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Pinning and creep determine the current-voltage characteristic of a type II superconductor and 
thereby its potential for technological applications. The recent development of strong pinning the­
ory provides us with a tool to assess a superconductor’s electric properties in a quantitative way. 
Motivated by the observation of typical excess-current characteristics and field-scaling of critical 
currents, here, we analyze current-voltage characteristics measured on 2H-NbSe2 and a-MoGe type 
II superconductors within the setting provided by strong pinning theory. The experimentally ob­
served shift and rounding of the voltage-onset is consistent with the predictions of strong pinning in 
the presence of thermal fluctuations. We find the underlying parameters determining pinning and 
creep and discuss their consistency.

I. INTRODUCTION

Topological excitations appearing in the ordered phase 
of many materials have a strong impact on their physi­
cal properties. Such excitations interact with material’s 
defects, what modifies both the structural and dynam­
ical properties of the topological superstructure and of 
the host material itself. In type-II superconductors, the 
topological objects appear in the form of vortices due to 
(current-)induced or applied magnetic fields [1], While 
free moving vortices result in a finite resistivity [2], pin­
ning the vortices to material defects [3] helps maintaining 
the superconductor’s dissipation-free transport of elec­
tric current. In the absence of fluctuations, vortex mo­
tion only appears upon exceeding the critical current Ic. 
Thermal fluctuations potentially modify this picture by 
allowing for a slow, creep-type vortex motion even at sub- 
critical drives I < Ic that leads to a shift and smoothing 
of the transition in the critical region. In this paper, 
we make use of the quantitative results from strong pin­
ning theory [4 and 5] in order to unambiguously iden­
tify vortex-creep in the critical region of the current- 
voltage characteristic of two distinct low-Tc materials, 
2H-NbSe2, with Tc = 7.18K [6], see Fig. 1, and a-MoGe, 
with Tc = 6.9 K [7], see Fig. 2.

The origins of pinning and creep can be traced back to 
the seminal papers of Anderson, Kim, and collaborators 
[3, 8, and 9], where Abrikosov vortices pinned onto de­
fects were taken responsible for the properties of current 
transport in hard superconductors. Besides setting a fo­
cus on the Bean critical state [10] and its log-time decay, 
the shape of the current-voltage characteristic in the crit­
ical region was discussed as well, including an interpola­
tion formula describing the transformation of creep-type 
to flow-type response of vortices that prevail at low and 
high drives, respectively [8], Later, much further work 
has been devoted to studying creep, particularly in the 
high-Tc superconductors where thermal fluctuations play
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FIG. 1. Current-voltage characteristic measured on a 2H- 
NbSes sample at a fixed held H = 1.0 T and temperatures 
T = 4.8, 5.0, 5.2, and 5.5K (red points). Black lines are 
fits to the data based on the prediction of strong pinning 
theory; fits are restricted to the region of applicability of the 
theory (see text for details). With increasing temperatures, 
the characteristic shifts to the left and the rounding in the 
critical region at voltage onset becomes more pronounced.

an important role. On the one hand, relaxation experi­
ments at low drives helped to identify glassy physics char­
acterized by diverging barriers [11], while resistive mea­
surements using sensitive voltmeters served the similar 
purpose of identifying a non-linear, i.e., glassy response 
[12]. However, less attention was given to the behavior in 
the critical region, e.g., the vanishing of barriers near jc 
or the smoothing of the characteristic. Not least, this is 
due to the inadequacy of pinning theories to make quan­
titative predictions, a deficiency that was overcome only 
recently, at least for the case of strong pinning [4 and 5].

A distinctive feature of strong pinning is its excess-
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FIG. 2. Current-voltage characteristic measured on a a- 
MoGe sample at fixed temperature T = 4.5 K and applied 
fields H = 0.6,1.2, 2.1 and 3.0 T (red points). Black lines 
are fits to the data based on the prediction of strong pin­
ning theory; fits are restricted to the region of applicability of 
the theory (see text for details). With increasing fields, the 
characteristic shifts to the left and the slope of the flux-flow 
response at large currents increases.

current characteristic, an I — V characteristic that ex­
hibits a linear (flux-flow) response at large drives I > Ic 
that is shifted by the critical current Ic [13 and 14], in 
an idealized T = 0 situation V = RS(I — IC)Q(I — Ic) 
with Rs the flux-how resistance. Apart from the experi­
ments [6 and 7] analyzed here, such characteristics have 
been observed in other recent [15] as well as older, even 
textbook [16] experiments. The analysis and proper un­
derstanding of changes in this I-V characteristic with 
increasing temperature T is the central topic of this 
work and involves the following goals: i) demonstrate 
the power and consistency of strong pinning theory in 
quantitatively explaining experimental data of I-V char­
acteristics in different materials for different tempera­
tures T and magnetic fields B. ii) Extract fitting pa­
rameters and check for their qualitative consistency with 
expectations from vortex theory as obtained within the 
Ginzburg-Landau (GL) phenomenological framework.

In pursuing this program, we have to disentangle two 
effects of temperature T, one being encoded in the pa­
rameter t = 1 - t = 1 — T/Tc that appears in the 
Ginzburg-Landau (GL) mean-held theory of the super­
conducting state, the other being the temperature T as 
the driver of thermal fluctuations. While the former 
lives on the scale Tc, the scale of the latter is given by 
the fluctuation energy £e0, with e0 = (Tq/^ttA)2 the 
vortex line energy, <f>0 = hc/2e is the magnetic flux 
quantum, and £, A denote the correlation- and screen­
ing lengths of the superconductor. A further depen­
dence is due to the presence of the magnetic held (or 
more precisely, induction) B, introducing the distance 
rb = 1 — T/Tc - B/Hco{0) = 1 — t — b from the upper 
critical field-line Hco{T).

The critical current Ic and the hux-how resistance 
i?ff, the parameters quantifying the shape of the excess- 
current characteristic, depend on the temperature T and 
magnetic held B via r and b (or r6); approaching the 
Hc2(T)-line in the H-T phase diagram, IC(B,T) de­
creases, see Fig. 1, and the hux-how becomes steeper, see 
Fig. 2, with Rff approaching the normal-state resistance 
Rn. Although these GL predictions are in rough agree­
ment with experimental data, they do not catch effects of 
thermal fluctuations that are manifest in the data as well. 
In particular, within strong pinning theory, the inclusion 
of fluctuations predicts a further downward shift in the 
excess current, replacing the critical current Ic by the de- 
pinning current /dp(T), and a rounding of the transition 
to the ohmic branch of the characteristic [4 and 5],

A consistent analysis of creep phenomena then requires 
to separate these different types of temperature depen­
dence in the experimental data. In our analysis, we 
achieve this task by rescaling the data to make it col­
lapse onto one curve at asymptotically large drives. The 
comparison of the temperature-dependent rounding and 
shift of the collapsed data in the critical region around 
/dp with the prediction from strong pinning theory then 
provides clear evidence for vortex creep, see Figs. 3 and 
5. In figures 1 and 2, we show the corresponding fits to 
the original experimental data that demonstrate an im­
pressive agreement. Furthermore, our quantitative the­
ory allows to extract important parameters of vortex 
physics from the data and check for their internal con­
sistency. Note the difference to the celebrated theory 
of weak collective pinning [17 and 18], where the addi­
tion of forces due competing defects poses a formidable 
task; the latter is straightforward within the strong pin­
ning paradigm where the density np of defects is assumed 
to be small such that pins act individually. As a conse­
quence, results obtained within strong pinning theory can 
be pushed to provide a numerical accuracy beyond what 
can be achieved within the framework of weak collective 
pinning. In particular, strong pinning theory, here in 
its simplest version assuming point-like defects, can offer 
quantitative expressions for critical current densities [19], 
current-voltage characteristics [13 and 14], and thermal 
creep in the critical regime [4 and 5].

