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ABSTRACT

In many optimization problems, a feasible solution induces a multi-
dimensional cost vector. For example, in load-balancing a schedule
induces a load vector across the machines. In k-clustering, opening
k facilities induces an assignment cost vector across the clients.
Typically, one seeks a solution which either minimizes the sum- or
the max- of this vector, and these problems (makespan minimiza-
tion, k-median, and k-center) are classic NP-hard problems which
have been extensively studied.

In this paper we consider the minimum-norm optimization prob-
lem. Given an arbitrary monotone, symmetric norm, the problem
asks to find a solution which minimizes the norm of the induced
cost-vector. Such norms are versatile and include {p norms, Top-£
norm (sum of the £ largest coordinates in absolute value), and or-
dered norms (non-negative linear combination of Top-£ norms), and
consequently, the minimum-norm problem models a wide variety
of problems under one umbrella, We give a general framework to
tackle the minimum-norm problem, and illustrate its efficacy in
the unrelated machine load balancing and k-clustering setting. Our
concrete results are the following.

(a) We give constant factor approximation algorithms for the
minimum norm load balancing problem in unrelated machines, and
the minimum norm k-clustering problem. To our knowledge, our
results constitute the first constant-factor approximations for such
a general suite of objectives.

(b) For load balancing on unrelated machines, we give a (2 + ¢)-
approximation for ordered load balancing (i.e., min-norm load-
balancing under an ordered norm).

(c) For k-clustering, we give a (5 + ¢)-approximation for the
ordered k-median problem, which significantly improves upon
the previous-best constant-factor approximation (Chakrabarty and
Swamy (ICALP 2018); Byrka, Sornat, and Spoerhase (STOC 2018)).

(d) Our techniques also imply O(1) approximations to the instance-
wise best simultaneous approximation factor for unrelated-machine
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load-balancing and k-clustering. To our knowledge, these are the
first positive simultaneous approximation results in these settings.

At a technical level, one of our chief insights is that minimum-
norm optimization can be reduced to a special case that we call
min-max ordered optimization. Both the reduction, and the task of
devising algorithms for the latter problem, require a sparsification
idea that we develop, which is of interest for ordered optimiza-
tion problems. The main ingredient in solving min-max ordered
optimization is a deterministic, oblivious rounding procedure (that
we devise) for suitable LP relaxations of the load-balancing and
k-clustering problem; this may be of independent interest.
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1 INTRODUCTION

In many optimization problems, a feasible solution induces a multi-
dimensional cost vector. For example, in the load balancing setting
with machines and jobs, a solution is an assignment of jobs to ma-
chines, and this induces a load on every machine. In a clustering
setting with facilities and clients, a solution is to open k facilities
and connecting clients to the nearest open facilities, which induces
an assignment cost on every client. This multi-dimensional vector
dictates the quality of the solution. Depending on the application,
oftentimes one minimizes either the sum of the entries of the cost
vector, or the largest entry of the cost vector. For example, in the
load balancing setting, the largest entry of the load vector is the
makespan of the assignment, and minimizing makespan has been
extensively studied [25, 31, 34, 35]. Similarly, in the clustering set-
ting, the problem of minimizing the sum of assignment costs is
the k-median problem, and the problem of minimizing the largest
assignment cost is the k-center problem. Both of these are classic
combinatorial optimization problems [12, 16, 20, 23, 24, 32]. How-
ever, the techniques to study the sum-versions and max-versions
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are often different, and it is a natural and important to investigate
what the complexity of these problems become if one is interested
in a different statistic of the cost vector.

In this paper, we study a far-reaching generalization of the above
two objectives. We study the minimum norm optimization problem,
where given an arbitrary monotone, symmetric norm f, one needs
to find a solution which minimizes the norm f evaluated on the
induced cost vector. In particular, we study (a) the minimum norm
load balancing problem which asks to find the assignment of jobs

— —
to (unrelated) machines which minimizes f(load) where load is the
induced load vector on the machines, and (b) the minimum norm
k-clustering problem which asks to open k-facilities minimizing
f(©) where ¢ is the induced assignment costs on the clients.

Our main contribution is a framework to study minimum norm
optimization problems. Using this, we give constant factor approxi-
mation algorithms for the minimum norm unrelated machine load
balancing and the minimum norm k-clustering problem (Theorem 9.1
and Theorem 8.1). To our knowledge our results constitute the first
constant-factor approximations for a general suite of objectives in
these settings. We remark that the above result is contingent on
how f is given. We need a ball-optimization oracle (see (1) for more
details), and for most norms it suffices to have access to a first-order
oracle which returns the (sub)-gradient of f at any point.

Monotone, symmetric norms capture a versatile collection of
objective functions. We list a few relevant examples below and refer
the reader to [4, 10, 11] for a more comprehensive list.

+ {p-norms. Perhaps the most famous examples are £, norms

where f(0) := ( n ?fp)l/

=19 ’ for p > 1. Of special interest are
p ={1,2, c0}. For unrelated machines load-balancing, the p = 1
case is trivial while the p = co case is makespan minimization.
This has a 2-approximation [31, 34] which has been notoriously
difficult to beat. For the general £, norms, Azar and Epstein [7]
give a 2-approximation, with improvements given by [28, 33].
For the k-clustering setting, the p = {1, 2, oo} norms have been
extensively studied over the years [1, 12, 16, 20, 23, 24]. One can
also derive an O(1)-approximation for general ;-norms using

most of the algorithms' for the k-median problem.

Top-{ norms and ordered norms. Another important class of
monotone, symmetric norms is the Top-£-norm, which given a
vector U returns the sum of the largest ¢ elements. These norms
are another way to interpolate between the ¢; and the £, norm.

A generalization of the Top-{ norm optimization is what we
call the ordered norms. The norm is defined by a non-increasing,
non-negative vector w € RJ’: withwy > wp > -+ > wp, > 0.
Given these weights, the w-ordered, or simply, ordered norm

n
i=1
5! is the entries of ¥ written in non-increasing order itself. It is

of a vector 0 € RY is defined as cost(w; 9) := 3 w,~z7l.l where

1We could not find an explicit reference for this. The only work which we found that
explicitly studies the £,,-norm minimization in the k-clustering setting is by Gupta
and Tangwongsan [21]. They give a O(p)-approximation using local-search and prove
that local-search can’t do any better. However, L"‘Z -“distances” satisfy relaxed triangle
inequality, in that, d(u, v) < 2P(d(u, w) + d(w, v)). The algorithms of Charikar et
al [16] and Jain-Vazirani [24] need triangle inequality with only “bounded hops” and
thus give CP-approximations for the (,’z “distances”. In turn this implies a constant
factor approximation for the £5-norm.
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not hard to see that the ordered norm is a non-negative linear
combination of the Top-£ norms.

For load balancing in unrelated machines, we are not aware
of any previous works studying these norms. We devise a (2 + ¢)-
approximation for ordered load balancing (Theorem 9.2). Note
that the case of £ = 1 for Top-{-load balancing corresponds to
makespan minimization for which improving upon the factor of
2 is a longstanding open problem.

In k-clustering, the Top-{ optimization problem is called the
{-centrum problem, and the ordered-norm minimization prob-
lem is called the ordered k-median problem. Only recently, a
38-factor [13] and 18 + e-factor [15] approximation algorithm
was given for the ordered k-median problem. We give a much
improved (5 + €)-factor approximation algorithm for the ordered
k-median problem (Theorem 8.3).

Min-max ordered norm. Of particular interest to us is what
we call the min-max ordered optimization problem. In this, we
are given N non-increasing, non-negative weight vectors

wD W) e R”, and the goal is to find a solution ¥ which
minimizes maxf]: 1 cost(w<r); ). This is a monotone, symmetric
norm since it is a maximum over a finite collection of monotone,
symmetric norms.

One of the main insights of this paper is that the minimum norm
problem reduces to min-max ordered optimization (Theorem 5.4).
In particular, we show that the value of any monotone, sym-
metric norm can be written as the maximum of a collection of
(possibly infinite) ordered norms; this result may be of indepen-
dent interest in other applications involving such norms [4, 11].
Operations. One can construct monotone, symmetric norms
using various operations such as (a) taking a nonnegative lin-
ear combination of monotone, symmetric norms; (b) taking the
maximum over any finite collection of monotone, symmetric
norms; (c) given a (not-necessarily symmetric) norm g : R” —
Ry, setting f(v) := g(v}), or f(v) = Exp,[9({va(i}icin))]
where 7 is a random permutation of [n]; (d) given a mono-
tone, symmetric norm g : RF — R4, where k < n, setting
f@) = Xscin):s|=k 9{vi}ies). The richness of these norms
makes the minimum-norm optimization problem a versatile and
appealing model which captures a variety of optimization prob-
lems under one umbrella.

