

An experimental investigation of how intraspecific competition and phenotypic plasticity can promote the evolution of novel, complex phenotypes

Journal:	<i>Biological Journal of the Linnean Society</i>
Manuscript ID	Draft
Manuscript Type:	Original article
Date Submitted by the Author:	n/a
Complete List of Authors:	Levis, Nicholas; University of North Carolina at Chapel Hill, Biology Fuller, Carly; University of North Carolina at Chapel Hill, Biology Pfennig, DW; University of North Carolina at Chapel Hill, Biology
Keywords:	competition, diversification, novelty, phenotypic plasticity, plasticity-led evolution

SCHOLARONE™
Manuscripts

1
2
3 1 An experimental investigation of how intraspecific competition and phenotypic
4
5 2 plasticity can promote the evolution of novel, complex phenotypes
6
7 3
8
9
10
11 4 Nicholas A. Levis*, Carly G. Fuller, and David W. Pfennig,
12
13 5
14
15 6 Department of Biology, CB#3280, University of North Carolina, Chapel Hill, NC, USA
16
17 7 *Corresponding authors: nicholasalevis@gmail.com
18
19 8
20
21 9 **Running title:** Competition and plasticity promote novelty
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1

2

3

4 10 **Abstract**

5 11 Intraspecific competition has long been considered a key driver of evolutionary diversification,
6 12 but whether it can also promote evolutionary innovation is less clear. We examined the interplay
7 13 between competition and phenotypic plasticity in fueling the origins of a novel, complex
8 14 phenotype—a distinctive carnivore morph found in spadefoot toad tadpoles (genus *Spea*) that
9 15 specializes on fairy shrimp. We specifically sought to explore the possible origins of this
10 16 phenotype by providing shrimp to *Scaphiopus holbrookii* tadpoles (the sister genus to *Spea* that
11 17 does not produce carnivores) while subjecting them to competition for their standard diet of
12 18 detritus. We found that: 1) some individuals used behavioral and morphological plasticity to
13 19 expand their diet to include shrimp; 2) there was heritable variation in this plasticity; and 3)
20 21 individuals received a growth and development benefit by eating shrimp. Thus, novel resource
22 23 use can arise via plasticity as an adaptive response to intraspecific competition. More generally,
24 25 our results show how competition and plasticity may interact to pave the way for the evolution of
26 27 complex, novel phenotypes, such as the distinctive carnivore morph in present-day *Spea*.

28

29 25 **Keywords:** Competition, diversification, novelty, phenotypic plasticity, plasticity-led evolution

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Introduction

Competition's contribution to evolutionary diversification is widely accepted. For example, niche-width expansion, arising as an adaptive response to intraspecific competition, is well supported theoretically (Van Valen 1965; MacArthur and Wilson 1967; MacArthur 1972; Roughgarden 1972) and empirically (e.g., Robinson et al. 1993; Robinson and Wilson 1994; Swanson et al. 2003). In contrast to this widespread acceptance of competition's role in diversification, its role in evolutionary innovation is not generally appreciated. Yet, by depressing the fitness of individuals such that some would do better by seeking alternative resources that are less in demand—or even previously avoided—*intraspecific competition* might favor novel phenotypes that exploit unique resources (reviewed in Pfennig and Pfennig 2012). Such a process has been demonstrated experimentally in the lab (e.g., Rozen and Lenski 2000; Bolnick 2001; Friesen et al. 2004; Bono et al. 2013; Ferguson et al. 2013) and might explain the evolution of novel resource-use traits in natural populations, including the novel trophic morphology of soapberry bugs, *Jadera haematoloma* (Carroll et al. 1998), the novel cecal valve of Italian wall lizards, *Podarcis sicula* (Herrel et al. 2008), and the novel head shape of tiger snakes, *Notechis scutatus* (Aubret and Shine 2009).

Phenotypic plasticity may play a crucial role in the early stages of such competitively mediated niche-width expansion. For example, the individuals of many species can facultatively adjust their resource-use (and associated phenotypes) depending on the intensity of competition and the availability of underutilized resources (reviewed in Pfennig and Pfennig 2012). Essentially, such plasticity enables individuals to shift their morphology, physiology, and/or behavior *in real time* from resources that are in high demand to those that are less in demand (Svanbäck and Bolnick 2007; Svanbäck et al. 2008).

1
2
3 51 Niche-width expansion arising via plasticity might even pave the way for the evolution of
4 52 novel resource-use traits. Indeed, such traits might often evolve from an initial phase in which
5 53 they arise through plasticity to one in which these traits become genetically fixed in a population.
6
7 54 This scenario is thought to play a key role in mediating an adaptive evolutionary response to
8 55 competition between species via character displacement (Pfennig and Pfennig 2012, pp. 94–102),
9 56 and it may similarly explain how novel complex traits arise as an adaptive response to
10 57 competition *within* species via niche-width expansion. Such an evolutionary pathway seems
11 58 plausible, given that intraspecific competition is more common and frequently stronger than
12 59 interspecific competition (Gurevitch et al. 1992; Dybzinski and Tilman 2009) and that niche-
13 60 width expansion is the intraspecific analog of character displacement (West-Eberhard 2003, p.
14 61 397; Dayan and Simberloff 2005; Pfennig and Pfennig 2010). Yet, few studies have empirically
15 62 evaluated whether intraspecific competition can combine with plasticity to promote the evolution
16 63 of novel features involved in resource use.

17
18 64 We sought to examine the interplay between intraspecific competition and plasticity in
19 65 evolutionary innovation. Specifically, we asked if: 1) competition and plasticity can combine to
20 66 promote niche-width expansion, and 2) these two processes might have contributed to an
21 67 evolutionary sequence leading to evolutionary innovation. To do so, we focused on the possible
22 68 origins of a novel, complex phenotype found in certain amphibians.

23
24 69 Spadefoot toad tadpoles in the genus *Spea*, like most anurans (Wells 2007), normally develop
25 70 as an ‘omnivore’ morph, characterized by small jaw muscles, smooth mouthparts, many denticle
26 71 rows, and a long gut. This morph is a dietary generalist that eats detritus, algae, and small
27 72 crustaceans. However, if *Spea* tadpoles consume fairy shrimp or other tadpoles (Pfennig 1990;
28 73 Levis et al. 2015), some proportion of individuals facultatively develop (during ontogeny in a
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 74 single animal's lifetime) as an alternative 'carnivore' morph (Figure 1a). Carnivores differ from
4
5 omnivores in behavior (carnivores are more active); development (carnivores are quicker to
6
7 undergo metamorphosis; Pfennig 1992); physiology (carnivores have larger livers; de la Serna
8
9 Buzón 2019); and morphology (carnivores have large jaw muscles, notched mouthparts, few
10
11 denticle rows, and a short gut; Pfennig 1990; Pfennig 1992; Pfennig and Murphy 2002). The
12
13 evolution of this carnivore morph facilitated the exploitation of rapidly drying ponds with an
14
15 abundance of fairy shrimp and other tadpoles (Pfennig 1992; Pfennig et al. 2006).

16
17 81 The carnivore morph is a derived trait restricted to *Spea* (Ledón-Rettig et al. 2008) whose
18
19 evolutionary origins have recently been the focus of intense scrutiny (reviewed in Levis and
20
21 Pfennig 2019b). Previous work has supported the hypothesis that this evolutionary novelty arose
22
23 when pre-existing plasticity was expressed in an ancestral lineage, and later refined by selection
24
25 into an adaptive phenotype in derived lineages (Ledón-Rettig et al. 2008; Ledón-Rettig et al.
26
27 2010; Levis et al. 2018; Levis and Pfennig 2019c). Earlier studies have also demonstrated that
28
29 some of the constituent morphological and molecular components of the carnivore phenotype
30
31 exhibit plasticity in response to consumption of a shrimp diet in the genus sister to *Spea* (Ledón-
32
33 Rettig et al. 2008; Ledón-Rettig et al. 2010; Levis et al. 2018). Specifically, *Scaphiopus couchii*
34
35 39 (a species that does not produce the carnivore morph and is a member of the sister genus to *Spea*)
40
41 45 developed shorter guts when fed shrimp (a novel diet for this species, but the normal diet of *Spea*
42
43 48 carnivores) than when fed its typical detritus diet (a short gut is a component trait of the
44
45 50 carnivore morph found in *Spea*). Further evidence from *Sc. couchii* also suggested that cryptic
46
47 54 genetic variation in morphological components of the carnivore phenotype was uncovered by
48
49 58 shrimp consumption (Ledón-Rettig et al. 2008; Ledón-Rettig et al. 2010). Similarly, a different
50
51 59 outgroup species *Sc. holbrookii* (also in the sister genus to *Spea*) exhibited diet-dependent
52
53 60