In the following, we first introduce and discuss the 
result for the current-voltage characteristic as obtained 
from strong pinning theory [4 and 5], see Sec. II. In Sec. 
Ill, we present the experimental data on the current- 
voltage characteristics of 2H-NbSe2 and o-MoGe and ex­
tract the parameters of the characteristic. Sec. IV is de­
voted to the analysis of creep barriers, where we put for­
ward a new type of analysis that aims at U(Fpin), i.e., the 
barrier’s dependence on the pinning-force density Fpin 
rather than the usual dependence U(FL) involving the 
Lorentz-force density FL that drives the vortices. In Sec. 
V, we relate the parameters in the current-voltage char­
acteristic as obtained from the comparison with exper­
imental data to the ‘microscopic’ parameters of strong 
pinning theory; we summarize our results in Sec. VI and
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provide some concluding remarks.

II. CURRENT-VOLTAGE CHARACTERISTIC

We discuss the excess-current characteristic in the 
presence of thermal fluctuations (creep) as derived within 
the strong pinning paradigm. Within standard vortex 
physics, the relation between the driving current density 
j and the vortex velocity v is obtained from the dissi­
pative equation of motion balancing the effects of the 
current-induced Lorentz force density FL (j) = jB/c driv­
ing the vortices, the pinning force density Fpin(v, T) due 
to the defects, and the viscous force density - nv propor­
tional to the vortex velocity v,

nv = FL (j) - Fpin(v,T). (1)

standard relation [18] U(j)) but it is the pinning-force 
density Fpin(v, T). Second, the exponent 3/2 is universal 
for any smooth pinning potential; its origin is found [5] in 
the thermally induced shift Sx of the (de-)pinning point 
which relates to the barrier U via the scaling U <x Sx3/2. 
A detailed derivation of Uc is given in Refs. [4 and 5], see 
also Sec. V. The two equations (2) and (3) combine into 
a velocity and temperature dependence of the pinning 
force density Fpin(v, T) in the form

Fpin(v, T)/Fc % 1 - [(kBT/Uc) log(v/vth)]2/3. (4)

Inserting the expression for Fpin (v, T) into the equation 
of motion Eq. (1) and dividing by Fc, we arrive at a sim­
ple formula [4 and 5] for the fluctuation-enhanced vortex 
velocity or current-voltage characteristic,

In the absence of thermal creep (T = 0) and at low ve­
locities, strong pinning theory predicts a nearly constant 
pinning-force density Fpin % Fc, Fc the critical force den­
sity, over a large regime of velocities [13 and 14], in agree­
ment with Coulomb’s law of friction. For small currents, 
the driving Lorentz force then can be compensated by the 
pinning force and vortices remain pinned, v = 0. A fi­
nite vortex velocity v % (FL(j) - Fc)/n > 0 only appears 
at larger drives; as a result, we find the excess-current 
characteristic with vanishing voltage below the critical 
current density jc = cFc/B and a shifted ohmic branch 
above. This seemingly trivial result owes its validity to 
the separation of the two velocity scales vc < vp describ­
ing the average motion vc = Fc/n of the vortex lattice 
and the velocity vp ~ fp/n«0 of vortices during individual 
(de-)pinning events (with fp the pinning force of an indi­
vidual defect and a0 = the separation between
vortices); as shown in Refs. [13 and 14], the pinning-force 
density Fpin(v, T = 0) changes with velocity on the scale
vp.

At finite temperature T > 0, thermal creep facilitates 
the escape of vortices from pinning defects; such creep 
motion is characterized by an energy barrier U(v) which 
relates to the velocity v of vortices via

U(v) % kgT log(vth/v). (2)

v/vc = j/jc - 1 + [(ksT/UJ log(vth/v)]2/3. (5)

Here, we have used the definition of the free flux-flow 
velocity vc = Fc/n at Fc. The dynamical equation (5) 
captures the small vortex velocity at subcritical drives 
j < jc, the rounding of the characteristic in the critical 
region, and the (initial part) of the smooth approach to 
the ohmic region. As v approaches vth, thermal fluctu­
ations become irrelevant and the characteristic joins the 
excess-current shape.

The calculation leading to Eq. (5) is based on Kramers’ 
rate theory [20 and 21] assuming an activation barrier 
Uc > kBT. Strong pinning theory tells [4], that the rele­
vant barrier depends on velocity via U % kBT log(vth/v), 
see Eq. (2), that restricts the applicability of Eq. (5) to 
v < vth/e, see Figs. 1 and 2.

We relate the theoretical result (5) to the experimen­
tally accessible current I = Aj and voltage V = LE 
(E = Bv/c the electric field) using the sample geome­
try (length L and area A) and the definition of the free 
flux-flow voltage at Ic, Vc = Ic,

V = Eg (I - Fc) + V
" kBT 
- Uc

log vth Vc
v V

2/3
(6)

Here, vth is the thermal velocity scale, related to an 
attempt frequency for thermal depinning and derived 
within strong pinning theory in Refs. [4 and 5], see also 
Sec. V. On approaching the thermal velocity scale vth, 
vortices traverse the pins sufficiently fast and the barrier 
slowing down the motion becomes irrelevant. The sec­
ond central result provided by strong pinning theory is 
the force-dependence of these very same barriers, which 
assumes the simple form

U[Fpin(v, T)] % Uc [1 - Fpin(v, T)/Fc]3/2. (3)

This result involves two noteworthy features: first, the 
relevant force in this simple relation is not the usual driv­
ing Lorentz-force density FL <x j (that would result in a

This result can be directly compared to the data; it in­
volves the four parameters Fc,Rff, Uc/kBT, vth/vc that 
are obtained in two steps. At large voltages V (or ve­
locities v), creep is irrelevant and the characteristic re­
duces to the simple exccess-current form V % (I - Ic), 
from which Ic and can be directly read off. In a 
next step, we rescale the data V ^ V/Vc = v/vc and 
I ^ F/Fc = j/jc to bring it to the form of Eq. (5). This 
rescaling induces a data collapse in the asymptotic re­
gion; the deviations appearing in the transition region 
then are due to creep. It is this deviation from which we 
can extract the two remaining parameters Uc/kBT and 
vth/vc through a careful fit to the experimental data in 
the transition region.
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III. EXPERIMENTAL CURRENT-VOLTAGE 
CHARACTERISTICS

We illustrate the procedure outlined above for fitting 
the data and extracting the relevant physical parame­
ters jc, vc, Uc, i>th for the two low-Tc superconductors 2H- 
NbSeo and o-MoGe.