As an illustration, consider the following stochastic optimiza-
tion problem in clustering (this is partly motivated by the sto-
chastic fanout model described in [26] for a different setting).
We are given a universe of plausible clients, and a symmetric
probability distribution over actual client instances. Concretely,
say, each client materializes i.i.d with probability p € (0,1). The
problem is to open a set of k facilities such that the expected
maximum distance of an instantiated client to an open facility is
minimized. The expectation is indeed a norm (follows from part
(d) above) and thus we can get a constant-factor approximation
for this problem. In fact, the expected maximum for the i.i.d case
is an ordered-norm, and so we can obtain a (5 + ¢)-approximation
for this particular stochastic optimization problem.

General Convex Functions. One could ask to find a solution
minimizing a general convex function of the cost vector. In gen-
eral, such functions can be arbitrarily sharp and this precludes
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any non-trivial approximation. For instance in the clustering set-
ting, consider the convex function C(¢) which takes the value 0 if
the sum of ¢;’s (that is the k-median objective) is less than some
threshold, and co otherwise; for this function, it is NP-hard to get
a finite solution. Motivated thus, Goel and Meyerson [18] call a
solution ¥ an a-approximate solution if C(d/a) < opt where 0 is
the induced cost vector, ¥/« is the coordinate-wise scaled vector,
and opt = ming, C(w). It is not hard to see? that a constant factor
approximation for monotone, symmetric norm-minimization
implies a constant-approximate solution for any monotone, sym-
metric convex function. In particular, for the load-balancing and
clustering setting we achieve this.

Connections and implications for simultaneous optimiza-
tion. In the minimum-norm optimization problem, we are given
a fixed norm f and we seek a solution whose cost vector ¥ min-
imizes f(9). In simultaneous optimization [18, 27], the goal is to
find a solution whose cost vector U simultaneously approximates all
norms/convex functions. Such solutions are desirable as they pos-
sess certain fairness properties. More precisely, we seek a solution
inducing a cost vector 0 that is simultaneously an a-approximation
for all monotone symmetric norms g : R" — Ry, ie, g(¥) <
a - opt(g), where opi(g) := ming, g(w).

Simultaneous optimization is clearly a much stronger goal than
what we are aiming for: if one can find a solution which is a si-
multaneous a-approximation, then this solution is clearly an a-
approximation for a fixed norm. It is rather remarkable that in the
setting of load balancing with identical jobs, and even in the re-
stricted assignment setting where jobs have fixed processing times
but can be allocated only on a subset of machines, one can al-
ways achieve a simultaneous 2-approximate solution [3, 8, 18].
Unfortunately, for unrelated (even related) machines [8] and k-
clustering [27], there are impossibility results ruling out the exis-
tence of any simultaneous a-approximate solutions for constant .
These impossibilities also show that the techniques used in [3, 8, 18]
are not particularly helpful when trying to optimize a given, fixed
norm, which is the main focus in our paper.

The techniques we develop yield an O(1)-approximation to the
best simultaneous approximation factor possible for any instance
of load-balancing on unrelated machines, and k-clustering. Fix an
unrelated-machine load-balancing instance 7. Let 0{} be the small-
est a for which there is a solution to 7 that is a simultaneous
a-approximation. Note that a} could be a constant for a specific
instance 7 ; the impossibility result mentioned above states that (xj_
cannot be a constant for all instances. It is natural, and pertinent, to
ask whether one can obtain instance-wise guarantees: for example,
can one obtain an O(a’;) simultaneous-approximation factor for
every instance 7 ? Note that in settings where we are constrained to
specify a single solution that is required to “work” for a multitude
of norms, a is a more meaningful benchmark to compare against
(than opt(g)), as this explicitly captures the one-solution limitation,
and so such instance-wise guarantees are particularly desirable. We
design algorithms that yield O(1)-approximations to a both for

2Consider the monotone, symmetric norm f(x) := min{¢ : C(|x|/t) < opt}. By
definition f(0) = 1, and so a a-approximate min-norm solution ¥ satisfies f(9) < a,
implying C(3/a) < opt. The definition requires knowing the value of opt which can
be guessed using binary search.
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load balancing and k-clustering. These seem to be the first positive
results on simultaneous optimization in these settings. We remark
that our algorithm is not a generic reduction to the minimum norm
optimization, but is consequence of our techniques developed to
tackle the problem.

Other related work. The ordered k-median and the {-centrum
problem have been extensively studied in the Operations Research
literature for more than two decades (see, e.g. the book [29]); we
point the interested reader to these books, or the paper by Aouad
and Segev [5], and references within for more information on
this perspective. From an approximation algorithms point of view,
Tamir [36] gives the first O(log n)-approximation for the £-centrum
problem, and Aouad and Segev [5] give the first O(log n) approxi-
mations for the ordered k-median problem. Very recently, Byrka,
Sornat, and Spoerhase [13] and our earlier paper [15] give the first
constant-factor approximations for the {-centrum and ordered k-
median problems. Another recent relevant work is of Alamdari
and Shmoys [2] who consider the k-centridian problem where the
objective is a weighted average of the k-center and the k-median
objective (a special case of the ordered k-median problem); [2] give
a constant-factor approximation algorithm for this problem.

In the load balancing setting, research has mostly focused on
{p norms; we are not aware of any work studying the Top-{ opti-
mization question in load balancing. For the £,-norm Awerbuch
et al. [6] give a ©(p)-approximation for unrelated machines; their
algorithm is in fact an online algorithm. Alon et al. [3] give a PTAS
for the case of identical machines. This paper [3] also shows a
polynomial time algorithm in the case of restricted assignment
(jobs have fixed processing times but can’t be assigned everywhere)
with unit jobs which is optimal simultaneously in all {,-norms.
Azar et al. [8] extend this result to get a 2-approximation algo-
rithm simultaneously in all £, norms in the restricted assignment
case. This is generalized to a simultaneous 2-approximation in all
symmetric norms (again in the restricted assignment situation) by
Goel and Meyerson [18]. As mentioned in the previous subsection,
Azar et al. [8] also note that even in the related machine setting,
no constant factor approximation is possible simultaneously even
with the {; and {s norm. For unrelated machines, for any fixed
{p norm Azar and Epstein [7] give a 2-approximation via convex
programming. The same paper also gave a V2-approximation for
the p = 2 case. These factors have been improved (in fact for any
constant p the approximation factor is < 2) by Kumar et al. [28]
and Makarychev and Sviridenko [33]. We should mention that the
techniques in these papers are quite different from ours and in
particular these strongly use the fact that the fg cost is separable.
Finally, in the clustering setting, Kumar and Kleinberg [27] and
Golovin et al. [19] give simultaneous constant factor approxima-
tions in all {p norms, but their results are bicriteria results in that

they open O(k log n) and O(k+/log n) facilities respectively.

2 TECHNICAL OVERVIEW, ORGANIZATION

First approach and its failure. Perhaps the first thing one may
try for the minimum-norm optimization problem is to write a con-
vex program min f(0) where U ranges over fractional cost vectors,
ideally, convex combinations of integral cost vectors. If there were
a deterministic rounding algorithm which given an optimal solution
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9% could return a solution @ such that for every coordinate 7; < pBJ*
then by homogeneity of f, we would get a p-approximation. Indeed,
for some optimization problems such a rounding is possible. Unfor-
tunately, for both unrelated load balancing and k-clustering, this
strategy is a failure as there are simple instances for both problems,
where even when ¢ is a convex combination of integer optimum
solutions, no such rounding, with constant p, exists. In particular,
the integrality gaps of these convex programs are unbounded.

Reduction to min-max ordered optimization (Section 5). Given
the above failure, at first glance, it may seem hard to be able to rea-
son about a general norm. One of the main insights of this paper is
that the monotone, symmetric norm minimization problem reduces
to min-max ordered optimization. This is a key conceptual step
since it allows us a foothold in arguing about the rather general
problem. Our result may also be of interest in other settings deal-
ing with symmetric norms. In particular, we show that given any
monotone, symmetric norm f, the function value at any point f(x)
is equal to max,, ¢ cost(w; x) (Lemma 5.2) where C is a potentially
infinite family of non-increasing subgradients on the unit-norm
ball. That is, f(x) equals the maximum over a collection of ordered
norms. Thus, finding the x minimizing f(x) boils to the min-max
ordered-optimization problem. The snag is that this collection of
weight vectors could be infinite. This is where the next simple, but
extremely crucial, technical observation helps us.

Sparsification idea (Section 4). Given a non-increasing, non-
negative weight vector w € R, the ordered norm of a vector
¥ € RY is cost(w; 0) == X1, wiﬁil. The main insight is that al-
though w may have all its n-coordinates distinct, only a few fixed
coordinates matter. More precisely, if we focus only on the coordi-
nates POS := {1,2,4,8,- - - , } and define a w-vector with w; = w; if
i € POS, and w; = wy where ¢ is the nearest power of 2 larger than
i, then it is not too hard to see cost(w; x) < cost(w; x) < 2cost(w; x).
Indeed, one can increase the granularity of the coordinates to (ceil-
ings of) powers of (1 + §) to get arbitrarily close approximations
where the number of relevant coordinates is O(log n/d).

