
Domain Reduction for Monotonicity Testing:

A o(d) Tester for Boolean Functions in d-Dimensions

Hadley Black∗ Deeparnab Chakrabarty† C. Seshadhri‡

Abstract

We describe a Õ(d5/6)-query monotonicity tester
for Boolean functions f : [n]d → {0, 1} on the n-
hypergrid. This is the first o(d) monotonicity tester
with query complexity independent of n. Motivated
by this independence of n, we initiate the study of
monotonicity testing of measurable Boolean functions
f : Rd → {0, 1} over the continuous domain, where
the distance is measured with respect to a product
distribution over Rd. We give a Õ(d5/6)-query mono-
tonicity tester for such functions.

Our main technical result is a domain reduction
theorem for monotonicity. For any function f : [n]d →
{0, 1}, let εf be its distance to monotonicity. Con-

sider the restriction f̂ of the function on a random
[k]d sub-hypergrid of the original domain. We show
that for k = poly(d/εf), the expected distance of the
restriction is E[εf̂] = Ω(εf). Previously, such a result

was only known for d = 1 (Berman-Raskhodnikova-
Yaroslavtsev, STOC 2014). Our result for testing
Boolean functions over [n]d then follows by applying
the d5/6 ·poly(1/ε, log n, log d)-query hypergrid tester
of Black-Chakrabarty-Seshadhri (SODA 2018).

To obtain the result for testing Boolean functions
over Rd, we use standard measure theoretic tools to
reduce monotonicity testing of a measurable function
f to monotonicity testing of a discretized version of
f over a hypergrid domain [N]d for large, but finite,
N (that may depend on f). The independence of N

∗Department of Computer Science, University of California,
Los Angeles. Email: hablack@cs.ucla.edu. Part of this work

was done while the author was at University of California,

Santa Cruz.
†Department of Computer Science, Dartmouth College.

Email: deeparnab@dartmouth.edu. Supported by NSF CCF-

1813053.
‡Department of Computer Science, University of California,

Santa Cruz. Email: sesh@ucsc.edu. Supported by NSF

TRIPODS CCF-1740850, CCF-1813165, and ARO Award
W911NF191029.

in the hypergrid tester is crucial to getting the final
tester over Rd.

1 Introduction

Monotonicity testing is a fundamental problem in
property testing. Let (D,≺) be a partially ordered
set (poset) and let R be a total order. A function
f : D → R is monotone if f(x) ≤ f(y) whenever
x ≺ y. The hypercube, {0, 1}d and the hypergrid [n]d

have been the most studied posets in monotonicity
testing, where ≺ denotes the coordinate-wise partial
ordering. The Hamming distance between two func-
tions f and g is dist(f, g) := Prx∼D[f(x) 6= g(x)]
where x is drawn uniformly from the domain. The
distance of f to monotonicity, denoted εf , is its dis-
tance to the nearest monotone function. That is,
εf := ming∈M dist(f, g), where M is the set of all
monotone functions. A monotonicity tester is a ran-
domized algorithm that makes queries to f and ac-
cepts with probability ≥ 2/3 if the function is mono-
tone, and rejects with probability ≥ 2/3 if εf ≥ ε,
where ε ∈ (0, 1) is an input parameter. The chal-
lenge is to determine the minimum query complexity
of a monotonicity tester.

One of the earliest results in property testing
is the O(d/ε)-query “edge-tester” due to Goldreich
et al. [25] (see also [32]) for testing monotonicity
of Boolean functions over the hypercube, that is,
f : {0, 1}d → {0, 1}. In the last few years, consider-
able work [13, 16, 15, 28, 3, 17] has improved our un-
derstanding of Boolean monotonicity testing on the
hypercube domain. In particular, Khot, Minzer, and
Safra [28] give an Õ(

√
d/ε2) query1, non-adaptive

tester, and Chen, Waingarten, and Xie [17] show

that any tester (even adaptive) must make Ω̃(d1/3)
queries. In contrast, for real-valued functions over the
hypercube f : {0, 1}d → R, the complexity is known
to be Θ(d/ε) [19, 8, 12, 14], that is, linear in d.