A. 2H-NbSe2

The original experimental work reported in Ref. [6] 
describes a procedure for separating edge- and bulk con­
tributions to the current-voltage characteristics of 2H- 
NbSe2 via comparison of data obtained before and af­
ter changing the sample’s geometry through reducing 
its width. In our analysis below, we make use of the 
properly extracted bulk contribution at temperatures 
T = 4.8, 5.0, 5.2, and 5.5 K that exhibit a pronounced 
excess-current characteristic; this bulk data has not been 
reported in the original publication [6], The measure­
ments were performed in a H = 1 T field directed along 
the c-axis with an in-plane dc current applied through the 
cross-sectional area A = dw, d = 0.02mm, w = 0.47 mm 
(width after cutting) in a sample of length L = 8 mm. 
The inter-vortex distance o0 = v^o/B % 45 nrn is small 
compared to the sample thickness d and hence the stan­
dard strong pinning theory for 3D bulk pinning [22] is 
applicable. Fig. 3 shows the data and fitting to Eq. (5) 
in the critical region, with the fits restricted to the region 
v < vth/e where our theory applies.

At high velocities v > i>th, creep is irrelevant and 
we fit the data to the excess-current characteristic V = 
Rg(I - Ic), see blue lines in Fig. 3(b). Analyzing the 
four curves at T = 4.8, 5.0, 5.2, and 5.5 K, we obtain the 
critical current densities jc = 13, 11, 9.6, and 7.3 A/cm2. 
These values are far below the (T = 0) depairing current 
density j0 ~ 6.7 x 107 A/cm2, consistent with a small de­
fect density np, see Sec. V, and decrease on approaching 
the 7fC2-line, t& = 1 — t — b —> 0, see Fig. 4(a). From 
the slopes, we obtain the flux-how resistivities ps and 
using the normal state resistivity pn % 6.9 x 10~3 Clem, 
we verify the consistency with the Bardeen-Stephen re­
sult pg/pn % B/Hc2, see Fig. 4(b). The vortex mo­
tion generates the electric held V/ L = E = Bv/c and 
we obtain the estimates for the free hux-how velocities 
% = cVL/BZ, = (0.52, 0.47, 0.45, 0.38) cm - s'A

While the original data include the intrinsic held- and 
temperature dependences of jc together with the round­
ing in the critical region, the rescaled data V/Vc = v/vc 
and I/Ic = j/jc in Fig. 3(c) collapse at high velocities 
to a single line of unit slope; the temperature-dependent 
rounding and shift of the curves away from the excess- 
current characteristic in the critical region then can be 
firmly attributed to thermal creep and serves to find the 
remaining parameters Uc/kBT and vtg/vc.

Let us then focus on the most interesting part of the 
characteristic, the smooth transition to hux-how in the

FIG. 3. Observation of thermal creep in 2H-NbSe2. (a): evo­
lution of excess-current characteristic with increasing tem­
perature T: red data points are taken at B = 1.0 T, 
T = 4.8, 5.0, 5.2 and 5.5K, black lines are fits to Eq. (5) de­
scribing the creep characteristic within strong pinning theory. 
Large temperatures produce a marked rounding of the char­
acteristic in the critical region near voltage onset and the 
T = 0 excess-current characteristic (solid blue) is approached 
at larger drives. Fits are shown up to velocities where acti­
vation barriers remain larger than temperature T. Inset (b) 
shows the raw experimental data, see Fig. 1, while the in­
set (c) presents the data collapsed to a single curve at large 
drives; such scaling provides the parameters jc and vc.

critical region around jc, see Fig. 3(a). In Sec. IV be­
low, we present a protocol for the optimal extraction of 
these parameters by replotting the current-voltage data 
in a form that accounts for the creep-type motion in this 
regime. Inserting the results back into the characteristic 
(5), we obtain excellent fits to the data; the extracted 
barrier Uc of order 1000 K rapidly decreases when ap­
proaching the 7fC2-line, t& = l—t — b —> 0, see Fig. 4(c), in 
agreement with strong pinning theory and further discus­
sion in Sec. V. Finally, the results for the thermal velocity 
parameter vth/vc are shown in Fig. 4(d). The discussion 
in Sec. V predicts an increase of vtg/vc with tempera­
ture that is consistent with the experimental findings; 
the drop near the phase boundary may be due to a col­
lapse of strong pinning k -> 1. Its numerical value turns 
out about an order of magnitude larger than expected 
from strong pinning theory, however, we note that we 
have least control on this quantity since it assumes the 
role of an attempt frequency in Kramer’s rate theory, a 
quantity that is notoriously difficult to calculate.

B. o-MoGe

In a similar fashion, we analyse the I-V measure­
ments on a-MoGe films, with data available in the 
field range H = 0.03 - 7T, up to order half the 
upper-critical field Hc2(0) = 13 T, and temperatures T = 
0.28, 0.45, 2.0, 3.5, 4.5 and 5.5 K; some of this data has 
been reported before in Ref. [7], The above magnetic
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FIG. 4. Parameters for 2H-NbSe2 extracted from fitting the 
I-V characteristics of Fig. 3 as a function of —T{, = — (1 — t — b) 
chosen such as to approach the Hcn line from the left (as in 
the standard H-T diagram). The small value of the scaling 
parameter jc/jo in (a) testifies for a small defect density np. 
The flux-flow resistivity shown in (b) follows the Bardeen- 
Stephen law pg/pn « B/Hcn(T) (dashed line). The activation 
barrier Uc decays on approaching the upper-critical field line, 
see (c), while the scaled thermal velocity yt.h/vc shown in (d) 
first rises on approaching the TTa-line and then drops, that 
can be consistently explained by strong pinning theory, see 
Sec. V.

fields produce vortex lattices with a lattice constant in 
the range o0 = 17 - 262 nm. The thickness of the film 
measures cl = 20 nm and its width is w = 300 pm; while 
cl > no above H ~ 4 T, the low-field region may crossover 
to 2D pinning, see further discussion below. The cur­
rent I is applied along the direction of the film of length 
L = 1 mm.