1
2
3 97 plasticity in several component traits that characterize the carnivore morph in *Spea*, including gut
4 length (Figure 1b), denticle rows, and mouthparts (Levis et al. 2018). Despite some evidence of
5 trait plasticity in *Scaphiopus* tadpoles, this plasticity is not necessarily coordinated (some traits
6 show plasticity and others do not) nor is it fully adaptive (plasticity in some traits is in the
7 maladaptive direction; Levis et al. 2018). Indeed, the induced form found in *Scaphiopus* is a
8 rudimentary version of the carnivore morph found in *Spea* (Figure 1c).
9
10
11
12
13
14
15
16

17 103 In this study, we further explored diet dependent plasticity in *Sc. holbrookii* to clarify the
18 possible ecological circumstances that may have started *Spea*'s ancestor down the evolutionary
19 trajectory that ultimately led to the novel carnivore morph. Because the absence of the carnivore
20 morph represents the 'ancestral' condition, we used this species to help inform possible features
21 and responses of the last common ancestor of *Scaphiopus* and *Spea*, before the evolution of the
22 carnivore morph (for further justification—and additional examples—of this general approach,
23 see Badyaev and Foresman 2000; Gomez-Mestre and Buchholz 2006; Rajakumar et al. 2012;
24 Schlichting and Wund 2014; Standen et al. 2014; Allf et al. 2016; Levis and Pfennig 2016; Jones
25 et al. 2017; Casasa and Moczek 2018). Moreover, although tadpoles of *Sc. holbrookii* (like
26 tadpoles of most species of anurans) feed mostly on plankton and detritus (Wells 2007), they will
27 opportunistically consume macroinvertebrates (such as fairy shrimp) when conspecific densities
28 are high and competition for their standard resources is severe (McDiarmid and Altig 1999;
29 Levis and Pfennig personal observation). We hypothesized that if we found evidence of
30 selectable variation in plasticity in *Sc. holbrookii*, then the common ancestor of both genera
31 (before the evolution of the carnivore morph) may have possessed such variation as well.
32
33 118 Moreover, if we found that the expression of this plasticity increased growth during resource
34 competition, then this might indicate that competitively mediated selection, acting on heritable
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 120 variation in the expression of plasticity, helped fuel the adaptive refinement of the carnivore
4
5 121 phenotype, from a rudimentary version (such as that in *Scaphiopus*; Figure 1b) to the fully
6
7 122 functional, complex carnivore morph in *Spea* (Figure 1a).
8
9
10 123
11
12 124

Methods

General approach

13 125
14
15 126 We examined the interplay between competition and phenotypic plasticity in fueling the origins
16
17 127 of a novel, complex phenotype—the distinctive carnivore morph found in *Spea* that specializes
18
19 128 on fairy shrimp. Because previous studies supported the idea that this evolutionary novelty arose
20
21 129 via plasticity (see **Introduction**), we designed two experiments to investigate the initial steps in
22
23 130 this scenario by using tadpoles of *Sc. holbrookii*.
24
25
26
27

28 131 To begin, we gauged the amount of phenotypic plasticity and phenotypic variation
29
30 132 produced by *Sc. holbrookii* tadpoles when reared on live shrimp (the novel diet of the carnivore
31
32 133 morph) versus their standard diet of detritus (the standard diet of most anuran tadpoles). As noted
33
34 134 in the **Introduction**, earlier studies found that cryptic genetic variation was uncovered by shrimp
35
36 135 consumption in *Sc. couchii* (Ledón-Rettig et al. 2008; Ledón-Rettig et al. 2010), but this species
37
38 136 may have secondarily become a detritus specialist and become less informative of the common
39
40 137 ancestor with *Spea* (Ledón-Rettig and Pfennig 2012). Therefore, characterization of additional
41
42 138 species is needed to improve our understanding of possible attributes of the last common
43
44 139 ancestor with *Spea*. Next, we determined if there was a growth and development benefit to
45
46 140 consuming shrimp when competition for the standard resource (detritus) was severe.
47
48 141 Presumably, because most individuals would be utilizing the detritus resource, those individuals
49
50 142 that were able to switch to the underutilized shrimp resource (which is also more nutritious than
51
52
53
54
55
56
57
58
59
60

143 detritus; Pfennig 2000) would grow more and develop faster. Thus, we expected that individuals
144 exhibiting behavioral plasticity in resource use would gain a fitness advantage.

145 Based on our hypothesis that competition and plasticity can combine to promote niche-
146 width expansion, and that these two processes can jumpstart the evolutionary sequence leading to
147 evolutionary innovation (in this case, the carnivore morph), we expected to find: 1) the existence
148 of variation in trait plasticity among sibships, 2) greater trait variation on a live shrimp diet (the
149 novel resource) than on a detritus diet (the ancestral resource), and 3) that individuals that
150 consumed more shrimp during competition had greater growth and development. More
151 generally, we predicted that variation in traits whose plasticity is adaptive in *Spea* (the
152 polyphenic lineage), will also have adaptive value on alternative resources and during
153 competition in *Scaphiopus* (the monomorphic lineage).

154

31 155 *Diet-dependent variation*

33 156 We bred 10 pairs of *Sc. holbrookii* that were collected from Hoffman, North Carolina and that
34
35 157 had been maintained in a laboratory colony at the University of North Carolina. We injected
36
37 158 adults with 0.04 ml luteinizing hormone-releasing hormone (Sigma L-7134) at a concentration of
38
39 159 0.01 μ g/ μ l to induce breeding. We then left pairs overnight to breed, removed adults 24 h after
40
41 160 injection, and kept eggs in separate nursery tanks until hatching. Three days after hatching, we
42
43 161 placed thirty tadpoles from each sibship individually into opaque 88mL cups (56mm diameter x
44
45 162 55mm tall). Half of the tadpoles from each sibship were fed plant-based fish food (Ken's
46
47 163 Premium Vegetable Flake) that simulates the organic detritus upon which these tadpoles
48
49 164 normally eat in the wild. To accommodate growth over time, their feeding regime was 10mg of
50
51 165 detritus on the first day, 10mg on the third day, 20mg on the fifth day, 20mg on the seventh day,

1
2
3 166 10mg on the eighth day, 20mg on the ninth day, and 20mg on the eleventh day. The other half of
4
5 167 the tadpoles were fed live brine shrimp (*Artemia* sp.) that simulate the fairy shrimp
6
7 168 (*Thamnocephalus* sp. and *Streptocephalus* sp.) that *Spea* carnivores eat in nature (Pfennig et al.
8
9 169 2006). The feeding regime of this group consisted of 1mL of concentrated brine shrimp nauplii
10
11 170 on the first day, 4mL of concentrated brine shrimp nauplii on the second day, 30 small brine
12
13 171 shrimp on the third day, 40 small brine shrimp on the fourth, fifth, and sixth days, 60 small brine
14
15 172 shrimp on the seventh day, 40 adult brine shrimp on the eighth day, 60 adult brine shrimp on the
16
17 173 ninth day, and 40 adult brine shrimp on the tenth and eleventh days. Water in all tanks was
18
19 174 changed every other day and any uneaten carcasses of shrimp were removed before each feeding.
20
21 175 We ended this experiment on the twelfth day by euthanizing tadpoles in a 0.8% aqueous solution
22
23 176 of tricane methanesulfonate (MS-222) and preserving them in 95% ethanol.
24
25
26
27

28 177 We measured the following four morphological traits (Table S1; Pfennig and Murphy
29
30 178 2002) that are diagnostic of morphotype in *Spea*: the width of the jaw muscle (orbitohyoideus
31
32 179 muscle; OH), the number of denticle rows (DR), the number of gut coils (GC), and the shape of
33
34 180 the mouthparts (MP). We also measured body size (snout-vent length [SVL]; body size serve as
35
36 181 a reliable fitness proxy in spadefoots: larval size predicts juvenile survival and adult reproductive
37
38 182 success; Pfennig et al. 2007; Martin and Pfennig 2009). Measurements were done blind with
39
40 183 respect to diet treatment. We standardized OH for body size (SVL) by regressing log OH on log
41
42 184 SVL (Pfennig et al. 2007) and using the residuals from the regression as our measure for OH
43
44 185 width. For each sibship, we measured plasticity as the slope of the line between diet treatments
45
46 186 (i.e., shrimp – detritus) for each morphological trait. Thus, plasticity was determined at the
47
48 187 sibship-level, and these levels of sibship plasticity are included as explanatory variables in the
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 188 competition experiment below (see *Growth and development benefits of shrimp consumption*
4
5 189 *during competition*).

6
7 190 To evaluate if there was variation among sibships in the plastic responses of their trophic
8 traits (i.e., if there was selectable variation for plasticity *per se*), we performed a full factorial
9 191 Type III sum of squares ANOVA (with the function ‘Anova’ in the R package ‘car’). Each
10 192 trophic trait was used as a response variable and sibship and diet were explanatory variables.
11
12 193 Finding a significant interaction between sibship and diet would indicate variation in trait
13
14 194 plasticity among sibships. Finding that only sibship or diet was significantly explanatory would
15 indicate variation in mean trait values among sibships or trait means across diets (with all
16 195 sibships showing a similar response), respectively.