The above sparsification shows that for ordered norms, one can
focus on weight vectors whose breakpoints are in fixed positions
that are independent of the weight vector. In contrast, the natural
sparsification idea that rounds each w; to the nearest power of
(1 + J) does not yield this weight-independence property in the
positions of breakpoints. The uniformity of positions (and the fact
that we only have logarithmically many positions) allows us to
form a polynomial-size e-net of weight vectors. More precisely, for
any weight vector w, there is another weight vector w’ in this net
such that for any vector o, cost(w; U) and cost(w’; ¥) are within a
multiplicative (1 + §)-factor. In particular, this helps us bypass the
problem of having “infinitely many vectors” in the collection C
described above.

Ordered optimization and proxy costs (Section 6). Now we fo-
cus on min-max ordered optimization. First let us consider just
simple ordered optimization, and in particular, just Top-¢ optimiza-
tion. To illustrate the issues, let us fix the optimization problem to
be load balancing on unrelated machines. One of the main technical
issues in tackling the Top-¢ optimization problem is that one needs
to find an assignment such that sum of loads on a set of £ machines
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is minimized, but this set of machines itself depends on the assign-
ment. Intuitively, the problem would be easier (indeed, trivial) if
we could sum the loads over all machines. Or perhaps sum some
function of the loads, but over all machines. Then perhaps one could
write a linear/convex program to solve this problem fractionally,
and the objective function would be clear. This is where the idea
of proxy costs comes handy. We mention that this idea was already
present (in different forms) in [5, 13, 15].

The idea of this proxy cost is also simple. Suppose we knew the ¢-
th largest load, say p, in the optimal solution. Then the Top-£ norm
of the load vector can be written as € p+ . 411 machines i (I0ad(i)—p)™,
where zt := max{z, 0}. This is the proxy-cost of the Top-£ norm
given parameter p. Note that the summation is over all machines;
however, the summand is not the load of the machine but a function
hp(load(i)) of the load. Furthermore, we could assume by binary
search that we have a good guess of p.

For ordered optimization, first we observe that cost(w; ¥) can be
written as a non-negative linear combination of the Top-£ norms
(Claim 6.4). In particular, if we have the guesses of the ¢-th largest
load for all ¢, then we could write the proxy cost of cost(w; D).
However, guessing all n py’s would be infeasible. This is where our
earlier sparsification idea comes in handy again. Since the wgs for
only indices ¢ € POS are used to define w, one only needs to guess
the (approximations for) pgs for the indices ¢ € POS to define the
proxy function. And this again can be done in polynomial time.
Also, what is crucial for min-max ordered optimization is that the
positions are independent of the particular weight vector: although
there are N different weight functions, their sparsified versions
have the same break points, and their proxy functions are defined
using these same, logarithmically many break points.

LP relaxations and deterministic oblivious rounding (Sec.7-
9) One can use the proxy costs to write linear programming relax-
ations for the problems at hand (in our case, load balancing and
k-clustering). Indeed, for k-clustering, this was the approach taken
by Byrka et al. [13] and our earlier work [15] for ordered k-median.
With proxy costs, the LP relaxation for ordered k-median is the
usual LP but the objective has non-metric costs. Nevertheless, both
the papers showed constant integrality gaps for these LPs. (Our
proxy cost here is subtly different, but is within O(1)-factor of the
expression in [13, 15].) For load-balancing, the natural LP has a bad
gap, and one needs to add additional constraints, using which we
can indeed show the LP has an integrality gap of roughly 2.
However, it is not at all clear how to use this LP for min-max
ordered problems with multiple weight functions. The algorithms
of Byrka et al [13] are randomized which bound the expected cost
of the ordered k-median; with multiple weights, this won’t help
solve the min-max problem unless one can argue very sharp con-
centration properties of the algorithm. The same is true for our
load-balancing algorithm. These algorithms can be derandomized,
but these derandomizations lead to algorithms which use the (sin-
gle) weight function crucially, and it is not clear at all how to
minimize the max of even two weight functions. The primal-dual
algorithm in [15] suffers from the same problem. Our approach in
this paper is to consider deterministic rounding of the LP solution
which are oblivious to the weight vectors. We can achieve this for
the LP relaxations we write for load balancing and k-clustering
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(although we need to strengthen the latter furthermore). We defer
further technical overview to Section 7, and then give details for
load-balancing in Section 9 and for k-clustering in Section 8; the
latter two sections can be read in any order.

Extensions: multi-budgeted ordered optimization and con-
nections to simultaneous optimization. Finally, we showcase
the versatility of deterministic, weight-oblivious rounding by utiliz-
ing it to obtain O(1)-approximations for multi-budgeted ordered op-
timization, and the instance-wise best simultaneous-approximation
factor, for our applications of load balancing and k-clustering.

Multi-budgeted ordered optimization is the variant of min-max
ordered optimization, wherein we are given multiple ordered norms
and a budget for each ordered norm, and we seek a solution whose
induced cost vector satisfies these budgets. As with min-max or-
dered optimization, our oblivious rounding procedures easily lead
to O(1)-approximations for the multi-budgeted ordered {load bal-
ancing, k-clustering} problems.

Let a} be the smallest & such that there exists a solution whose
cost-vector U satisfies g(0) < aopt(g) for all monotone, symmetric
norms g; here, opt(g) = ming, g(w), where w ranges over the cost
vectors induced by feasible solutions. A y-approximation algorithm
for the best simultaneous-approximation factor takes an instance
T and returns a solution ¥ such that g(d) < yajopt(g) for any
monotone, symmetric norm g. We devise O(1)-approximation al-
gorithms for the best simultaneous-approximation factor for load
balancing and k-clustering. The key idea stems from Goel and Mey-
erson [18], who use the majorization theory of Hardy, Littlewood,
and Polya [22], to show that in order to simultaneously approximate
all monotone, symmetric, norms, then it suffices to simultaneously
approximate all Top-¢ norms. If the best simultaneous approxima-
tion for a given instance is a*, then we can cast the latter problem
as a multi-budgeted ordered optimization problem with a budget of
a’opt, for each Top-£-norm, where opt, is the optimal value for
the Top-¢ norm. Using our sparsification ideas, we can argue that
we only need to consider the logarithmically many positions in
POS, so although we do not know opt,, we can “guess” this for all
¢ € POS. Using our O(1)-approximation results for multi-budgeted
ordered optimization coupled with a binary search for a‘*,, then
leads to an O(1)-approximation for a}.
3 PRELIMINARIES

Solutions to the optimization problems we deal with in this paper
induce cost vectors. We use 0 to denote them when talking about
problems in the abstract. In load-balancing, the vector of the loads

—_ —_
on machines is denoted by load, or load if ¢ is the assignment of
jobs. In k-clustering, we the vector of assignment costs of clients
is denoted as ¢. We always use 6 to denote the cost vector in the
optimum solution.

For an integer n, we use [n] to denote the set {1,...,n}. For a
vector 3 € R", we use 3} to denote the vector v with coordinates
sorted in non-increasing order. That is, we have 5} = Uy(1), Where
7 is a permutation of [n] such that T,(1) 2 Tp(z) 2 ... Tp(n).-

Throughout the paper, we use w (with or without superscripts)
to denote a non-increasing, non-negative weight vector. The di-
mension of this vector is the dimension of the cost vector. In
the abstract, we use n to denote this dimension; so w € R} and
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wi = wy = -+ = w, > 0. We use w to denote the “sparsified”
version of the weight vector w which is defined in Section 4.

Ordered and top-{ optimization. Given a weight vector w as
above, the ordered optimization problem asks to find a solution with
induced cost vector ¢ which minimizes cost(w;?) := X1, wif)il.
This is the w-ordered norm, or simply ordered norm of @. The spe-
cial case where w is a {0, 1} vector—so wy = - - - wp = 1 (for some
¢ € [n]) and w; = 0 otherwise—is called Top-¢ optimization: we
seek a solution ¥ minimizing the sum of the ¢ largest entries. We
use cost({; U) to denote the cost of the Top-¢ optimization problem.
In the literature in the k-clustering setting, the Top-¢ optimization
problem is called the £-centrum problem, and the ordered optimiza-
tion problem is called the ordered k-median problem.