The discussion in Ref. [7] has focused on the current- 
response at low drives j —> 0, where a linear resistiv­
ity has been taken as the signature of a vortex liquid 
phase. Here, we apply the strong pinning paradigm to 
explain the experimental data near the critical current 
jc\ interestingly, strong pinning theory also predicts a 
linear resistivity at low drives as barriers U (j) saturate 
at small currents j, see Ref. [5], In Fig. 5, we provide 
examples of I-V curves taken at finite temperatures 
T = 0.28, 0.45, 2, and 3.5 K. The results of the scaling 
collapse of this data, providing the parameters jc and 
ps, are shown in Fig. 6. Making use of field-dependent 
data, we find that the critical current density scales as 
jc ~ (Fig. 6(a), with j0 % 6.8 x 106 A/cm2) with 
the exponent a % 0.6 measured at low temperatures, con­
sistent with theoretical predictions for the strong pinning 
scenario [14, 19, and 23]. The exponent decreases towards 
a % 0.3 at higher temperatures, in agreement with nu­
merical simulations [24] reporting such a behavior with 
increasing vortex core size. At low fields, a crossover 
to 2D or ID strong pinning may occur, see discussion 
in Sec. V below. The resistivity extracted from the ftux-

0 I [mA]

FIG. 5. (a) Extrapolated T = 0 excess-current characteristic 
(blue) and experimental data (red) at finite temperatures 1: 
0.28K, 1.2T, 2: 0.45K, 1.0T (these two datasets collapse to 
an almost identical curve), 3: 2.0K, 0.5T, and 4: 3.5 K, 0.2 T. 
Thermal fluctuations produce a downward shift and rounding 
of the characteristic in the critical regime. Black lines provide 
excellent fits within strong pinning theory; the fit stops when 
barriers Uc approach kBT. The insets (b) and (c) show the 
raw and rescaled experimental data.

flow regime above jc remains below the Bardeen-Stephen 
estimate (see Fig. 6(d), pn % 1.57 x 10~4 fl cm), that is 
qualitatively consistent with a more elaborate result of 
Larkin and Ovchinikov [25]. The flux-flow vortex veloc­
ities corresponding to the analyzed data range between 
vc = 1 x 103 cm/s and 4 x 103 cm/s.

0 B/Ha(T) o.l

FIG. 6. (a) Critical current densities (a) versus magnetic field 
fitted to a power law jc oc B~Q, with the exponents a at dif­
ferent temperatures shown in (b). The exponent a ss 0.5 is 
in good agreement with the prediction from strong pinning 
theory, and its decrease at high temperatures matches recent 
numerical results [24]. (c) Flux-flow resistivity compared to 
the Bardeen-Stephen formula (solid line); values below the 
Bardeen-Stephen line are consistent with more detailed pre­
dictions of Larkin and Ovchinikov [25].

In a second step, we focus on the transition region 
of the rescaled data of Fig. 5(a). While the curves at 
higher temperatures are rounded and shifted away from
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the excess-current characteristic, the data taken at the 
two lowest temperatures collapse to an almost identical 
curve after rescaling; note that the reduced temperatures 
rb are nearly equal for the two curves, r6 % 0.87 versus 
rb % 0.86 for the curves 1 and 2, while the temperature 
T, quantifying thermal fluctuations, increases by a factor 
% 1.6. Such a finding implies, that the voltage response of 
the superconductor does not depend on temperature any 
more, suggesting that quantum creep [26] may take over 
at these low temperatures. This hypothesis is further 
supported by comparing the creep parameter Uc/kBT ex­
tracted from fitting the data for various temperatures, see 
Fig. 7(b). Their variations for temperatures above 3.5K

0 0.02 0.04 0.06 0.08 0.10 0.12

-0—2.0

0.2 0.4 0.6 o L
B/Hc2(T) 0 2 T[K]

FIG. 7. (a) Activation barriers Uc in o-MoGe versus mag­
netic field strength; lower and upper held axes refer to low 
(T = 0.28 K and 0.45 K) and high temperature data. The de­
crease of Uc with decreasing temperature T can be explained 
in terms of a crossover to quantum creep, see inset, (b) Plot­
ting the dimensionless thermal creep parameter Uc/T versus 
temperature (see black markers; we chose similar values of the 
reduced held), one observes a crossover to a constant value at 
low temperatures, that is consistent with a saturation of Uc/T 
(solid red line for a constant Uc « 34 K) at the dimensionless 
action Sc/h quantifying quantum creep (dashed blue line for 
a constant action Sc) when the latter takes over at small tem­
peratures.

are consistent with a value Uc % 30 - 40 K, see 7(a). 
Extrapolating the ratio Uc/kBT to the low-temperature 
region results in values larger then observed, and hence 
much lower vortex velocities. This suggests that the ther­
mal creep parameter Uc/kBT saturates at its quantum 
analog S/h, see Fig. 7(b); the latter produces a still 
appreciable (quantum) creep velocity v oc e~s/n, with 
S/h < Uc/kBT. Alternatively, the sample may have 
dropped out of equilibrium with a measured temperature 
T different from the actual ‘temperature’ of the sample, 
e.g., due to the presence of noise, see Ref. [27].

IV. ACTIVATION BARRIERS

On a phenomenological level, creep-type vortex motion 
is a thermal process with vortices escaping from defects 
by overcoming a drive-dependent activation barrier U(j); 
vortex motion then follows an Arrhenius-type formula for 
the velocity v = vthe~u^')/kBT. In comparison, our equa­
tion (5) for the current-velocity characteristic describes 
creep-type motion as well, but follows from a quantita­
tive determination [4 and 5] of the pinning force density 
Fpin(v, T) entering the force-balance equation (1). In the 
following, we show how these phenomenological and mi­
croscopic approaches relate to one another within strong 
pinning theory.

The interest in the activation barrier U(j) is usually 
focused onto two limits: i) at weak drives j —> 0, barriers 
either remain finite or diverge, characterizing a vortex- 
liquid or a vortex-glass state, respectively [18], and ii) 
at drives j —> jc, the barriers are expected to vanish, 
U{j) « Uc(l — j/jc)a, with an exponent a depending on 
the pinning model. Strong pinning theory predicts [4 and 
5] a saturating barrier and a thermally assisted flux-how 
response at j —> 0. In the region near the critical drive 
jc relevant in this study, the barriers vanish with an ex­
ponent a = 3/2; this result is universal for any smooth 
pinning potential. However, strong pinning theory pro­
vides us with the further insight that the appropriate 
variable in the barrier’s scaling law is the pinning-force 
density Fpin(v, T) rather then the Lorentz-force density 
Fl, see Eq. (3).

