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Abstract—Heterogeneous graphs with different types of nodes
and edges are ubiquitous and have immense value in many
applications. Existing works on modeling heterogeneous graphs
usually follow the idea of splitting a heterogeneous graph into
multiple homogeneous subgraphs. This is ineffective in exploiting
hidden rich semantic associations between different types of edges
for large-scale multi-relational graphs. In this paper, we propose
Relation Structure-Aware Heterogeneous Graph Neural Network
(RSHN), a unified model that integrates graph and its coarsened
line graph to embed both nodes and edges in heterogeneous
graphs without requiring any prior knowledge such as meta-
path. To tackle the heterogeneity of edge connections, RSHN first
creates a Coarsened Line Graph Neural Network (CL-GNN) to
excavate edge-centric relation structural features that respect the
latent associations of different types of edges based on coarsened
line graph. After that, a Heterogeneous Graph Neural Network
(H-GNN) is used to leverage implicit messages from neighbor
nodes and edges propagating among nodes in heterogeneous
graphs. As a result, different types of nodes and edges can
enhance their embedding through mutual integration and pro-
motion. Experiments and comparisons, based on semi-supervised
classification tasks on large scale heterogeneous networks with
over a hundred types of edges, show that RSHN significantly
outperforms state-of-the-arts.

Index Terms—heterogenous graph, coarsened line graph,
graph neural network

I. INTRODUCTION

The recent success of neural networks on non-Euclidean
domain has impelled intensive research on graph embedding
and its application to an increasing number of related domains,
including chemical drug discovery [1], [2], knowledge graph
embedding [3], [4] and etc. Graph Neural Networks (GNNs)
in particular are effective techniques to learn graphs directly
from the structural level for analyzing the underlying symbolic
nature of graphs. To date, GNNs have achieved good results
in many graph mining tasks [5], [6], but most of them focus
on homogeneous graphs that assumed nodes and edges in the
network are of the same type. In reality, heterogeneous graphs
are ubiquitous and have immense application value [7], [8],
because heterogeneous networks allow nodes and edges to
have different types which are more realistic in characterize
semantic relations between objects.
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Different from homogeneous graphs, modeling heteroge-
neous graphs with GNNs typically suffers from two chal-
lenges:

o Challenge 1: Rich semantic relations: A heterogeneous
graph has complex multi-type relations. We need to mod-
el and characterize semantic relations for large complex
heterogeneous networks.

Challenge 2: Joint node and edge embedding: Because
both nodes and edge are playing important roles in
heterogeneous networks, we need to jointly learn discrim-
inative embedding for nodes and edges with maximum
performance gain.

A handful of recent efforts, including HAT [9] and R-
GCN [4], have studied heterogeneous graph embedding using
graph neural networks. The basic idea of these models is
to split a heterogeneous graph into multiple homogeneous
subgraphs. HAT relies on meta-path [10] to extract subgraphs
and then employs attention mechanism with graph neural
network to embed heterogeneous graphs. However, for highly
multi-relational data, meta-path based methods are not readily
applicable, due to its high dependence and cost on constructing
meta paths. R-GCN can be applied to highly multi-relational
data that is primarily motivated as an adaption of previous
works on GCN [11], and it splits heterogeneous graph to
multiple subgraphs by building an independent adjacency
matrix for each type of edge.

The above methods are typically node-centric graph neural
networks that aggregate information from neighbor nodes to
learn the representation and may partially address the Chal-
lenge 2. However, they are ineffective in exploiting rich seman-
tic associations between different types of edges potentially
hidden in a graph (Challenge 1). This is because although they
take into account the different types of edges by introducing
different matrices or weights, they still go along the idea
of modeling homogeneous graphs. As a matter of fact, the
neglected relation structure-aware information can further help
to mine the underlying relational features between different
types of edges, not just node-centric structural information.

To overcome the limitation of existing algorithms, in this
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paper we propose Relation Structure-aware Heterogeneous
Graph Neural Network (RSHN), a novel approach of modeling
heterogeneous graph that takes into account multi-relation
associations and enables implicit messages propagating among
nodes in heterogeneous graphs. RSHN consists of two compo-
nents: Coarsened Line Graph Neural Network (CL-GNN) and
Heterogeneous Graph Neural Network (H-GNN). The former
focuses on representing different types of edges with relational
attention mechanisms that respect implicit associations of
different types of edges (for Challenge 1), and the latter further
enables neighbor node and edge messages propagating among
nodes in heterogeneous graphs by coupling with edge type
features (for Challenge 2).

