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ABSTRACT
In many optimization problems, a feasible solution induces a multi-

dimensional cost vector. For example, in load-balancing a schedule

induces a load vector across the machines. In k-clustering, opening
k facilities induces an assignment cost vector across the clients.

Typically, one seeks a solution which either minimizes the sum- or

the max- of this vector, and these problems (makespan minimiza-

tion, k-median, and k-center) are classic NP-hard problems which

have been extensively studied.

In this paper we consider the minimum-norm optimization prob-

lem. Given an arbitrary monotone, symmetric norm, the problem

asks to find a solution which minimizes the norm of the induced

cost-vector. Such norms are versatile and include ℓp norms, Top-ℓ
norm (sum of the ℓ largest coordinates in absolute value), and or-

dered norms (non-negative linear combination of Top-ℓ norms), and

consequently, the minimum-norm problem models a wide variety

of problems under one umbrella, We give a general framework to

tackle the minimum-norm problem, and illustrate its efficacy in

the unrelated machine load balancing and k-clustering setting. Our
concrete results are the following.

(a) We give constant factor approximation algorithms for the

minimum norm load balancing problem in unrelated machines, and

the minimum norm k-clustering problem. To our knowledge, our

results constitute the first constant-factor approximations for such

a general suite of objectives.

(b) For load balancing on unrelated machines, we give a (2 + ε)-
approximation for ordered load balancing (i.e., min-norm load-

balancing under an ordered norm).

(c) For k-clustering, we give a (5 + ε)-approximation for the

ordered k-median problem, which significantly improves upon

the previous-best constant-factor approximation (Chakrabarty and

Swamy (ICALP 2018); Byrka, Sornat, and Spoerhase (STOC 2018)).

(d) Our techniques also implyO(1) approximations to the instance-

wise best simultaneous approximation factor for unrelated-machine
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load-balancing and k-clustering. To our knowledge, these are the

first positive simultaneous approximation results in these settings.

At a technical level, one of our chief insights is that minimum-

norm optimization can be reduced to a special case that we call

min-max ordered optimization. Both the reduction, and the task of

devising algorithms for the latter problem, require a sparsification

idea that we develop, which is of interest for ordered optimiza-

tion problems. The main ingredient in solving min-max ordered

optimization is a deterministic, oblivious rounding procedure (that
we devise) for suitable LP relaxations of the load-balancing and

k-clustering problem; this may be of independent interest.
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1 INTRODUCTION
In many optimization problems, a feasible solution induces a multi-

dimensional cost vector. For example, in the load balancing setting

with machines and jobs, a solution is an assignment of jobs to ma-

chines, and this induces a load on every machine. In a clustering

setting with facilities and clients, a solution is to open k facilities

and connecting clients to the nearest open facilities, which induces

an assignment cost on every client. This multi-dimensional vector

dictates the quality of the solution. Depending on the application,

oftentimes one minimizes either the sum of the entries of the cost

vector, or the largest entry of the cost vector. For example, in the

load balancing setting, the largest entry of the load vector is the

makespan of the assignment, and minimizing makespan has been

extensively studied [25, 31, 34, 35]. Similarly, in the clustering set-

ting, the problem of minimizing the sum of assignment costs is

the k-median problem, and the problem of minimizing the largest

assignment cost is the k-center problem. Both of these are classic

combinatorial optimization problems [12, 16, 20, 23, 24, 32]. How-

ever, the techniques to study the sum-versions and max-versions
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are often different, and it is a natural and important to investigate

what the complexity of these problems become if one is interested

in a different statistic of the cost vector.

In this paper, we study a far-reaching generalization of the above

two objectives. We study the minimum norm optimization problem,

where given an arbitrary monotone, symmetric norm f , one needs
to find a solution which minimizes the norm f evaluated on the

induced cost vector. In particular, we study (a) the minimum norm

load balancing problem which asks to find the assignment of jobs

to (unrelated) machines which minimizes f (
−−−→
load) where

−−−→
load is the

induced load vector on the machines, and (b) the minimum norm

k-clustering problem which asks to open k-facilities minimizing

f (®c) where ®c is the induced assignment costs on the clients.

Our main contribution is a framework to study minimum norm
optimization problems. Using this, we give constant factor approxi-
mation algorithms for the minimum norm unrelated machine load
balancing and the minimum norm k-clustering problem (Theorem 9.1

and Theorem 8.1). To our knowledge our results constitute the first
constant-factor approximations for a general suite of objectives in

these settings. We remark that the above result is contingent on

how f is given. We need a ball-optimization oracle (see (1) for more

details), and for most norms it suffices to have access to a first-order
oracle which returns the (sub)-gradient of f at any point.

Monotone, symmetric norms capture a versatile collection of

objective functions. We list a few relevant examples below and refer

the reader to [4, 10, 11] for a more comprehensive list.

• ℓp -norms. Perhaps the most famous examples are ℓp norms

where f (®v) :=
(∑n

i=1
®v
p
i

)
1/p

for p ≥ 1. Of special interest are

p = {1, 2,∞}. For unrelated machines load-balancing, the p = 1

case is trivial while the p = ∞ case is makespan minimization.

This has a 2-approximation [31, 34] which has been notoriously

difficult to beat. For the general ℓp norms, Azar and Epstein [7]

give a 2-approximation, with improvements given by [28, 33].

For the k-clustering setting, the p = {1, 2,∞} norms have been

extensively studied over the years [1, 12, 16, 20, 23, 24]. One can

also derive an O(1)-approximation for general ℓp -norms using

most of the algorithms
1
for the k-median problem.

• Top-ℓ norms and ordered norms. Another important class of

monotone, symmetric norms is the Top-ℓ-norm, which given a

vector ®v returns the sum of the largest ℓ elements. These norms

are another way to interpolate between the ℓ1 and the ℓ∞ norm.

A generalization of the Top-ℓ norm optimization is what we

call the ordered norms. The norm is defined by a non-increasing,

non-negative vector w ∈ Rn+ with w1 ≥ w2 ≥ · · · ≥ wn ≥ 0.

Given these weights, the w-ordered, or simply, ordered norm

of a vector ®v ∈ Rn+ is defined as cost(w ; ®v) :=
∑n
i=1

wi ®v
↓

i where

®v ↓
is the entries of ®v written in non-increasing order itself. It is

1
We could not find an explicit reference for this. The only work which we found that

explicitly studies the ℓp -norm minimization in the k -clustering setting is by Gupta

and Tangwongsan [21]. They give aO (p)-approximation using local-search and prove

that local-search can’t do any better. However, ℓ
p
p -“distances” satisfy relaxed triangle

inequality, in that, d (u, v) ≤ 2
p (d (u, w ) + d (w, v)). The algorithms of Charikar et

al [16] and Jain-Vazirani [24] need triangle inequality with only “bounded hops” and

thus give Cp
-approximations for the ℓ

p
p “distances”. In turn this implies a constant

factor approximation for the ℓp -norm.

not hard to see that the ordered norm is a non-negative linear

combination of the Top-ℓ norms.

For load balancing in unrelated machines, we are not aware

of any previous works studying these norms.We devise a (2+ ε)-
approximation for ordered load balancing (Theorem 9.2). Note

that the case of ℓ = 1 for Top-ℓ-load balancing corresponds to

makespan minimization for which improving upon the factor of

2 is a longstanding open problem.

In k-clustering, the Top-ℓ optimization problem is called the

ℓ-centrum problem, and the ordered-norm minimization prob-

lem is called the ordered k-median problem. Only recently, a

38-factor [13] and 18 + ε-factor [15] approximation algorithm

was given for the ordered k-median problem. We give a much
improved (5 + ε)-factor approximation algorithm for the ordered
k-median problem (Theorem 8.3).

• Min-max ordered norm. Of particular interest to us is what

we call the min-max ordered optimization problem. In this, we

are given N non-increasing, non-negative weight vectors

w(1), . . . ,w(N ) ∈ Rn+, and the goal is to find a solution ®v which

minimizes max
N
r=1

cost(w(r )
; ®v). This is a monotone, symmetric

norm since it is a maximum over a finite collection of monotone,

symmetric norms.

One of the main insights of this paper is that the minimum norm
problem reduces to min-max ordered optimization (Theorem 5.4).

In particular, we show that the value of any monotone, sym-

metric norm can be written as the maximum of a collection of

(possibly infinite) ordered norms; this result may be of indepen-

dent interest in other applications involving such norms [4, 11].

• Operations. One can construct monotone, symmetric norms

using various operations such as (a) taking a nonnegative lin-

ear combination of monotone, symmetric norms; (b) taking the

maximum over any finite collection of monotone, symmetric

norms; (c) given a (not-necessarily symmetric) norm д : Rn →

R+, setting f (v) := д(v ↓), or f (v) := Expπ [д
(
{vπ (i)}i ∈[n]

)
]

where π is a random permutation of [n]; (d) given a mono-

tone, symmetric norm д : Rk → R+, where k ≤ n, setting
f (v) =

∑
S ⊆[n]: |S |=k д({vi }i ∈S ). The richness of these norms

makes the minimum-norm optimization problem a versatile and

appealing model which captures a variety of optimization prob-

lems under one umbrella.

As an illustration, consider the following stochastic optimiza-

tion problem in clustering (this is partly motivated by the sto-

chastic fanout model described in [26] for a different setting).

We are given a universe of plausible clients, and a symmetric

probability distribution over actual client instances. Concretely,

say, each client materializes i.i.d with probability p ∈ (0, 1). The

problem is to open a set of k facilities such that the expected
maximum distance of an instantiated client to an open facility is

minimized. The expectation is indeed a norm (follows from part

(d) above) and thus we can get a constant-factor approximation

for this problem. In fact, the expected maximum for the i.i.d case

is an ordered-norm, and so we can obtain a (5+ε)-approximation

for this particular stochastic optimization problem.