1Throughout the paper Õ hides log(d/ε) factors.

1975
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

mailto:hablack@cs.ucla.edu
mailto:deeparnab@dartmouth.edu
mailto:sesh@ucsc.edu

The problem of monotonicity testing Boolean
functions f : [n]d → {0, 1} over hypergrids is not as
well understood. Dodis et al. [19] (with improve-
ments by Berman, Raskhodnikova, and Yaroslavt-
sev [4], henceforth BRY) give an Õ(d/ε)-query tester.
The important feature to note is the independence of
n. Contrast this, again, with the real-valued case;
monotonicity testing of functions f : [n]→ R requires
Ω(log n) queries [20, 22]. Recently, the authors [7]

describe an Õ(d5/6 log4/3 n ε−4/3)-query tester. Al-
though the dependence on d is sublinear, there is
a dependence on n. The following question has re-
mained open: Is there a monotonicity tester for func-
tions f : [n]d → {0, 1}, whose query complexity is in-
dependent of n and sublinear in d? One of the main
outcomes of this work is an affirmative answer to this
question.

Theorem 1.1. There is a randomized algorithm
that, given a parameter ε ∈ (0, 1) and query ac-
cess to any Boolean function f : [n]d → {0, 1} defined

over the hypergrid, makes Õ(d5/6ε−4/3) non-adaptive
queries to f and (a) always accepts if f is monotone,
and (b) rejects with probability > 2/3 if εf > ε.

Continuous Domains. To the best of our knowl-
edge, monotonicity testing has so far been restricted
to discrete domains. What can one say about mono-
tonicity testing when the domain is Rd? Indeed,
for functions whose range is R, the aforementioned
lower bound of Ω(log n) precludes any such tester
(with finite query complexity) even in one dimension.
On the other hand, the independence of n in Theo-
rem 1.1 (and indeed the results of Dodis et al. [19] and
BRY [4]) suggests the possibility of a monotonicity
tester for Boolean functions f : Rd → {0, 1}. In this
work, we spell out the natural definitions for mono-
tonicity testing over Rd, and show that o(d)-testers do
exist when the distance is with respect to any product
measure.

Theorem 1.2. (Informal, see Theorem 6.3)

There is a one-sided, non-adaptive Õ(d5/6ε−4/3)-
query monotonicity tester for measurable Boolean
functions f : Rd → {0, 1} with respect to arbitrary
product measures2 µ =

∏
i µi.

To gain perspective, the reader may restrict
attention to functions defined over the continuous

2Each µi is described by a non-negative Lebesgue integrable
function over R, whose integral over R is 1.

cube [0, 1]d, and assume the uniform measure µ on
this cube. This is the natural generalization of
property testing on the domains {0, 1}d and [n]d as
described above. The only restriction on the function
we are testing is that the set of points where the
function takes value 1 (or 0) must be (Lebesgue)-
measurable. The distance between two functions
dist(f, g) := Prx∼µ[f(x) 6= g(x)] is the measure
of the points at which they differ. The distance
to monotonicity of a function f is infg∈M dist(f, g)
where M is the set of all monotone functions. (In
general, we use any measure to define distance.
For instance, we can test monotonicity of functions
f : Rd → {0, 1} over the Gaussian measure.)

Note that the result of Theorem 1.2 holds for all
measurable functions, with no dependence on surface
area or “complexity” of f . This can be contrasted
with the recent result of De, Mossel, and Neeman [18],
who showed that Junta testing of Boolean functions
f : Rd → {0, 1} over the Gaussian measure requires
some dependence on the surface area of f .

Given the proof techniques for Theorem 1.1, the
proof of Theorem 1.2 follows from standard measure
theoretic methods. Nonetheless, we believe that there
is a useful conceptual message in Theorem 1.2. It
gives the natural “limit” of monotonicity testing for
hypergrids [n]d, as n → ∞. This result also under-
scores the significance of getting testers independent
of n (for hypergrids), since it leads to testers for all
measurable functions.