Inspired by line graph [12], where each node represents
an edge of graph and two nodes of line graph are adjacent
iff their corresponding edges share a common endpoint in
graph (as shown in Fig. 2), our coarsened line graph neural
network employs an edge-to-node dual learning style for graph
modeling that greatly reduces the size of line graph and still
covers the relevance of different types of edges. Specifically,
we build a coarsened line graph via random walks over original
graph to alleviate such problems and mine potential associa-
tions between different types of edges. In the coarsened line
graph, nodes represent different types of edges and weights
on edges represent co-occurrence rates of two different types
of edges. The construction of coarsened line graph is sketched
in Fig. 1. We assume that the higher the co-occurrence rate of
different types of edges, the more relevant they are. In other
words, the coarsened line graph is developed to automatically
excavate edges types that are highly correlated to each other.
Based on the constructed coarsened line graph, CL-GNN

Random Walks

Coarsened Line Graph

Fig. 1: An example of Coarsened Line Graph (right panel)
construction from an input graph (left panel). Edges are color
coded based on the types of edges (¢1, to, - - - ). Coarsened line
graph uses edge types of the original graph as nodes. Edge
weight in the coarsened line graph represents co-occurrences
between two types of edges in random walks (R, ;, denotes
co-occurrences between edge type t1 and o in random walks).
This design tremendously reduces the number of nodes of the
line graph, and also accurately captures edge relations.

module is designed to embed the coarsened line graph with a
novel relational attention propagation layer. After that, H-GNN
module takes edge types embedding learned by CL-GNN as
input and integrates messages from neighbor nodes and edges
to update central node. Both of the two modules are jointly
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learned and optimized in a unified framework to achieve
optimal performance for heterogeneous graph modeling. The
main contributions of the paper are as follows.

o To the best of our knowledge, this is the first endeavor
exploring and integrating associations between different
types of edges in heterogeneous graphs using graph
neural network. In comparison, existing methods dis-
sect heterogeneous networks as multiple homogeneous
networks, so cannot fully excavate interactions and rich
semantic relation between edges.

We propose a unified model Relation Structure-Aware
Heterogeneous Graph Neural Network (RSHN) that u-
tilize graph structure and implicit relation structural in-
formation to simultaneously learn node and edge type
embedding.

The proposed model is independent of user-defined
heuristics, such as meta-path, and is effective in dealing
with a large number of complex relations.

Experiments show that our model considerably outper-
forms all baselines for classification task on four large-
scale multi-relational networks.

In the remainder of the paper, we first review related work in
Section II, and then detail the proposed approach in Section III.
Experiments and results are reported in Section IV, followed
by the conclusion in Section V.

II. RELATED WORK

Our research is related to (i) Graph neural networks (GNNs),
(i1) Heterogeneous graph embedding, and (iii) Line graph.

Graph Neural Networks (GNNs). Graphs are ubiquitous
in the real world that are considered to have rich semantical
and structural information. Therefore, Graph Neural Networks
(GNNs) have sprung up to utilize deep learning methods
for graph data that learn the target nodes representation by
propagating neighbor information via neural networks. And
some surveys on GNNs have been proposed so far along with
immense applications using GNNs as a tool [13]-[15]. For
instance, in chemistry, GNNs are adopted to model molecules
as graphs to excavate its unknown properties and discover
new drugs [2]. In knowledge graphs, GNNs framework has
achieved good performance for knowledge graph embedding
tasks in terms of scalability and efficiency, such as entity
classification [4]. However, most of these methods ignore the
unique information of heterogeneous graphs, so we try to
explore heterogeneous graphs modeling with GNNs in this
paper.

Heterogeneous Graph Embedding. Heterogeneous graph
is a kind of graph with multiple types of nodes and edges
that is more ubiquitous in our real life. Heterogeneous graph
embedding is proposed to embed heterogeneous graph into
a low dimensional space while preserving the structure and
property. The existing methods to this task can be roughly
divided into shallow models [8], [16] and deep models [4], [7],
[9]. Superior to shallow models, most of these deep models are
based on graph neural networks, which have the effectiveness
of deep feature exploration and some of them have achieved
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state-of-the-art performance. As a result, this paper focuses on
graph neural networks.

As we can see, there are a lot of methods mainly focused
on preserving the meta-path [10] based structural information
to embed heterogenous graph such as HAT [9], while these
methods can only be used for datasets that have a small
number of different types of edges that make it easy to
build meta paths. For highly multi-relational data, R-GCN
[4] is a representative work that divides different types of
edges into independent adjacency matrices, which means that
there are no direct correlations between them. In response to
these limitations, we propose a more powerful model RSHN
to capture deep relational structure-aware features for highly
multi-relational data.