The standard result with the exponent a = 3/2 is 
straightforwardly derived from our microscopic descrip­
tion in the limit where the viscous force —ryv in Eq. (1) 
(or the term v/vc in Eq. (5)) can be neglected. In this 
situation, the characteristic (5) is equivalent to the Ar­
rhenius law with a barrier exponent a = 3/2: indeed, 
within this approximation, the driving force FL/FC = 
j/jc is balanced by the pinning force Fpin(v,T)/Fc = 
[(kBT/Uc) log(vtih/v)]3/2 and our v-j characteristic (5) 
can be cast into an Arrhenius-law with a barrier U(j) =
Uc(l — j/jcf^-

Upon increasing the drive j, however, the vortex veloc­
ity v becomes significant and the viscous term —ryv can 
no longer be neglected. Combining Eq. (3) and the equa­
tion of motion (1), we replace Fpin = FL — ryv to obtain 
a barrier that depends on both drive j and velocity v in 
the form

T)]

Uc\ 1

Fl — tjv\3/2
~FC ) (7)

(8)

Using this expression for the barrier, the characteristic 
given by Eq. (5) can be written as a self-consistent Ar­
rhenius law for the vortex velocity v(j),

v ('the (9)
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Alternatively, using the data of the scaled j-v char­
acteristic, the expression (8) provides us with a di­
rect access to the activation barrier U(j,v). Indeed, 
plotting - log(v/vc) versus j/jc — v/vc, we represent 
U[Fpin(v, T)]/kBT + 7 versus Fpin(v, T)/Fc with the off­
set 7 = log(vc/ytlh). Fig. 8 shows a typical outcome of 
arranging the data in this new manner. We then can 
follow two strategies, i) either assume the validity of (8) 
and use this fitting ansatz to extract the creep parameters 
Uc/kBT and vth/vc, or ii) interpret the data as directly 
providing the functional form of U[Fpin(v,T)], up to a 
constant. In doing so, we have to be careful to interpret 
the quantity Ay,Tlog(i>th/i’) as a barrier only if v < yth, 
corresponding to U > kBT; as v > vth, the motion crosses 
over to vortex-flow and the interpretation in terms of a 
creep barrier breaks down.

The parameters Uc and vth/vc shown in Figs. 4 (c) 
and (d) and in Fig. 7(a) have been obtained by following 
the procedure i). In extracting the parameter Uc/kBT, 
we have to select the appropriate portion of the curve: 
starting at j/jc — v/vc = 1 in Fig. 8(a) (corresponding 
to Fpin/Fc = 1), the quantity - log(v/vc) initially grows 
with a concave shape, goes through an inflection point, 
and then continues in a convex curve at smaller values 
Fpm/Fc < 0.9. The initial concave form for Fpin close 
to Fc originates from the saturation of Fpin(v,T) —> Fc 
when the velocity v increases beyond the thermal veloc­
ity vth; this part of the curve is flow-dominated and is 
further discussed below. The creep-dominated region at 
small velocities corresponds to the convex region in Fig.

a = 3/2

a = 1
a = 3/2

a = 1

FIG. 8. Analysis of activation barriers for 2H-NbSe2, with 
data for B = 1.0T, T = 5.2 K represented by red dots. Shown 
are the j-v data represented as — log(u/uc) = U/kBT + 7 
versus j/jc - v/vc = Fpin/Fc. The activation barrier U{Fpin) 
in (a) is fitted to U{Fpin) = Uc{ 1 - Fpin/Fc)a for different 
exponents a = 3/2 (blue) and a = 1 (black). The fits outside 
the range of validity v < vth/e are continued with dashed 
curves. The inset (b) shows the construction of points a = 1 
and a = 3/2 around which the fitting is done.

8 and it is this region that provides us with the value 
for the reduced barrier Uc/kBT. The ratio I’th/i’c derives 
from the condition U[Fpin(v, T)/Fc = 1] = 0, i.e., the 
offset -7 in — log(e/iy) at j/jc - v/vc = 1, once the 
curve U[Fpin(v, T)] has been fitted and extrapolated to 
Fpin/Fc = 1.

In a systematic fit, we search for the region that is 
best described by Eq. (8). We define the rescaled pin­
ning force Sf = 1 - Fpin/Fc and take the derivative 
dsf log(vc/v) in order to eliminate the constant shift 
7; taking the log-derivative, we obtain a{Sf) = 1 + 
<9 log[dj/ log(vc/ v)]/<9 log(<5/) as shown in the inset Fig. 
8(b). The fit to Eq. (5) then is done around the point 
Sf* for which a(Sf*) = 3/2.

In following the alternative procedure ii) instead, we 
directly obtain the shape of U(Fpin) (up to a constant 
shift) but miss its analytic form. In an attempt to ex­
tract some effective functional form, we can make some 
more progress by using our findings for the local exponent 
a(Sf), see Fig. 8(b). For instance, it is possible to find 
a region at higher currents in Fig. 8(a) where the barrier 
shape is better characterized by an exponent a = 1, re­
minding about Anderson’s original scaling Ansatz for the 
creep barrier [3], In Fig. 8(a), we compare separate fits 
to the data with a = 3/2 (blue line) and a = 1 (black 
line). At first sight, the fit for a = 1 looks rather good, in 
particular at higher drives. Indeed, the changeover from 
a convex to a concave form at large pinning forces Fpin 
produces an inflection point in - log(v/vc) with a region 
where the exponent a = 1 quite naturally provides a bet­
ter match to the data. However, this region close to jc is 
flow- rather than creep-dominated, with a barrier of order 
or even smaller than kBT. As discussed further below, the 
flow-dominated motion close to critical results in a con­
cave shape of the function - log(v/vc) versus j/jc—v/vc, 
that mimics a smaller exponent a = 1/2 when translated 
to a ‘barrier’ U % Uc(Sf)a. It then is the region at 
smaller drives and velocities where creep effects are ex­
pected to manifest in a clean and unperturbed manner. 
At these smaller drives, the exponent a = 3/2 provides 
a consistent description of the experimental data. Going 
to even smaller drives, our expansion U oc {Sf)3/2 is ex­
pected to break down [5] since higher-order corrections 
become relevant, U % Uc[{Sf)3/2 + c(5x)5/2 + ..., that 
manifest in a larger local exponent a{Sf) > 3/2. Choos­
ing a value a > 3/2 indeed provides an inferior fit to the 
data.

In our discussion above, we have used the inset (b) in 
Fig. 8 as a tool to find the optimal location for our fits 
U oc (<5/)“ with different exponents a = 'i/2 and a = 1 
in the main figure (a). On the other hand, it is tempting 
to read the curve a(Sf) as a physical result providing 
us with a critical exponent, in which case one expects 
a saturation a(Sf —> 0) % 3/2 that is not observed in 
our data. Rather, we observe a decrease in a below 3/2 
at small Sf due to the mixing of creep-type- with flow- 
type motion when U < T and an increase beyond 3/2 
at large Sf due to corrections in the expansion of U{Sf).
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A proper measurement of the critical exponent relies on 
the availability of a large range Sf —> 0 within the crit­
ical region. In the present situation, this requires small 
temperatures T in order to guarantee creep-type motion 
with a = 3/2 deep into the critical region.