1.1 Domain Reduction
Discrete Hypergrid [n]d. A natural approach

to tackle Boolean monotonicity testing over the hy-
pergrid is to try reducing it to Boolean monotonicity
testing over the hypercube. For a function f over
[n]d, consider the restriction f̂ to a random hyper-
cube in this hypergrid. More precisely, for each di-
mension i ∈ [d], sample two independent u.a.r. val-

ues ai < bi in [n] and let f̂ be the restriction of f
on the hypercube formed by the Cartesian product∏d
i=1{ai, bi}. If the expectation of εf̂ is Ω(εf), then

we obtain a hypergrid tester by first reducing our
domain to a random hypercube and then simply ap-
plying the best known monotonicity tester on the hy-
percube. However, we show that this does not work.
In §8, we describe a function f : [n]d → {0, 1} such
that εf = Ω(1), but the restriction of f on a random
hypercube is monotone with probability 1 − Θ(1/d)
(see Theorem 8.1).

Nonetheless, one can consider the question of re-

1976
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ducing the domain to a [k]d hypergrid, for some pa-
rameter k � n, by sampling k i.i.d. uniform elements
of [n] across each dimension. For k independent of
n, can we lower bound the expected distance of the
function restricted to a random [k]d hypergrid? BRY
studied this question for the d = 1 case (the line do-
main), and prove that this is indeed possible [4]. Our
main technical result is a domain reduction theorem
for all d, by setting k = poly(d/εf). That is, we show
that if k = Θ((d/εf)7), then the expected distance to
monotonicity of f restricted to a random [k]d hyper-
grid is Ω(εf).

For a precise statement, let us fix a function
f : [n]d → {0, 1}. Construct d random (multi-)
sets T1, . . . , Td ⊆ [n], each formed by taking k i.i.d.
uniform samples from [n]. Define T := T1 × · · · × Td
and let fT denote f restricted to T . (We treat
duplicate elements of a multi-set as being distinct
copies of that element, which are then treated as
immediate neighbors in the total order.)

Theorem 1.3. (Domain Reduction for [n]d)
Let f : [n]d → {0, 1} be any function and let k ∈ Z+

be a positive integer. If T = T1 × · · · × Td is a
randomly chosen sub-grid, where for each i ∈ [d],
Ti is a (multi)-set formed by taking k i.i.d. samples
from the uniform distribution on [n], then

ET [εfT] ≥ εf −
C · d
k1/7

where C > 0 is a universal constant. In particular, if

k ≥
(

2Cd
εf

)7

, then ET [εfT] ≥ εf/2.

The construction in §8 shows that such a theorem is
impossible for k = o(

√
d), and thus, domain reduction

requires k and d to be polynomially related. We leave
figuring out the best dependence on k and d as an
open question. For the d = 1 case, BRY give a much
better lower bound of εf − 5

√
εf/k (Theorem 3.1

of [4]).
Given Theorem 1.3, one can sample a ran-

dom [k]d hypergrid denoted T and apply the
tester in [7] on fT . The final query complexity is

Õ(d5/6) · poly log k. Setting k = poly(d/ε), one gets
a purely sublinear-in-d tester (see §7 for a formal
proof). An obvious question is whether the depen-
dence on d can be brought down to

√
d as in the

hypercube case. If one could design a
√
d · poly log n

query monotonicity tester for the domain [n]d, then
Theorem 1.3 can be used as a black box to achieve
an Õ(

√
d) monotonicity tester. Note that because

the dependence of [7] is poly log k, and in light of
the fact that k = poly(d) is needed for domain
reduction to hold (Theorem 8.1), any improvement
to Theorem 1.3 would only give a constant factor
improvement to the query complexity of the overall
tester.

Continuous Domains. The independence of n in
Theorem 1.3 suggests the possibility of a domain re-
duction result for Boolean functions defined over Rd.
We show that this is indeed true if f : Rd → {0, 1}
is measurable (formal definitions in §6) and defined
with respect to a (Lebesgue integrable) product dis-
tribution.