Line Graph. Line graph [12] is an edge-centric graph that
represents the adjacency between edges of graph G, where
each node of line graph represents an edge of GG and two nodes
of line graph are adjacent if and only if their corresponding
edges share a common endpoint in G (see Fig. 2). There are
also some works that adopt line graph, such as community
detection [17] and traffic prediction [18]. It can be seen that
line graph will be very large and cannot be constructed and
used efficiently for large-scale graphs. Motivated by line graph
and its limitation, we build a novel coarsened line graph with
different types of edges as nodes that greatly reduces the size
of line graph and still covers the relevance of different types
of edges.

Graph

Line Graph

Fig. 2: An example of line graph, which converts the original
graph into an edge-centric graph.

III. PROPOSED APPROACH

A. Notations and Problem Definition

In this section, we introduce some basic concepts and
formalize the problem of heterogeneous graph embedding.

Definition 1. Heterogeneous Graph [19]. A heterogeneous
graph is defined as a directed graph G = (V, &), in which
V are the set of nodes, £ are edges between them. Let
T := {1,2,...M} denote the set of different edge types.
We represent different types of edges in an adjacency matrix
A e RVXN_ A, € {0y UT, where N := |V| denotes the
number of nodes, M denotes the number of different types
of edges, A, are an integer-value that represents the type of
directed edge from node v to w. A,,, = 0 means that there is
no edge from node v to w. Heterogeneous graph embedding is
to learn two mapping functions f : V — R", g : £ — R™ that
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project each node v and edge e into low dimensional vectors
in spaces R™ and R™ respectively.

Definition 2. Coarsened Line Graph. Given a heterogeneous
graph G, the coarsened line graph L(G) = (7,R) is an
undirected weighted graph, indicating the correlations between
different types of edges, where 7 denotes different types
{1,2,...M} of edges from G, and R denotes the set of
weighted edges. Coarsened line graph embedding will learn
a type mapping function h : 7 — R™. In the coarsened line
graph L(G), each node ¢ € T represents one type of edge,
and two nodes t1, to are linked by a weighted edge, where
the weight R, ;, on edge indicates the co-occurrence rate of
them.

In order to simplify the model and reduce feature, we aim at
modeling different types of edges to represent edges, assuming
that the edges of the same type have same feature. Specifically,
edge features are extracted based on the following composite
function.

ho F(eyyw) 1)

where F'(e,,) extracts the type of edge ey, h : T — R™
is the type mapping function and g : £ — R™ is the edge
mapping function.

g(evw)

B. Modeling Heterogeneous Graph

The proposed Relation Structure-aware Heterogeneous
Graph Neural Network (RSHN) contains two modules: Coars-
ened Line Graph Neural Network (CL-GNN) and Heteroge-
neous Graph Neural Network (H-GNN). The architecture is
summarised in Fig. 3.

1) Coarsened Line Graph Neural Network (CL-GNN):
Indeed, learning associations between different types of edges
is an unsupervised problem. Our intuition is that edges sharing
more common paths have a higher similarity, and hence should
be learned jointly with co-occurrence rates. We build a coars-
ened line graph L(G) = (T, R), which greatly simplifies the
traditional line graph and highlights the degree of correlations
between nodes.

For any type t; and {;, the co-occurrence rate Ry, ., is
obtained by counting their occurrence frequency in a sampled
batch of associated paths P := {p1,p2,...,pss} Of graph G,
where bs := | P| denotes the batch_size, and each associated
path pi, € P with the length step_size (ss for short) is defined
as a sequence of edges appearing in edge-based random walks

(k)
v%k) L vék)-~- vglﬁ-) over graph G, reflecting the

associations between different types of edges. And then the co-
occurrence rate Ry, ;. between type t; and ¢; can be counted
according to

Cas—1
s

#{k =1,...,bs|t; and t; appear together in py}
R4, = 2 (©))
S
where we say ‘¢; and ¢; appear together in p;.’ means that there
exist at least two edges in path p; with their types being ¢; and
t; respectively. Similarly, node relationships can be introduced
using the same way. It is worth noting here that the complexity
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A propagation layer of CL-GNN

A propagation layer of H-GNN
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Fig. 3: Schematic of RSHN architecture. (i) Coarsened line graph L(G) is constructed by random walks over graph G; (ii)
Taking coarsened line graph L(G) as input, CL-GNN module is designed to learn different types of edges; (iii) Taking original
heterogeneous graph G and different types of edges embedding as input, H-GNN module aims to represent nodes with message
passing layers; (iv) The prediction layer is applied row-wise on the output of H-GNN’s last layer for classification task.

of simple counting statistics is higher than that of random
walks and thus it is not efficient here.

