐾

is between 3 and 6, the setting of primary interest, assign-

ing more weight to the likelihood ratio-type statistic typically

reduces the length of the CIs. We summarize the value of

00 achieving the minimum mean 95% CI length in Figure 2.

Based on these results, we suggest for a tuning parameter 00 =

1.2 for meta-analyses with fewer than 6 studies, 00 = 0.6 for

meta-analysess with 6–10 studies, 00 = 0.2 for meta-analysis

with 10–20 studies, and 00 = 0 for analysis with more than 20

studies.

In the second set of simulations, we compare the per-

formance of the proposed CIs with existing alternatives. For

10,000 replicates at each data-generation setting described

above, we construct CIs using the DerSimonian-Laird, Sidik-

Jonkman, and restricted maximum likelihood asymptotic

variance estimates, as well as the proposed CI with the rec-

ommended tuning parameter. In Figure 3 we summarize the

average coverage and lengths of these CIs. In the presence

of moderate heterogeneity, 𝐼2 = 0.5, the empirical cover-

age level of the DL method is below 90% when 𝐾 ≤ 10,

with the lowest coverage ∼ 75% when the number of stud-

ies is 3. The CIs based on the Sidik-Jonkman estimator have

better coverage, but still drop below 90% when 𝐾 ≤ 5. In

contrast, the proposed exact CIs using the recommended tun-

ing parameter settings do not fall below the nominal 95%

coverage level. Morover, the coverage level is not overly

conservative even for small 𝐾s. The length of the 95% CI

is comparable to the lengths of the asymptotic CIs, when

these match the nominal coverage level, e.g., 𝐾 = 20. When

𝐼2 = 0, i.e., the random effects model degenerates to the

fixed effects model, all methods, including the asymptotic

estimators, control the Type 1 error. Sidik-Jonkman’s CI is

overly conservative even for moderate 𝐾 values, while the

proposed CIs, also overly conservative at lower values of

𝐾 , improve steadily as 𝐾 increases. When 𝐼2 = 0.70, only

the proposed CIs maintain the proper coverage level, while

other methods fall below the nominal level for 𝐾 as large as

10–20.

Several other common estimators, including Hedges-

Olkin, Hunter-Schmidt, and maximum likelihood, were also

tested, with performance found to be generally interme-

diate between the performance of the DerSimonian-Laird

and Sidik-Jonkman estimators. These other comparisons are

reported in the Supplementary Materials. Also reported in

the Supplementary Materials are results for a Bayesian esti-

mator using a non-informative prior, as recently imple-

mented by Röver (2017). The simulation results of the

Bayesian estimator are on the whole comparable to our

estimator but slightly more conservative. However, its the-

oretical basis is somewhat incomplete and our evaluation

of its performance is limited to the investigated simulation

settings.

In a third set of simulations, we compare the performance

of the proposed estimator to other common estimators under

misspecifications of the model, such as a skew or heavy-tailed
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FIGURE 2 The choice of 00 achieving the minimum mean 95% CI length is plotted against the number 𝐾 of studies, at 3 levels of between-study

heterogeneity.

distribution. Specifically, rather than using a normal distribu-

tion, we used a centered chi-square variable (Supplementary

Material, Table 2), a Cauchy distribution (Supplementary

Material, Table 3), a centered exponential distribution (Sup-

plementary Material, Table 4), and a uniform distribution

on the interval [−5, 5] (Supplementary Material, Table 5) to

generate 𝜃𝑘. We typically find that the coverage rate of the

proposed estimator is somewhat conservative, whereas the

asymptotic estimators fall below the nominal level, sometimes

significantly so. The bayesian estimator with non-informative

prior performs similarly to the proposed estimator, though

somewhat more conservatively, at least under the default

parameters of the selected implementation.

4 EXAMPLE

Tai et al. (2015) conduct a random effects meta-analysis of 59

randomized controlled trials to determine if increased calcium

intake affects bone mineral density (“BMD”). Altogether,

these trials measured the changes in BMD at five skeletal

sites over three time points and measured the effect of cal-

cium intake on BMD from dietary sources and from calcium

supplements. We illustrate the proposed method using four

meta-analyses. The first meta-analysis investigates changes

in BMD of the lumbar spine and is based on the findings

of 27 trials that lasted fewer than 18 months. As shown in

Table 1, the 95% CI produced by the proposed exact method

does not differ very much from the 95% CI based on the

DL method. The two intervals have a similar length and are

centered around a BMD difference of about 1.2. We also

construct the exact CI by permuting a Hodge-Lehman type

estimator (Liu et al., 2018). The resulting interval is very

similar to the interval produced by the proposed method.

These similarities are to be expected since the normality

assumptions of the DL estimator may not be too unreason-

able for a meta-analysis based on this number of primary

studies.