Theorem 1.4. (Domain Reduction for Rd) Let
f : Rd → {0, 1} be any measurable function and let

k ∈ Z+ be a positive integer. Let µ =
∏d
i=1 µi be a

(Lebesgue integrable) product distribution such that
the distance to monotonicity of f w.r.t. µ is εf . If
T = T1 × · · · × Td is a randomly chosen hypergrid,
where for each i ∈ [d], Ti ⊂ R is formed by taking
k i.i.d. samples from µi, then ET [εfT] ≥ εf − C·d

k1/7
,

where C > 0 is a universal constant. In particular,

if k ≥
(

2Cd
εf

)7

, then ET [εfT] ≥ εf/2.

The above theorem essentially reduces the con-
tinuous domain to a discrete hypergrid [k]d where k
is at most some polynomial of the dimension d. At
this point, our result from [7] implies Theorem 1.2; a
formal proof is given in §7.

The main ingredient in the proof of Theorem 1.4
is a discretization lemma (Lemma 6.3). Using stan-
dard measure theory, one can show that for any mea-
surable Boolean function over Rd and any δ > 0,
there exists a large enough natural number N =
N(f, δ) with the following property. The domain Rd
can be divided into an Nd sized d-dimensional grid,
such that in at least a (1− δ)-fraction of grid boxes,
the function f has the same value. (In some sense,
this is what it means for f to be measurable.) Ignor-
ing the δ-fraction of “mixed” boxes, the function f
can be thought of as a discrete function on [N]d.

The only guarantee on N is that it is finite; as it
depends on f , N could be extremely large compared
to d. This is where Theorem 1.3 shows its power. The
sampling parameter k is independent of N , and this
establishes Theorem 1.4. We give a detailed proof in
§6.2.

We remark here that given the discretization
lemma (Lemma 6.3), one can also apply the tech-
niques of Dodis et al. [19] and BRY [4] to get an

1977
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Õ(d/ε)-query tester. However, as we mentioned be-
fore, we are unaware of an explicit study of mono-
tonicity testing over the continuous domain.

1.2 Related Work Monotonicity testing has been
extensively studied in the past two decades [20, 25,
19, 29, 23, 26, 1, 27, 2, 22, 34, 5, 10, 21, 8, 33, 6, 12,
13, 16, 4, 9, 15, 11, 28, 3, 17, 7].

We give a short summary of Boolean mono-
tonicity testing over the hypercube. The problem
was introduced by Goldreich et al. [25] (also re-
fer to Raskhodnikova’s thesis [32]), who describe an
O(d/ε)-query tester. The first improvement over that

bound was the Õ(d7/8) tester due to Chakrabarty
and Seshadhri [13], achieved via a directed analogue
of Margulis’ isoperimetric theorem. Chen-Servedio-
Tan [16] improved the analysis to get an Õ(d5/6)
bound. A breakthrough result of Khot-Minzer-
Safra [28] gives an Õ(

√
d) tester. All of these testers

are non-adaptive and one-sided. Fischer et al. [23]
prove a (nearly) matching lower bound of Ω(

√
d) for

this case. The first polynomial two-sided lower bound
was given in Chen-Servedio-Tan [16] and was subse-
quently improved to Ω(d1/2−δ) in Chen et al. [15].

The first polynomial lower bound of Ω̃(d1/4) for adap-
tive testers was given in Belovs-Blais [3] and has

since been improved to Ω̃(d1/3) by Chen-Waingarten-
Xie [17].

For Boolean monotonicity testing over general
hypergrids, Dodis et al. [19] give a non-adaptive,
one-sided O((d/ε) log2(d/ε))-query tester. This was
improved to O((d/ε) log(d/ε)) by Berman, Raskhod-
nikova and Yaroslavtsev [4]. This paper also proves
an Ω(log(1/ε)) separation between adaptive and non-
adaptive monotonicity testers for f : [n]2 → {0, 1}
by demonstrating an O(1/ε) adaptive tester (for any
constant d), and an Ω(log(1/ε)/ε) lower bound for
non-adaptive monotonicity testers. Previous work by
the authors [7] gives a monotonicity tester with query

complexity Õ(d5/6 log4/3 n) via directed isoperimetric
inequalities for augmented hypergrids.