• General Convex Functions. One could ask to find a solution

minimizing a general convex function of the cost vector. In gen-

eral, such functions can be arbitrarily sharp and this precludes

127



Approximation Algorithms for Minimum Norm and Ordered Optimization Problems STOC ’19, June 23–26, 2019, Phoenix, AZ, USA

any non-trivial approximation. For instance in the clustering set-

ting, consider the convex functionC(®c)which takes the value 0 if

the sum of ®c j ’s (that is the k-median objective) is less than some

threshold, and∞ otherwise; for this function, it is NP-hard to get

a finite solution. Motivated thus, Goel and Meyerson [18] call a

solution ®v an α-approximate solution ifC(®v/α) ≤ opt where ®v is

the induced cost vector, ®v/α is the coordinate-wise scaled vector,

and opt = min ®w C( ®w). It is not hard to see2 that a constant factor

approximation for monotone, symmetric norm-minimization

implies a constant-approximate solution for any monotone, sym-

metric convex function. In particular, for the load-balancing and

clustering setting we achieve this.

Connections and implications for simultaneous optimiza-
tion. In the minimum-norm optimization problem, we are given

a fixed norm f and we seek a solution whose cost vector ®v min-

imizes f (®v). In simultaneous optimization [18, 27], the goal is to

find a solution whose cost vector ®v simultaneously approximates all

norms/convex functions. Such solutions are desirable as they pos-

sess certain fairness properties. More precisely, we seek a solution

inducing a cost vector ®v that is simultaneously an α-approximation

for all monotone symmetric norms д : Rn → R+, i.e., д(®v) ≤

α · opt(д), where opt(д) := min ®w д( ®w).

Simultaneous optimization is clearly a much stronger goal than

what we are aiming for: if one can find a solution which is a si-

multaneous α-approximation, then this solution is clearly an α-
approximation for a fixed norm. It is rather remarkable that in the

setting of load balancing with identical jobs, and even in the re-
stricted assignment setting where jobs have fixed processing times

but can be allocated only on a subset of machines, one can al-

ways achieve a simultaneous 2-approximate solution [3, 8, 18].

Unfortunately, for unrelated (even related) machines [8] and k-
clustering [27], there are impossibility results ruling out the exis-
tence of any simultaneous α-approximate solutions for constant α .
These impossibilities also show that the techniques used in [3, 8, 18]

are not particularly helpful when trying to optimize a given, fixed
norm, which is the main focus in our paper.

The techniques we develop yield an O(1)-approximation to the
best simultaneous approximation factor possible for any instance
of load-balancing on unrelated machines, and k-clustering. Fix an

unrelated-machine load-balancing instance I. Let α∗
I
be the small-

est α for which there is a solution to I that is a simultaneous

α-approximation. Note that α∗
I
could be a constant for a specific

instance I; the impossibility result mentioned above states that α∗
I

cannot be a constant for all instances. It is natural, and pertinent, to
ask whether one can obtain instance-wise guarantees: for example,

can one obtain an O(α∗
I
) simultaneous-approximation factor for

every instance I? Note that in settings where we are constrained to

specify a single solution that is required to “work” for a multitude

of norms, α∗
I
is a more meaningful benchmark to compare against

(than opt(д)), as this explicitly captures the one-solution limitation,

and so such instance-wise guarantees are particularly desirable. We

design algorithms that yield O(1)-approximations to α∗
I
both for

2
Consider the monotone, symmetric norm f (x ) := min{t : C( |x |/t ) ≤ opt }. By
definition f (®o) = 1, and so a α -approximate min-norm solution ®v satisfies f ( ®v) ≤ α ,
implying C( ®v/α ) ≤ opt. The definition requires knowing the value of opt which can

be guessed using binary search.

load balancing and k-clustering. These seem to be the first positive
results on simultaneous optimization in these settings. We remark

that our algorithm is not a generic reduction to the minimum norm

optimization, but is consequence of our techniques developed to

tackle the problem.

Other related work. The ordered k-median and the ℓ-centrum

problem have been extensively studied in the Operations Research

literature for more than two decades (see, e.g. the book [29]); we

point the interested reader to these books, or the paper by Aouad

and Segev [5], and references within for more information on

this perspective. From an approximation algorithms point of view,

Tamir [36] gives the firstO(logn)-approximation for the ℓ-centrum

problem, and Aouad and Segev [5] give the first O(logn) approxi-
mations for the ordered k-median problem. Very recently, Byrka,

Sornat, and Spoerhase [13] and our earlier paper [15] give the first

constant-factor approximations for the ℓ-centrum and ordered k-
median problems. Another recent relevant work is of Alamdari

and Shmoys [2] who consider the k-centridian problem where the

objective is a weighted average of the k-center and the k-median

objective (a special case of the ordered k-median problem); [2] give

a constant-factor approximation algorithm for this problem.

In the load balancing setting, research has mostly focused on

ℓp norms; we are not aware of any work studying the Top-ℓ opti-
mization question in load balancing. For the ℓp -norm Awerbuch

et al. [6] give a Θ(p)-approximation for unrelated machines; their

algorithm is in fact an online algorithm. Alon et al. [3] give a PTAS

for the case of identical machines. This paper [3] also shows a

polynomial time algorithm in the case of restricted assignment

(jobs have fixed processing times but can’t be assigned everywhere)

with unit jobs which is optimal simultaneously in all ℓp -norms.

Azar et al. [8] extend this result to get a 2-approximation algo-

rithm simultaneously in all ℓp norms in the restricted assignment

case. This is generalized to a simultaneous 2-approximation in all

symmetric norms (again in the restricted assignment situation) by

Goel and Meyerson [18]. As mentioned in the previous subsection,

Azar et al. [8] also note that even in the related machine setting,

no constant factor approximation is possible simultaneously even

with the ℓ1 and ℓ∞ norm. For unrelated machines, for any fixed

ℓp norm Azar and Epstein [7] give a 2-approximation via convex

programming. The same paper also gave a

√
2-approximation for

the p = 2 case. These factors have been improved (in fact for any

constant p the approximation factor is < 2) by Kumar et al. [28]

and Makarychev and Sviridenko [33]. We should mention that the

techniques in these papers are quite different from ours and in

particular these strongly use the fact that the ℓ
p
p cost is separable.

Finally, in the clustering setting, Kumar and Kleinberg [27] and

Golovin et al. [19] give simultaneous constant factor approxima-

tions in all ℓp norms, but their results are bicriteria results in that

they open O(k logn) and O(k
√

logn) facilities respectively.

2 TECHNICAL OVERVIEW, ORGANIZATION
First approach and its failure. Perhaps the first thing one may

try for the minimum-norm optimization problem is to write a con-
vex program min f (®v) where ®v ranges over fractional cost vectors,
ideally, convex combinations of integral cost vectors. If there were

a deterministic rounding algorithm which given an optimal solution
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®v∗ could return a solution ®v such that for every coordinate ®vj ≤ ρ ®v∗j ,

then by homogeneity of f , we would get a ρ-approximation. Indeed,

for some optimization problems such a rounding is possible. Unfor-

tunately, for both unrelated load balancing and k-clustering, this
strategy is a failure as there are simple instances for both problems,

where even when ®v∗ is a convex combination of integer optimum

solutions, no such rounding, with constant ρ, exists. In particular,

the integrality gaps of these convex programs are unbounded.

Reduction tomin-maxordered optimization (Section 5).Given
the above failure, at first glance, it may seem hard to be able to rea-

son about a general norm. One of the main insights of this paper is

that the monotone, symmetric norm minimization problem reduces

to min-max ordered optimization. This is a key conceptual step

since it allows us a foothold in arguing about the rather general

problem. Our result may also be of interest in other settings deal-

ing with symmetric norms. In particular, we show that given any

monotone, symmetric norm f , the function value at any point f (x)
is equal to maxw ∈C cost(w ;x) (Lemma 5.2) where C is a potentially

infinite family of non-increasing subgradients on the unit-norm

ball. That is, f (x) equals the maximum over a collection of ordered

norms. Thus, finding the x minimizing f (x) boils to the min-max

ordered-optimization problem. The snag is that this collection of

weight vectors could be infinite. This is where the next simple, but

extremely crucial, technical observation helps us.

Sparsification idea (Section 4). Given a non-increasing, non-

negative weight vector w ∈ Rn+, the ordered norm of a vector

®v ∈ Rn+ is cost(w ; ®v) :=
∑n
i=1

wi ®v
↓

i . The main insight is that al-

thoughw may have all its n-coordinates distinct, only a few fixed
coordinates matter. More precisely, if we focus only on the coordi-

nates POS := {1, 2, 4, 8, · · · , } and define a w̃-vector with w̃i = wi if

i ∈ POS, and w̃i = wℓ where ℓ is the nearest power of 2 larger than

i , then it is not too hard to see cost(w̃ ;x) ≤ cost(w ;x) ≤ 2cost(w̃ ;x).
Indeed, one can increase the granularity of the coordinates to (ceil-

ings of) powers of (1 + δ ) to get arbitrarily close approximations

where the number of relevant coordinates is O(logn/δ ).
The above sparsification shows that for ordered norms, one can

focus on weight vectors whose breakpoints are in fixed positions
that are independent of the weight vector. In contrast, the natural

sparsification idea that rounds each wi to the nearest power of

(1 + δ ) does not yield this weight-independence property in the

positions of breakpoints. The uniformity of positions (and the fact

that we only have logarithmically many positions) allows us to

form a polynomial-size ε-net of weight vectors. More precisely, for

any weight vectorw , there is another weight vectorw ′
in this net

such that for any vector ®v , cost(w ; ®v) and cost(w ′
; ®v) are within a

multiplicative (1 ± δ )-factor. In particular, this helps us bypass the

problem of having “infinitely many vectors” in the collection C

described above.

Ordered optimization and proxy costs (Section 6). Now we fo-

cus on min-max ordered optimization. First let us consider just

simple ordered optimization, and in particular, just Top-ℓ optimiza-

tion. To illustrate the issues, let us fix the optimization problem to

be load balancing on unrelated machines. One of the main technical

issues in tackling the Top-ℓ optimization problem is that one needs

to find an assignment such that sum of loads on a set of ℓ machines

is minimized, but this set of machines itself depends on the assign-

ment. Intuitively, the problem would be easier (indeed, trivial) if

we could sum the loads over all machines. Or perhaps sum some

function of the loads, but over allmachines. Then perhaps one could

write a linear/convex program to solve this problem fractionally,

and the objective function would be clear. This is where the idea

of proxy costs comes handy. We mention that this idea was already

present (in different forms) in [5, 13, 15].