17
18 198 To test for the uncovering of cryptic genetic variation, we followed Ledon-Rettig et al.
19
20 199 (2010) and calculated the environment-specific broad-sense heritability (H^2) of each trait. For
21
22 200 each diet treatment, we calculated among-sibship (genetic) variances of traits using linear mixed
23
24 201 effects models including sibship as a random effect. We then calculated H^2 according to Roff
25
26 202 (1997):

$$H^2 = \frac{2V_{AS}}{V_T}$$

27
28 203 where V_{AS} is the variance among sibships and V_T is the total variance. We performed 5000
29
30 204 bootstrap replicates to obtain a distribution of H^2 for each diet and then compared these
31
32 205 distributions with Welch’s two sample t-test. Finding that the H^2 is significantly greater on
33
34 206 shrimp than on detritus, would provide evidence of cryptic genetic variation being uncovered on
35
36 207 the novel diet (Ledón-Rettig et al. 2010; Ledón-Rettig et al. 2014). This approach cannot rule out
37
38 208 the contribution of maternal effects, which can influence carnivore development in some, but not
39
40 209 all, *Spea* populations (Pfennig and Martin 2009; Pfennig and Martin 2010). Thus, while our
41
42 210

1
2
3 211 measure of heritability captures additive genetic variation, we cannot say with certainty that all
4
5 212 of the variation we see is indeed additive genetic variation. We also compared the variance in
6
7 213 each of the morphological traits across diet treatments using Levene's test via the function
8
9 214 `leveneTest` in the 'car' package. All analyses were carried out in R (R core team 2019).

10
11 215 Finally, we were interested in which diets, traits, or trait plasticities best predicted growth
12
13 216 (body size; SVL) and development (Gosner developmental stage) under these 'ideal' conditions
14
15 217 (i.e., no competition and an abundance of food). To test this, we combined these two variables
16
17 218 (SVL and Gosner developmental stage) into a single metric using a principal component analysis
18
19 219 (the function 'prcomp') in R (developmental rate, like body size [see above], serves as a reliable
20
220 fitness proxy: spadefoots experience strong directional selection for fast development in their
21
221 rapidly drying ponds; Pfennig et al. 2007; Martin and Pfennig 2009). Based on this proxy fitness
22
23 222 measure, individuals that were larger and more developmentally advanced were considered to
24
25 223 have a selective advantage. We then used a linear mixed effects model and a type II sum of
26
27 224 squares ANOVA and Wald chi-square tests (with the function 'Anova' in the R package 'car') to
28
29 225 determine the ability of morphological traits, trait plasticities, and diet to predict this proxy for
30
31 226 fitness. We included both an individual's trait value and its sibship-level trait plasticity because
32
33 227 one measure captures a realized developmental response (trait) and the other captures genetic
34
35 228 developmental potential (trait plasticity), and we wanted to see if these had different
36
37 229 relationships with fitness. Sibship was included as a random effect, and our fitness proxy was the
38
39 230 response variable.

40
41 231

42
43 232 *Growth and development benefits of shrimp consumption during competition*

1

2
3 233 Our second experiment evaluated whether individuals received a growth and development
4
5 234 benefit altering resource use patterns during intense competition. Specifically, we sought to
6
7 235 determine if *Sc. holbrookii* individuals that were experiencing competition for detritus gained an
8
9 236 advantage by switching to a diet of shrimp. We generated 30 ‘competition’ tanks by filling a
10
11 237 plastic box (18 × 13 × 8.5 cm each) with 1 L of water and placing ten sibling tadpoles in each
12
13 238 tank (using tadpoles created in the first experiment; see *Diet-dependent variation*). The resulting
14
15 239 density of tadpoles was five to 30 times higher than typical spadefoot tadpole competition
16
17 240 experiments (e.g., Pfennig and Murphy 2000; Pfennig and Rice 2007; Levis and Pfennig 2019c),
18
19 241 over an order of magnitude higher than densities in other manipulations of tadpole competition
20
21 242 (e.g., Woodward 1982; Relyea 2002; Jones et al. 2011), but comparable to (albeit slightly higher
22
23 243 than) the most extreme densities seen in natural spadefoot ponds (Newman 1987; Pfennig et al.
24
25 244 1991). Thus, competition for resources was strong.

26
27 245 We created five replicates of these competition tanks for each of six sibships (n = 300
28
29 246 tadpoles). Prior to their introduction in the competition tanks, all tadpoles within a sibship were
30
31 247 reared together under identical conditions for fifteen days and fed detritus only *ad libitum*. Thus,
32
33 248 within each replicate, tadpoles were all from similar rearing conditions and of similar levels of
34
35 249 plasticity (because they were from the same sibship), which allowed us to assess the benefits of
36
37 250 eating shrimp when individuals were subjected to intense competition for food (based on the fact
38
39 251 that all individuals were presumably similar in competitive ability). Every tank was fed both 160
40
41 252 live adult brine shrimp and 30 mg of detritus daily and water was changed and shrimp carcasses
42
43 253 were cleared prior to each feeding.

44
45 254 After seven days we ended the experiment and euthanized tadpoles in MS-222 and

46
47 255 preserving them in 95% ethanol. We then measured SVL, Gosner developmental stage, GC, DR,

1
2
3 256 MP, and OH of every tadpole as in the first experiment. To account for possible variation among
4 sibships in SVL or Gosner stage, we first took the residuals of each individual's SVL or Gosner
5 stage from its sibship mean. We then added this residual value to the grand mean among all
6 sibships to standardize sibship-level differences (Levis et al. 2016), and helped ensure that the
7 largest and most developed individuals were not simply a result of having come from sibships
8 that already tended to be the largest. In addition to these morphological traits, we assessed
9 individual behavioral plasticity by determining the amount of shrimp each tadpole consumed.
10
11 260 Specifically, we measured the $\delta^{15}\text{N}$ content of tail tissue from each individual following a
12 modified version of the protocol of Paull et al. (2012). Briefly, we removed the entire tail from
13 each tadpole, dried it in an oven at 65°C for 72 h. We then placed a sample of 1.0 mg of dried
14 tissue into a tin capsule (5 × 8 mm) and submitted the samples to the University of California at
15 Davis Stable Isotope Facility for analysis. To gauge what individuals reared in competition were
16 eating, we also measured the $\delta^{15}\text{N}$ content of pure detritus, pure brine shrimp, tadpoles fed an
17 exclusive diet of detritus, and tadpoles fed an exclusive diet of shrimp (n = 4 per group) as
18 controls. We interpreted greater consumption of shrimp as greater behavioral plasticity.
19
20

21 271 As above, we combined the sibship standardized SVL and standardized Gosner
22 developmental stage (Gosner 1960) of individuals into a single metric using a principal
23 component analysis (the function 'prcomp') in R (developmental rate, like body size [see above],
24 serves as a reliable fitness proxy: spadefoots experience strong directional selection for fast
25 development in their rapidly drying ponds; Pfennig et al. 2007; Martin and Pfennig 2009). Based
26 on this measure, individuals that were larger and more developmentally advanced were
27 considered to have a selective advantage. We then used linear mixed effects model and a type II
28 sum of squares ANOVA and Wald chi-square tests (with the function 'Anova' in the R package
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 279 ‘car’) to determine the ability of morphological traits, trait plasticities, and $\delta^{15}\text{N}$ to predict this
4
5 280 proxy for fitness. Specifically, each trait, sibship-level trait plasticity, and $\delta^{15}\text{N}$ were fixed effect
6
7 281 predictor variables, replicate was a random effect, and our fitness proxy was the response
8
9 282 variable. We compared the $\delta^{15}\text{N}$ among our control samples using a type I sum of squares
10
11 283 ANOVA followed by a Tukey HSD post-hoc test in R.
12
13
14 284
15
16
17 285 **Results**
18
19 286 *Diet-dependent variation*
20
21 287 Our first experiment assessed the extent of plasticity among sibships and whether a novel shrimp
22
23 288 diet induced greater variation in morphology or body size (i.e., SVL; a proxy for fitness in
24
25 289 spadefoots) than the typical detritus diet. Regarding plasticity, we found that three of the four
26
27 290 traits showed variation in diet-induced morphology and/or variation among sibships in trait
28
29 291 values (Table 1). Specifically, gut length (GC) and jaw muscle width (OH) varied by diet and
30
31 292 sibship and mouthpart morphology (MP) varied by sibship. Jaw muscle width was nearly
32
33 293 significant for variation in plasticity (Diet*Sibship; $P = 0.057$). Denticle rows did not vary by
34
35 294 diet, sibship, or their interaction.
36
37
38
39 295 We found that every trait except for gut length showed evidence of cryptic genetic
40
41 296 variation being uncovered on a shrimp diet (Table 2a). However, none of the trophic traits
42
43 297 showed a significant difference in overall phenotypic variation between diets (Table 2b) despite
44
45 298 significantly greater variation in SVL on a shrimp diet ($\sigma^2 = 0.49$) than on a detritus diet ($\sigma^2 =$
46
47 299 0.35; F ratio = 4.55; $P = 0.034$).
50
51
52 300 Finally, we found that, under ideal conditions of no competition and abundant food,
53
54 301 tadpole growth (SVL) and development (Gosner developmental stage) was significantly
55
56
57
58
59
60

1
2
3 302 influenced by trophic morphology (Table 3). In particular, our growth and development fitness
4
5 303 proxy was explained by variation in gut length and mouthpart morphology. However, Diet and
6
7 304 jaw muscle width plasticity were nearly significant ($P \approx 0.06$). Finding these results, we then
8
9 305 evaluated a simple mixed effects model (using a type II sum of squares ANOVA and Wald chi-
10
11 306 square tests) with gut length as the response variable, mouthpart morphology as the explanatory
12
13 307 variable, and sibship as a random effect to determine if there were alternative strategies to
14
15 308 achieving higher growth and development or if these two traits were positively (or negatively)
16
17 309 associated. We found that gut length and mouthpart morphology values were not associated
18
19 310 (Estimate = 0.140, $\chi^2 = 0.848$; $P = 0.357$), suggesting that individuals may deploy different
20
21 311 morphological strategies to enhance growth and development.

