Session: Short - Graph Neural Networks

CIKM ’19, November 3-7, 2019, Beijing, China

Long-short Distance Aggregation Networks for Positive
Unlabeled Graph Learning

Man Wu Shirui Pan Lan Du
Florida Atlantic University Monash University Monash University
mwu2019@fau.edu shirui.pan@monash.edu lan.du@monash.edu
Ivor Tsang Xingquan Zhu Bo Du
University of Technology Sydney Florida Atlantic University Wuhan University
ivor.tsang@uts.edu.au xzhu3@fau.edu remoteking@whu.edu.cn

ABSTRACT

Graph neural nets are emerging tools to represent network nodes
for classification. However, existing approaches typically suffer
from two limitations: (1) they only aggregate information from
short distance (e.g., 1-hop neighbors) each round and fail to cap-
ture long distance relationship in graphs; (2) they require users to
label data from several classes to facilitate the learning of discrim-
inative models; whereas in reality, users may only provide labels
of a small number of nodes in a single class. To overcome these
limitations, this paper presents a novel long-short distance aggrega-
tion networks (LSDAN) for positive unlabeled (PU) graph learning.
Our theme is to generate multiple graphs at different distances
based on the adjacency matrix, and further develop a long-short
distance attention model for these graphs. The short-distance at-
tention mechanism is used to capture the importance of neighbor
nodes to a target node. The long-distance attention mechanism
is used to capture the propagation of information within a local-
ized area of each node and help model weights of different graphs
for node representation learning. A non-negative risk estimator is
further employed, to aggregate long- short-distance networks, for
PU learning using back-propagated loss modeling. Experiments on
real-world datasets validate the effectiveness of our approach.
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1 INTRODUCTION

Graphs are fundamental tools to model inter-dependence among
data in many applications including social media networks, cita-
tion networks, and protein-protein interaction networks. However,
graph data is naturally sparse and highly complicated, which makes
the node classification task profoundly difficult.

To enable node classification in graphs, recent approaches have
proposed to focus on learning a new representation which embeds
both structure and node content information in a compact and low
dimensional space. The graph neural network approaches, graph
convolutional networks (GCNs) [2] in particular, have achieved
impressive performance in recent years. The basic idea of GCNs is to
develop a convolutional layer which aggregates the attributes from
neighbor nodes to a target node iteratively to guide the classification
task in an attributed graph. In GCNs [8], the aggregation is defined
as the average or summarization of neighboring feature information,
which considers the importance of each neighbor equally in the
learning process. Recently, the graph attention network (GAT) is
proposed to learn the weights of different neighbors for information
aggregation [7]. However, one major limitation of GAT is that they
only exploit the direct (1-hop) neighbor nodes for attention learning.
Long distance relationship is largely ignored in each iteration. In
practice, long distance relationship is vitally important. For instance,
in a real social network, each individual is a member of several
communities and can be influenced by her/his neighborhoods with
different distances around her/him, ranging from short distance
relationship (e.g. families, friends), to long distance relationship
(e.g. society, nation states). Every single relationship is usually
sparse and biased, thus long distance relationship should be also
considered to obtain a comprehensive representation of the node
for graph learning collaboratively.

Another drawback of existing graph neural nets is that they
require users to label data from several classes to facilitate the
classification task. In reality, users may only provide the labels
of interest in a single class for a small number of nodes. Taking
Internet surfing as an example, the Internet is a huge graph, in
which users many only bookmark pages they are interested in
(i.e. the positive data), ignoring a large amount of other pages
(i.e. the unlabeled data). Accurately recommending pages or news
interesting to users, according to their bookmarks, is a positive
unlabeled learning problem. In this paper, we study the problem of
positive unlabeled graph learning, where only a small portion of
positive nodes are labeled. Considering the GCNs as the learning
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framework, as popularly used in previous works [2], we summarize
the challenges as follows,

e Challenge 1: How can we capture graph structure informa-
tion with long-distance neighbors? Existing graph neural
networks typical only utilize short-distance information in
a single layer.

o Challenge 2: How to design an end to end framework for
positive unlabeled graph learning? Current GCNs require
class labels from several classes to learn a model.