Min-max and multi-budgeted ordered optimization. In a sig-
nificant generalization of ordered optimization, we are given multi-
ple non-increasing weight vectors w(l), o wiN) ¢ R’, and min-
max ordered optimization asks to find a solution with induced cost
vector ¢ which minimizes max, ¢[n cost(w("); 3). A related prob-
lem called multi-budget ordered optimization has the same setting
as min-max ordered optimization, but one is also given N budgets
Bi,...,BN = 0. The objective is to find a solution inducing cost
vector ¥ such that cost(w; ) < By, for all r. This problem leads to
connections with simultaneous optimization [18, 27].

Minimum norm optimization. A function f : R” — Risanorm
if (i) f(x) =0iff x = 0; (il) f(x +y) < f(x) + f(y) for all x,y € R"
(triangle inequality); and (iii) f(Ax) = |A|f(x) for all x e R",A e R
(homogeneity). Properties (ii) and (iii) imply that f is convex. f is
symmetric if permuting the coordinates of x does not affect its value,
ie, f(x) = f(x!) for all x € R™. f is monotone if increasing its
coordinate cannot decrease its value In minimum norm optimization
problem we are given a monotone, symmetric norm f, and we have
to find a solution inducing a cost vector © which minimized f(0).
Notice that Top-¢ optimization, ordered optimization, and min-max
ordered optimization are special cases of this problem.

Load balancing and k-clustering problems. In the load balanc-
ing setting, we have m machines, n jobs, and a processing time
pij 2 0for job j on machine i. A solution to the problem is an assign-

—

ment o of jobs to machines. This induces a load vector load, € R™,

with load (i) := 2j.5(j)=i pij for all i € [m], which is the cost-

vector associated with o. Thus, the min-norm load balancing prob-
—

lem asks to find ¢ minimizing f(loads ).

In the k-clustering setting, we have a metric space (D, {c;;};, je )
and an integer k > 0. A solution to the problem is a set F ¢ D,
|F| = k of k open facilities. This induces a cost-vector ¢, where
¢j := min;er cjj is the assignment cost of j. In minimum-norm
k-clustering, we seek a set F of facilities that minimizes f(c).

4 SPARSIFYING WEIGHTS

Let § > 0 be a parameter. We show how to sparsify w € R” to a
weight vector w € R (with non-increasing coordinates) having
O(log n/8) distinct weight values, such that for any vector 0, we
have cost(w; ) < cost(w;0) < (1 + §)cost(w; V). Moreover, an
important property we ensure is that the breakpoints of w—i.e., the
indices where w; > wj+1—lie in a set that depends only by n and §
and is independent of w. As explained in Section 2, sparsification
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in two distinct places; one, to give a polynomial time reduction
from min-norm optimization to min-max ordered optimization
(Section 5), and two, to specify proxy costs which allow us to tackle
min-max ordered optimization.

For simplicity, we first describe a sparsification that leads to
a factor-2 loss (instead of 1 + §), and then refine this. For every
index i € [n], we set w; = w; if i = min{2%, n} for some integer
s > 0; otherwise, if s > 1 is such that 257! < i < min{2°, n}, set
wi = * Wnin(2%,n) = wmm{zs n}- Note that w < w coordinate wise,
and wi > w2 > ... wp.

Observe that, unlike a different sparsification based on, say,
geometric bucketing of the w;s, the sparsified vector w is not
component-wise close to w; in fact w; could be substantially smaller
than w; for an index i. Despite this, Claim 4.1 shows that cost(w; 0)
and cost(w; 0) are close to each other.

Cramm 4.1. For any ¥ € R, we have cost(w;0) < cost(w; D) <
2cost(w; D).

PROOF. Since w < w, it is immediate that cost(w; ¥) < cost(w; D).
The other inequality follows from a charging argument. Note that
for any s > 2, we have (min{2%,n} — 2°71) < 2(min{25~1,n} -

2572); hence, the cost contribution Zml;{ZlJr;l} wiﬁil is at most twice

the cost contribution in cost(w;v) from the indices i € {23_2 +

l =

1,...,min{2571, n}} The remaining cost w151 + WUy is at most

Zwlall. [}

For the refined sparsification that only loses a (1 + §)-factor,
we consider positions that are powers of (1 + §). Let POS,, 5 :=
{min{ [(1+6)],n}:s > 0}. (Note that {1,n} C POS,, 5.) Observe
that POS,, s depends only on n,§ and is oblivious of the weight
vector. We abbreviate POS,, s to POS in the remainder of this sec-
tion, and whenever n, § are clear from the context. For £ € POS,
{ < n, define next({) to be the smallest index in POS larger than
¢. For every index i € [n], we set w; = w; if i € POS; otherwise,
if £ € POS is such that £ < i < next(€) (note that £ < n), set
Wi = Wnext(£) = Wnext(¢)- Lemma 4.2 generalizes Claim 4.1.

LEMMA 4.2. For any @ € R, we have cost(w; J) < cost(w;d) <
(1 + &)cost(w; D).

We once again stress that the, perhaps more natural, way of geo-
metric bucketing (which is indeed used by [5, 13, 15]) where one ig-
nores small w;s and rounds down each remaining w; to the nearest
power of 2 (or (1+¢)), doesn’t work for our purposes. With geomet-
ric bucketing, the resulting sparsified vector w’ is component-wise
close to w (and so cost(w’;d) is close to cost(w; 7)). But the break-
points of w’ depend heavily on w, whereas the breakpoints of w all
lie in POS. As noted earlier, this non-dependence on w is extremely
crucial for us.

5 REDUCING MIN-NORM OPTIMIZATION TO
MIN-MAX ORDERED OPTIMIZATION

In this section we show our reduction of the minimum norm opti-
mization problem to min-max ordered optimization. We are given
a monotone, symmetric norm f : R” — R, and we want to find a
solution to the underlying optimization problem which minimizes
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the f evaluated on the induced cost vector. Let 6 denote the optimal
cost vector and let opt = f(0).

We assume the following (approximate) ball-optimization oracle.
Given any cost vector ¢ € R", we can (approximately) optimize
¢"x over the ball B (f) := {x e R" : f(x) < 1}.

Oracle A takes input ¢ € RY returns a k-approximation to
Bopt(c) := max{c' x : x € B+(f)}

Note that under mild assumptions, the ball-optimization oracle can
be obtained, via the ellipsoid method, using a first-order oracle for
f that returns the subgradient (or even approximate subgradient)
of f. Recall, d € R" is a subgradient of f at x € R" if we have
fly) — f(x) > dT(y — x) for all y € R™. It is well known that a
convex function has a subgradient at every point in its domain.

We begin by stating some preliminary properties of norms, mono-
tone norms, and symmetric norms.

LEMMA 5.1. Let f : R" — Ry be a norm and x € RY.

(i) Ifd is a subgradient of f at x, then f(x) = d”x and f(y) = dTy
forally € R™. Also, d is a subgradient of f at any point Ax,
where A > 0.

(ii) If f is monotone, there exists a subgradient d of f at x such that
d>0.

(iii) Let f be symmetric, and d be a subgradient of f at x. Then, d
and x are similarly ordered, i.e., ifd; < dj then x; < xj, and
flx) = cost(dl x). Moreover, for any permutation «r : [n] —

[n], the vector d™) := {dﬂ(l)} jisa subgradient of f at x").

Motivated by the above lemma, we define the following (possibly
infinite) set of non-increasing subgradients at points in B (f).

C:{deRﬁ: di>dy > ... >dp,

d is a subgradient of f at some x € B+(f)}.

As a warm up, Lemma 5.2 shows that min-norm optimization is
equivalent to min-max ordered optimization with an infinite collec-
tion of weight vectors.

LEMMA 5.2. Let x € RY. We have f(x) = max,, ¢ cost(w; x).

ProoF. We first argue that f(x) < max,,¢c cost(w; x). By part
(ii) (of Lemma 5.1), there is a subgradient d > 0 of f at x. By part
(iii) there is a common permutation s that defines d Y and x!, and
d=dlisa subgradient of f at x!. By part (i), disalsoa subgradlent
of fatxl/f(x}) € Bi(f). Sod € C. Also, f(x) = cost(d; x) (by
part (iii)), and so f(x) < max,,¢cc cost(w; x).

Conversely, consider any w € C, and let it be a subgradient
of f at z € By(f). We have f(x) = f(xl) > wixl (by part
(i) of Lemma 5.1), and so f(x) > cost(w;x). Therefore, f(x) >

max,, cc cost(w; x). m]

To reduce to min-max ordered optimization, we need to find a
polynomial-sized collection of weight vectors. Next, we show how
to leverage the weight sparsification idea in Section 4 and achieve
this taking a slight hit in the approximation factor. Let 0 < ¢ < 0.5
be a parameter. The sparsification procedure (Lemma 4.2) shows
that, with an (1 + ¢)-loss, we can focus on a set of O(logn/¢) co-
ordinates and describe the weight vectors by their values at these
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coordinates. For the ordered-optimization objective cost(w; x), mov-
ing to the sparsified weight incurs only a (1 + ¢)-loss. Furthermore,
again taking a loss of (1 + ¢), we can assume these coordinates
are set to powers of (1 + ¢). Our goal (roughly speaking) is then
only to consider the collection consisting of the sparsified, rounded
versions of vectors in C. Claim 5.3 implies that we can enumerate
all sparsified, rounded weight vectors in polynomial time.