Finally, we comment on some subtleties in using the 
high velocity data for the extraction of vc (via pg) and 
jc. The strong pinning theory provides a detailed picture 
of vortex motion on several velocity scales: thermal creep 
[4 and 5] as discussed above affects the vortex response 
only at velocities below i>th- Beyond i>th, creep effects 
eventually become irrelevant and the finite temperature 
creep- and T = 0 excess-current characteristics merge. 
This merging in a shifted linear flux-how characteristic 
manifests in the data as a saturation of the differential 
resistance, see Fig. 9(a).

In performing accurate fits, it is important to have 
experimental data that goes beyond the merger at i>th 
and reaches some saturation in the differential resistance, 
as this part of the data allows for inferring the correct 
critical current density jc and flux-how resistivity pg 
through linear extrapolation. In an ideal situation, the 
linear excess-current characteristic above vth allows for a 
straightforward extrapolation. In reality, the character-

FIG. 9. Data for 2H-NbSe2 (B = 1.0 T) covering the complete 
measured range of currents, (a) The differential resistance 
R = d.V/dl exhibits a sharp increase and then becomes flat 
near the flux-flow resistance Rg; for the case of T = 5.5 K, 
the resistance goes through a maximum at low drives, while 
we expect a broad maximum at larger drives for the other 
temperatures. The black dot marks the current lo chosen for 
the linear extrapolation, (b) Current-velocity characteristic 
(red for T = 5.2 K) after rescaling the experimental data. 
The excess-current characteristic (blue straight line) is con­
structed by linear extrapolation around the current Jo. At 
large currents, the creep characteristic (red line) approaches 
the free flux-flow (dashed). (c) The pinning-force density Fpin 
(red for T = 5.2 K) rises steeply towards the maximum value 
Fc near the velocity vtg and then slowly decays, in agreement 
with the theoretical prediction [14].

istic is never perfectly linear and the extrapolation has 
to be done around some chosen point /0, V0 of the char­
acteristic. In order to find the correct point J0 around 
which to construct the linear extrapolation, we combine 
the creep dynamics discussed here with the results of the 
flow-dynamics described in Refs. [13 and 14].

The generic strong pinning situation is characterized 
by a separation of scales vc <C vp, where vp ~ fP/pa,g is 
the velocity scale for dissipative vortex motion within 
the defect potential excerting typical forces fp. The 
excess current-voltage curve then is expected to turn 
back towards free flux-how (see dashed blue line in Fig. 
10(a)) only at velocities larger than vp. Provided that 
t’th < vp, one thus expects the differential resistance 
to rise sharply towards Rg on the scale uth, then going 
through a broad maximum within the extended velocity 
region vth < v < vp, and returning from above to the 
free flux-flow branch and hence to Rg at very large cur­
rents v > vp, see the sketch (green line) in Fig. 10(b). 
This behavior is well in line with the behavior of the 
characteristics in Fig. 9 at the three lower temperatures. 
For the data measured at T = 5.5 K (magenta line in 
Fig. 9(a)) the maximum is sharper and appears at lower 
drives. This is consistent with the scenario shown in Fig. 
10(b), red line, where vp is of the order of uth- In this 
case, the differential resistance overshoots Rg and goes 
through a more narrow maximum close to uth-

In choosing the point J0 where the extrapolation to 
the excess-current characteristic (blue line in Fig. 9(b)) 
should be done, we should stay below the maximum in 
R (i.e., below the inflection point of the current-voltage 
characteristic), ideally at the crossing of the differential 
resistance R with the flux-flow resistance Rg. In par­
ticular, this educated choice guarantees that the extra­
polation never crosses the I-V characteristic but rather 
touches the latter in a tangent at J0. Unfortunately, the 
flux-flow resistance Rg may not be accurately known, 
which leaves some arbitraryness in the choice of Iq. For 
the lowest three temperatures in Fig. 9(a), we have cho­
sen a value I0 = 2.7 mA near the onset of the flat max­
imum in R and remark that the extracted parameters 
do not differ significantly for somewhat different choices 
of I0. For the highest temperature T = 5.5 K, we have 
chosen a value I0 = 1.3 mA before the maximum (which 
is expected at values R > Rg); again, the precise choice 
of Iq does not change the extracted pinning parameters 
in a significant manner. Note that the experimental ac­
cess to such a high-velocity regime is quite problematic 
in general due to heating effects that may even destroy 
the sample; this type of analysis then is restricted to ma­
terials with a small ratio jc/ja.

The above discussion also sheds some more light on 
the concave region of the barrier plot U(Fpin) in Fig. 
8 close to Fc. Translating the behavior of the current- 
voltage and resistance curves in Fig. 10 to the pinning- 
force density Fpin(v), one notes that the latter exhibits 
a broad maximum or plateau Fpin(vt,g < v < vp) % Fc 
for the case vp > vth, while a more narrow maximum
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around vth is expected when vp ~ t,th. Indeed, the 
maximum in Fpin corresponds to the point p/pg = 1 
in Fig. 10(b) and the derivative djp, small (large) for 
the case vp 3> uth (vp ~ i’th), determines the curvature 
of Fpin. In Fig. 9(c), we show the pinning-force den­
sity (with a broad maximum) extracted from the data 
at T = 5.2K. We then can expand Fpin(v) around its 
maximum and approximate Sf oc [(c0 - c)/cG]2. Invert­
ing and expanding for small <5/ « 1 provides us with 
the scaling log(y0/vc) - log(v/vc) oc Sf1/2. The ap­
pearance of the concave region in - log(v/vc) close to 
F/Fcj/jc - v/vc = 1 in 8 with an exponent a % 1/2, see 
inset, is thus the direct consequence of the maximum in 
-Fpin &t Fc.

V. PARAMETERS FROM STRONG PINNING 
THEORY

The interaction of vortex lines with sufficiently strong 
defects gives rise to bistable solutions for the vortex lat­
tice displacement; the appearance of such bistabilities is 
the hallmark of the strong pinning regime. The weak- to 
strong pinning crossover is characterized by the Labusch 
parameter [22 and 28] k = max[—e"(r)]/C, comparing 
the maximum (negative) curvature of the defect pinning 
potential ep{r) near its edge with the effective vortex lat­
tice stiffness C; pinning is strong provided that k > 1. 
A second condition on the applicability of strong pinning

FIG. 10. Illustrative sketch of current-voltage characteristic 
(left, (a)) and differential resistance (right, (b)) for the two 
cases with vtg < vp (in green) and vp ~ vtg (in red); blue 
dashed (solid) lines are (shifted) flux-flow curves. The sep­
aration of scales is a necessary condition for the appearance 
of the straight excess-current characteristic in (a), see green 
curve. The scaled differential resistivity shown in (b) rises 
steeply on the thermal creep scale vth, overshoots the flux- 
flow resistance Rg, and then smoothly approaches Rg from 
above. The resulting maximum (black cross) is broad when 
velocity scales are separated, ut.h < vp (in green); this re­
minds about the behavior seen in Fig. 9 for the lowest three 
temperatures. On the other hand, a more narrow maximum 
appears near ut.h when vp ~ ut.h (hr red), that resembles more 
the behavior of the high-temperature data at T = 5.5 K in 
the experiment of Fig. 9.

theory is the independent action of individual pins, re­
quiring that the density np of pins is small, npf2Ka0 < 1. 
Therefore, strong pinning does not necessarily imply a 
large critical current density jc. As the density np is 
increased above (or the field B = <F0/% decreased be­
low) this condition, 3D strong pinning goes over into ID 
strong pinning of individual vortices [29]. Below, we cite 
the main results of the 3D strong pinning regime as rel­
evant in the present discussion and show how pertinent 
strong-pinning parameters such as np, ft, fp, Uc can be 
extracted from the comparison of theoretical predictions 
with experimental data, at least in principle.