To overcome the above challenges, we propose a novel long-
short distance aggregation network (LSDAN) for positive unlabeled
(PU) learning for graphs. For Challenge 1, we first generate multiple
graphs in different hops based on the adjacency matrix, then de-
velop a long-short distance attention model for these graphs. The
long-short distance attention model employs a short-distance atten-
tion mechanism to capture the importance of each neighbor node
to a target node, and utilizes a long-distance attention approach to
model the weights of the different graph with different neighbor
nodes for the representation learning. For Challenge 2, we employ a
non-negative risk estimator for PU learning and the expected loss is
back-propagated for model learning. Experimental results on real
datasets validate the design and effectiveness of our approach. Our
contributions can be summarized below:

e We first study the problem of positive unlabeled graph learn-
ing for network node classification, and present a new deep
learning model LSDAN as a solution.

e We propose a novel attention network for graph data, which
captures node significance in both short-distance and long-
distance graphs, to model the long-short distance neighbor-
ing information in a single layer.

e Experiments on benchmark graph datasets demonstrate that
our approach outperforms baseline methods.

2 PROBLEM STATEMENT

Graph: A graph is represented as G = (V,E,X,Y), where V =
{vi}i=1,..., N is a vertex set representing the nodes in a graph, and
ej,j = (vi,vj) € E is an edge indicating the relationship between
two nodes. The topological structure of graph G can be represented
by an adjacency matrix A, where A; j = 1if (v;,v;) € E; otherwise
Ajj = 0.x; € X indicates content features associated with each
node v;. y; € Y = {+1,—-1} is the ground-truth class label for
each node, where if a node v; is of interest of a user, then y; = 1
otherwise y; = —1.

Positive Unlabeled Graph Learning (PUGL): Assume V = P J U,

where P are the labeled nodes (Yv; € P, y; = 1) and U are unla-
beled nodes. Given a graph G = (V,E, X, Y), Positive Unlabeled
Graph Learning (PUGL) aims to learn a binary classifier model,
f : (A X;P) — Y, to predict the class labels for the unlabeled nodes
U. In this paper, we propose the first deep learning model for PUGL.

3 LONG-SHORT DISTANCE AGGREGATION
NETWORKS FOR PU GRAPH LEARNING
In this section, we will present our proposed LSDAN algorithm

for PU Graph learning. Our learning objectives are to (1) capture
the long-short distance relationship between nodes, and (2) enable
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PU learning in a graph. We will first present our long-short dis-
tance attention network which exploits both short-distance and
long-distance attention for long-short distance relationship model-
ing. Then we present our unbiased risk estimator for PU learning.
Our framework, as shown in Figure 1, mainly consists of three
components.

e Short-Distance Attention. For the input X and an adja-
cent matrix A, a short-distance self attention mechanism is
applied to learn a representation for each node.
Long-short Distance Attention. Given an input graph G,
we will first generate multi-hop graph representation based
on adjacent matrix Al A% ... AK The matrix Ak captures
the neighbors in the k-th hop of the graph G. We develop a
long-distance attention approach to automatically determine
the weights of different graphs Al A2 ... ,AK .

Unbiased PU Learning. Based on our long-short distance
attention model, we develop a deep architecture for learning
the graph representation of each node. Then a non-negative
risk estimator is used to estimate the classification loss. The
loss is further back-propagated to the learning progress in
an end to end learning framework.

3.1

DEFINITION 1. (SHORT-DISTANCE). Short-distance is defined as the
distance from direct (1-hop) neighbor nodes to a target node.

The (normalized) adjacency matrix A characterizes the first-order
proximity to model the direct relationship between vertices.
DEFINITION 2. (LONG-DISTANCE). Long-distance is defined as the
distances from k-hop neighbors (k > 1) to a target node.

Given an input graph G, we will first generate multi-hop graph

Short-Distance vs. Long-Distance

representation based on adjacent matrix AL A% AK The matrix
Ak = A. A... Ais the matrix power of A, i.e., matrix product of k
[ ———

k
copies of A, which captures the neighbors in the k-th hop of the
graph G. Specifically, A’l.c ;>0 indicates there are some path from
v; to v; through extract k-hop.