But we also need to be able to determine if such a vector w is
“close” to a subgradient in C, and this is where (1) is used. First
note that d € C iff> Bopt(d) = 1. Thus to check if w is “close” to a
subgradient in C, it suffices to (approximately) solve for Bopt(w)
and check if the answer is within (1 + ¢) (or scaled by « if we only
have an approximate oracle). We give the details next.

To make the enumeration go through we need to make the
following mild assumptions. These assumptions need to be checked
for the problems at hand, and are often easy to establish.

(A1) We can determine in polytime if 31l =0.1If 5% > 0 (so opt > 0),

l
1

an estimate hi such that

then 07 > 1 (assuming integer data), and we can compute

51l < hi. In the sequel, assume that
all > 1

(A2) We have bounds Ib, ub > 0 such that Ib < opt < ub. Then (A1)
and Lemma 5.1 (i) imply that d; < ub foralld € C.

We take § = ¢ in the sparsification procedure in Section 4. Let
POS = POSp,, ¢ := {min{[(1 + ¢)°],n} : s > 0}. Recall that next(¢)
is the smallest index in POS larger than ¢. The sparsified version
of w € R" is the vector w € R" given by w; = w; if i € POS;
and W; = Wpeyt(e) Otherwise, where £ € POS is such that £ < i <
next(¢). Since w is completely specified by specifying the positions
in POS, we define the |POS|-dimensional vector u := {wy}¢epos-
We identify w with u € RPOS and say that w is the expansion of u.

Define W’ c R} RPOS .

{expansion ofue

3¢* € POS s.t. up = 0 V£ € POS with £ > ¥,

u1,u, . .., up- are powers of (1 + ¢) (possibly smaller than 1)
upe[Bub(1+e), wup>...>up > %}

Let 1" denote the all 1s vector in R”. Now define

W = {w € W’ : oracle A run on w returns

#eBy(f)stwlze|a —6)/K,1+£]} U {% : 1"}.

The extra scaled all ones vector is added for a technical reason. We
use the following enumeration claim.

CLAIM 5.3. There are at most (2¢)Max{N.k} non-increasing se-
quences of k integers chosen from {0,...,N}.

The following theorem establishes the reduction from the mini-
mum norm problem to min-max ordered optimization.

THEOREM 5.4. For any U € R”, the following hold.
(i) max,,cqy cost(w; D) < max{x(1 + ¢)f (D), % Yieln] i},

3If d € C is the subgradient of f at y € B, (f), d'x < f(x) <1 Vx € B,(f), and
dTy/f(y)=1,s0 MaXycp, (f) d™ x = 1. Alternately, if Bopt(d) = 1, then we have
d"z = 1for some f(z) < 1implying f(z) + d" (y — z) < d"y for any y. If the LHS
is > f(y), then we would get d" (y/f(y)) > 1 contradicting Bop#(d) = 1.
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(ii) £(3) < (1 - &)"! max,, cqy cost(w; D).
Hence, ay -approximate solution© for the min-max ordered-optimization
problem with objectivemax,, cqy cost(w; D) (wherey > 1) satisfies
f(@) < yr(1 + 3¢)opt.

Constructing ‘W requires O( 1052"
A, which is also a bound on |'W|.

log(:4p-hiy(2)O(/€)) cqlls to

6 PROXY COSTS

As mentioned in Section 2, the key to tackling ordered optimization
is to view the problem of minimizing the sum of a suitably devised
proxy-cost function over all coordinates. We describe this proxy in
this section. We first so so for Top-{ optimization. This will serve
to motivate and illuminate the proxy-cost function that we use for
(general) ordered optimization. As usual, we use 6 to denote the cost
vector corresponding to an optimal solution, and opt to denote the
optimal cost. Recall, cost(¢; D) is the cost of the Top-¢ optimization.

Define z* := max{0, z} for z € R. For any scalar p > 0, define
hy(z) := (z = p)*. The main insight is that for any ¥ € R", we have
cost(£;0) = minpeR(f p+ X, hy (7).

CrAim 6.1. Forany{ € [n], any 0 € R", and any p € R, we have
cost(t;0) < €-p+ X1, hp(Dy).

Cramm 6.2. Let € € [n], and p be such that 5? <p<s(1+ 5)5}.
Then - p+ X7, hp(3;) < (1 + £)cost(£; ).

The above claims indicate that if we obtain a good estimate
p of 3}, then £ - p + 37, hy(9;) can serve as a good proxy for
cost(¢; U), and we can focus on the problem of finding v minimizing

211 hp(9;). The following properties will be used many times.

Cramm 6.3. We have: (i) hp(x) < hp(y) for any p, x < y; (ii)
hp,(x) < hp,(x) for any p1 > p2, and any x; (iii) hp,+p,(x +y) <
hp, (x) + hp,(y) for any p1, p2, X, y.

ProoF. Part (iii) is the only part that is not obvious. If ki, 1, (x +
y) = 0, then the inequality clearly holds; otherwise, hp, +p,(x +1) =
x—p1+y—pz < (x—p)T+y-p2)t. o

We remark that our proxy function for Top-{ optimization is
similar to, but subtly stronger than, the proxy function utilized in
recent prior works on the {-centrum and ordered k-median clus-
tering problems [13, 15]. This strengthening (and its extension to
ordered optimization) forms the basis of our significantly improved
approximation guarantees of (5 + ¢) for ordered k-median, which
improves upon the prior-best guarantees for both {-centrum and
ordered k-median [15]. Furthermore, this proxy function also leads
to (essentially) a 2-approximation for Top-¢ load balancing and
ordered load balancing.

Ordered optimization. We now build upon our insights for Top-£
optimization. Let w € R" be the weight vector (with non-increasing
coordinates) underlying the ordered-optimization problem. So, opt =
cost(w; 0) is the optimal cost. The intuition underlying our proxy
function comes from the observation that we can write cost(w; 3) =
211 (wi = wis1)cost(i; 0), where we define wy41 := 0. Plugging
in the proxy functions for cost(i; 0) in this expansion immediately
leads to a proxy function for cost(w; ¥). The cost(i; ¥) terms that
appear with positive coefficients in the above linear combination



STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

are those where w; > wj41, i.e., corresponding to the breakpoints of
w. Thus, the proxy function that we obtain for ordered optimization
will involve multiple p-thresholds, which are intended to be the

l

estimates of the 0;
we cannot afford to “guess” so many thresholds. So an important
step to make this work is to first sparsify the weight vector w to
control the number of breakpoints, and then utilize the above ex-
pansion. As mentioned in Section 4, while geometric bucketing of
weights would reduce the number of breakpoints for a single weight
function, for our applications to min-max ordered optimization, we
need the uniform way of sparsifying multiple weight vectors, and
we therefore use the sparsification procedure in Section 4.

Let POS = POS,, s := {min{[(1+6)*T,n} : s > 0}, where
d,¢& > 0 are parameters. Recall that next({) is the smallest index in
POS larger than ¢. For notational convenience, we define next(n) :=
n+ 1, and for ¥ € R", define 0p,+1 := 0. We sparsify w to w € R"
by setting w; = w; if i € POS, and Wi = wpext(¢) Otherwise, where
¢ € POS is such that £ < i < next(¢).

Our proxy function is obtained by guessing (roughly speaking)
the thresholds Bé for all ¢ € POS within a multiplicative (1 + ¢)
factor, and rewriting cost(w; ?) in terms of these thresholds. Let
T := {ty}repos be a threshold vector. Define 41 := 0. We say that
Tis validif tp > tnext(¢) for all £ € POS. (So this implies that £>0)
A valid threshold vector 7, defines the proxy function.

values corresponding to breakpoints. However,

proxz(W;9) = ) (Wr = Wnex(0) [f te+ z": htp("_;i)]
i=1

£ePOS

n

Z (We = Wnext(0)) € - te + Z hy (w; i), (2)

£ePOS i=1
where, h; (w;a) := Z (We — Wnext() e, (@) (3)

£€POS
Throughout the rest of this section, we work with the sparsified
weight vector w. Observe that h; (w; x) is a continuous, piecewise-
linear, non-decreasing function of x. Our proxy for cost(w; ¥) will
be the function prox;(w; 9) for a suitably chosen threshold vector
f. To explain the above definition, notice that (2) is the expression
obtained by plugging in the proxy functions (€ - p + 37, (v; — p)*)
defined for the cost(¢; -)-objectives in the expansion of cost(w; v)
as a linear combination of cost(¢; v) terms.