CL-GNN module is designed based on Attention Graph
Neural Network (AGNN) [20] to learn a type mapping func-
tion h : 7 — R™ on coarsened line graph L(G) =
(T,R), which adopts attention mechanism over neighbors
to learn which neighbors are more relevant and weigh their
contributions accordingly. For every propagation layer [ €
{0,1,..., K — 1}, it convolves type features (") using graph
propagation matrix P() according to

£(+D pO

§ : titj

t;EN (t:)U{t:}
%)

. t§'l)) 3)

h(t:) 4)
where o is an ReLU activation, the propagation matrix P() €
RM*M g an attention-guided propagation matrix computed
as (5) with a trainable parameter 3 at layer I. We use one-
hot encoding to initialize type embedding ¢(*). After K layers,
CL-GNN will obtain the final type features ¢(/).

exp(ﬁ(l) : Rtistj)

o _
Ztke/\f(tl)u{ti} eXP(ﬂ(l) Ry, 1)

ti,t;

(&)

2) Heterogeneous Graph Neural Network (H-GNN): H-
GNN, a novel variant of the Message Passing Neural Network
(MPNN) framework [2], aims to learn a node mapping func-
tion f :V — R™ on heterogeneous graph G = (V, ), where
every layer I’s forward pass is defined in terms of message
function Z® and node update function "), During each layer
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1€{0,1,..., K’ — 1}, node features v(!) are updated based on
messages my ) according to

m{+D) Z z® (w(l)7h@ (g(evw))) ©)
weN (v)
=Y 20 (w0 ke (h(Flew))
weN (v)
o) o
o) = oK) (10)

where e, is the edge from node v to w, g(-) is the edge map-
ping function that equals to the composite function h o F(+),
where h function is learned from CL-GNN. hg denotes a
differentiable function with parameter ©, such as MLPs, which
is used to project edge features into node features space, i.e.
he(-) € R™ In sum, N(v) denotes the set of first-order
neighbours of node v, i.e. N(v) = {wlv #wV A,, # 0}.
The message function Z() is an integration process that
can be typically implemented in several operations, including
concatenation, subtraction or multiplication, and produces a
message vector mglﬂ) € R™. In update function U, 5 is an
element-wise activation function, Wo(l) and Wl(l) are learned
weight matrices. The initial node embedding v(®) for each
node v is randomly initialized and after K’ layers, H-GNN
will get the final node features v(X").

Intuitively, RSHN can capture information about multi-level
neighbor nodes and correlation of different types of edges at
varying depth by stacking multiple layers of H-GNN and CL-
GNN.
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C. Model Training

Our approach combines heterogeneous graph with its coars-
ened line graph to effectively couple the representations of
nodes and different types of edges. We apply them to semi-
supervised classification task.

At H-GNN’s layer I, message function Z() is implemented
as subtraction that refers to translational distance model [21]
and it has achieved the best result in tasks. Our forward model
then takes following form as a instance of message function
Z® and node update function U®):

m+) = Z ('w(l) — he (g(evw))) (11
weN (v)
oD — anh (Wél)v(” n Wl(l)mgl“)) (12)

And then passing through a softmax function, defined as
softmax(h,) = % exp(h,) with Z =} exp(h,), is applied
row-wise on the output of H-GNN’s last layer. Both H-GNN
and CL-GNN are trained jointly by minimizing the cross-
entropy loss over all labeled examples:

F
,C:* Z ZYEflIlef

leYyr f=1
where )y, is the set of node indices that have labels, X; is
the f-th entry of the network output for i-th labeled node and
Y;s denotes its ground truth label.

13)

D. Complexity Analysis

The proposed model is efficient. Before training RSHN,
we construct the coarsened line graph via edge-based random
walks with the complexity O(batch_size - step_size), which
are dependent on a specific dataset. And the time complexity
of CL-GNN is O(MR.,Ce4), where M is the number of
different types of edges, R., and C¢, are the numbers of
row and column of coarsened line graph transformation matrix,
respectively. The time complexity of H-GNN is O(NR,Cy),
where N is the number of nodes, R, and C; are the numbers
of row and column of graph transformation matrix, respective-
ly. The overall complexity is linear to the number of nodes and
different types of edges.