1.3 Further Remarks Implication for Other
Notions of Distance: Berman, Raskhodnikova,
and Yaroslavtsev [4] introduce the notion of Lp-
testing, where f : [n]d → [0, 1] and the distance
between functions is measured in terms of Lp-
norms [4]. They prove (Lemma 2.2 + Fact 1.1, [4])
that Lp-monotonicity testing can be reduced to (non-
adaptive, one-sided) Boolean monotonicity testing.
Thus, Theorem 1.1 implies an Lp-monotonicity tester

for functions f : [n]d → [0, 1] which makes o(d)
queries. This improves upon Theorem 1.3 of [4].

We also believe our main theorem Theorem 1.1
can be used to estimate the distance-to-monotonicity
for functions f : [n]d → {0, 1} in time independent of
n. The works of [4, 31] also relate distance estimation
for Boolean functions and tolerant testing over Lp-
distances, and our results should have implications
for this. Finally, generalizing Lp-testing to the
continuous domain should be possible. We leave all
these interesting directions as future work.

Domain Reduction for Variance: Recent
works [13, 28, 7] have shown that certain isoperimet-
ric theorems for the undirected hypercube have di-
rected analogues where the variance is replaced by the
distance to monotonicity. Interestingly, for the case of
domain reduction, the variance and distance to mono-
tonicity behave differently. While domain reduction
for the distance to monotonicity requires k ≥ Ω(

√
d)

(Theorem 8.1), we show that the expected variance
of a restriction of f to a random hypercube (k = 2)
is at least half the variance of f (see Theorem 9.1).
This statement may be of independent interest. We
were unable to find a reference to such a statement
and provide a proof in §9.

2 Proving the Domain Reduction
Theorem1.3: Overview

The theorem is a direct corollary of the following
lemma, applied to each dimension.

Lemma 2.1. (Domain Reduction Lemma) Let

f : [n] ×
(∏d

i=2[ni]
)
→ {0, 1} be any function over

a rectangular hypergrid for some n, n2, . . . , nd ∈ Z+

and let k ∈ Z+. Choose T to be a (multi-) set
formed by taking k i.i.d. samples from the uniform
distribution on [n] and let fT denote f restricted to

T ×
(∏d

i=2[ni]
)

. Then ET [εf − εfT] ≤ C
k1/7

where

C > 0 is a universal constant.

This lemma is the heart of our results, and in this
section we give an overview of its proof. Let us
start with the simple case of d = 1 (the line).
Monotonicity testers for the line immediately imply
domain reduction for d = 1 [19, 4]. A u.a.r. sample

of Õ(1/εf) points in [n] contains a monotonicity
violation with large probability (> 9/10, say), and
thus the restriction of f to this sample has distance
Ω̃(εf). However, Ω(εf) is weak for what we need
since, even if one could generalize this argument to

1978
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

the setting of Lemma 2.1, we would need to apply it d
times to get the full domain reduction (Theorem 1.3).
This would imply a final lower bound of εf/C

d,
for some constant C, which has little value towards
proving a sublinear-in-d query tester.

Fortunately, quantitatively stronger domain re-
duction exists for the line. BRY ([4], Theorem 3.1)
proves that if one samples Θ(s2/εf) points, then the
expected distance of the restricted function is at least
εf (1− 1/s). Numerically speaking, this is encourag-
ing news, since we could try to set s = Θ(d) and
iterate this argument d times (over each dimension).
Of course, this result for the line alone is not enough
to deal with the structure of general hypergrids, but
forms a good sanity check.

Consider the general case of Lemma 2.1. For

brevity, we let D := [n]×
(∏d

i=2[ni]
)

and DT := T ×(∏d
i=2[ni]

)
denote the original and reduced domains,

respectively. Note that |DT | = k
n |D|.

The standard handle on the distance to mono-
tonicity is the violation graph of f , arguably first
formalized by Fischer et al. [23]. The graph has
vertex set D and an edge (x, y) iff x ≺ y and
f(x) = 1, f(y) = 0. A theorem of [23] states that
any maximum cardinality matching M in the viola-
tion graph satisfies |M | = εf |D|. Fix such a matching
M . For a fixed sample T , we let MT denote a max-
imum cardinality matching in the violation graph of
fT . To argue about εfT , we want to give a lower
bound on the expected size |MT |. To do so, we give
a lower bound the expected number of endpoints of
M that can still be matched (simultaneously) in the
violation graph of fT .