CLAIM 6.4. For any U € R™, we have cost(w; 0) = X pepos (We —
anext([))COSt(& 0).

RPOS

CLAIM 6.5. For any valid threshold vector T € , and any

¥ € R", we have cost(w; 7) < prox; (w; D).

PrOOF. We have prox; (w;9) = X repos (We = Wnext(e)) (€ - te +
" | ht,(%)). The statement now follows by combining Claim 6.4
and Claim 6.1, taking ¢ = t, for each ¢ € POS. ]

CLAIM 6.6. Let? € RPOS be a valid threshold vector such that()’} <
tp < (1 +£)5§ forall€ € POS. Then, prox; (w; 6) < (1+¢)cost(w; d).

PrOOF. We have prox; (w;8) = X epos (We = Wnext(e)) (€ - te +

X he (Bl.l ) The statement now follows by combining Claim 6.2,
where we take t = tp for each £ € POS, and Claim 6.4. m]
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Claim 6.5 and Claim 6.6 imply that: (1) if we can obtain in poly-
time a valid threshold vector € RPOS satisfying the conditions
of Claim 6.6, and (2) obtain a cost vector v that approximately
minimizes 3.7, bz (v;), then we would obtain an approximation
guarantee for the ordered-optimization problem. We will not quite
be able to satisfy (1). Instead, we will obtain thresholds that will
satisfy a somewhat weaker condition (see Lemma 6.8), which we
show is still sufficient. The following claim will be useful.

CLaM6.7. Lett, t € RPOS pe two valid threshold vectors with T <
t’ and ||t = t'||oc < A. Then, for any T € R™, we have |prox; (w;0) —
proxz (w; 5)| < nwiA.

LEmMA 6.8. Let t € RPOS be a valid threshold vector satisfying

sl
the following for all € € POS:B(% <tp<(1+ 5)6[l ifB% > %, and
t¢ = 0 otherwise. Then,

n

proxz (1/~V; 5) = Z (W[ - Wnext([))f st + Z h; (17\/; 51)
£ePOS i=1

< (1 + 2¢)cost(w; 0).

l

sl
Proor. For ¢ € POS, define t; = t; if 5} > g%, and t; =0,

- L - 5l
otherwise. Clearly, t < ¢/ and ||t — t'||0 < %, so by Claim 6.7,
we have prox; w;8h) < proxz (w;oh) + eﬁlﬁll. The threshold
vector t’ satisfies the conditions of Claim 6.6, so prox;, (w;0) <

(1 + £)cost(w; 6). So prox; (w;0) < (1 + 2¢)cost(w; 5). O

LEMMA 6.9 (POLYTIME ENUMERATION OF THRESHOLD VECTORS).
Suppose we can obtain in polynomial time a (polynomial-size) set S C
R containing a value p satisfying Ell <p<(1+ s)Bll. Then, in time
O(ISI-|POS|-max{(2)°1/9), n1/3}) = O(|S| max{(2)O1/e), nOU/d)Y),
we can obtain a set A € RFOS that contains a valid threshold vector
T satisfying the conditions of Lemma 6.8.

If 0 is integral, 51l > 0, and p is a power of (1 + ), then this T
satisfies: for every € € POS, eitherty, = 0 orty > 1 and is a power of
(1+e¢).

Proor. We first guess the largest index ¢* € POS such that

6} > % For each such ¢*, and each t; € S, we do the following.
We guess ty for £ € POS,2 < ¢ < £*, where all the t¢s are of the
form t;/(1 + ) for some integer j > 0 and are at least n(gl—tie)
and the j-exponents are non-decreasing with £. For £ € POS with
€ > {*, we set ty = 0, and add the resulting threshold vector fto
A. Note that there are at most 1+ log; ,(2) = O(% log 2) choices
for the exponent j. So since we need to guess a non-decreasing
sequence of at most [POS| = O(log n/d) exponents from a range of
size O(% log ), there are only eXp(maX{O(% log(£)), [POS|}) =
O(max{(%)o(l/f), n1/§}) choices (by Claim 5.3). So the enumera-
tion takes time O(|S| - |[POS| max{(%)o(l/f), nl/‘s}), which is also
an upper bound on |A].

We now argue that A contains a desired valid threshold vector.
First, note that by construction A only contains valid threshold
vectors. Consider the iteration when we consider #; = p, and have
guessed £* correctly. For € € POS with 2 < ¢ < £*, we know that
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=l
£0; et

(2 2 aiee

increasing values ty, . .

=l

[

and 5} < 51‘L < t1. So we will enumerate non-

., tp« such that 6’; <tp<(1+ 6)5} for each

such ¢. The remaining t,s are set to 0, so f satisfies the conditions
of Lemma 6.8.
Finally, suppose 6 € Z! and p is a power of (1 +¢).If t, < 1, then

¢ > €, but Eé <ty < 1, which means that gl =

0, = 0 contradicting

N )
that 5} > %. Also, tp = p/(1+ €Y, soitisapowerof (1+¢). O

The upshot of the above discussion is that it suffices to focus
on the algorithmic problem of minimizing 3.7, h; (v;) for a given
valid threshold vector. This is formalized by the following lemma.

LEMMA 6.10. Letf € RPOS be a valid threshold vector satisfying

the conditions of Lemma 6.8. Let© € RY! be such that 3.7, hpz (W; ;) <

y - 2oy hy (w;6;) + M, wherey, 0 > 1, M > 0. Then, cost(w; 9) <
max{0, y }(1 + 2¢)cost(w; 8) + M, and hence
cost(w; 0) < (1 + 6) max{0, y}(1 + 2¢)opt + (1 + S)M.

7 OUR APPROACH FOR MIN-MAX ORDERED
OPTIMIZATION

Given the reduction Theorem 5.4 in Section 5, we now discuss
our approach for solving min-max-ordered load balancing and
clustering. Eventually, we will need to take a problem-dependent
approach, but at a high level, there are some common elements to
our approaches for the two problems as we now elucidate.

As a stepping stone, we first consider ordered optimization (i.e.,
where we have one weight vector w), and formulate a suitable
LP-relaxation (see Section 9.1 and Section 8.1) for the problem of
minimizing ».7_ | h;(W; ¥;), i.e., the -dependent part of our proxy
function for cost(w; ) (see (2) and (3)), where w is the sparsified
version of w. Our LP-relaxation will have the property that only its
objective depends on w and not its constraints. The LP for min-max
ordered optimization is obtained by modifying the objective in the
natural way.

The technical core of our approach involves devising a deterministic,
weight-oblivious rounding procedure for this LP (see Theorems 8.4
and 9.5). To elaborate, we design a procedure that given an arbitrary
feasible solution, say X, to this LP, rounds it deterministically, with-
out any knowledge of w, to produce a solution to the underlying
optimization problem whose induced cost vector ¥ satisfies the
following: for every sparsified weight vector w, we have (loosely
speaking) cost(w, ) = O(1)-(LP-objective-value of x under w). We
call this a deterministic, weight-oblivious rounding procedure. To
achieve this, we need to introduce some novel constraints in our LP,
beyond the standard ones for load balancing and k-clustering. The
benefit of such an oblivious guarantee is clear: if x is an optimal
solution to the LP-relaxation for min-max ordered optimization,
then the above guarantee yields O(1)-approximation for the min-
max ordered-optimization problem. Indeed, this also will solve the
multi-budgeted ordered optimization problem.

We point out that it is important that the oblivious rounding pro-
cedures we design are deterministic, which is also what makes them
noteworthy, and we need to develop various new ideas to obtain
such guarantees. Using a randomized O(1)-approximation oblivious
rounding procedure in min-max ordered optimization would yield
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that the maximum expected cost cost(w(?); 7) under weight vectors
w(D in our collection is O(opt); but what we need is a bound on the
expected maximum cost. Therefore, without a sharp concentration
result, a randomized oblivious guarantee is insufficient for the pur-
poses of utilizing it for min-max ordered optimization. Also, note
that derandomizing an oblivious randomized-rounding procedure
would typically cause it to lose its obliviousness guarantee. (We
also remark that if we allow randomization, then it is well-known
that any LP-relative approximation algorithm can be used to obtain
a randomized oblivious rounding procedure (see [14].)

To obtain our deterministic oblivious rounding procedure, we
first observe that 3" | h; (w; ;) can be equivalently written as
2£ePOS Wnext(£) 2ieq (min{%;, tp}— tnext(£) ) * In our LP-relaxation,
we introduce fractional variables to specify the quantities

1 (min{3;, t} ~thext(e)) * . If we can round the fractional solution
while roughly preserving these quantities (up to constant factors),
then we can get the desired oblivious guarantee. This is what we
achieve (allowing for an O(1) violation of the thresholds) by, among
other things, leveraging our new valid constraints that we add
to the LP. For instance, in load balancing, ¥; denotes the load on
machine i and the above quantity represents the portion of the total
load on a machine between thresholds t,ex:(¢) and t¢, and we seek
to be preserve this in the rounding.