Vortices (with a core of size £) remain pinned on a de­
fect over an area 5'tirap ss t\f±, with 11| % and t± « f 
the longitudinal (along the vortex motion) and transverse 
trapping lengths. Assuming each defect to exert a pin­
ning force fp ~ ep/f (ep is the pinning potential depth) 
on the vortex, we find the maximal (or critical) pinning- 
force density Fc = (5'trap/°o)ip- When approaching 
the boundary of strong pinning at s 4 1, the pinning- 
force density is reduced by a factor (k - l)2 and we can 
make use of the interpolation formula

F/ % q%,(^K/ao)(ep/€)(l - 1/ft)2. (10)

The numerical 7 can be calculated once the specific shape 
of the pinning potential is known [4]; for the Lorentzian 
pinning potential ep(r) = ep/[l + (r2 /2£2)], we find that 
7 ~ 0.4.

The intrinsic field- and temperature dependence of 
the critical current jc = cFc/B follows from the corre­
sponding dependencies of ep, ft, and f. In the vicin­
ity of the upper-critical field Hco{T) % iFc2(0)r with 
t = 1 — T/Tc, the coherence- and London penetration 
lengths scale as £ = far^1/2 and A = A777 1^2, respec­
tively, with rb = t — b and b = B/Lfc2(0). Various pin­
ning models involving metallic and insulating defects or 
ATc-pinning, have been discussed in Ref. [30]; the pinning 
potential depth ep and the pinning strength k then de­
pend in various ways on A and f. It turns out that the 
dominant contribution to the scaling near the Ffc2(T)-line 
appears through the pinning energy ep = ep0(1 - t- 6)/3= 
and the Labusch parameter k = kq (1 — t — 6)/3k with 
model-dependent exponents [3e and f3K.

Scaling the critical current density jc = cFc/B with 
the (zero-temperature) depairing current density j0 = 
(2/3\/3)cLf/(0)^o/$o (with HC(T) the thermodynamic 
critical field), we find that this ratio only involves the ef­
fective defect number in the trapping volume npf2Ka0 = 
M-pS'trapOo < 1 and the ratio ep/eo < 1 with cq = 
H2(0)^q/87t the (zero-temperature) condensation energy,

^ = ^ ^ A (1 - 1/«)2(1 - T/Tji/s.
Ja 16tt en on

(11)

With « oc o0, we find the typical strong-pinning scaling 
[14, 19, and 23] jc oc 1/VS. Upon decreasing the field 
below the 3D strong pinning condition npSt,rapao < 1,
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pinning turns one-dimensional (ID) and jc is expected to 
saturate to a B-independent value. Taking into account 
a weak K-dependence of the transverse trapping t± ~ 
k1/4/ [14] changes the field-scaling of the critical current 
density to jc oc B~“ with a = 5/8 for a Lorentzian- 
shaped pinning potential. This result has been verified 
and augmented by numerical simulations [24] showing 
that the exponent a in fact decreases for increasing defect 
densities or vortex core size.

The result (11) tells, that jc should decrease on ap­
proaching the Bc2(T)-line, in agreement with the find­
ing in Fig. 4(a). The scaling jc oc B~“ with exponents 
a < 0.5 is observed in the data of Fig. 6 (a) and (b).

Next, we discuss the scale Uc of the activation barrier. 
This turns out proportional to the pinning energy ep, 
vanishes on approaching weak pinning k -> 1, and only 
weakly depends on k for very strong pinning [4]; it is 
accurately described by the interpolation formula

B^ge/l-l/w)2 (12)

with the numerical g % 0.4 for Lorentzian pinning poten­
tial. While the values of Uc in Fig. 4(c) decrease rapidly 
on approaching the Hc2{T)~line, the data in Fig. 7 is 
more consistent with a constant value. Indeed, substan­
tial variations of the barrier with field and temperature 
are to be observed only sufficiently close to the (In­
line; this is the case for 2H-NbSe2 where rb < 0.16. On 
the other hand, the data on a-MoGe has been obtained 
further away from the Bc2-line, with values of r6 all larger 
than 0.2.

Comparing Eq. (11) for jc with the expression (12) for 
the activation barrier Uc allows us to extract the effective 
defect number from the experimental data,

/ q T na0
167rg jc e0 o0 1

(13)

Given the values of jc and Uc, we can use Eq. (13) to 
find an estimate for the defect parameter Knpa0£2; the 
data on 2H-NbSe2 provides us with the values Knpa0£2 % 
(1.3, 1.7, 3.4, 12) x 10~4 < 1 at the four different temper­
atures, all consistent with the assumption of 3D strong 
pinning. With £0 ~ 77 A [31] and assuming a value of or­
der unity for k provides the estimate np ~2x 1015 cnr3.

The density parameter np£2Ka0 extracted from criti­
cal currents jc and activation barriers Uc as derived from 
the fits on the o-MoGe films, see Figs. 6 and 7, is shown 
as a function of field in Fig. 11. At large fields B > 4 
T, the separation between vortices o0 is smaller than the 
him thickness d, the density parameter Knpa0£2 < 1 is 
small, and we expect 3D strong pinning. On decreasing 
the held, two things happen: i) as the distance o0 bet­
ween vortices (that equals the extent of the distortion 
along pinned vortices) drops below d, vortices are cut 
and we enter the 2D strong pinning regime that is still 
well described by our strong pinning theory but with a 
modified effective elasticity C oc B involving only shear.

As a result, the Labusch parameter scales as k oc og and 
the critical current density jc oc 1/B. ii) With increasing 
density parameter np£2Ka0, vortices become individually 
pinned, either as ID lines (at high helds with o0 < d) or 
as 0D Pearl vortices (at low helds with o0 > d). In this 
case, the critical current density jc is expected to flatten 
and become independent of held B. The critical current 
density jc in Fig. 6 seems to flatten at the lowest helds 
(see data at T = 3.5 K and T = 4.5 K) that may indicate 
a crossover to a held independent ID or 0D regime. Fur­
thermore, the held scaling jc oc B~“ with an observed 
a between 0 and unity covers the range of expected be­
havior, however, without clear attribution to a specihc 
regime. An accurate association with a specihc pinning 
region then seems difficult in the low-held/high-density 
region, given the competition between the dimensional 
crossover and the density np crossover. Finally, we can 
use the data to extract an estimate for the defect density: 
with £0 ~ 52 A and k of order unity, the defect density 
np itself assumes a value of order np ~lx 1017cm~3.