The idea of this proxy cost is also simple. Suppose we knew the ℓ-

th largest load, say ρ, in the optimal solution. Then the Top-ℓ norm
of the load vector can be written as ℓ ·ρ+

∑
all machines i (load(i)−ρ)

+
,

where z+ := max{z, 0}. This is the proxy-cost of the Top-ℓ norm
given parameter ρ. Note that the summation is over all machines;

however, the summand is not the load of the machine but a function

hρ (load(i)) of the load. Furthermore, we could assume by binary

search that we have a good guess of ρ.
For ordered optimization, first we observe that cost(w ; ®v) can be

written as a non-negative linear combination of the Top-ℓ norms

(Claim 6.4). In particular, if we have the guesses of the ℓ-th largest

load for all ℓ, then we could write the proxy cost of cost(w ; ®v).
However, guessing all n ρℓ ’s would be infeasible. This is where our

earlier sparsification idea comes in handy again. Since thewℓs for

only indices ℓ ∈ POS are used to define w̃ , one only needs to guess

the (approximations for) ρℓs for the indices ℓ ∈ POS to define the

proxy function. And this again can be done in polynomial time.

Also, what is crucial for min-max ordered optimization is that the

positions are independent of the particular weight vector: although
there are N different weight functions, their sparsified versions

have the same break points, and their proxy functions are defined

using these same, logarithmically many break points.

LP relaxations and deterministic oblivious rounding (Sec.7-
9) One can use the proxy costs to write linear programming relax-

ations for the problems at hand (in our case, load balancing and

k-clustering). Indeed, for k-clustering, this was the approach taken

by Byrka et al. [13] and our earlier work [15] for ordered k-median.

With proxy costs, the LP relaxation for ordered k-median is the

usual LP but the objective has non-metric costs. Nevertheless, both
the papers showed constant integrality gaps for these LPs. (Our

proxy cost here is subtly different, but is within O(1)-factor of the
expression in [13, 15].) For load-balancing, the natural LP has a bad

gap, and one needs to add additional constraints, using which we

can indeed show the LP has an integrality gap of roughly 2.

However, it is not at all clear how to use this LP for min-max
ordered problems with multiple weight functions. The algorithms

of Byrka et al [13] are randomized which bound the expected cost
of the ordered k-median; with multiple weights, this won’t help

solve the min-max problem unless one can argue very sharp con-

centration properties of the algorithm. The same is true for our

load-balancing algorithm. These algorithms can be derandomized,

but these derandomizations lead to algorithms which use the (sin-

gle) weight function crucially, and it is not clear at all how to

minimize the max of even two weight functions. The primal-dual

algorithm in [15] suffers from the same problem. Our approach in

this paper is to consider deterministic rounding of the LP solution

which are oblivious to the weight vectors. We can achieve this for

the LP relaxations we write for load balancing and k-clustering
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(although we need to strengthen the latter furthermore). We defer

further technical overview to Section 7, and then give details for

load-balancing in Section 9 and for k-clustering in Section 8; the

latter two sections can be read in any order.

Extensions: multi-budgeted ordered optimization and con-
nections to simultaneous optimization. Finally, we showcase
the versatility of deterministic, weight-oblivious rounding by utiliz-

ing it to obtainO(1)-approximations for multi-budgeted ordered op-

timization, and the instance-wise best simultaneous-approximation

factor, for our applications of load balancing and k-clustering.
Multi-budgeted ordered optimization is the variant of min-max

ordered optimization, wherein we are given multiple ordered norms

and a budget for each ordered norm, and we seek a solution whose

induced cost vector satisfies these budgets. As with min-max or-

dered optimization, our oblivious rounding procedures easily lead

to O(1)-approximations for the multi-budgeted ordered {load bal-

ancing, k-clustering} problems.

Let α∗
I
be the smallest α such that there exists a solution whose

cost-vector ®v satisfies д(®v) ≤ αopt(д) for all monotone, symmetric

norms д; here, opt(д) = min ®w д( ®w), where ®w ranges over the cost

vectors induced by feasible solutions. A γ -approximation algorithm

for the best simultaneous-approximation factor takes an instance

I and returns a solution ®v such that д(®v) ≤ γα∗
I
opt(д) for any

monotone, symmetric norm д. We devise O(1)-approximation al-

gorithms for the best simultaneous-approximation factor for load

balancing and k-clustering. The key idea stems from Goel and Mey-

erson [18], who use the majorization theory of Hardy, Littlewood,

and Polya [22], to show that in order to simultaneously approximate

all monotone, symmetric, norms, then it suffices to simultaneously

approximate all Top-ℓ norms. If the best simultaneous approxima-

tion for a given instance is α∗
I
, then we can cast the latter problem

as a multi-budgeted ordered optimization problem with a budget of

α∗
I
optℓ for each Top-ℓ-norm, where optℓ is the optimal value for

the Top-ℓ norm. Using our sparsification ideas, we can argue that

we only need to consider the logarithmically many positions in

POS, so although we do not know optℓ , we can “guess” this for all

ℓ ∈ POS. Using our O(1)-approximation results for multi-budgeted

ordered optimization coupled with a binary search for α∗
I
, then

leads to an O(1)-approximation for α∗
I
.

3 PRELIMINARIES
Solutions to the optimization problems we deal with in this paper

induce cost vectors. We use ®v to denote them when talking about

problems in the abstract. In load-balancing, the vector of the loads

on machines is denoted by

−−−→
load, or

−−−→
loadσ if σ is the assignment of

jobs. In k-clustering, we the vector of assignment costs of clients

is denoted as ®c . We always use ®o to denote the cost vector in the

optimum solution.

For an integer n, we use [n] to denote the set {1, . . . ,n}. For a

vector ®v ∈ Rn , we use ®v ↓
to denote the vector v with coordinates

sorted in non-increasing order. That is, we have ®v
↓

i = ®vπ (i), where
π is a permutation of [n] such that ®vπ (1) ≥ ®vπ (2) ≥ . . . ®vπ (n).

Throughout the paper, we usew (with or without superscripts)

to denote a non-increasing, non-negative weight vector. The di-

mension of this vector is the dimension of the cost vector. In

the abstract, we use n to denote this dimension; so w ∈ Rn+ and

w1 ≥ w2 ≥ · · · ≥ wn ≥ 0. We use w̃ to denote the “sparsified”

version of the weight vectorw which is defined in Section 4.

Ordered and top-ℓ optimization. Given a weight vector w as

above, the ordered optimization problem asks to find a solution with

induced cost vector ®v which minimizes cost(w ; ®v) :=
∑n
i=1

wi ®v
↓

i .

This is thew-ordered norm, or simply ordered norm of ®v . The spe-
cial case wherew is a {0, 1} vector—sow1 = · · ·wℓ = 1 (for some

ℓ ∈ [n]) and wi = 0 otherwise—is called Top-ℓ optimization: we
seek a solution ®v minimizing the sum of the ℓ largest entries. We

use cost(ℓ; ®v) to denote the cost of the Top-ℓ optimization problem.

In the literature in the k-clustering setting, the Top-ℓ optimization

problem is called the ℓ-centrum problem, and the ordered optimiza-

tion problem is called the ordered k-median problem.

Min-max and multi-budgeted ordered optimization. In a sig-

nificant generalization of ordered optimization, we are given multi-

ple non-increasing weight vectors w(1), . . . ,w(N ) ∈ Rn+, and min-

max ordered optimization asks to find a solution with induced cost

vector ®v which minimizes maxr ∈[N ] cost(w
(r )

; ®v). A related prob-

lem called multi-budget ordered optimization has the same setting

as min-max ordered optimization, but one is also given N budgets

B1, . . . ,BN ≥ 0. The objective is to find a solution inducing cost

vector ®v such that cost(w ; ®v) ≤ Br , for all r . This problem leads to

connections with simultaneous optimization [18, 27].

Minimumnormoptimization.A function f : Rn → R is a norm
if (i) f (x) = 0 iff x = 0; (ii) f (x + y) ≤ f (x) + f (y) for all x ,y ∈ Rn

(triangle inequality); and (iii) f (λx) = |λ | f (x) for all x ∈ Rn , λ ∈ R
(homogeneity). Properties (ii) and (iii) imply that f is convex. f is

symmetric if permuting the coordinates of x does not affect its value,

i.e., f (x) = f (x ↓) for all x ∈ Rn . f is monotone if increasing its

coordinate cannot decrease its value Inminimum norm optimization
problem we are given a monotone, symmetric norm f , and we have
to find a solution inducing a cost vector ®v which minimized f (®v).
Notice that Top-ℓ optimization, ordered optimization, and min-max

ordered optimization are special cases of this problem.

Load balancing and k-clustering problems. In the load balanc-

ing setting, we have m machines, n jobs, and a processing time

pi j ≥ 0 for job j onmachine i . A solution to the problem is an assign-

ment σ of jobs to machines. This induces a load vector

−−−→
loadσ ∈ Rm ,

with loadσ (i) :=
∑
j :σ (j)=i pi j for all i ∈ [m], which is the cost-

vector associated with σ . Thus, the min-norm load balancing prob-

lem asks to find σ minimizing f (
−−−→
loadσ ).

In thek-clustering setting, we have ametric space

(
D, {ci j }i, j ∈D

)
,

and an integer k ≥ 0. A solution to the problem is a set F ⊂ D,

|F | = k of k open facilities. This induces a cost-vector ®c , where
®c j := mini ∈F ci j is the assignment cost of j. In minimum-norm

k-clustering, we seek a set F of facilities that minimizes f (®c).

4 SPARSIFYINGWEIGHTS
Let δ > 0 be a parameter. We show how to sparsify w ∈ Rn to a

weight vector w̃ ∈ Rn (with non-increasing coordinates) having

O(logn/δ ) distinct weight values, such that for any vector ®v , we
have cost(w̃ ; ®v) ≤ cost(w ; ®v) ≤ (1 + δ )cost(w̃ ; ®v). Moreover, an

important property we ensure is that the breakpoints of w̃—i.e., the

indices where w̃i > w̃i+1—lie in a set that depends only by n and δ
and is independent of w . As explained in Section 2, sparsification
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in two distinct places; one, to give a polynomial time reduction

from min-norm optimization to min-max ordered optimization

(Section 5), and two, to specify proxy costs which allow us to tackle

min-max ordered optimization.