3.2 Long-short Distance Attention

Short-Distance Attention Given the input X and an adjacent
matrix A, a short-distance self attention mechanism is applied to
learn a representation for each node, which can better capture the
node features of the whole graph with short distance. Specifically,

we will have
hi=g( Z i Wxj),
jeI‘l.

ey

where g is a non-linear activation function, [ is the short-distance
neighbors for node v;, and «; ; is weight value for each neighbor
v;j. To compute a; j, a shared linear transformation is applied to
each node through multiply a shared weight matrix W € RP*M in
the initial step. Then «; j is computed by an attention function Att:
RP xRP - R

ai,j = sof tmax (Att(Wx;, Wx;)), 2)

which measures the importance of vertex j to vertex i. Here the at-

tention mechanism Att is instantiated with a dot product (parametrized

by a weight vector r € R?P) and a LeakyReLU nonlinearity.
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Figure 1: The overall architecture of the proposed long-short distance aggregation network (LSDAN) model. Upper panel:
LSDAN uses higher order adjacency matrices to capture long distance relationship w.r.t. a target node. Lower panel: LSDAN
uses higher-order network topology structures and node content (X) to progressively learn a long-short distance attention
model, whose outputs are integrated into a learning objective function to achieve optimized PU graph learning outcomes.

Long-short Distance Attention We aggregate embedding from
different graphs to produce a unified representation. As neighbors
from different distances contribute differently to learning the repre-
sentation, we propose an Long-Distance Attention scheme to capture
the significance of each graph.

Specially, for each Ak ke {1,---,K}, we will perform the short-
distance self attention to learn the embedding H k for each node.
We then use the original input X as the key of the attention mecha-
nism, and perform attention on each graph output H¥, an attention
coefficient cf is computed by an attention function f:

cf = f(hi.Jxp), )
where ] is a shared weight matrix to make the input xlk of node

i have the same dimension with the output hf. Then we further

normalize the weight cf with a softmax layer.
exp (c;YC )
o €xp (czk )

After implementing the attention, we can get the final output
O={o1, - ,on}.0; € RP:

K
0; = Z clkhf.
k=1

The short-distance attention and long-distance attention com-
ponents are integrated into a unified layer, Long-short Distance
Aggregation Network Layer (LSDAN), which serves as a building
block to construct a deep graph neural network.

©

i

®)

3.3 Positive and Unlabeled Graph Learning

Using above long-short distance aggregation network, we obtain
the new representation ol = {of, e ,oLN}, o{.“ € R? in the final
layer. To facilitate PU learning, we minimize a non-negative risk.
We denote 7, = p(Y = +1) be the class-prior probability, r, =
p(Y = —1) = 1 - 7. mp is assumed to known throughout the paper;
it can be estimated from positive (P) and Unlabel (U) data [1]. Let
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L : Rx {+1} — R be a loss function, then £(y’,y) measures
the predicting loss for an output y” when the ground truth is y.
Let s(o) be a sigmoid function to map the input o in the range
(0,1) . Motivated by Kiryo et al. [3], we employ a non-negative risk
estimator ﬁpu (s), given as follows,

Rpu(s) = IIPR;(S) + max {0, R (s) - npf?;,(s)} .

where R (s) = (1/np) £1%, L(s(0}), +1) and
ﬁ;(s) = (1/np) Z?fl L(s(o‘f), —1) are the approximated risks for
positive samples, and ﬁ; (s) = (1/ny) Z?:l‘l L(s(0%),~1) is the risk
for negative samples.

By minimising the risk via Eq.(6), our model can be learned in
an end to end manner. The expected loss/risk is back-propagated
to guide the representation learning for better PU graph learning.

©)

4 EXPERIMENTS

Datasets We employ two widely used citation network datasets
(Citeseer, DBLP) for node classification [5, 9]. As these datasets
have multiple classes, we select one class as P (positive) class, and
all the other classes are regarded as N (negative) class, through
which we convert the classification problem on each dataset into a
binary classification problem.

Baselines To the best of our knowledge, there is no study on pos-
itive unlabeled graph learning. To make a fair comparison and
evaluate the effectiveness of our design, we select the following
baselines with necessary adaption.

e OC-SVM [6] is the One-class SVM algorithm which uses
only positive examples from the node content for learning.

e Roc-SVM [4] uses two step strategies to build a classifier
from the node content.

e FS-PU: Full-connected self-attention network PU (FS-PU)
uses the node features with a self-attention network.

e F-PU: Full-connected PU (FS-PU) only uses the node fea-
tures with a multiple layer perceptron (MLP).
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o GCN uses the graph convolutional network [2] to integrate
structure and content.
e GAT uses the graph attention nets [7] to exploit structure
and content.
Note that we have integrated the non-negative risk estimator into
GCN-PU, GAT-PU, FS-PU, F-PU to faciliate PU learning.