22
23
24 312
25
26
27
28 313 *Growth and development benefits of shrimp consumption during competition*
29
30 314 Our control samples indicated that shrimp-fed tadpoles have a lower $\delta^{15}\text{N}$ than detritus-fed
31
32 315 tadpoles (Table S2). Knowing this relationship, we found that when individuals were reared in
33
34 316 competition against individuals of similar plasticity and competitive ability (i.e., siblings), the
35
36 317 greatest growth and development (i.e., proxies for fitness) was achieved by having: 1) high
37
38 318 behavioral plasticity (i.e., consuming more shrimp); 2) long gut lengths (GC); 3) and carnivore-
39
40 319 like mouthparts (Table 4; Figure 2).

41
42
43 320 As above, we used a simple mixed effects model with type II sum of squares ANOVA
44
45 321 and Wald chi-square tests to evaluate the relationships among these variables ($\delta^{15}\text{N}$ as the
46
47 322 response, GC and MP as explanatory variables, and sibship as a random variable) in order to
48
49 323 determine if there were different strategies to enhance growth and development during
50
51 324 competition. We found that neither gut length nor mouthpart morphology influenced shrimp

1
2
3 325 consumption directly (GC: Estimate = -0.057, $\chi^2 = 1.827$, $P = 0.176$; MP: Estimate = -0.089, χ^2
4 = 1.237, $P = 0.266$). In addition, gut length and mouthpart morphology were not associated with
5
6 326 each other (Estimate = 0.032, $\chi^2 = 0.086$; $P = 0.769$). Thus, carnivore-like behavior (shrimp
7
8 327 consumption) and morphology (mouthparts) were advantageous during competition, but these
9
10 328 attributes may be acting independently to improve fitness.
11
12 329
13
14 330
15
16

17 331 Discussion

18

19 332 We studied the interplay between plasticity and intraspecific resource competition to help
20
21 333 evaluate the origins of a novel complex phenotype. We specifically sought to recreate the
22
23 334 ecological conditions that may have accompanied the evolution of the distinctive carnivore
24
25 335 morph found in spadefoot tadpoles of the genus *Spea*. We did so by studying tadpoles of *Sc.*
26
27 336 *holbrookii*, which are members of the sister genus to *Spea* and do not produce carnivores. When
28
29 337 we subjected *Sc. holbrookii* to resource competition, we found: 1) heritable variation in
30
31 338 morphology; 2) an increase in such heritable variation on the novel shrimp diet; and 3) that the
32
33 339 expression of some morphological features and behaviors that characterize the carnivore morph
34
35 339
36 340 were associated with enhanced growth and development. These data thereby suggest that
37
38 341 differences in the expression of plasticity might enable refinement of resource use phenotypes,
39
40 342 and might have even contributed to the evolution of a novel carnivore morph (Figure 1a). More
41
42 343 generally, our results illustrate how competition and plasticity can interact to promote niche-
43
44 344 width expansion and thereby possibly pave the way for evolutionary novelty.
45
46

47 345 We found that competition for detritus favored individuals that switched to a novel
48
49 346 resource (shrimp). Our competition experiment revealed that individuals that expressed
50
51 347 alternative foraging behavior through plasticity (i.e., lower $\delta^{15}\text{N}$ and higher consumption of
52
53
54
55
56
57
58
59
60

shrimp) likely had a selective advantage (Figure 2). Presumably, competition for detritus favored those individuals that were able to switch to consuming shrimp because these individuals were thereby released from competition; i.e., they were favored by negative frequency-dependent selection (e.g., see Pfennig 1992; Hori 1993; Benkman 1996; Maret and Collins 1997; Bolnick 2004). As noted in the **Introduction**, such niche-width expansion in the face of intraspecific resource competition has been documented in numerous taxa, in both the lab and in the wild. By favoring increased niche variation among members of a single population, resource competition is thought to act as a key agent of diversifying selection and thereby play a major role in driving evolutionary diversification (Van Valen 1965; MacArthur and Wilson 1967; MacArthur 1972; Roughgarden 1972).

A competitive advantage may have been gained, at least in part, by morphological changes. Specifically, increased mouthpart keratinization and longer gut lengths both enhanced growth and development (and therefore, presumably, fitness) in both non-competitive and competitive conditions. Since *Spea* carnivores exhibit more extreme mouthpart keratinization than omnivores (Table S1), the former observation is consistent with adaptive plasticity. However, *Spea* carnivores typically have *shorter* guts than omnivores. This suggests that our observation of longer guts improving growth and development might represent a trade-off or constraint on morphological development when alternative resources are available. Indeed, individuals with more keratinized mouthparts did not also have longer guts in the trait variation experiment or the competition experiment. In general, these results point to carnivore-like behavior (shrimp consumption) and morphology (more carnivore-like mouthparts) potentially being advantageous. The adaptive refinement and innovation during the evolution of carnivores in *Spea* might have involved breaking developmental constraints among traits (Hallgrímsson et

1

2
3 371 al. 2009; Hallgrímsson et al. 2012) that were limiting simultaneous specialization on alternative
4
5 372 resources.

6
7 373 Our finding of heritable and cryptic variation in various traits corroborate findings from a
8
9 374 previous study using a different species of *Scaphiopus* (Ledón-Rettig et al. 2010). Finding such
10
11 375 among-sibship variation in morphology and plasticity in spadefoots (Levis et al. 2018; Kelly et
12
13 376 al. 2019; Levis and Pfennig 2019a) points to the possibility that the common ancestor of
14
15 377 *Scaphiopus* and *Spea* (before the evolution of the carnivore morph) may have also harbored
16
17 378 heritable (selectable) variation in plasticity of many trophic features. Moreover, the fact that we
18
19 379 detected an increase in such variation among tadpoles fed the novel shrimp diet suggests that the
20
21 380 efficacy of selection potentially increased during the transition to this novel diet (i.e., cryptic
22
23 381 genetic variation was uncovered; Gibson and Dworkin 2004; Paaby and Rockman 2014; Zheng
24
25 382 et al. 2019). Thus, the initial transition to the novel shrimp diet (and any morphological changes
26
27 383 that accompanied such a transition) may have exposed heritable variation to selection. This
28
29 384 exposure then allowed selection to refine the phenotype such that, over evolutionary time,
30
31 385 individuals became better at utilizing this resource (e.g., by developing the fully functional
32
33 386 carnivore morph). This process is akin to that of ecological character release wherein a species'
34
35 387 niche and phenotype expand in the absence of competitors and the presence of greater ecological
36
37 388 opportunity (Grant 1972; Bolnick 2001; Svanbäck and Bolnick 2007).

389 Our results have implications for understanding how novel, complex phenotypes
390 originate (Mayr 1959; West-Eberhard 2003; Wagner and Lynch 2010), and support the idea that
391 an adaptive response to intraspecific competition serves as a springboard for the evolution of
392 new features (Pfennig and Pfennig 2012). In particular, ‘plasticity-led evolution’ (West-Eberhard
393 1989; West-Eberhard 2003; Schwander and Leimar 2011; Levis and Pfennig 2016; sensu Levis

394 and Pfennig 2019c) begins when a change in the environment triggers a change in phenotype
395 through plasticity and, in doing so, exposes variation in the degree to (or form in) which different
396 genotypes respond to this environmental change (i.e., exposes variation in reaction norms). This
397 evolutionary route continues if selection favors those responses (and, hence, genotypes) that are
398 most well-adapted to the new conditions. Ultimately, this process can cause the extent and/or
399 shape of plasticity to evolve, such that an unrefined, pre-existing plastic response is molded by
400 selection into a well-functioning phenotype (West-Eberhard 2003; Moczek et al. 2011; Levis and
401 Pfennig 2016). The end result is a new phenotype that is part of a ‘polyphenism’ (when increased
402 plasticity is favored) or a genetically fixed trait (when decreased plasticity is favored)
403 (Waddington 1953).