For simplicity, we first describe a sparsification that leads to

a factor-2 loss (instead of 1 + δ ), and then refine this. For every

index i ∈ [n], we set w̃i = wi if i = min{2s ,n} for some integer

s ≥ 0; otherwise, if s ≥ 1 is such that 2
s−1 < i < min{2s ,n}, set

w̃i = w
min{2s ,n } = w̃

min{2s ,n } . Note that w̃ ≤ w coordinate wise,

and w̃1 ≥ w̃2 ≥ . . . w̃n .

Observe that, unlike a different sparsification based on, say,

geometric bucketing of the wi s, the sparsified vector w̃ is not
component-wise close tow ; in fact w̃i could be substantially smaller

thanwi for an index i . Despite this, Claim 4.1 shows that cost(w̃ ; ®v)
and cost(w ; ®v) are close to each other.

Claim 4.1. For any ®v ∈ Rn+, we have cost(w̃ ; ®v) ≤ cost(w ; ®v) ≤
2cost(w̃ ; ®v).

Proof. Since w̃ ≤ w , it is immediate that cost(w̃ ; ®v) ≤ cost(w ; ®v).
The other inequality follows from a charging argument. Note that

for any s ≥ 2, we have

(
min{2s ,n} − 2

s−1
)
≤ 2

(
min{2s−1,n} −

2
s−2

)
; hence, the cost contribution

∑
min{2s ,n }
i=2

s−1+1

wi ®v
↓

i is at most twice

the cost contribution in cost(ŵ ;v) from the indices i ∈
{
2
s−2 +

1, . . . ,min{2s−1,n}
}
. The remaining costw1 ®v

↓

1
+w2 ®v

↓

2
is at most

2w̃1 ®v
↓

1
. �

For the refined sparsification that only loses a (1 + δ )-factor,
we consider positions that are powers of (1 + δ ). Let POSn,δ :={

min{⌈(1 + δ )s ⌉ ,n} : s ≥ 0

}
. (Note that {1,n} ⊆ POSn,δ .) Observe

that POSn,δ depends only on n,δ and is oblivious of the weight

vector. We abbreviate POSn,δ to POS in the remainder of this sec-

tion, and whenever n,δ are clear from the context. For ℓ ∈ POS,
ℓ < n, define next(ℓ) to be the smallest index in POS larger than

ℓ. For every index i ∈ [n], we set w̃i = wi if i ∈ POS; otherwise,
if ℓ ∈ POS is such that ℓ < i < next(ℓ) (note that ℓ < n), set
w̃i = wnext(ℓ) = w̃next(ℓ). Lemma 4.2 generalizes Claim 4.1.

Lemma 4.2. For any ®v ∈ Rn+, we have cost(w̃ ; ®v) ≤ cost(w ; ®v) ≤
(1 + δ )cost(w̃ ; ®v).

We once again stress that the, perhaps more natural, way of geo-

metric bucketing (which is indeed used by [5, 13, 15]) where one ig-

nores smallwi s and rounds down each remainingwi to the nearest

power of 2 (or (1+ε)), doesn’t work for our purposes. With geomet-

ric bucketing, the resulting sparsified vectorw ′
is component-wise

close tow (and so cost(w ′
; ®v) is close to cost(w ; ®v)). But the break-

points ofw ′
depend heavily onw , whereas the breakpoints of w̃ all

lie in POS. As noted earlier, this non-dependence onw is extremely

crucial for us.

5 REDUCING MIN-NORM OPTIMIZATION TO
MIN-MAX ORDERED OPTIMIZATION

In this section we show our reduction of the minimum norm opti-

mization problem to min-max ordered optimization. We are given

a monotone, symmetric norm f : Rn → R+, and we want to find a

solution to the underlying optimization problem which minimizes

the f evaluated on the induced cost vector. Let ®o denote the optimal

cost vector and let opt = f (®o).
We assume the following (approximate) ball-optimization oracle.

Given any cost vector c ∈ Rn , we can (approximately) optimize

c⊤x over the ball B+(f ) := {x ∈ Rn+ : f (x) ≤ 1}.

Oracle A takes input c ∈ Rn+ returns a κ-approximation to

Bopt(c) := max{c⊤x : x ∈ B+(f )}
(1)

Note that under mild assumptions, the ball-optimization oracle can

be obtained, via the ellipsoid method, using a first-order oracle for

f that returns the subgradient (or even approximate subgradient)

of f . Recall, d ∈ Rn is a subgradient of f at x ∈ Rn if we have

f (y) − f (x) ≥ dT (y − x) for all y ∈ Rn . It is well known that a

convex function has a subgradient at every point in its domain.

We begin by stating some preliminary properties of norms, mono-

tone norms, and symmetric norms.

Lemma 5.1. Let f : Rn → R+ be a norm and x ∈ Rn+.
(i) If d is a subgradient of f at x , then f (x) = dT x and f (y) ≥ dTy

for all y ∈ Rn . Also, d is a subgradient of f at any point λx ,
where λ ≥ 0.

(ii) If f is monotone, there exists a subgradient d of f at x such that
d ≥ 0.

(iii) Let f be symmetric, and d be a subgradient of f at x . Then, d
and x are similarly ordered, i.e., if di < dj then xi ≤ x j , and
f (x) = cost(d ↓

;x). Moreover, for any permutation π : [n] →

[n], the vector d(π ) :=
{
dπ (i)

}
i ∈[n]is a subgradient of f at x (π ).

Motivated by the above lemma, we define the following (possibly

infinite) set of non-increasing subgradients at points in B+(f ).

C =
{
d ∈ Rn+ : d1 ≥ d2 ≥ . . . ≥ dn ,

d is a subgradient of f at some x ∈ B+(f )
}
.

As a warm up, Lemma 5.2 shows that min-norm optimization is

equivalent to min-max ordered optimization with an infinite collec-
tion of weight vectors.

Lemma 5.2. Let x ∈ Rn+. We have f (x) = maxw ∈C cost(w ;x).

Proof. We first argue that f (x) ≤ maxw ∈C cost(w ;x). By part

(ii) (of Lemma 5.1), there is a subgradient d ≥ 0 of f at x . By part

(iii), there is a common permutation π that defines d ↓
and x ↓

, and

d̂ = d ↓
is a subgradient of f at x ↓

. By part (i), d̂ is also a subgradient

of f at x ↓/f (x ↓) ∈ B+(f ). So d̂ ∈ C. Also, f (x) = cost(d̂ ;x) (by
part (iii)), and so f (x) ≤ maxw ∈C cost(w ;x).

Conversely, consider any w ∈ C, and let it be a subgradient

of f at z ∈ B+(f ). We have f (x) = f (x ↓) ≥ wT x ↓
(by part

(i) of Lemma 5.1), and so f (x) ≥ cost(w ;x). Therefore, f (x) ≥

maxw ∈C cost(w ;x). �

To reduce to min-max ordered optimization, we need to find a

polynomial-sized collection of weight vectors. Next, we show how

to leverage the weight sparsification idea in Section 4 and achieve

this taking a slight hit in the approximation factor. Let 0 < ε ≤ 0.5

be a parameter. The sparsification procedure (Lemma 4.2) shows

that, with an (1 + ε)-loss, we can focus on a set of O(logn/ε) co-
ordinates and describe the weight vectors by their values at these
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coordinates. For the ordered-optimization objective cost(w ;x), mov-

ing to the sparsified weight incurs only a (1 + ε)-loss. Furthermore,

again taking a loss of (1 + ε), we can assume these coordinates

are set to powers of (1 + ε). Our goal (roughly speaking) is then

only to consider the collection consisting of the sparsified, rounded

versions of vectors in C. Claim 5.3 implies that we can enumerate

all sparsified, rounded weight vectors in polynomial time.

But we also need to be able to determine if such a vector w̃ is

“close” to a subgradient in C, and this is where (1) is used. First

note that d ∈ C iff
3 Bopt(d) = 1. Thus to check if w̃ is “close” to a

subgradient in C, it suffices to (approximately) solve for Bopt(w̃)

and check if the answer is within (1 ± ε) (or scaled by κ if we only

have an approximate oracle). We give the details next.

To make the enumeration go through we need to make the

following mild assumptions. These assumptions need to be checked

for the problems at hand, and are often easy to establish.

(A1) We can determine in polytime if ®o
↓

1
= 0. If ®o

↓

1
> 0 (so opt > 0),

then ®o
↓

1
≥ 1 (assuming integer data), and we can compute

an estimate hi such that ®o
↓

1
≤ hi. In the sequel, assume that

®o
↓

1
≥ 1.

(A2) We have bounds lb, ub > 0 such that lb ≤ opt ≤ ub. Then (A1)

and Lemma 5.1 (i) imply that d1 ≤ ub for all d ∈ C.

We take δ = ε in the sparsification procedure in Section 4. Let

POS = POSn,ε := {min{⌈(1 + ε)s ⌉ ,n} : s ≥ 0}. Recall that next(ℓ)
is the smallest index in POS larger than ℓ. The sparsified version

of w ∈ Rn is the vector w̃ ∈ Rn given by w̃i = wi if i ∈ POS;
and w̃i = wnext(ℓ) otherwise, where ℓ ∈ POS is such that ℓ < i <
next(ℓ). Since w̃ is completely specified by specifying the positions

in POS, we define the |POS|-dimensional vector u := {w̃ℓ}ℓ∈POS.

We identify w̃ with u ∈ RPOS+ and say that w̃ is the expansion of u.

Define W ′ ⊆ Rn+ :=
{
expansion of u ∈ RPOS+ :

∃ℓ∗ ∈ POS s.t. uℓ = 0 ∀ℓ ∈ POS with ℓ > ℓ∗,

u1,u2, . . . ,uℓ∗ are powers of (1 + ε) (possibly smaller than 1)

u1 ∈
[ lb
n ·hi , ub(1 + ε)

)
, u1 ≥ u2 ≥ . . . ≥ uℓ∗ ≥

εu1

n(1+ε )

}
.