Last, we turn our interest to the thermal velocity pa­
rameter I’th/i’c- The theoretical prediction [4]

f'th _ T a{n) ^

is based on a simple particle-like ansatz in Kramer’s rate 
expression [5, 20, and 21]; its proper evaluation, both 
theoretically and from experiment is notoriously difficult 
as it appears as the prefactor in the thermal activation 
rate which is dominated by the exponential factor with its 
activation barrier. Approximating o(k) % o(l —1/k)-3/2 
with a typical value d % 0.1, and using Eq. (12), we arrive 
at the simpler result

Ah
vc

kBT dg 
Be

[k(1 - 1/k)1/2], (15)

ID sp
3D sp

FIG. 11. Defect parameter np£2K<io for o-MoGe as a function 
of magnetic field scaling with oc B-1, as expected from strong 
pinning theory. The dashed line marks the rough position of 
the expected crossover line between the ID- and 3D-strong 
pinning regimes in the pinning diagram of Ref. [29].
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B = 0.5T

4 B [T] 6

FIG. 12. Scaled thermal velocity vth/vc versus magnetic field 
B for o-MoGe; upper and lower field axes refer to low (T = 
0.28 K and 0.45 K) and high temperature data. The inset 
shows the dependence on temperature at a constant field H = 
0.5 T, with a non-monotonic dependence as found before in 
the data for 2H-NbSe2, see Fig. 4(d).

where we have suitably factorized the result for later con­
venience, see below. This result predicts an increase of 
vth/vc with temperature (due to the factor kBT/Uc) that 
is consistent with the findings obtained from fitting the 
characteristic, see Figs. 4(d) and 12, apart from the dat- 
apoint at the highest temperature. This might be ex­
plained by a collapse of the factor (1 - 1/k)1/2 near the 
fjc2-line that occurs in several of the pinning models dis­
cussed in Ref. [30].

Alternatively, the first factor of Eq. (15) can be evalu­
ated using the experimental findings for Uc and values for 
np£2Ka0 from Eq. (13) (derived from experimental results 
for both Uc and jc); such an analysis provides a result of 
order unity for the first factor, about an order of mag­
nitude larger than the values extracted from the char­
acteristic shown in Fig. 4(d). Consistency then would 
require k to be close to unity, i.e., individual pins are 
marginally strong. Repeating this analysis for o-MoGe 
and using known experimental results for Uc and jc, we 
find a small value of order 10-2 for the first factor in Eq. 
(15). One then concludes that the Labusch parameter k 
should be large in o-MoGe in order to reach consistency 
with the results in Fig. 12. However, a word of caution is 
in place here, as both our theoretical knowledge on the 
preexponential factor vth/vc as well as our precision to 
extract a reliable value from Fig. 8 are quite limited at 
this stage.

VI. SUMMARY AND CONCLUSION

By applying the quantitative theory of strong pinning 
to current-voltage measurements, we provided a first 
quantitative data-driven analysis of vortex creep in the 
critical region and thus demonstrated the potential of

the strong-pinning paradigm for explaining pinning and 
creep in superconductors. The strong pinning paradigm 
comes with a number of microscopic assumptions: de­
fects have to be strong, i.e, they must generate bistable 
pinning states, and their density has to be small such 
that they act independently.

In return, we obtain specific phenomenological predic­
tions: the critical current density follows a field-scaling 
jc oc B~a with a % 0.5 that is different from weak col­
lective pinning theory and pinning persists well-beyond 
the critical drive that results in a linear excess-current 
characteristic. The experimental data analyzed in our 
work satisfies these requirements and provides a coher­
ent picture when submitted to a strong pinning analysis. 
Studying 2H-NbSe2 and a-MoGe with moderate critical 
temperature, we demonstrated that high temperature is 
not a necessary requirement for significant creep effects 
on the current-voltage characteristic. Indeed, the sensi­
tivity of the characteristic to thermal fluctuations follows 
from the creep parameter Uc/kBT which becomes small 
near the upper-critical field; temperature- and field vari­
ations of Uc then have a large influence on the character­
istic and are visible through thermal creep effects.

The barriers Uc extracted from the fits can be com­
pared with experiments on persistent current relax­
ation quantified by the normalized creep rate S = 
-dlogj/dlogt [18]. Assuming that the activation bar­
rier U(j) vanishes with a characteristic exponent a = 
3/2, the creep rate is related to the barrier through 
2 % (2/3)(&B:r/(7c)^ [5]. Fitting the data of 2H-NbSe2 
for T = 4.8 K yields the barrier Uc % 980 K, see Fig. 4, a 
value that is consistent with the observed creep rate [32] 
ranging from 5«5x 1(U3 to S % 1(U2.

It is also important to stress that while the prefactor Uc 
defines the barrier scale due to the defect potential (and 
is comparable to the defect pinning energy ep), the actual 
barrier U{Fpin) relevant for creep is much reduced due to 
the drive, what renders the creep motion visible in the ex­
periment. For large drives, this barrier eventually drops 
below the fluctuation energy kBT and Kramer’s rate the­
ory breaks down. This restricts the applicability of our 
results and thus the reliability of the fits to the region 
v < t'th/e. At large velocities v > vp with vp 3> uth, dy­
namical effects become important and experimental data 
covering such a region far beyond the critical current then 
show a collapse of the pinning force and an approach 
towards the free flux-how, again in agreement with the 
strong pinning theory.

Following the prediction of strong pinning theory that 
the activation barrier U(Fpin) depends on the pinning- 
force density Fpin rather than the driving current den­
sity j, we have proposed a new methodology to extract 
the creep parameters Uc/kBT and the barrier and
prefactor in the Arrhenius law for the activated process. 
In comparison to the standard assumption of a barrier 
dependence U(j/jc), the strong pinning expression in­
cludes the dissipative force as well, U(j/jc — v/vc); the 
two Ansatze coincide in the region of very small veloc­
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ities or large barriers, where the dissipative term can 
be ignored, v/vc < j/jc. Analyzing our data, it turns 
out that this correction is relevant: e.g., for a-MoGe 
and T = 3.5K (Fig. 5), we find that v/vc % 0.11 for 
j = 0.8jc; hence, neglecting the viscous term would lead 
to a shift Sj % 0.11 jc of the theoretical prediction and 
hence a significant deviation from the experimental data. 
Finally, the intriguing saturation of the creep parameter 
Uc/kBT in a -MoGe at low temperatures points to the 
possibility of performing a direct observation of quan­
tum creep through current-voltage measurements, that 
could be verified by future experimental and theoretical

work.
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