404 An untested aspect of plasticity-led evolution is to evaluate how ancestral plasticity might
405 have functioned in the ecological (e.g., competitive) context in which that plasticity was elicited.
406 Since plasticity-led evolution posits that a population (or subpopulation) experiences an
407 environmental change simultaneously, competition among genotypes or individuals that differ in
408 the degree or manner in which they respond to that change is inevitable. Indeed, competitively-
409 mediated natural selection frequently drives intra- and inter-specific diversification (reviewed in
410 Pfennig and Pfennig 2012). Thus, intraspecific competition coupled with pre-existing plasticity
411 could play a powerful role during the initial stages of plasticity-led evolution, as shown in our
412 study. Our study therefore fills a critical gap by not only testing for the existence of ancestral
413 plasticity, but also establishing that some aspects of such plasticity actually confer a selective
414 advantage in a realistic context: namely, during competition.

415 Previous work on *Spea* carnivores has suggested that intraspecific competition might have
416 promoted the origin of new carnivore variants (Levis et al. 2017). In a similar way, the data

1
2
3 417 presented here hint at a role for intraspecific competition in promoting the origins of the
4 418 carnivore morph in the first place. Indeed, competition for resources, coupled with new
5 419 ecological opportunity and plasticity, might explain the origins of novelty in various taxa (e.g.,
6 420 Liem and Kaufman 1984; Bono et al. 2013; Yassin et al. 2016; Levis et al. 2017). Thus, under
7 421 changing ecological conditions, pre-existing plasticity might foster adaptation, diversification,
8 422 and evolutionary innovation.
9
10
11
12
13
14
15
16
17
18
19 423
20
21
22 424 **Literature cited**
23
24
25 425 Allf, B. C., P. A. P. Durst, and D. W. Pfennig. 2016. Behavioral plasticity and the origins of
26 426 novelty: the evolution of the rattlesnake rattle. *The American Naturalist* 188:475–483.
27
28 427 Altig, R., and R. W. McDiarmid. 1999. Body plan: development and morphology, Pages 24-51
29 428 in R. W. McDiarmid, and R. Altig, eds. *Tadpoles: the biology of anuran larvae*. Chicago,
30
31 429 IL, University of Chicago Press.
32
33 430 Aubret, F., and R. Shine. 2009. Genetic assimilation and the postcolonization erosion of
34 431 phenotypic plasticity in island Tiger Snakes. *Current Biology* 19:1932-1936.
35
36 432 Badyaev, A. V., and K. R. Foresman. 2000. Extreme environmental change and evolution:
37 433 stress-induced morphological variation is strongly concordant with patterns of
38
39 434 evolutionary divergence in shrew mandibles. *Proceedings of the Royal Society, Series B*
40 435 267:371–377.
41
42
43 436 Benkman, C. W. 1996. Are the ratios of bill crossing morphs in crossbills the result of
44
45 437 frequency-dependent selection? *Evolutionary Ecology* 10:119-126.
46
47
48 438 Bolnick, D. I. 2001. Intraspecific competition favours niche width expansion in *Drosophila*
49
50 439 *melanogaster*. *Nature* 410:463-466.
51
52
53
54
55
56
57
58
59
60

1
2
3 440 —. 2004. Can intraspecific competition drive disruptive selection? An experimental test in
4
5 441 natural populations of sticklebacks. *Evolution* 58:608-618.
6
7 442 Bono, L. M., C. L. Gensel, D. W. Pfennig, and C. L. Burch. 2013. Competition and the origins of
8
9 443 novelty: experimental evolution of niche-width expansion in a virus. *Biology Letters*
10
11 444 9:20120616.
12
13
14 445 Cannatella, D. 1999. Architecture: cranial and axial musculoskeleton, Pages 52-91 *in* R. W.
15
16 446 McDiarmid, and R. Altig, eds. *Tadpoles: the biology of anuran larvae*. Chicago, IL,
17
18 447 Univeristy of Chicago Press.
19
20
21 448 Carroll, S. P., S. P. Klassen, and H. Dingle. 1998. Rapidly evolving adaptations to host ecology
22
23 449 and nutrition in the soapberry bug. *Evolution and Ecology* 12:955-968.
24
25
26 450 Casasa, S., and A. P. Moczek. 2018. The role of ancestral phenotypic plasticity in evolutionary
27
28 451 diversification: population density effects in horned beetles. *Animal Behaviour* 137:53–
29
30 452 61.
31
32
33 453 Dayan, T., and D. Simberloff. 2005. Ecological and community-wide character displacement: the
34
35 454 next generation. *Ecology Letters* 8:875-894.
36
37
38 455 de la Serna Buzón, S. 2019. Carry-over effects of resource polymorphisms. Doctoral Dissertation
39
40 456 thesis, University of North Carolina, Chapel Hill, NC.
41
42
43 457 DeJongh, H. 1968. Functional morphology of the jaw apparatus of larval and metamorphosing
44
45 458 *Rana temporaria*. L. *Neth. J. Zool.* 18:1-103.
46
47
48 459 Dybzinski, R., and D. Tilman. 2009. Competition and coexistence in plant communities, Pages
49
50 460 186-195 *in* S. A. Levin, ed. *The Princeton guide to ecology*. Princeton, NJ, Princeton
51
52 461 University Press.
53
54
55
56
57
58
59
60

1
2
3 462 Ferguson, G. C., F. Bertels, and P. B. Rainey. 2013. Adaptive divergence in experimental
4 populations of *Pseudomonas fluorescens*. V. Insight into the niche specialist fuzzy
5 spreader compels revision of the model *Pseudomonas* radiation. *Genetics* 195:1319 –
6
7 464 1335.
8
9 465
10
11 466 Friesen, M. L., G. Sacher, M. Travisano, and M. Doebeli. 2004. Experimental evidence for
12
13 467 sympatric ecological diversification due to frequency-dependent competition in
14
15 468 *Escherichia coli*. *Evolution* 58:245-260.
16
17
18 469 Gibson, G., and I. Dworkin. 2004. Uncovering cryptic genetic variation. *Nature Reviews*
19
20 470 *Genetics* 5:681-690.
21
22
23 471 Gomez-Mestre, I., and D. R. Buchholz. 2006. Developmental plasticity mirrors differences
24
25 472 among taxa in spadefoot toads linking plasticity and diversity. *Proceedings of the*
26
27 473 *National Academy of Sciences, U.S.A.* 103:19021-19026.
28
29
30 474 Gosner, K. L. 1960. A simplified table for staging anuran embryos with notes on identification.
31
32 475 *Herpetologica* 16:183-190.
33
34 476 Grant, P. R. 1972. Convergent and divergent character displacement. *Biological Journal of the*
35
36 477 *Linnean Society* 4:39-68.
37
38 478 Gurevitch, J., L. L. Morrow, A. Wallace, and J. S. Walsh. 1992. A meta-analysis of competition
39
40 479 in field experiments. *American Naturalist* 140:539-572.
41
42
43 480 Hallgrímsson, B., H. Jamniczky, N. M. Young, C. Rolian, T. E. Parsons, J. C. Boughner, and R.
44
45 481 S. Marcucio. 2009. Deciphering the Palimpsest: Studying the Relationship Between
46
47 482 Morphological Integration and Phenotypic Covariation. *Evol Biol* 36:355-376.
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 483 Hallgrímsson, B., H. A. Jamniczky, N. M. Young, C. Rolian, U. Schmidt-Ott, and R. S.
4
5 484 Marcucio. 2012. The generation of variation and the developmental basis for
6
7 485 evolutionary novelty. *J Exp Zool B Mol Dev Evol* 318:501-517.
8
9
10 486 Herrel, A., K. Huyghe, B. Vanhooydonck, T. Backeljau, K. Breugelmans, I. Grbac, R. Van
11
12 487 Damme et al. 2008. Rapid large-scale evolutionary divergence in morphology and
13
14 488 performance associated with exploitation of a different dietary resource. *Proceedings of*
15
16 489 *the National Academy of Sciences, U.S.A.* 105:4792-4795.
17
18
19 490 Hori, M. 1993. Frequency-dependent natural selection in the handedness of scale-eating cichlid
20
21 491 fish. *Science (Washington, D. C.)* 260:216-219.
22
23
24 492 Jones, B. M., C. J. Kingwell, W. T. Wcislo, and G. E. Robinson. 2017. Caste-biased gene
25
26 493 expression in a facultatively eusocial bee suggests a role for genetic accommodation in
27
28 494 the evolution of eusociality. *Proceedings of the Royal Society B: Biological Sciences*
29
30 495 284:2016228.
31
32
33 496 Jones, D. K., J. I. Hammond, and R. A. Relyea. 2011. Competitive stress can make the herbicide
34
35 497 Roundup® more deadly to larval amphibians. *Environmental Toxicology and Chemistry*
36
37 498 30:446-454.
38
39
40 499 Kelly, P. W., D. W. Pfennig, S. de la Serna Buzon, and K. S. Pfennig. 2019. Male sexual signal
41
42 500 predicts phenotypic plasticity in offspring: implications for the evolution of plasticity and
43
44 501 local adaptation. *Philos Trans R Soc Lond B Biol Sci* 374:20180179.
45
46
47 502 Ledón-Rettig, C. C., and D. W. Pfennig. 2012. Antipredator behavior promotes diversification of
48
49 503 feeding strategies. *Integrative and Comparative Biology* 52:53-63.
50
51
52
53
54
55
56
57
58
59
60