We use the following standard notions of lines
and slices in D, with respect to the first dimension.
Refer to Fig. 1 and Fig. 2 for visual examples in two
dimensions. In these examples the rows represent
the lines while the columns represent the slices.
Below, for x ∈ D, the vector x−1 is used to denote
(x2, x3, . . . , xd).

• (Lines in D) L :=
{
`z : z ∈

∏d
i=2[ni]

}
where

`z := {x ∈ D : x−1 = z}.
• (Slices in D) S := {Si : i ∈ [n]} where Si :=
{x ∈ D : x1 = i}.

We partition M into a collection of “local”
matchings for each line:

• (Line Decomposition of M) For each ` ∈ L:
M (`) := {(x, y) ∈M : x ∈ `}.

We find a large matching in the violation graph
of fT by doing a line-by-line analysis. In particular,
for each line ` ∈ L, we define the following matching

M
(`)
T in the violation graph of fT .

• (The matching M
(`)
T) For each ` ∈ L, consider

the collection of all maximum cardinality viola-
tion matchings w.r.t. fT on the set of vertices
that (a) are matched by M (`), and (b) lie in some

slice Si where i ∈ T . We let M
(`)
T denote any

such fixed matching.

We stress that M
(`)
T is not a subset of M (`), but

the endpoints of the pairs in M
(`)
T are a subset of

the endpoints of the pairs in M (`). Thus, by the

above definition, the union MT := ∪`∈LM (`)
T is a

valid matching in the violation graph of fT since M (`)

and M (`′) have disjoint endpoints for all ` 6= `′ ∈ L.
We will lower bound the size of this matching, |MT |,
by giving a lower bound on |M (`)

T | for each line `.
Fix some ` ∈ L. By definition, the lower-

endpoints of M (`) all lie on `, and thus are all
comparable. Let M (`) = {(x1, y1), . . . , (xm, ym)}
where x1 ≺ · · · ≺ xm and observe that, for any
j ∈ [m], x1, . . . , xj ≺ yj , . . . , ym. Since the function
is Boolean, every x ∈ {x1, . . . , xj} forms a violation
to monotonicity with every y ∈ {yj , . . . , ym}, and

therefore these vertices can be matched in M
(`)
T , if

their 1-coordinates are sampled by T .
Since all the xi’s lie on the same line `, their

1-coordinates are distinct. Suppose that the 1-
coordinates of all the yi’s were also distinct and
distinct from those of the xi’s too. Under this
assumption we can proceed with our analysis as if all
the xi’s and yi’s lie on `, and the analysis becomes
identical to the one-dimensional case. We could thus
apply Theorem 3.1 of [4] to each ` ∈ L to prove
Lemma 2.1. However, the assumption that the yi’s
have distinct 1-coordinates is far from the truth. As
we explain below, there are examples where all the
yi’s have the same 1-coordinate, thereby lying in
the same slice Sa (for some a ∈ [n]). In this case,
with probability (1 − k/n) we would have the size

of M
(`)
T be 0 (if a /∈ T), implying that ET

[
|M (`)

T |
]

could be as small as (k/n)2 · |M (`)|. Thus, if there
existed a function f such that a “collision of y’s 1-
coordinates” could not be avoided for a large number
of lines, then this would preclude such a line-by-
line approach to proving Lemma 2.1. Unfortunately,
there are examples of violation matchings where this

1979
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

happens. Consider Example 1, and the left part of
Fig. 2, shown at the end of this section. For the lowest
line, all the corresponding y’s in M (`) have the same
1-coordinate.

Our main insight is that for any f , there always
exists a violation matching M where the problem
above does not arise too often. This motivates the key
definition of stacks; the stacks are what determine the
“shape” of a matching. Formally, for any ` ∈ L and
S ∈ S, the (`, S)-stack is the set of pairs (x, y) ∈M ,
where x ∈ ` and y ∈ S.

• (Stacks) M (`,S) := {(x, y) ∈ M (`) : y ∈ S} =
{(x, y) ∈M : x ∈ `, y ∈ S}.