IV. EXPERIMENTS
A. Benchmark Datasets

For semi-supervised classification task, we consider four
benchmark heterogeneous graph datasets: AIFB, MUTAG,
BGS, and AM. AIFB [22] describes the AIFB research in-
stitute in terms of its staff, research groups, and publications.
We try to predict the affiliation for people in AIFB research in-
stitute. MUTAG ! describes the interactions between complex
molecules that can be classified as isMutagenic or not. BGS
[23] describes information about relations between named rock
units that can be classified as hasLithogenesis or not. AM [24]
describes connections and details of artifacts in Amsterdam
Museum, each of which has one type property. The statistics
of datasets are shown in Table I.

Uhttp://dl-learner.org
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TABLE I: A summary of the benchmark Datasets. For each
dataset, we report the number of nodes, number of node types,
number of labeled nodes, number of edges, and number of
edge types, respectively.

Datasets | Nodes Types Labeled | Edges Types
AIFB 8,285 4 178 29,043 45
MUTAG 23,644 2 340 74,227 23
BGS 333,845 2 146 916,199 103
AM 1,666,764 11 1,000 | 5,988,321 133

B. Baselines

We compare our model to several state-of-the-art baselines,
including the shallow network embedding methods and GNN-
based methods. The shallow models include Hand-designed
feature extractors (Feat) [25], Weisfeiler-Lehman kernels (WL)
[26] and RDF2Vec embeddings [27]. We select two models
Graph Attention Network (GAT) [28] and Relational Graph
Convolutional Network (R-GCN) [4] as GNN-based baselines.
We implement two versions of our model including RSHN
and RSHN_, in order to reflect the effectiveness of the
coarsened line graph. RSHN_, is a variant of RSHN, which
removes the CL-GNN module and represents different types
of edges with one-hot vectors.

C. Experimental Settings

We perform training and full-batch optimization of all
baselines on the same training set (80%) and test set (20%).
We use the Adam [29] optimizer with a learning rate of 0.01
and [ penalty on weights 5 - 10~%. For all baselines, we use
the same hidden units as shown below. We use 2-layer H-
GNN coupled with 1-layer RLG-NN with 8 hidden units on
AIFB and MUTAG datasets, and 2-layer H-GNN coupled with
2-layer RLG-NN with 16 hidden units on BGS dataset. For
large dataset AM, we use 2-layer H-GNN coupled with 2-layer
RLG-NN with 16 hidden units.

For the construction of coarsened line graph, the batch_size
and step_size of random walks depend on different datasets.
We tune the number of batch_size in {100,200, ...,1200}
and step_size in {3,4,5}. Based on the results, we find that
performance on different datasets will converge before 1000
batch sizes and 4 step sizes, and hence use the same setting
batch_size = 1000 and step_size = 4 on four datasets for
simplicity.

D. Results

This task is to classify the node in heterogeneous graph
into one type that belongs to. Using accuracy as a protocol
to evaluate the performance of classification task, our model
has achieved the best performance comparing all baselines.
In AIFB, MUTAG, BGS and AM datasets, our model im-
proves upon R-GCN by a margin of 2.78%, 2.94%, 10.34%
and 1.01%, respectively. Without incorporating coarsened line
graph, RSHN_ ¢, ranks after RSHN. Compared with RSHN,
the accuracy of classification of RSHN_; drops by 3.61%
on average. The results demonstrate the effectiveness of the
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coarsened line graph by excavating latent associated features
between different types of edges. The specific statistics are
shown in Tabel II. Test performances of shallow baselines
Feat, WL and RDF2Vec are reported on the train/test splits
from [27].

TABLE II: Classification accuracy comparison (%).

Method AIFB MUTAG BGS AM

Feat 55.55 77.94 7241 66.66
WL 80.55 80.88 86.20 87.37
RDF2Vec  88.88 67.20 87.24 88.33
GAT 91.67 72.06 66.32  67.30
R-GCN 94.44 79.41 82.76  89.39
RSHN-_c; 94.44 77.94 89.66 86.58
RSHN 97.22 82.35 93.10 90.40

V. CONCLUSIONS

In this paper we studied graph embedding for heterogeneous
networks with many types of edge connections. We argued that
existing methods mainly dissect heterogeneous networks as
multiple homogeneous networks, failing to capture rich seman-
tic interactions/relations between different types of edges. Ac-
cordingly, we proposed relation structure-aware heterogeneous
graph neural network (RSHN), which first builds edge-centric
coarsened line graph to excavate and exploit edge relations
highly correlated to each other. By coupling different types
of edges, H-GNN further takes into account hidden relation
structural information and enables implicit message propagat-
ing between nodes for effective node and edge embedding
learning. Experiments confirm that RSHN significantly out-
performs all baselines for node classification in heterogeneous
networks with rich node types and relationships.
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