Two of the other random effects meta-analyses investigate

changes in BMD in the hip and forearm for trials of size six

and five, respectively, that lasted for more than two years. The

fourth analysis we consider here is the meta-analysis of three

trials that lasted fewer than 18 months and measured changes

in BMD for the total body of subjects. For these three meta-

analyses, however, the number of studies is small, and the DL

method may be expected to fall short of the nominal level. In

the hip study, the proposed exact method and the DL method

both yield the same conclusion, producing 95% confidence

intervals rejecting the null of no change in BMD, although
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FIGURE 3 Comparison by 95% CI coverage and length of the proposed estimator with 3 commonly used estimators based on asymptotic approx-

imations. Data was generated according to model (1) with the number of studies 𝐾 varying between 3 and 20 and the ratio of between- to average

within-variance adjusted to give 3 levels of between-study heterogeneity. The proposed estimator achieves the nominal size at all configurations, with

overcoverage evident where the heterogeneity is low or the studies is very few (3–4).

the exact method produces confidence intervals that are wider

than their DL counterparts. In contrast, the DL 95% confi-

dence intervals for the forearm and total body studies find a

significant change in BMD whereas the exact method does

not, suggesting that the DL method may be giving a false

positive in these two cases. The intervals and their lengths

are given in Table 1. Note that the exact 95% CI based on

the permutation method is not available for the last two meta

analyses, since the number of studies is fewer than 6.

A table including confidence intervals obtained using

other common estimators of 𝜏2 is included in the Supplemen-

tary Materials.

5 DISCUSSION

We have proposed a method to construct an exact CI for the

population mean under the normal-normal model commonly

TABLE 1 Random effects meta-analyses of the effect of calcium supplements on percentage change in bone mineral density (Tai et al.

(2015), Figs. 1, 3, and 7). The meta-analyses were carried out using the DerSimonian-Laird variance estimator (as in Tai et al. (2015)), the

permutation test of Wang and Tian (2018), applicable to meta-analyses with 6 or more studies, and the proposed exact method. A nominal

95% CI is reported, with the length in parentheses. On the two smaller meta-analyses (𝐾 = 3, 5) the proposed exact method fails to reject the

null of no change, whereas the asymptotic DL method does reject.

Study 𝐾 DerSimonian-Laird Permutation Proposal

Lumbar spine 27 0.828–1.669 (0.841) 0.788–1.758 (0.970) 0.768–1.726 (0.958)

Total hip 6 0.502–1.847 (1.345) 0.000–2.298 (2.298) 0.159–2.246 (2.087)

Forearm 5 0.209–3.378 (3.169) −0.459–4.124 (4.583)

Total body 3 0.268–1.778 (1.511) −0.740–2.796 (3.536)
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used in meta-analysis. Appropriate coverage is guaranteed, up

to Monte Carlo error, even when the number of studies used in

the meta-analysis is as small as 2. As an important limitation,

the proposed “exact” inference procedure is developed under

stringent parametric assumptions, which cannot be effectively

examined from the data when the number of studies is small.

We have examined by simulation a few common misspecifica-

tions, but the results still need to be interpreted with extreme

caution. On the other hand, there is a practical need for meta-

analyses with few studies, where unverifiable assumptions are

unavoidable. The main objective of this paper is to propose

a valid statistical method when those assumptions hold true.

This incremental contribution is arguably warranted by the

frequency with which meta-analyses with few studies are con-

ducted using existing methods making the same parametric

assumptions.

While convenient, the normal assumption for the study-

specific treatment effect estimate may not be valid in other

settings. For example, the treatment effect estimate may

be an odds ratio from a 2 × 2 contingency table. If the

total sample sizes are small or if cell entries are close to

0, the normal assumption for the odds ratio may be inap-

propriate. More generally, 𝑌𝑘 may be a quantity relevant

to a treatment effect with 𝑌𝑘|𝜃𝑘 following a non-normal,

e.g., hypergeoemtric, distribution depending on the study-

specific parameter 𝜃𝑘. In such a case, the model for 𝜃𝑘
and the corresponding inference procedure warrant further

research. More recently, there have been several new devel-

opments on confidence distribution and related generalized

fiducial inference that have facilitated new inference pro-

cedures for meta-analysis (Xie and Singh, 2013; Claggett

et al., 2014). These developments may also be promis-

ing directions for developing exact inference procedures for

meta-analysis.
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SUPPORTING INFORMATION

Web Appendices, Tables, and Figures referenced in Sections

3 and 4 are available with this paper at the Biometrics website

on Wiley Online Library. Routines in the R programming lan-

guage for computing exact CIs for the population mean by the

method proposed in Section 2 are also available at the Bio-

metrics website on Wiley Online Library, and may also be

installed from CRAN as package rma.exact. Figure 1 was

generated using rma.exact.
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