We call |M (`,S)| the “size of the stack (`, S)”.
To summarize the above discussion, small stacks are
good news while big stacks are bad news. This is
formalized in Lemma 2.3.

If there is a maximum cardinality matching M
in the violation graph of f such that all stacks have
size at most 1, then the one-dimensional domain re-
duction can be directly applied. Unfortunately, this
is not possible. We give an example in Fig. 1 of a
function where stacks of size at least 2 are unavoid-
able3. One reason for this difficulty may be that there
can be various maximum cardinality matchings in the
violation graph that have vastly different stack sizes
(shapes); again consider Example 1. Nevertheless, we
prove that there is a matching M such that for every
positive integer λ, the total number of pairs belonging
to stacks of size at least λ is at most |D|/poly(λ).

Lemma 2.2. (Stack Bound) There exists a maxi-
mum cardinality matching M in the violation graph
of f such that for every λ ∈ Z+, M satisfies∑

(`,S):|M(`,S)|≥λ |M (`,S)| ≤ 5√
λ
· |D|.

The main creativity to prove this lemma lies in
the choice of M . Given a matching, we define the
vector Λ(M) that enumerates all the stack sizes in
non-decreasing order. We show that the maximum
cardinality matching M with the lexicographically
largest Λ(M) serves our purpose. That is, we choose
M that maximizes the minimum stack size, and
then subject to this maximizes the second minimum,

3Interestingly, we don’t know of a function where stacks of

size strictly larger than 2 can’t be avoided. In fact, we can
prove that for the grid (the d = 2 case) one can always find a

maximum cardinality violation matching M where |M(`,S)| ≤
3 for all (`, S). The proof is cumbersome and so we exclude it
since it is not relevant to our main result.

Figure 1: An example of a function f : [n]× [n−1]→
{0, 1} where stacks of size ≥ 2 are unavoidable. Black
(white, resp.) circles represent vertices where f = 1
(f = 0, resp.). First observe that there exists a
perfect violation matching as follows: perfectly match
the two blocks of size (n − 1)(n/2 − 1) and then
perfectly match the bottom line of 1’s to the right-
most slice of 0’s. Thus, any maximum cardinality
violation matching, M , will match all of the (n − 1)
0’s in the right-most slice. There are only n/2 lines
containing 1’s and so by the pigeonhole principle M
contains at least n/2− 1 pairs belonging to stacks of
size ≥ 2.

and so on. It may seem counter-intuitive that we
want a matching with small stack sizes, and yet
our potential function maximize the minimum. The
intuitive explanation is that the sum of the stack sizes
is |M |, which is fixed, and so in a sense maximizing
the minimum also balances out the Λ(M) vector. The
proof uses a matching rewiring argument to show
that any large stack must be “adjacent” to many
moderate size stacks. If two stacks are appropriately
“aligned”, one could change the matching to move
points from one stack to the other. Large stacks
cannot be aligned with small stacks, since one could
rewire the matching to increase the potential. But
since the function is Boolean one can show that there
are many opportunities for rewiring the violation
matching. Thus, there isn’t enough “room” for many
large stacks. We then apply some technical charging
arguments to bound the total number of points in
large stacks. The full proof is given in §4.

With the stack bound in hand, we need to
generalize the one-dimensional argument of BRY
(Theorem 3.1 [4]) to account for bounded stack sizes.

Then, we bound |M (`)
T | for all `, and get the final

1980
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

lower bound on the distance εfT .

Lemma 2.3. (Line Sampling) Suppose that M is a
matching in the violation graph of f , such that for
some λ ∈ Z+, |M (`,S)| ≤ λ for all ` ∈ L and S ∈ S.
Then, for any ` ∈ L,

ET

[
|M (`)

T |
]
≥ k

n
· |M (`)| − 3λ

√
k ln k.