Let 1n denote the all 1s vector in Rn . Now define

W :=
{
w ∈ W ′

: oracle A run onw returns

x̂ ∈ B+(f ) s.t.w
T x̂ ∈

[
(1 − ε)/κ, 1 + ε

]}
∪

{
lb
n ·hi · 1

n
}
.

The extra scaled all ones vector is added for a technical reason. We

use the following enumeration claim.

Claim 5.3. There are at most (2e)max{N ,k } non-increasing se-
quences of k integers chosen from {0, . . . ,N }.

The following theorem establishes the reduction from the mini-

mum norm problem to min-max ordered optimization.

Theorem 5.4. For any ®v ∈ Rn+, the following hold.

(i) maxw ∈W cost(w ; ®v) ≤ max

{
κ(1 + ε)f (®v), lb

n ·hi
∑
i ∈[n] ®vi

}
,

3
If d ∈ C is the subgradient of f at y ∈ B+(f ), dT x ≤ f (x ) ≤ 1 ∀x ∈ B+(f ), and
dT y/f (y) = 1, so maxx∈B+(f ) d

T x = 1. Alternately, if Bopt (d ) = 1, then we have

d⊤z = 1 for some f (z) ≤ 1 implying f (z) + d⊤(y − z) ≤ d⊤y for any y . If the LHS
is > f (y), then we would get d⊤(y/f (y)) > 1 contradicting Bopt (d ) = 1.

(ii) f (®v) ≤ (1 − ε)−1
maxw ∈W cost(w ; ®v).

Hence, aγ -approximate solution ®v for themin-max ordered-optimization
problem with objectivemaxw ∈W cost(w ; ®v) (where γ ≥ 1) satisfies
f (®v) ≤ γκ(1 + 3ε)opt.

Constructing W requires O
(

logn
ε2

log(n ·ub·hilb )(nε )
O (1/ε )) calls to

A, which is also a bound on |W|.

6 PROXY COSTS
As mentioned in Section 2, the key to tackling ordered optimization

is to view the problem of minimizing the sum of a suitably devised

proxy-cost function over all coordinates. We describe this proxy in

this section. We first so so for Top-ℓ optimization. This will serve

to motivate and illuminate the proxy-cost function that we use for

(general) ordered optimization. As usual, we use ®o to denote the cost
vector corresponding to an optimal solution, and opt to denote the

optimal cost. Recall, cost(ℓ; ®v) is the cost of the Top-ℓ optimization.

Define z+ := max{0, z} for z ∈ R. For any scalar ρ > 0, define

hρ (z) := (z − ρ)+. The main insight is that for any ®v ∈ Rn , we have

cost(ℓ; ®v) = minρ ∈R
(
ℓ · ρ +

∑n
i=1

hρ (®vi )
)
.

Claim 6.1. For any ℓ ∈ [n], any ®v ∈ Rn , and any ρ ∈ R, we have
cost(ℓ; ®v) ≤ ℓ · ρ +

∑n
i=1

hρ (®vi ).

Claim 6.2. Let ℓ ∈ [n], and ρ be such that ®o ↓
ℓ
≤ ρ ≤ (1 + ε)®o

↓

ℓ
.

Then ℓ · ρ +
∑n
i=1

hρ (®oi ) ≤ (1 + ε)cost(ℓ; ®o).

The above claims indicate that if we obtain a good estimate

ρ of ®o
↓

ℓ
, then ℓ · ρ +

∑n
i=1

hρ (®vi ) can serve as a good proxy for

cost(ℓ; ®v), and we can focus on the problem of findingv minimizing∑n
i=1

hρ (®vi ). The following properties will be used many times.

Claim 6.3. We have: (i) hρ (x) ≤ hρ (y) for any ρ, x ≤ y; (ii)
hρ1

(x) ≤ hρ2
(x) for any ρ1 ≥ ρ2, and any x ; (iii) hρ1+ρ2

(x + y) ≤
hρ1

(x) + hρ2
(y) for any ρ1, ρ2,x ,y.

Proof. Part (iii) is the only part that is not obvious. Ifhρ1+ρ2
(x+

y) = 0, then the inequality clearly holds; otherwise, hρ1+ρ2
(x +y) =

x − ρ1 + y − ρ2 ≤ (x − ρ1)
+ + (y − ρ2)

+
. �

We remark that our proxy function for Top-ℓ optimization is

similar to, but subtly stronger than, the proxy function utilized in

recent prior works on the ℓ-centrum and ordered k-median clus-

tering problems [13, 15]. This strengthening (and its extension to

ordered optimization) forms the basis of our significantly improved

approximation guarantees of (5 + ε) for ordered k-median, which

improves upon the prior-best guarantees for both ℓ-centrum and

ordered k-median [15]. Furthermore, this proxy function also leads

to (essentially) a 2-approximation for Top-ℓ load balancing and

ordered load balancing.

Ordered optimization. We now build upon our insights for Top-ℓ
optimization. Letw ∈ Rn be the weight vector (with non-increasing

coordinates) underlying the ordered-optimization problem. So, opt =
cost(w ; ®o) is the optimal cost. The intuition underlying our proxy

function comes from the observation that we can write cost(w ; ®v) =∑n
i=1

(wi − wi+1)cost(i; ®v), where we define wn+1 := 0. Plugging

in the proxy functions for cost(i; ®v) in this expansion immediately

leads to a proxy function for cost(w ; ®v). The cost(i; ®v) terms that

appear with positive coefficients in the above linear combination
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are those wherewi > wi+1, i.e., corresponding to the breakpoints of

w . Thus, the proxy function that we obtain for ordered optimization

will involve multiple ρ-thresholds, which are intended to be the

estimates of the ®o
↓

i values corresponding to breakpoints. However,

we cannot afford to “guess” so many thresholds. So an important

step to make this work is to first sparsify the weight vector w to

control the number of breakpoints, and then utilize the above ex-

pansion. As mentioned in Section 4, while geometric bucketing of

weights would reduce the number of breakpoints for a single weight

function, for our applications to min-max ordered optimization, we

need the uniform way of sparsifying multiple weight vectors, and

we therefore use the sparsification procedure in Section 4.

Let POS = POSn,δ := {min{⌈(1 + δ )s ⌉ ,n} : s ≥ 0}, where

δ , ε > 0 are parameters. Recall that next(ℓ) is the smallest index in

POS larger than ℓ. For notational convenience, we define next(n) :=

n + 1, and for ®v ∈ Rn , define ®vn+1 := 0. We sparsify w to w̃ ∈ Rn

by setting w̃i = wi if i ∈ POS, and w̃i = wnext(ℓ) otherwise, where

ℓ ∈ POS is such that ℓ < i < next(ℓ).
Our proxy function is obtained by guessing (roughly speaking)

the thresholds ®o
↓

ℓ
for all ℓ ∈ POS within a multiplicative (1 + ε)

factor, and rewriting cost(w̃ ; ®v) in terms of these thresholds. Let

®t := {tℓ}ℓ∈POS be a threshold vector. Define ®tn+1 := 0. We say that

®t is valid if tℓ ≥ tnext(ℓ) for all ℓ ∈ POS. (So this implies that ®t ≥ 0.)

A valid threshold vector ®t , defines the proxy function.

prox®t (w̃ ; ®v) :=
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

) [
ℓ · tℓ +

n∑
i=1

htℓ (®vi )
]

=
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
ℓ · tℓ +

n∑
i=1

h®t (w̃ ; ®vi ), (2)

where, h®t (w̃ ;a) :=
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
htℓ (a) (3)

Throughout the rest of this section, we work with the sparsified

weight vector w̃ . Observe that h®t (w̃ ;x) is a continuous, piecewise-
linear, non-decreasing function of x . Our proxy for cost(w̃ ; ®v) will
be the function prox®t (w̃ ; ®v) for a suitably chosen threshold vector

®t . To explain the above definition, notice that (2) is the expression

obtained by plugging in the proxy functions (ℓ · ρ +
∑n
i=1

(vi − ρ)+)
defined for the cost(ℓ; ·)-objectives in the expansion of cost(w̃ ;v)
as a linear combination of cost(ℓ;v) terms.

Claim 6.4. For any ®v ∈ Rn , we have cost(w̃ ; ®v) =
∑

ℓ∈POS
(
w̃ℓ −

w̃next(ℓ)
)
cost(ℓ; ®v).

Claim 6.5. For any valid threshold vector ®t ∈ RPOS, and any
®v ∈ Rn , we have cost(w̃ ; ®v) ≤ prox®t (w̃ ; ®v).

Proof. We have prox®t (w̃ ; ®v) =
∑

ℓ∈POS
(
w̃ℓ − w̃next(ℓ)

) (
ℓ · tℓ +∑n

i=1
htℓ (®vi )

)
. The statement now follows by combining Claim 6.4

and Claim 6.1, taking t = tℓ for each ℓ ∈ POS. �

Claim 6.6. Let ®t ∈ RPOS be a valid threshold vector such that ®o ↓
ℓ
≤

tℓ ≤ (1+ε)®o
↓

ℓ
for all ℓ ∈ POS. Then, prox®t (w̃ ; ®o) ≤ (1+ε)cost(w̃ ; ®o).

Proof. We have prox®t (w̃ ; ®o) =
∑

ℓ∈POS
(
w̃ℓ − w̃next(ℓ)

) (
ℓ · tℓ +∑n

i=1
htℓ (®o

↓

i )
)
. The statement now follows by combining Claim 6.2,

where we take t = tℓ for each ℓ ∈ POS, and Claim 6.4. �

Claim 6.5 and Claim 6.6 imply that: (1) if we can obtain in poly-

time a valid threshold vector ®t ∈ RPOS satisfying the conditions

of Claim 6.6, and (2) obtain a cost vector v that approximately

minimizes

∑n
i=1

h®t (vi ), then we would obtain an approximation

guarantee for the ordered-optimization problem. We will not quite

be able to satisfy (1). Instead, we will obtain thresholds that will

satisfy a somewhat weaker condition (see Lemma 6.8), which we

show is still sufficient. The following claim will be useful.