1
2
3 504 Ledón-Rettig, C. C., D. W. Pfennig, A. J. Chunco, and I. Dworkin. 2014. Cryptic genetic
4 variation in natural populations: A predictive framework. *Integrative and Comparative
5 Biology* 54:1-11.
6
7 505
8 506
9
10 507 Ledón-Rettig, C. C., D. W. Pfennig, and E. J. Crespi. 2010. Diet and hormonal manipulation
11 reveal cryptic genetic variation: implications for the evolution of novel feeding strategies.
12
13 508
14 509 Proceedings of the Royal Society B 277:3569-3578.
15
16 510 Ledón-Rettig, C. C., D. W. Pfennig, and N. Nascone-Yoder. 2008. Ancestral variation and the
17 potential for genetic accommodation in larval amphibians: implications for the evolution
18 of novel feeding strategies. *Evolution and Development* 10:316-325.
19
20 511
21 512
22
23 513 Levis, N. A., S. de la Serna Buzon, and D. W. Pfennig. 2015. An inducible offense: carnivore
24 morph tadpoles induced by tadpole carnivory. *Ecology and Evolution* 5:1405-1411.
25
26 514
27
28 515 Levis, N. A., A. Isdaner, and D. W. Pfennig. 2018. Morphological novelty emerges from pre-
29 existing phenotypic plasticity. *Nature Ecology and Evolution* 2:1289–1297.
30
31 516
32
33 517 Levis, N. A., R. A. Martin, K. A. O'Donnell, and D. W. Pfennig. 2017. Intraspecific adaptive
34 radiation: competition, ecological opportunity, and phenotypic diversification within
35 species. *Evolution* 71:2496-2509.
36
37 518
38 519
39
40 520 Levis, N. A., and D. W. Pfennig. 2016. Evaluating 'plasticity-first' evolution in nature: key
41 criteria and empirical approaches. *Trends In Ecology & Evolution* 31:563–574.
42
43 521
44
45 522 —. 2019a. How stabilizing selection and nongenetic inheritance combine to shape the evolution
46 of phenotypic plasticity. *Journal of Evolutionary Biology* 32:706-716.
47
48 523
49
50 524 —. 2019b. Phenotypic plasticity, canalization, and the origins of novelty: evidence and
51 mechanisms from amphibians. *Seminars in Cell & Developmental Biology* 88:80–90.
52
53
54
55
56
57
58
59
60

1
2
3 526 —. 2019c. Plasticity-led evolution: evaluating the key prediction of frequency-dependent
4
5 527 adaptation. *Proceedings of the Royal Society B*:20182754.
6
7 528 Levis, N. A., M. L. Schooler, J. R. Johnson, and M. L. Collyer. 2016. Non-adaptive phenotypic
8
9 529 plasticity: the effects of terrestrial and aquatic herbicides on larval salamander
10
11 530 morphology and swim speed. *Biological Journal of the Linnean Society* 118:569-581.
12
13 531 Liem, K. F., and L. S. Kaufman. 1984. Intraspecific macroevolution: functional biology of the
14
15 532 polymorphic cichlid species *Cichlasoma minckleyi*, Pages 203-215 in A. A. Echelle, and
16
17 533 I. Kornfield, eds. *Evolution of fish species flocks*. Orono, ME, University of Maine Press.
18
19 534 MacArthur, R. H. 1972, *Geographical ecology: patterns in the distribution of species*. New York,
20
21 535 Harper and Row.
22
23 536 MacArthur, R. H., and E. O. Wilson. 1967, *The theory of island biogeography*. Princeton, NJ,
24
25 537 Princeton University Press.
26
27 538 Maret, T. J., and J. P. Collins. 1997. Ecological origin of morphological diversity: a study of
28
29 539 alternative trophic phenotypes in larval salamanders. *Evolution* 51:898-905.
30
31 540 Martin, R. A., and D. W. Pfennig. 2009. Disruptive selection in natural populations: the roles of
32
33 541 ecological specialization and resource competition. *American Naturalist* 174:268-281.
34
35 542 —. 2011. Evaluating the targets of selection during character displacement. *Evolution* 65:2946-
36
37 543 2958.
38
39 544 Mayr, E. 1959. The emergence of evolutionary novelties, Pages 349-380 in S. Tax, ed. *Evolution*
40
41 545 after Darwin. Chicago, IL, University of Chicago Press.
42
43 546 McDiarmid, R. W., and R. Altig. 1999, *Tadpoles: the biology of anuran larvae*. Chicago,
44
45 547 Chicago University Press.
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 548 Moczek, A. P., S. E. Sultan, S. Foster, C. Ledon-Rettig, I. Dworkin, H. F. Nijhout, E. Abouheif
4
5 549 et al. 2011. The role of developmental plasticity in evolutionary innovation. *Proceedings*
6
7 550 of the Royal Society B: Biological Sciences 278:2705-2713.
8
9
10 551 Newman, R. A. 1987. Effects of density and predation on *Scaphiopus couchii* tadpoles in desert
11 ponds. *Oecologia* 71:301-307.
12
13 552
14
15 553 Paaby, A. B., and M. V. Rockman. 2014. Cryptic genetic variation: evolution's hidden substrate.
16
17 554 *Nature reviews. Genetics* 15:247-258.
18
19 555 Paull, J. S., R. A. Martin, and D. W. Pfennig. 2012. Increased competition as a cost of
20
21 556 specialization during the evolution of resource polymorphism. *Biological Journal of the*
22
23 557 *Linnean Society* 107:845-853.
24
25
26 558 Pfennig, D. W. 1990. The adaptive significance of an environmentally-cued developmental
27
28 559 switch in an anuran tadpole. *Oecologia* 85:101-107.
29
30
31 560 —. 1992. Polyphenism in spadefoot toad tadpoles as a locally adjusted evolutionarily stable
32
33 561 strategy. *Evolution* 46:1408-1420.
34
35
36 562 —. 2000. Effect of predator-prey phylogenetic similarity on the fitness consequences of
37
38 563 predation: A trade-off between nutrition and disease? *American Naturalist* 155:335-345.
39
40
41 564 Pfennig, D. W., A. Mabry, and D. Orange. 1991. Environmental causes of correlations between
42
43 565 age and size at metamorphosis in *Schaphiopus multiplicatus*. *Ecology* 72:2240-2248.
44
45
46 566 Pfennig, D. W., and R. a. Martin. 2009. A maternal effect mediates rapid population divergence
47
48 567 and character displacement in spadefoot toads. *Evolution* 63:898-909.
49
50
51 568 —. 2010. Evolution of character displacement in spadefoot toads: Different proximate
52
53
54
55
56
57
58
59
60 mechanisms in different species. *Evolution* 64:2331-2341.

1
2
3 570 Pfennig, D. W., and P. J. Murphy. 2000. Character displacement in polyphenic tadpoles.
4
5 571 Evolution 54:1738-1749.
6
7 572 Pfennig, D. W., and P. J. Murphy. 2002. How fluctuating competition and phenotypic plasticity
8
9 mediate species divergence. Evolution 56:1217-1228.
10
11 573
12 574 Pfennig, D. W., and K. S. Pfennig. 2010. Character displacement and the origins of diversity.
13
14 575 American Naturalist 176:S26-S44.
15
16 576 —. 2012, Evolution's wedge: competition and the origins of diversity. Berkeley, CA, University
17
18 577 of California Press.
19
20
21 578 Pfennig, D. W., and A. M. Rice. 2007. An experimental test of character displacement's role in
22
23
24 579 promoting postmating isolation between conspecific populations in contrasting
25
26 580 competitive environments. Evolution 61:2433-2443.
27
28
29 581 Pfennig, D. W., A. M. Rice, and R. A. Martin. 2006. Ecological opportunity and phenotypic
30
31 582 plasticity interact to promote character displacement and species coexistence. Ecology
32
33 583 87:769-779.
34
35 584 Pfennig, D. W., A. M. Rice, and R. A. Martin. 2007. Field and experimental evidence for
36
37
38 585 competition's role in phenotypic divergence. Evolution 61:257-271.
39
40 586 Rajakumar, R., D. San Mauro, M. B. Dijkstra, M. H. Huang, D. E. Wheeler, F. Hiou-Tim, A.
41
42 587 Khila et al. 2012. Ancestral developmental potential facilitates parallel evolution in ants.
43
44
45 588 Science 335:79-82.
46
47 589 Relyea, R. A. 2002. Competitor-induced plasticity in tadpoles: consequences, cues, and
48
49 590 connections to predator-induced plasticity. Ecological Monographs 72:523-540.
50
51 591 Robinson, B. W., and D. S. Wilson. 1994. Character release and displacement in fish: a
52
53
54 592 neglected literature. American Naturalist 144:596-627.
55
56
57
58
59
60