Preserving the aforementioned quantities amounts to having
multiple knapsack constraints, and rounding them so as to satisfy
them with as little violation as possible. We utilize the following
technical tool to achieve this. We emphasize that the objective cT ¢
below is not related to w, but encodes quantities that arise in our
rounding procedure. Theorem 7.1 is proved using iterative rounding,
by combining ideas from [9], which considered directed network
design, and the ideas involved in an iterative-rounding based 2-
approximation algorithm for the generalized assignment problem
(see Section 3.2 of [30]). Similar results are known in the literature,
but we could not quite find a result that exactly fits our needs.

THEOREM 7.1. Let § be a feasible solution to the following LP:

min ch A1q<by, A2q=by, Bg<d, qe RT. Q)

Suppose that: (i) A1, Az, B, b1, ba, d > 0; (ii) A1, Ay are{0, 1}-matrices,
and the supports of the rows of(f\; ) form a laminar family; (iii)
by, by are integral; and (iv) q; < 1 is an implicit constraint implied by
A1q < by, Aaq > by. Let k be the maximum number of constraints
of Bq < d that a variable appears in.

We can round § to an integral (hence {0, 1}) solution ’(}’ satisfying:
(a)cT ir}[ < cT'g; (b) the support ofizy is contained in the support of §;
(€) A1q < b1, Ayq > by; and (d) (Bq)i < di + k(max;ig, o Byj) for
all i ranging over the rows of B.

8 k-CLUSTERING

We now use our framework to design constant factor approximation
algorithms for the minimum-norm k-clustering problem. We are
given a metric space (D, {Cij}i,jeD), and an integer k > 0. Let
n = |D|. For notational similarity with facility-location problems,
let ¥ := D, denote the candidate set of facilities. (Our results either
directly extend, or can be adapted, to the setting where & # D.)
A feasible solution opens a set F C ¥ of at most k facilities, and
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assigns each client j € D to a facility i(j) € F. This results in the
assignment-cost vector ¢ := {c¢;(j);}jeD-

In the minimum-norm k-clustering problem, the goal is to min-
imize f(¢) under a given monotone, symmetric norm f. The or-
dered k-median problem is the special case where we are given
weights w1 > wz > ... > w, > 0, and the goal is to minimize
cost(w; ) = wl¢l. The ¢-centrum problem is the further special
case, where wi; = 1 = ... = wy and the remaining w;s are 0.

THEOREM 8.1. Given any monotone, symmetric norm specified via
a k-approximate ball-optimization oracle (see (1)), and any ¢ > 0,
there is a (408 + O(¢)) -approximation algorithm for minimum-norm
. . . . . ; n\O(1
k-clustering with running time poly (input size, (%) ( /E)).

As shown by the reduction in Section 5, the key component
needed to tackle the norm-minimization problem is an algorithm
for the min-max ordered k-median problem, wherein we are given
multiple non-increasing weight vectors w(l), o wiN) ¢ R7, and
the goal is to find F € F with |F| < k such that the resulting
assignment-cost vector ¢ minimizes max,e[L] cost(w('); o).

THEOREM 8.2. Given non-increasing weight vectors w(l), Cey wN) ¢
R®, foranye > 0, there is a (408 + O(¢)) -approximation algorithm for
min-max ordered k-median with running timepoly (input size, no(l/f)).

As described in Section 7, the key technical component is a deter-
ministic, weight-oblivious rounding procedure for our LP-relaxation
for (single) ordered k-median (Section 8.1). The approximation fac-
tor of this rounding procedure then translates to the above guaran-
tees. Furthermore, notably, the oblivious rounding can be exploited
to obtain guarantees for multi-budgeted ordered k-median and the
best simultaneous approximation achievable for k-clustering.

We have not optimized the constant in the approximation factor
for easier exposition of ideas. For the special case of ordered k-
median, we can obtain a much better approximation factor of 5 + ¢,
which significantly improves upon the guarantees in [13, 15]. Our
technique here is combinatorial, based on the primal-dual method
and Lagrangian relaxation, and our improvement stems from our
better notion of proxy costs.

THEOREM 8.3. There is a polynomial time (5 + ¢)-approximation
for the ordered k-median problem, for any constant e > 0.

8.1 LP Relaxation and Deterministic Oblivious
Rounding

As always, let 0 denote the costs induced by an optimal solution.

1

To avoid trivial settings, assume that 51 > 0. For convenience, we
use § = 1 in the sparsification described in Section 4. So POS =
POS,,1 := {min{2%,n} : s > 0}. For ¢ € POS, recall that next(¢)
is the smallest index in POS larger than £ if { < n,andisn + 1
otherwise. Given a weight vector w € R} (with non-increasing
coordinates), we sparsify it to w, that is, for every r € [n], we set
wy = wy if r € POS; otherwise, if £ € POS is such that £ < r <
next(£), we set Wy = Wpex(¢)- Given a threshold vector € Rf’ros
with non-increasing coordinates, we have the proxy function

proxz(wiv) i= Y (We = Wnex(e) £ e + ) | hy(W30))
£ePOS jeD

where v € R? and hz(W;a) := Y repos(We — Wnext(e)) (@ — te)*.
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!
1

p = Bll; so by Lemma 6.9, we may assume that we have f that

Since 0. takes at most n? values, we may assume that we know

=l
satisfies: 5} <tp < (1+£)5} forall £ € POS with 5§ > %,and tp =

0 for all other ¢ € POS. In this section, it will be convenient to set
e ety
n n

tp = whenever t; = 0. Then, we have 5} <t <(1+ 5)6} +

for all ¢ € POS, and Bll <t <1+ 5)51l (in particular); if these
conditions hold then we say that  well-estimates g L By Lemma 6.10,
we can therefore focus on the problem of finding an assignment-cost
vector ¢ that (approximately) minimizes 3 je ¢ hy(W; €j).

Our LP-relaxation is parametrized by 7, and augments the stan-
dard k-median LP for this non-metric k-median problem with con-
straints (7) that are crucially exploited in the rounding algorithm.
Define t41 := 0. Throughout, we use i to index # and j to index

D.

min CLP?(W; y) = Z h;(vT/;c,-j)xij (OC]-P)
i
st PRIES! for all j (4)
i
0<xj; <yj for all i, j (5)

g
<
IA
o~
G

Vj,r: 3¢ € POS s.t. 7)
ke D:cj <r—te}|>¢

-1
<
v
-

Variables x;; and y;, and constraints (4)-(6), have the same meaning
as in the standard k-median LP. We argue that constraints (7) are
satisfied by the optimal solution corresponding to & !, whenever ¥
well-estimates . For any j, r, and index £ € POS that gives rise
to constraint (7), if no facility is opened in the ball {i : ¢;; < r},
then all the clients k with ¢j < r — t, will incur assignment cost
(under 1) larger than t,. But there cannot be more than ¢ such
clients in this optimal solution since ty > 0 l, and so the choice of
¢ implies that (7) must be satisfied. As discussed in Section 7, our
approach to min-max ordered optimization is via a deterministic,
weight-oblivious rounding procedure for an LP-relaxation for the
ordered optimization problem. The theorem below formalizes this.

THEOREM 8.4. Let T be a valid threshold vector that well-estimates
. There is a deterministic, weight-oblivious rounding procedure
which given a solution (X,y) satisfying (4)—(7), produces a set F C F
with |F| < k such that the resulting assignment-cost vector ¢ satisfies:
for anysparsified weight vector w, we have ¥ je p hy 3 (w; €j) < 44 -
CLP;(w;y) + 40 X pepos wWenext(O)te.

The theorem implies that if (x, ) is an optimal solution to the
analogue of (OCI-P) for min-max ordered k-median, then we obtain
an O(1)-approximation for min-max ordered k-median. (It is easy
to bound 40 Y ycpos Wenext(€)te by O(opt).)

We remark that Byrka et al. [13] show that a randomized round-
ing procedure of [17] for the standard k-median LP yields a random-
ized oblivious rounding procedure for ordered k-median. However,
as noted earlier, this randomized guarantee is insufficient for the
purposes of utilizing it for min-max ordered k-median (and conse-
quently min-norm k-clustering).
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PROOF SKETCH OF THEOREM 8.4. Fix a sparsified vector w. This
is used only in the analysis. Define C; := }; ¢;;jX;j, and CLP; :=
i hy(W;cij)xij for every client j. For a set S C F, and a vector
v € RF, we define v(S) := Y;cgv;i. For any p € F U D and
S € F U D, define c(p,S) := min, s cpr.