Claim 6.7. Let ®t , ®t ′ ∈ RPOS be two valid threshold vectors with ®t ≤
®t ′ and ∥®t − ®t ′∥∞ ≤ ∆. Then, for any ®v ∈ Rn , we have

��prox®t (w̃ ; ®v) −

prox ®t ′ (w̃ ; ®v)
�� ≤ nw̃1∆.

Lemma 6.8. Let ®t ∈ RPOS be a valid threshold vector satisfying

the following for all ℓ ∈ POS: ®o ↓
ℓ
≤ tℓ ≤ (1 + ε)®o

↓

ℓ
if ®o ↓

ℓ
≥

ε ®o ↓

1

n , and
tℓ = 0 otherwise. Then,

prox®t (w̃ ; ®o) =
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
ℓ · tℓ +

n∑
i=1

h®t (w̃ ; ®oi )

≤ (1 + 2ε)cost(w̃ ; ®o).

Proof. For ℓ ∈ POS, define t ′
ℓ
= tℓ if ®o

↓

ℓ
≥

ε ®o ↓

1

n , and t ′
ℓ
= ®o

↓

ℓ

otherwise. Clearly, ®t ≤ ®t ′ and ∥®t − ®t ′∥∞ ≤
ε ®o ↓

1

n , so by Claim 6.7,

we have prox®t (w̃ ; ®o ↓) ≤ prox ®t ′ (w̃ ; ®o ↓) + εw̃1®o
↓

1
. The threshold

vector ®t ′ satisfies the conditions of Claim 6.6, so prox ®t ′ (w̃ ; ®o) ≤

(1 + ε)cost(w̃ ; ®o). So prox®t (w̃ ; ®o) ≤ (1 + 2ε)cost(w̃ ; ®o). �

Lemma 6.9 (Polytime enumeration of threshold vectors).

Suppose we can obtain in polynomial time a (polynomial-size) set S ⊆

R containing a value ρ satisfying ®o
↓

1
≤ ρ ≤ (1 + ε)®o

↓

1
. Then, in time

O
(
|S |·|POS|·max{(nε )

O (1/ε ),n1/δ }
)
= O

(
|S | max{(nε )

O (1/ε ),nO (1/δ )}
)
,

we can obtain a set A ⊆ RPOS+ that contains a valid threshold vector
®t satisfying the conditions of Lemma 6.8.

If ®o is integral, ®o ↓
1
> 0, and ρ is a power of (1 + ε), then this ®t

satisfies: for every ℓ ∈ POS, either tℓ = 0 or tℓ ≥ 1 and is a power of
(1 + ε).

Proof. We first guess the largest index ℓ∗ ∈ POS such that

®o
↓

ℓ
≥

ε ®o ↓

1

n . For each such ℓ∗, and each t1 ∈ S , we do the following.

We guess tℓ for ℓ ∈ POS, 2 ≤ ℓ ≤ ℓ∗, where all the tℓs are of the

form t1/(1 + ε)j for some integer j ≥ 0 and are at least
εt1

n(1+ε ) ,

and the j-exponents are non-decreasing with ℓ. For ℓ ∈ POS with

ℓ > ℓ∗, we set tℓ = 0, and add the resulting threshold vector ®t to
A. Note that there are at most 1 + log

1+ε
( n
ε
)
= O

(
1

ε log
n
ε
)
choices

for the exponent j. So since we need to guess a non-decreasing

sequence of at most |POS| = O(logn/δ ) exponents from a range of

size O
(

1

ε log
n
ε
)
, there are only exp

(
max{O( 1

ε log(nε )), |POS|}
)
=

O
(
max{(nε )

O (1/ε ),n1/δ }
)
choices (by Claim 5.3). So the enumera-

tion takes time O
(
|S | · |POS| max{(nε )

O (1/ε ),n1/δ }
)
, which is also

an upper bound on |A|.
We now argue that A contains a desired valid threshold vector.

First, note that by construction A only contains valid threshold

vectors. Consider the iteration when we consider t1 = ρ, and have

guessed ℓ∗ correctly. For ℓ ∈ POS with 2 ≤ ℓ ≤ ℓ∗, we know that
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®o
↓

ℓ
≥

ε ®o ↓

1

n ≥
εt1

n(1+ε ) and ®o
↓

ℓ
≤ ®o

↓

1
≤ t1. So we will enumerate non-

increasing values t2, . . . , tℓ∗ such that ®o
↓

ℓ
≤ tℓ ≤ (1 + ε)®o

↓

ℓ
for each

such ℓ. The remaining tℓs are set to 0, so ®t satisfies the conditions
of Lemma 6.8.

Finally, suppose ®o ∈ Zn+ and ρ is a power of (1+ε). If tℓ < 1, then

ℓ ≥ ℓ∗, but ®o
↓

ℓ
≤ tℓ < 1, which means that ®o

↓

ℓ
= 0 contradicting

that ®o
↓

ℓ
≥

ε ®o ↓

1

n . Also, tℓ = ρ/(1 + ε)j , so it is a power of (1 + ε). �

The upshot of the above discussion is that it suffices to focus

on the algorithmic problem of minimizing

∑n
i=1

h®t (vi ) for a given
valid threshold vector. This is formalized by the following lemma.

Lemma 6.10. Let ®t ∈ RPOS be a valid threshold vector satisfying
the conditions of Lemma 6.8. Let ®v ∈ Rn+ be such that

∑n
i=1

hθ ®t (w̃ ; ®vi ) ≤
γ ·

∑n
i=1

h®t (w̃ ; ®oi ) +M , where γ ,θ ≥ 1, M ≥ 0. Then, cost(w̃ ; ®v) ≤
max{θ ,γ }(1 + 2ε)cost(w̃ ; ®o) +M , and hence
cost(w ; ®v) ≤ (1 + δ )max{θ ,γ }(1 + 2ε)opt + (1 + δ )M .

7 OUR APPROACH FOR MIN-MAX ORDERED
OPTIMIZATION

Given the reduction Theorem 5.4 in Section 5, we now discuss

our approach for solving min-max-ordered load balancing and

clustering. Eventually, we will need to take a problem-dependent

approach, but at a high level, there are some common elements to

our approaches for the two problems as we now elucidate.

As a stepping stone, we first consider ordered optimization (i.e.,

where we have one weight vector w), and formulate a suitable

LP-relaxation (see Section 9.1 and Section 8.1) for the problem of

minimizing

∑n
i=1

h®t (w̃ ; ®vi ), i.e., the ®v-dependent part of our proxy
function for cost(w̃ ; ®v) (see (2) and (3)), where w̃ is the sparsified

version ofw . Our LP-relaxation will have the property that only its

objective depends on w̃ and not its constraints. The LP for min-max

ordered optimization is obtained by modifying the objective in the

natural way.

The technical core of our approach involves devising a deterministic,
weight-oblivious rounding procedure for this LP (see Theorems 8.4

and 9.5). To elaborate, we design a procedure that given an arbitrary

feasible solution, say x , to this LP, rounds it deterministically, with-
out any knowledge ofw , to produce a solution to the underlying

optimization problem whose induced cost vector ®v satisfies the

following: for every sparsified weight vector w̃ , we have (loosely

speaking) cost(w̃, ®v) = O(1)·(LP-objective-value of x under w̃). We

call this a deterministic, weight-oblivious rounding procedure. To

achieve this, we need to introduce some novel constraints in our LP,

beyond the standard ones for load balancing and k-clustering. The
benefit of such an oblivious guarantee is clear: if x is an optimal

solution to the LP-relaxation for min-max ordered optimization,

then the above guarantee yields O(1)-approximation for the min-

max ordered-optimization problem. Indeed, this also will solve the

multi-budgeted ordered optimization problem.

We point out that it is important that the oblivious rounding pro-

cedures we design are deterministic, which is also what makes them

noteworthy, and we need to develop various new ideas to obtain

such guarantees. Using a randomizedO(1)-approximation oblivious

rounding procedure in min-max ordered optimization would yield

that the maximum expected cost cost(w(i)
; ṽ) under weight vectors

w(i)
in our collection isO(opt); but what we need is a bound on the

expected maximum cost. Therefore, without a sharp concentration

result, a randomized oblivious guarantee is insufficient for the pur-

poses of utilizing it for min-max ordered optimization. Also, note

that derandomizing an oblivious randomized-rounding procedure

would typically cause it to lose its obliviousness guarantee. (We

also remark that if we allow randomization, then it is well-known

that any LP-relative approximation algorithm can be used to obtain

a randomized oblivious rounding procedure (see [14].)

To obtain our deterministic oblivious rounding procedure, we

first observe that

∑n
i=1

h®t (w̃ ; ®vi ) can be equivalently written as∑
ℓ∈POS w̃next(ℓ)

∑n
i=1

(
min{ ®vi , tℓ}−tnext(ℓ)

)+
. In our LP-relaxation,

we introduce fractional variables to specify the quantities∑n
i=1

(
min{ ®vi , tℓ}−tnext(ℓ)

)+
. If we can round the fractional solution

while roughly preserving these quantities (up to constant factors),

then we can get the desired oblivious guarantee. This is what we

achieve (allowing for anO(1) violation of the thresholds) by, among

other things, leveraging our new valid constraints that we add

to the LP. For instance, in load balancing, ®vi denotes the load on

machine i and the above quantity represents the portion of the total

load on a machine between thresholds tnext(ℓ) and tℓ , and we seek

to be preserve this in the rounding.

Preserving the aforementioned quantities amounts to having

multiple knapsack constraints, and rounding them so as to satisfy

them with as little violation as possible. We utilize the following

technical tool to achieve this. We emphasize that the objective cTq
below is not related to w̃ , but encodes quantities that arise in our

rounding procedure. Theorem 7.1 is proved using iterative rounding,
by combining ideas from [9], which considered directed network

design, and the ideas involved in an iterative-rounding based 2-

approximation algorithm for the generalized assignment problem

(see Section 3.2 of [30]). Similar results are known in the literature,

but we could not quite find a result that exactly fits our needs.