2

1
2
3 593 Robinson, B. W., D. S. Wilson, A. S. Margosian, and P. T. Lotito. 1993. Ecological and
4
5 594 morphological differentiation of pumpkinseed sunfish in lakes without bluegill sunfish.
6
7 595 Evolutionary Ecology 7:451-464.
8
9
10 596 Roff, D. A. 1997. Evolutionary quantitative genetics. New York, NY, Chapman and Hall.
11
12 597 Roughgarden, J. 1972. Evolution of niche width. American Naturalist 106:683-718.
13
14 598 Rozen, D. E., and R. E. Lenski. 2000. Long-term experimental evolution in *Escherichia coli*.
15
16 599 VIII. Dynamics of a balanced polymorphism. American Naturalist 155:24–35.
17
18 600 Schlichting, C. D., and M. A. Wund. 2014. Phenotypic plasticity and epigenetic marking: an
19
20 601 assessment of evidence for genetic accommodation. Evolution 68:656-672.
21
22 602 Schwander, T., and O. Leimar. 2011. Genes as leaders and followers in evolution. Trends in
23
24 603 Ecology and Evolution 26:143-151.
25
26 604 Standen, E. M., T. Y. Du, and H. C. E. Larsson. 2014. Developmental plasticity and the origin of
27
28 605 tetrapods. Nature 513:54-58.
29
30 606 Svanbäck, R., and D. I. Bolnick. 2007. Intraspecific competition drives increased resource use
31
32 607 diversity within a natural population. Proceedings of the Royal Society B-Biological
33
34 608 Sciences 274:839-844.
35
36 609 Svanbäck, R., P. Eklov, R. Fransson, and K. Holmgren. 2008. Intraspecific competition drives
37
38 610 multiple species resource polymorphism in fish communities. Oikos 117:114-124.
39
40 611 Swanson, B. O., A. C. Gibb, J. C. Marks, and D. A. Hendrickson. 2003. Trophic polymorphism
41
42 612 and behavioral differences decrease intraspecific competition in a cichlid, *Herichthys*
43
44 613 *minckleyi*. Ecology 84:1441–1446.
45
46 614 Van Valen, L. M. 1965. Morphological variation and width of ecological niche. American
47
48 615 Naturalist 99:377–390.
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 616 Waddington, C. H. 1953. Genetic assimilation of an acquired character. *Evolution* 7:118-126.
4
5 617 Wagner, G. P., and V. J. Lynch. 2010. Evolutionary novelties. *Current Biology* 20:R48-R52.
6
7 618 Wells, K. D. 2007. *The ecology and behavior of amphibians*. Chicago, IL, University of Chicago
8
9
10 619 Press.
11
12 620 West-Eberhard, M. J. 1989. Phenotypic plasticity and the origins of diversity. *Annual Review of
13 Ecology and Systematics* 20:249-278.
14
15 622 —. 2003. *Developmental plasticity and evolution*. New York, Oxford University Press.
16
17 623 Woodward, B. D. 1982. Tadpole competition in a desert amphibian community. *Oecologia*
18
19 624 54:96-100.
20
21
22 625 Yassin, A., V. Debat, H. Bastide, N. Gidaszewski, J. R. David, and J. E. Pool. 2016. Recurrent
23
24 626 specialization on a toxic fruit in an island *Drosophila* population. *Proceedings of the
25 National Academy of Sciences of the United States of America* 113:4771-4776.
26
27
28 627 Zheng, J., J. L. Payne, and A. Wagner. 2019. Cryptic genetic variation accelerates evolution by
29
30 628 opening access to diverse adaptive peaks. *Science* 365:347-353.
31
32
33 629
34
35 630
36
37
38 631
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

31

1
2
3 632 Table 1. Results from our assessment of diet dependent plasticity in trophic traits of *Sc.*
4
5 633 *holbrookii* tadpoles. Bolded rows indicate that a given variable was a significant predictor of
6 each trait. Italic rows indicate a nearly significant relationship. Most traits showed variation in
7
8 634 diet induced morphology and/or variation among sibships in trait values. Only OH muscle width
9
10 635 showed nearly significant variation in plasticity among sibships.
11
12 636

14
15 637

GC					DR				
Variable	Sum Sq.	Df	F	P	Variable	Sum Sq.	Df	F	P
Intercept	777.60	1	1075.63	2.20E-16	Intercept	3904.30	1	366.14	2.00E-16
Diet	8.53	1	11.80	6.82E-04	Diet	2.10	1	0.20	6.55E-01
Sibship	36.79	9	5.65	3.45E-07	Sibship	67.60	9	0.70	7.05E-01
Diet*Sibship	8.78	9	1.35	2.10E-01	Diet*Sibship	116.80	9	1.22	2.84E-01
MP					OH				
Variable	Sum Sq.	Df	F	P	Variable	Sum Sq.	Df	F	P
Intercept	32.27	1	213.57	2.00E-16	Intercept	0.06	1	10.71	1.20E-03
Diet	0.03	1	0.22	6.39E-01	Diet	0.07	1	11.95	6.31E-05
Sibship	3.03	9	2.23	2.06E-02	Sibship	0.13	9	2.43	1.13E-02
Diet*Sibship	1.50	9	1.10	3.63E-01	Diet*Sibship	0.10	9	1.91	5.07E-02

34 638

1
 2
 3 639 Table 2. a) Broad-sense heritability estimated from data and from boot strap replicates
 4
 5 640 (parentheses) for each trait on each diet. ‘Shrimp/Detritus’ indicates the ratio of broad-sense
 6
 7 641 heritability of shrimp to detritus, ‘t’ is the test statistic from a t-test comparing the bootstrap
 8
 9 642 replicate distributions between diets, and ‘P’ is the resulting p value from that test. Note that the
 10
 11 643 ratio for DR was modified to 13/0.01 to avoid dividing by zero. (b) Overall phenotypic variance
 12
 13 644 on each diet and results from Levene’s test comparing overall phenotypic variation between diet
 14
 15 645 treatments. Bold values indicate a significant difference in variance between diets.

a. Trait	Detritus	Shrimp	Shrimp/Detritus	t	P	CGV on shrimp?
SVL	0.25 (0.38)	0.35 (0.45)	1.40 (1.18)	25.01	2.2E-16	Y
GC	0.47 (0.57)	0.40 (0.48)	0.85 (0.84)	35.96	2.2E-16	N
DR	0.00 (0.12)	0.13 (0.24)	13.00 (2.00)	54.87	2.2E-16	Y
MP	0.16 (0.28)	0.23 (0.35)	1.44 (1.25)	21.86	2.2E-16	Y
OH	0.15 (0.27)	0.31 (0.42)	2.07 (1.56)	58.56	2.2E-16	Y
b. Trait	Detritus	Shrimp	F	P		
SVL	0.35	0.49	4.55	0.034		
GC	0.95	0.85	0.05	0.825		
DR	8.41	13.59	2.77	0.097		
MP	0.16	0.17	0.92	0.337		
OH	0.01	0.01	0.83	0.363		

646

647

1
2
3 648 Table 3. Results from our test of which variables best explain growth and development under
4
5 649 non-competitive, abundant food conditions. Bolded and italic rows indicate that a given variable
6
7 650 was a significant or nearly significant, respectively, predictor of growth and development. Note
8
9 651 that trait plasticity values were measured at the sibship level for these analyses.
10
11
12

Variable	Estimate	χ^2	P
Intercept	-1.53	---	---
GC plasticity	-0.16	0.23	0.634
DR plasticity	0.05	0.01	0.916
MP plasticity	-0.15	1.14	0.286
<i>OH plasticity</i>	<i>2.24</i>	<i>3.38</i>	<i>0.066</i>
GC	0.14	4.40	0.036
DR	-0.01	0.20	0.651
MP	0.43	8.60	0.003
OH	-0.32	0.19	0.665
<i>Diet</i>	<i>-0.25</i>	<i>3.42</i>	<i>0.064</i>

28 652

1
2
3 653 Table 4. Results from competition experiment. $\delta^{15}\text{N}$ was used to estimate the amount of resource
4
5 654 (shrimp or detritus) an individual consumed and acted as a proxy for behavioral plasticity in
6
7 655 resource use. Bolded rows indicate that a given variable was a significant predictor of growth
8
9 656 and development during competition within sibships for alternative resources.