Experimental Setup For fairness of comparison, we randomly
split each PN dataset into the positive and unlabeled set. Follow-
ing Kiryo et al. [3], we sample Npy (the total number of positive
nodes) nodes from N as negative class. Then we select p = Npn
nodes from P as the training set, the rest positive nodes and negative
nodes are used as the unlabeled set (p is the percentage of training
(positive) nodes). We conduct 10 trials of randomly splitting, and
report the average F1 score as final experimental results. All mod-
els were implemented in TensorFlow. For the proposed LSDAN, the
number hops K is set to 4.

Experimental Results The results of our evaluation experiments
are presented in Table 1, Table 2. From these results, we have the
following observations:

(1) The OC-SVM and Roc-SVM obtain worse performance than
other methods. This is because the traditional shallow meth-
ods do not capture the graph structure information. The GAT
obtains better performance than F-PU and FS-PU, which
shows that it is useful to learn the node representation by
introducing the relationships of nodes in PU learning.

(3) The proposed LSDAN outperforms GAT which only captures
short-distance information. The results show the effective-
ness of our algorithm in exploiting multi-hop neighbors to
capture long-short distance relationship in graph learning.

(4) The results also show that LSDAN consistently outperforms
all the other baselines on all three datasets with different
training ratios.It demonstrates that long-short distance ag-
gregation network together with the non-negative risk esti-
mator can better capture data distribution and the underlying
relationship among data by integrating the feature informa-
tion and graph information into a unified framework.

Parameter Analysis

Embedding Dimensions D: We vary D with %p = 2, L = 2 and report
the results on the two datasets in Fig. 2(a). We can find that the
F1 score shows an apparent increase from 8 to 64 in the DBLP,
while it decreases slightly in the 32nd dimension in the Citeseer.
When the number of embedding dimensions continuously increases,
the performance starts to remain stable. This is intuitive as more
dimensions can encode more useful information from data.
Distance at K-Hops : We also report the F1 scores over different
choices of K with %p = 2 and L = 2 in Fig. 2(b). We can observe that
the setting K = 2 has a significant improvement over the setting K
=1 on two datasets. This confirms that the long distance relation
is really important to better capture graph structure information,
and multiple graphs can learn complementary local information.
When K is large enough, we can find that learned K-hop relational
information becomes weak and shifts towards a steady result.

5 CONCLUSIONS

In this paper, we propose a novel long-short distance aggregation
network (LSDAN) for positive unlabeled graph learning. We argued
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Table 1: The F1 score on Citeseer.

%p | OC-SVM | Roc-SVM | F-PU | FS-PU | GCN | GAT | LSDAN
1 0.023 0.018 0.684 0.682 0.433 | 0.775 0.786
2 0.038 0.057 0.626 0.695 0.564 | 0.775 0.804
3 0.054 0.079 0.710 0.705 0.623 | 0.796 0.813
4 0.090 0.115 0.734 0.725 0.721 | 0.814 0.828
Table 2: The F1 score on DBLP.
%p | OC-SVM | Roc-SVM | F-PU | FS-PU | GCN | GAT | LSDAN
1 0.445 0.056 0.650 0.677 0.419 | 0.767 0.808
2 0.543 0.144 0.521 0.695 0.599 | 0.807 0.833
3 0.580 0.234 0.710 0.715 0.685 | 0.824 0.824
4 0.601 0.314 0.597 0.725 0.734 | 0.836 0.849
T om M 2 o | & %tlz

o6 o2

Dimension
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Figure 2: Parameter analysis on D and K-hops

that existing algorithms only exploit 1-hop neighbors to aggregate
information to learn the representation for nodes, which largely
overlook the long-distance relationship. To this end, we proposed
a long-short distance aggregation network to jointly exploit the
short-distance and long-short attention from multiple graphs (rep-
resentation of graph). We further employed a novel non-negative
risk estimator for positive unlabeled graph learning in an end to end
framework. The results on real-world graph datasets demonstrate
the effectiveness of our algorithm.
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