Theorem 7.1. Let q̂ be a feasible solution to the following LP:

min cTq A1q ≤ b1, A2q ≥ b2, Bq ≤ d, q ∈ RM+ . (Q)

Suppose that: (i)A1,A2,B,b1,b2,d ≥ 0; (ii)A1,A2 are {0, 1}-matrices,
and the supports of the rows of

( A1

A2

)
form a laminar family; (iii)

b1,b2 are integral; and (iv) qj ≤ 1 is an implicit constraint implied by
A1q ≤ b1, A2q ≥ b2. Let k be the maximum number of constraints
of Bq ≤ d that a variable appears in.

We can round q̂ to an integral (hence {0, 1}) solution
int
q satisfying:

(a) cT
int
q ≤ cT q̂; (b) the support of

int
q is contained in the support of q̂;

(c) A1

int
q ≤ b1, A2

int
q ≥ b2; and (d) (B

int
q )i ≤ di + k(maxj :q̂j>0

Bi j ) for
all i ranging over the rows of B.

8 k-CLUSTERING
Wenow use our framework to design constant factor approximation

algorithms for the minimum-norm k-clustering problem. We are

given a metric space

(
D, {ci j }i, j ∈D

)
, and an integer k ≥ 0. Let

n = |D|. For notational similarity with facility-location problems,

let F := D, denote the candidate set of facilities. (Our results either

directly extend, or can be adapted, to the setting where F , D.)

A feasible solution opens a set F ⊆ F of at most k facilities, and
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assigns each client j ∈ D to a facility i(j) ∈ F . This results in the

assignment-cost vector ®c := {ci(j)j }j ∈D .

In the minimum-norm k-clustering problem, the goal is to min-

imize f (®c) under a given monotone, symmetric norm f . The or-
dered k-median problem is the special case where we are given

weights w1 ≥ w2 ≥ . . . ≥ wn ≥ 0, and the goal is to minimize

cost(w ; ®c) = wT ®c ↓. The ℓ-centrum problem is the further special

case, wherew1 = 1 = . . . = wℓ and the remainingwi s are 0.

Theorem 8.1. Given any monotone, symmetric norm specified via
a κ-approximate ball-optimization oracle (see (1)), and any ε > 0,
there is a κ

(
408+O(ε)

)
-approximation algorithm for minimum-norm

k-clustering with running time poly

(
input size, (nε )

O (1/ε )) .
As shown by the reduction in Section 5, the key component

needed to tackle the norm-minimization problem is an algorithm

for the min-max ordered k-median problem, wherein we are given

multiple non-increasing weight vectorsw(1), . . . ,w(N ) ∈ Rn+, and
the goal is to find F ⊆ F with |F | ≤ k such that the resulting

assignment-cost vector ®c minimizes maxr ∈[L] cost(w
(r )

; ®c).

Theorem 8.2. Given non-increasingweight vectorsw(1), . . . ,w(N ) ∈

Rn+, for any ε > 0, there is a
(
408+O(ε)

)
-approximation algorithm for

min-max orderedk-medianwith running time poly

(
input size,nO (1/ε )) .

As described in Section 7, the key technical component is a deter-
ministic, weight-oblivious rounding procedure for our LP-relaxation
for (single) ordered k-median (Section 8.1). The approximation fac-

tor of this rounding procedure then translates to the above guaran-

tees. Furthermore, notably, the oblivious rounding can be exploited

to obtain guarantees for multi-budgeted ordered k-median and the

best simultaneous approximation achievable for k-clustering.
We have not optimized the constant in the approximation factor

for easier exposition of ideas. For the special case of ordered k-
median, we can obtain a much better approximation factor of 5 + ε ,
which significantly improves upon the guarantees in [13, 15]. Our

technique here is combinatorial, based on the primal-dual method
and Lagrangian relaxation, and our improvement stems from our

better notion of proxy costs.

Theorem 8.3. There is a polynomial time (5 + ε)-approximation
for the ordered k-median problem, for any constant ε > 0.

8.1 LP Relaxation and Deterministic Oblivious
Rounding

As always, let ®o denote the costs induced by an optimal solution.

To avoid trivial settings, assume that ®o
↓

1
> 0. For convenience, we

use δ = 1 in the sparsification described in Section 4. So POS =
POSn,1 := {min{2s ,n} : s ≥ 0}. For ℓ ∈ POS, recall that next(ℓ)
is the smallest index in POS larger than ℓ if ℓ < n, and is n + 1

otherwise. Given a weight vector w ∈ Rn+ (with non-increasing

coordinates), we sparsify it to w̃ , that is, for every r ∈ [n], we set
w̃r = wr if r ∈ POS; otherwise, if ℓ ∈ POS is such that ℓ < r <
next(ℓ), we set w̃r = wnext(ℓ). Given a threshold vector ®t ∈ RPOS+
with non-increasing coordinates, we have the proxy function

prox®t (w̃ ;v) :=
∑

ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
ℓ · tℓ +

∑
j ∈D

h®t (w̃ ;vj )

where v ∈ RD and h®t (w̃ ;a) :=
∑

ℓ∈POS
(
w̃ℓ − w̃next(ℓ)

)
(a − tℓ)

+
.

Since ®o
↓

1
takes at most n2

values, we may assume that we know

ρ = ®o
↓

1
; so by Lemma 6.9, we may assume that we have ®t that

satisfies: ®o
↓

ℓ
≤ tℓ ≤ (1+ε)®o

↓

ℓ
for all ℓ ∈ POSwith ®o ↓

ℓ
≥

ε ®o ↓

1

n , and tℓ =
0 for all other ℓ ∈ POS. In this section, it will be convenient to set
tℓ =

εt1

n whenever tℓ = 0. Then, we have ®o
↓

ℓ
≤ tℓ ≤ (1+ ε)®o

↓

ℓ
+

εt1

n

for all ℓ ∈ POS, and ®o
↓

1
≤ t1 ≤ (1 + ε)®o

↓

1
(in particular); if these

conditions hold then we say that ®t well-estimates ®o ↓. By Lemma 6.10,

we can therefore focus on the problem of finding an assignment-cost

vector ®c that (approximately) minimizes

∑
j ∈D h®t (w̃ ; ®c j ).

Our LP-relaxation is parametrized by ®t , and augments the stan-

dard k-median LP for this non-metric k-median problem with con-

straints (7) that are crucially exploited in the rounding algorithm.

Define tn+1 := 0. Throughout, we use i to index F and j to index

D.

min CLP®t (w̃ ;y) :=
∑
j,i

h®t (w̃ ; ci j )xi j (OCl-P)

s.t.

∑
i
xi j ≥ 1 for all j (4)

0 ≤ xi j ≤ yi for all i, j (5)∑
i
yi ≤ k . (6)∑

i :ci j ≤r
yi ≥ 1 ∀j, r : ∃ℓ ∈ POS s.t. (7)��{k ∈ D : c jk ≤ r − tℓ}

�� > ℓ
Variables xi j andyi , and constraints (4)–(6), have the same meaning

as in the standard k-median LP. We argue that constraints (7) are

satisfied by the optimal solution corresponding to ®o ↓, whenever ®t

well-estimates ®o ↓. For any j, r , and index ℓ ∈ POS that gives rise

to constraint (7), if no facility is opened in the ball {i : ci j ≤ r },
then all the clients k with c jk ≤ r − tℓ will incur assignment cost

(under ®o ↓) larger than tℓ . But there cannot be more than ℓ such

clients in this optimal solution since tℓ ≥ ®o
↓

ℓ
, and so the choice of

ℓ implies that (7) must be satisfied. As discussed in Section 7, our

approach to min-max ordered optimization is via a deterministic,

weight-oblivious rounding procedure for an LP-relaxation for the

ordered optimization problem. The theorem below formalizes this.

Theorem 8.4. Let ®t be a valid threshold vector that well-estimates
®o ↓. There is a deterministic, weight-oblivious rounding procedure
which given a solution (x ,y) satisfying (4)–(7), produces a set F ⊆ F

with |F | ≤ k such that the resulting assignment-cost vector ®c satisfies:
for anysparsified weight vector w̃ , we have

∑
j ∈D h

44®t (w̃ ; ®c j ) ≤ 44 ·

CLP®t (w̃ ;y) + 40

∑
ℓ∈POS w̃ℓnext(ℓ)tℓ .

The theorem implies that if (x ,y) is an optimal solution to the

analogue of (OCl-P) for min-max ordered k-median, then we obtain

an O(1)-approximation for min-max ordered k-median. (It is easy

to bound 40

∑
ℓ∈POS w̃ℓnext(ℓ)tℓ by O(opt).)

We remark that Byrka et al. [13] show that a randomized round-
ing procedure of [17] for the standard k-median LP yields a random-
ized oblivious rounding procedure for ordered k-median. However,

as noted earlier, this randomized guarantee is insufficient for the

purposes of utilizing it for min-max ordered k-median (and conse-

quently min-norm k-clustering).
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Proof sketch of Theorem 8.4. Fix a sparsified vector w̃ . This

is used only in the analysis. Define C̄j :=
∑
i ci jx i j , and CLPj :=∑

i h®t (w̃ ; ci j )xi j for every client j. For a set S ⊆ F , and a vector

v ∈ RF , we define v(S) :=
∑
i ∈S vi . For any p ∈ F ∪ D and

S ⊆ F ∪ D, define c(p, S) := minr ∈S cpr .
We proceed by initially following the template of the k-median

LP-rounding algorithm by Charikar et al. [16], with some subtle

but important changes. We cluster clients around nearby centers

(which are also clients) as in [16] to ensure that every non-cluster

center k is close to some cluster center j = ctr(k). Let D be the set

of cluster centers. For j ∈ D, let Fj be the set of facilities that are
nearer to j than to any other cluster center, nbr(j) be the cluster-
center (other than itself) nearest to j, and let aj := c jnbr(j). We

will eventually ensure that we open a set F of facilities such that

c(j, F ) = O(aj ) for every j ∈ D. So for a non-cluster center k for

which actr(k ) = O(C̄k ) we have c(k, F ) = O(C̄k ), and this will also

imply thathO (1)·®t
(
w̃ ; c(k, F )

)
= O(1) ·CLPk So we focus on the non-

cluster centers that are “near” their corresponding cluster centers;

let Nj (for “near”) denote such clients that are “near” center j.
Moving each near non-cluster center k to ctr(k) yields a con-

solidated instance, where at each j ∈ D, we have some dj clients
(including j) co-located at j. Unlike in standard k-median, the solu-
tion induced by (x ,y) for the consolidated instance may not have

cost at most the LP-objective-value of (x ,y), because C̄j ≤ C̄k for

j = ctr(k) does not imply that

∑
i h®t (w̃ ; ci j )x i j ≤

∑
i h®t (w̃ ; cik )x ik ;

however, we show that an approximate form of this inequality holds,

and a good solution to the consolidated instance does translate to a

good solution to the original instance.