Variable	Estimate	χ^2	<i>P</i>
Intercept	0.70	---	---
$\delta^{15}\text{N}$	-0.25	10.30	0.001
GC	0.17	4.34	0.037
DR	-0.01	1.14	0.285
MP	0.59	15.50	8.245E-05
OH	-0.50	0.45	0.502

657

3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

658

659 Figure 1. Study system. a) *Spea* tadpoles develop as either a typical ‘omnivore’ morph (left) or a
660 novel ‘carnivore’ morph (right). The latter is characterized by larger jaw muscles, notched
661 mouthparts, and a shorter gut. b) Some of these same features can be environmentally induced—
662 in a much-reduced form—in *Scaphiopus* (the sister genus to *Spea*), as in this *Sc. holbrookii*
663 eating another tadpole. c) However, this induced *Scaphiopus* form is not a fully functional
664 carnivore. Indeed, *Scaphiopus* are closer in morphospace to *Spea* omnivores than to carnivores
665 (panel c based on data in, and redrawn from, Levis and Pfennig 2019b).

1
2
3 666
4
5

667 Figure 2. When in competition, tadpoles that had (a) longer guts, (b) more carnivore-like
668 mouthparts, and/or (c) consumed more shrimp (lower $\delta^{15}\text{N}$ values) grew and developed faster
669 than those with shorter guts, less carnivore-like mouthparts and/or that consumed fewer shrimp
670 (higher $\delta^{15}\text{N}$ values). Thus, exaggerated morphological features and greater behavioral plasticity
671 (i.e., greater propensity to eat shrimp) was advantageous. Each point is an individual that was
672 corrected for sibship and replicate by adding the residuals of these terms from linear model to the
673 overall mean (Levis et al. 2016). The linear regression lines are for visualization purposes only.

1
2
3 674 Table S1. Trophic traits, their functions, and their adaptive pattern of plasticity in the *Spea* omnivore-carnivore polyphenism. Adaptive
4 pattern of plasticity refers to the direction the trait values change from a detritus (D) diet to a shrimp (S) diet (e.g., there are fewer
5
6 675 denticle rows on a shrimp diet than on a detritus diet).
7
8 676

Trait (abbreviation)	Function	Reference	Adaptive pattern of plasticity (D → S)
Denticle rows (DR)	rasps food off surfaces; more DR favored for smaller prey	(Altig and McDiarmid 1999; Martin and Pfennig 2011)	Negative slope
Gut coils (GC)	used to digest food; more GC favored for more plants or bacteria in diet	(McDiarmid and Altig 1999; Ledón-Rettig et al. 2008)	Negative slope
Keratinized mouthparts (MP)	grasps prey; larger, more serrated MP favored for larger prey	(Altig and McDiarmid 1999; Martin and Pfennig 2011)	Positive slope
Orbitohyoideus muscle (OH)	opens mouth; larger OH favored for larger prey	(DeJongh 1968; Cannatella 1999; Martin and Pfennig 2011)	Positive slope

1
2
3 678 Table S2. A) ANOVA summary from $\delta^{15}\text{N}$ analysis of control samples (detritus, shrimp,
4
5 679 detritus-fed tadpoles, and shrimp-fed tadpoles). B) Tukey HSD post-hoc test results with
6
7 680 differences in sample means above the diagonal and the corresponding p values below the
8
9 681 diagonal.
10
11
12

A. Source	df	Sum of squares	Mean square	F	P
Group	3	250.65	83.55	1715.24	0.0001
Error	20	0.97	0.05		
B. Group	Detritus	Shrimp	Detritus-fed	Shrimp-fed	
Detritus	---	6.43	1.29	4.89	
Shrimp	0.0001	---	7.72	1.54	
Detritus-fed	0.0001	0.0001	---	6.18	
Shrimp-fed	0.0001	0.0001	0.0001	---	

31
32 682
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

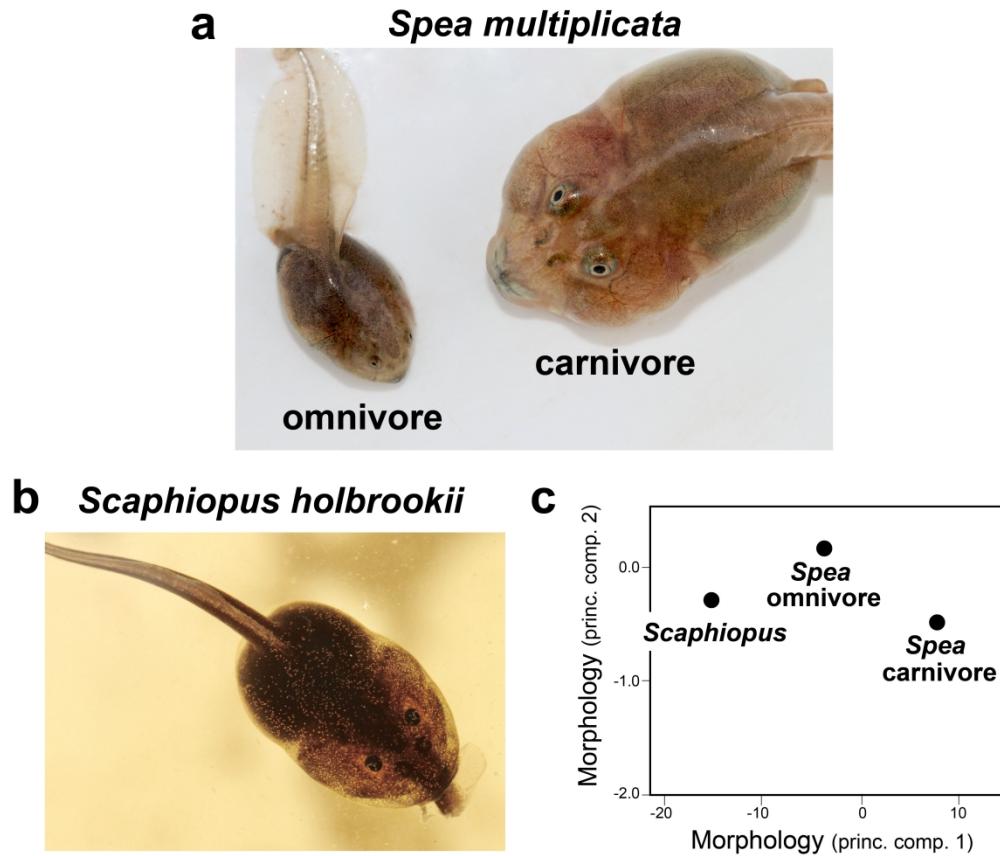


Figure 1. Study system. a) Spea tadpoles develop as either a typical 'omnivore' morph (left) or a novel 'carnivore' morph (right). The latter is characterized by larger jaw muscles, notched mouthparts, and a shorter gut. b) Some of these same features can be environmentally induced--in a much-reduced form--in Scaphiopus (the sister genus to Spea), as in this *Sc. holbrookii* eating another tadpole. c) However, this induced Scaphiopus form is not a fully functional carnivore. Indeed, Scaphiopus are closer in morphospace to Spea omnivores than to carnivores (panel c based on data in, and redrawn from, Levis and Pfennig 2019b).

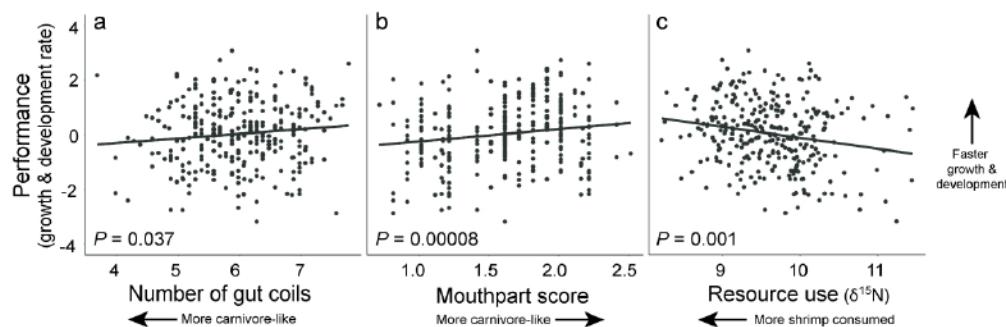


Figure 2. When in competition, tadpoles that had (a) longer guts, (b) more carnivore-like mouthparts, and/or (c) consumed more shrimp (lower $\delta^{15}\text{N}$ values) grew and developed faster than those with shorter guts, less carnivore-like mouthparts and/or that consumed fewer shrimp (higher $\delta^{15}\text{N}$ values). Thus, exaggerated morphological features and greater behavioral plasticity (i.e., greater propensity to eat shrimp) was advantageous. Each point is an individual that was corrected for sibship and replicate by adding the residuals of these terms from linear model to the overall mean (Levis et al. 2016). The linear regression lines are for visualization purposes only.