We proceed by initially following the template of the k-median
LP-rounding algorithm by Charikar et al. [16], with some subtle
but important changes. We cluster clients around nearby centers
(which are also clients) as in [16] to ensure that every non-cluster
center k is close to some cluster center j = ctr(k). Let D be the set
of cluster centers. For j € D, let F; be the set of facilities that are
nearer to j than to any other cluster center, nbr(j) be the cluster-
center (other than itself) nearest to j, and let a; := cjnpe(j)- We
will eventually ensure that we open a set F of facilities such that
c¢(j, F) = O(aj) for every j € D. So for a non-cluster center k for
which ac(x) = O(Cy) we have c(k, F) = O(Cy), and this will also
imply that hO(l)»?(W; c(k, F)) = O(1)-CLPy So we focus on the non-
cluster centers that are “near” their corresponding cluster centers;
let N; (for “near”) denote such clients that are “near” center j.

Moving each near non-cluster center k to ctr(k) yields a con-
solidated instance, where at each j € D, we have some d; clients
(including j) co-located at j. Unlike in standard k-median, the solu-
tion induced by (X, y) for the consolidated instance may not have
cost at most the LP-objective-value of (x,7), because C; < Cy for
Jj = ctr(k) does not imply that 3; hz(w; ¢;j)Xij < X; hy(W; ¢ip )X s
however, we show that an approximate form of this inequality holds,
and a good solution to the consolidated instance does translate to a
good solution to the original instance.

We now focus on rounding the solution to the consolidated
instance. As in [16], we can obtain a more-structured fractional
solution to this consolidated instance, where every cluster-center j
is served to an extent of §j; = y(Fj) > 0.5 by itself, and to an extent
of 1 — 7 by nbr(j). We now perform another clustering step, where
we select some (j, nbr(j)) pairs such that every k € D that is not
part of a pair is close to a some j that belongs to a pair, and a; < aj.
For standard k-median, it suffices to ensure that: (1) we open at
most k facilities, and (2) we open at least one facility in each pair.

However, for the oblivious guarantee, we need to impose more
constraints, and this is where we diverge substantially from [16].
Define t, oo and next(0) = 1. We want to compare the cost
of the rounded solution for the consolidated instance to the cost
Yjep djh,z(W;a;)(1 - §j) of the above structured fractional solu-
tion, where « is a suitable constant. The LP solution can be used to
define variables qj” for all £ € {0} U POS, where a ,qﬁ.” is intended

to represent (roughly speaking) (1-9;)x (min{a;, aty}— atnext(g)) *

so that ¥ ¢e (01uPOS Wnext(t’)ajé;{) is O(h,;(w;aj)(1 - 7).

Now in addition to properties (1), (2), following the template
in Section 7, we also seek to assign each j € D where a center is
not opened to a single threshold ¢, where t; = Q(aj), thex(¢) < 4>
so that: (3) for every £ € {0} U POS, the total dja; cost summed

over all j € D that are not open and assigned to ¢, is (roughly

speaking) comparable to 3’ ;cp dja; éﬁ-g)

. We apply Theorem 7.1 on
a suitable system to round § to an integral solution (which specifies
both the open facilities and the assignment of clients to thresholds)

satisfying the above properties. An important property that we
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need in order to achieve this is, is an upper bound on dj, and this is
the key place where we exploit constraint (7). Properties (1)—(3) will
imply that, for a suitable constant «, the resulting assignment-cost
vector ¢ for the consolidated instance satisfies Yjep dih gz (w; )
is O(cost of fractional solution for consolidated instance). O

9 LOAD BALANCING

In this section, we use our framework to design constant factor
approximation algorithms for the minimum-norm load balancing
problem. Let us recall the problem. We are given a set J of n jobs, a
set of m machines, and for each job j and machine i, the processing
times p;; > 0 required to process j on machine i. We have to
output an assignment o : ] — [m] of jobs to machines. The load
on machine i due to ¢ is load (i) := Xj.o(j)=i pij- Let @(, =
{load (i)} ;¢[m] denote the load-vector induced by o.

In the minimum-norm load-balancing problem, one seeks to

—
minimize the norm of the load vector loads for a given mono-
tone, symmetric norm. In the special case of ordered load-balancing
problem, given a non-negative, non-increasing vector w € R
(that is, w; = wp > .-+ > wp, > 0), one seeks to minimize
T i m Lo
cost(w; loads) := w!loady = 22, wiload(i). In the Top-¢ load
balancing problem, one seeks to minimize the sum of the ¢ largest

4
loads in load.

THEOREM 9.1. Given any monotone, symmetric norm f on R™
with a k-approximate ball-optimization oracle for f (see (1)), and
forany ¢ > 0, there is a 38x(1 + 5¢)-approximation algorithm for
the problem of finding an assignment o : | — [m] which minimizes

f(@a). The running time of the algorithm is (%)O(l/s).

We have not optimized the constants in the above theorem. For
the special case of ordered load balancing, we can get much better
results.

THEOREM 9.2. There is a polynomial time (2 + €)-approximation
for the ordered load balancing problem, for any constant € > 0.

As shown by the reduction in Section 5, the key component
needed to tackle the norm-minimization problem is an algorithm for
the min-max multi-ordered load-balancing problem, wherein we are
given multiple non-increasing weight vectors wl) W) e R,
and our goal is to find an assignment ¢ : ] — [m] to minimize

max, ¢[N] cost(w("); @)0).

THEOREM 9.3. Given any non-increasing weight vectors
wl) L wN) e R™ we can find 38(1 + &)-approximation algo-
rithm to the min-max ordered load balancing problem of finding an
assignment ¢ : ] — [m] minimizing max, <[ cost(w("); @g).

The algorithm runs in time poly (input size, m0(1/5)).

9.1 Linear Programming Relaxation

We begin by restating some definitions from Section 6 in the load
balancing setting. As usual, 3 will denote the load-vector induced by
an optimal assignment for the problem under consideration. Recall
that POS = POS,, s := {min{[(1 + §)°],m} : s > 0} is the sparse
set of O(log m/§) indices. For ¢ € POS, next({) is the smallest index
in POS larger than ¢ if £ < m, and is m + 1 otherwise. Given POS,
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recall the sparsified weight vector w of any weight vector w; every
i € [m], we set w; = w; if i € POS; otherwise, if £ € POS is such
that £ < i < next({), we set Wi = Wpexi(¢)-

Given a valid threshold vector f € RPOS (i.e., t; is non-increasing

e 4
in £) we move from cost(w; load ) to the proxy

P 4
prox;(w; load ) := Z (We— wnext(g) )€ te +Zh w;load (7))
£ePOS

where hz(W; @) := Yepos (We = Wnext(e)) (@ = te)*

Again, from Section 6, we know that for the right choice of %, this
change of objective does not incur much loss, and so our goal is to
find o : J — [m] that approximately minimizes >7 | h;(v~v; load (i)
(see Lemma 6.10). We now describe the LP relaxation to minimize
the proxy-cost. Our LP is parametrized by the vector 7.

We use variables x;; to denote if job j is assigned to machine i.

) (f)
Ty b

denote respectively the portions of job j that lie “below” and above
the t, threshold on machine i. More precisely, given an integral

i=1

Now for every i, j, and every { € POS, we have variables z;

assignment o and an ordering of the jobs in o1(i), zgo denotes the
fraction of j that contributes to the load in the interval [0, t7) on
machine i, and y@ denotes the fraction of j that contributes to the

20140, an
7]

. Throughout i 1ndexes the

load interval [t,, o0). Thus, for every £, we have x;;
ijijyij) represents (load, (i) — t7)"
set [m] of machines, and j indexes the job-set J. To keep notation

(m+1)

simple, define Z;; =0foralli,j.

. ~ ~ o~ 4
min  LPz(wix,y,2) := Z Z Z(W—Wnext(f))mjygj) ®)
i {ePOS Jj
s.t. inj =1 Vj )
i
xij =2 +4\Y Vi j, vt e POS (10)
z;‘;x“") < zgf) Vi, j, V€ € POS (11)

Z pij (25 = 257) <t — thee) Vi, ¥EEPOS  (12)

Pijy,] (pij — te)xij Vi, j, V¢ € POS (13)
xijo )y 2 0 Vi,j, V€ € POS.

LEMMA 9.4. For any valid threshold vector T and any integral
assignment o, the value of the LP is at most 3, | h; (w;loads (i)).

Asdiscussed in Section 7, we need a deterministic, weight-oblivious
rounding algorithm. The main technical contribution of this section
is precisely such a rounding procedure.

THEOREM 9.5. Let T be a valid threshold vector such that every
tp is either a power of 2 or 0. There is a deterministic algorithm
which takes any solution (x,y, z) satisfying constraints (9)-(13), and
produces an assignment ¢ : ] — [m] such that, for any sparsified
weight vector w, we have that

m
Z th? (W, |0adg.(i)) <2 LP; wW;x,y,2) +4 Z wetyp
i=1 £ePOS
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