We now focus on rounding the solution to the consolidated

instance. As in [16], we can obtain a more-structured fractional

solution to this consolidated instance, where every cluster-center j
is served to an extent of ŷj = y(Fj ) ≥ 0.5 by itself, and to an extent

of 1− ŷj by nbr(j). We now perform another clustering step, where

we select some (j, nbr(j)) pairs such that every k ∈ D that is not

part of a pair is close to a some j that belongs to a pair, and aj ≤ ak .
For standard k-median, it suffices to ensure that: (1) we open at

most k facilities, and (2) we open at least one facility in each pair.

However, for the oblivious guarantee, we need to impose more

constraints, and this is where we diverge substantially from [16].

Define t0 := ∞ and next(0) = 1. We want to compare the cost

of the rounded solution for the consolidated instance to the cost∑
j ∈D djhα ®t (w̃ ;aj )(1 − ŷj ) of the above structured fractional solu-

tion, where α is a suitable constant. The LP solution can be used to

define variables q̂
(ℓ)
j for all ℓ ∈ {0} ∪ POS, where aj q̂

(ℓ)
j is intended

to represent (roughly speaking) (1−ŷj )×
(
min{aj ,αtℓ}−αtnext(ℓ)

)+
,

so that

∑
ℓ∈{0}∪POS w̃next(ℓ)aj q̂

(ℓ)
j is O

(
hα ®t (w̃ ;aj )(1 − ŷj )

)
.

Now in addition to properties (1), (2), following the template

in Section 7, we also seek to assign each j ∈ D where a center is

not opened to a single threshold tℓ where tℓ = Ω(aj ), tnext(ℓ) ≤ aj ,
so that: (3) for every ℓ ∈ {0} ∪ POS, the total djaj cost summed

over all j ∈ D that are not open and assigned to tℓ is (roughly

speaking) comparable to

∑
j ∈D djaj q̂

(ℓ)
j . We apply Theorem 7.1 on

a suitable system to round q̂ to an integral solution (which specifies

both the open facilities and the assignment of clients to thresholds)

satisfying the above properties. An important property that we

need in order to achieve this is, is an upper bound on dj , and this is
the key place where we exploit constraint (7). Properties (1)–(3) will

imply that, for a suitable constant α , the resulting assignment-cost

vector ®c for the consolidated instance satisfies

∑
j ∈D djhα ®t (w̃ ; ®c j )

is O(cost of fractional solution for consolidated instance). �

9 LOAD BALANCING
In this section, we use our framework to design constant factor

approximation algorithms for the minimum-norm load balancing

problem. Let us recall the problem. We are given a set J of n jobs, a

set ofm machines, and for each job j and machine i , the processing
times pi j ≥ 0 required to process j on machine i . We have to

output an assignment σ : J → [m] of jobs to machines. The load

on machine i due to σ is loadσ (i) :=
∑
j :σ (j)=i pi j . Let

−−−→
loadσ :=

{loadσ (i)}i ∈[m] denote the load-vector induced by σ .
In the minimum-norm load-balancing problem, one seeks to

minimize the norm of the load vector

−−−→
loadσ for a given mono-

tone, symmetric norm. In the special case of ordered load-balancing
problem, given a non-negative, non-increasing vector w ∈ Rm+
(that is, w1 ≥ w2 ≥ · · · ≥ wm ≥ 0), one seeks to minimize

cost
(
w ;

−−−→
loadσ

)
:= wT−−−→load ↓

σ =
∑m
i=1

wi
−−−→
load ↓

σ (i). In the Top-ℓ load
balancing problem, one seeks to minimize the sum of the ℓ largest

loads in

−−−→
loadσ .

Theorem 9.1. Given any monotone, symmetric norm f on Rm

with a κ-approximate ball-optimization oracle for f (see (1)), and
for any ε > 0, there is a 38κ(1 + 5ε)-approximation algorithm for
the problem of finding an assignment σ : J → [m] which minimizes
f
(−−−→
loadσ

)
. The running time of the algorithm is (mε )

O (1/ε ).

We have not optimized the constants in the above theorem. For

the special case of ordered load balancing, we can get much better

results.

Theorem 9.2. There is a polynomial time (2 + ε)-approximation
for the ordered load balancing problem, for any constant ε > 0.

As shown by the reduction in Section 5, the key component

needed to tackle the norm-minimization problem is an algorithm for

the min-max multi-ordered load-balancing problem, wherein we are

givenmultiple non-increasing weight vectorsw(1), . . . ,w(N ) ∈ Rm+ ,
and our goal is to find an assignment σ : J → [m] to minimize

maxr ∈[N ] cost(w
(r )

;

−−−→
loadσ ).

Theorem 9.3. Given any non-increasing weight vectors
w(1), . . . ,w(N ) ∈ Rm+ , we can find 38(1 + δ )-approximation algo-
rithm to the min-max ordered load balancing problem of finding an
assignment σ : J → [m] minimizing maxr ∈[N ] cost(w

(r )
;

−−−→
loadσ ).

The algorithm runs in time poly

(
input size,mO (1/δ )) .

9.1 Linear Programming Relaxation
We begin by restating some definitions from Section 6 in the load

balancing setting. As usual, ®o will denote the load-vector induced by
an optimal assignment for the problem under consideration. Recall

that POS = POSm,δ := {min{⌈(1 + δ )s ⌉ ,m} : s ≥ 0} is the sparse

set ofO(logm/δ ) indices. For ℓ ∈ POS, next(ℓ) is the smallest index

in POS larger than ℓ if ℓ < m, and ism + 1 otherwise. Given POS,
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recall the sparsified weight vector w̃ of any weight vectorw ; every

i ∈ [m], we set w̃i = wi if i ∈ POS; otherwise, if ℓ ∈ POS is such

that ℓ < i < next(ℓ), we set w̃i = wnext(ℓ).

Given a valid threshold vector ®t ∈ RPOS (i.e., tℓ is non-increasing

in ℓ) we move from cost(w̃ ;

−−−→
loadσ ) to the proxy

prox®t (w̃ ;

−−−→
loadσ ) :=

∑
ℓ∈POS

(
w̃ℓ−w̃next(ℓ)

)
ℓ · tℓ +

m∑
i=1

h®t
(
w̃ ; loadσ (i)

)
where h®t (w̃ ;a) :=

∑
ℓ∈POS

(
w̃ℓ − w̃next(ℓ)

)
(a − tℓ)

+
.

Again, from Section 6, we know that for the right choice of ®t , this
change of objective does not incur much loss, and so our goal is to

findσ : J → [m] that approximatelyminimizes

∑m
i=1

h®t
(
w̃ ; loadσ (i)

)
(see Lemma 6.10). We now describe the LP relaxation to minimize

the proxy-cost. Our LP is parametrized by the vector ®t .
We use variables xi j to denote if job j is assigned to machine i .

Now for every i, j , and every ℓ ∈ POS, we have variables z(ℓ)i j ,y
(ℓ)
i j to

denote respectively the portions of job j that lie “below” and “above”
the tℓ threshold on machine i . More precisely, given an integral
assignment σ and an ordering of the jobs in σ−1(i), z

(ℓ)
i j denotes the

fraction of j that contributes to the load in the interval [0, tℓ) on

machine i , and y
(ℓ)
i j denotes the fraction of j that contributes to the

load interval [tℓ ,∞). Thus, for every ℓ, we have xi j = z
(ℓ)
i j +y

(ℓ)
i j , and∑

j pi jy
(ℓ)
i j represents

(
loadσ (i) − tℓ

)+
. Throughout i indexes the

set [m] of machines, and j indexes the job-set J . To keep notation

simple, define z
(m+1)

i j = 0 for all i, j.

min LP®t (w̃ ;x ,y, z) :=
∑
i

∑
ℓ∈POS

∑
j

(
w̃ℓ−w̃next(ℓ)

)
pi jy

(ℓ)
i j (8)

s.t.

∑
i
xi j = 1 ∀j (9)

xi j = z
(ℓ)
i j + y

(ℓ)
i j ∀i, j, ∀ℓ ∈ POS (10)

z
next(ℓ)
i j ≤ z

(ℓ)
i j ∀i, j, ∀ℓ ∈ POS (11)∑

j
pi j

(
z
(ℓ)
i j − z

(next(ℓ))
i j

)
≤ tℓ − tnext(ℓ) ∀i, ∀ℓ ∈ POS (12)

pi jy
(ℓ)
i j ≥

(
pi j − tℓ

)
xi j ∀i, j, ∀ℓ ∈ POS (13)

xi j , z
(ℓ)
i j ,y

(ℓ)
i j ≥ 0 ∀i, j, ∀ℓ ∈ POS.

Lemma 9.4. For any valid threshold vector ®t and any integral
assignment σ , the value of the LP is at most

∑m
i=1

h®t (w̃ ; loadσ (i)).

As discussed in Section 7, we need a deterministic,weight-oblivious
rounding algorithm. The main technical contribution of this section

is precisely such a rounding procedure.

Theorem 9.5. Let ®t be a valid threshold vector such that every
tℓ is either a power of 2 or 0. There is a deterministic algorithm
which takes any solution (x ,y, z) satisfying constraints (9)-(13), and
produces an assignment σ̃ : J → [m] such that, for any sparsified
weight vector w̃ , we have that

m∑
i=1

h
10®t

(
w̃ ; loadσ̃ (i)

)
≤ 2 · LP®t (w̃ ;x ,y, z) + 4

∑
ℓ∈POS

w̃ℓtℓ
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