The proof is a fairly straightforward generaliza-
tion of the arguments in [4] for the λ = 1 case. The
idea is to control the size of the maximum cardinal-
ity matching M

(`)
T by analyzing the discrepancy of a

random subsequence of a sequence of 1s and 0s. For
the sake of simplicity, we give a proof that achieves
a weaker dependence on εf than in [4]. Our proof
of Lemma 2.3 is given in §5. We note that BRY give
a stronger lower bound (without the

√
ln k) and also

bound the variance for the λ = 1 case. A more careful
generalization of BRY which removes the

√
ln k would

yield an improved loss of C/k1/6 instead of C/k1/7 in
Lemma 2.1, but we prefer to give the simpler C/k1/7

exposition for the purpose of ease of reading.

Example 1. (A Two Dimensional Example)
Consider the anti-majority function on two di-
mensions. More precisely, let f : [n]2 → {0, 1} be
defined as f(x, y) = 1 if x + y ≤ n, and f(x, y) = 0
otherwise. We describe two maximum cardinality
matchings with vastly different stack sizes. The first
matching R matches a point (x, y) with x + y ≤ n
to the point (n − y + 1, n − x + 1). For an illus-
tration, see the left matching in Fig. 2 for the case
n = 5. Observe that whenever x + y ≤ n, we
have (n − y + 1) + (n − x + 1) > n. The second
matching B matches a point (x, y) with x + y ≤ n
to the point (x + y, n − x + 1). Again, observe that
(x + y) + (n − x + 1) > n. For an illustration, see
the right blue matching in Fig. 2 for the case n = 5.
Note that the stack sizes for the matching R are
large; in particular, they are n− 1, n− 2, . . . , 2, 1 for
n − 1 stacks and 0 for the rest. On the other hand,
any stack in B is of size ≤ 1.

3 Domain Reduction: Proof of Lemma2.1

In this section, we use Lemma 2.2 and Lemma 2.3 to

prove Lemma 2.1. Recall that D := [n]×
(∏d

i=2[ni]
)

and DT := T×
(∏d

i=2[ni]
)

denote the original and re-

duced domains, respectively. Note that |DT | = k
n |D|.

Figure 2: Accompanying illustration for Example 1
showing two different maximum cardinality violation
matchings for the anti-majority function f : [5]2 →
{0, 1} which have very different stack sizes. Black
(white, resp.) circles represent vertices where f = 1
(f = 0, resp.) and connecting lines represent pairs
of the matching. Observe that for the left matching,
the bottom line and the right-most slice form a stack
of size 4 while the right matching has stack sizes all
≤ 1.

Let M be the matching given by Lemma 2.2 and con-
sider λ =

⌈
25k2/7

⌉
. Clearly, λ ∈ [25k2/7, 26k2/7].

Thus, by Lemma 2.2, we have∣∣∣⋃(`,S):|M(`,S)|≥26k2/7 M
(`,S)

∣∣∣ ≤ 5√
25k2/7

· |D| = |D|
k1/7

.

Let

M̂ := M \

 ⋃
(`,S):|M(`,S)|≥26k2/7

M (`,S)


denote the set of pairs in M which do not belong to
stacks larger than 26k2/7; we therefore have

∑
`∈L

|M̂ (`)| = |M̂ | ≥ |M | − |D|
k1/7

.(3.1)

In this proof, our goal is to construct a matching
MT in the violation graph of fT whose cardinality is
sufficiently large. We measure ET [|MT |] by summing
over all lines in L and applying Lemma 2.3 to each.
Notice that M̂ is a matching in the violation graph of
f which satisfies |M̂ (`,S)| ≤ 26k2/7 for all ` ∈ L and
S ∈ S. Thus by Lemma 2.3, for every ` ∈ L,

ET

[
|M (`)

T |
]
≥ k

n
· |M̂ (`)| − 3 · (26k2/7) ·

√
k ln k

≥ k

n
· |M̂ (`)| − 78k5/6(3.2)

where we have used
√

ln k < k1/3−2/7. Now, using
(3.1) and (3.2), we can calculate ET [|MT |]. We

use the fact that {M̂ (`)}`∈L is a partition of M̂ ,

1981
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

apply linearity of expectation and use Lemma 2.3 to

measure ET [|M (`)
T |] for each `. Also note that the

number of lines is |L| = |D|/n.

ET [|MT |] = ET

[∑
`∈L

|M (`)
T |

]
=
∑
`∈L

ET

[
|M (`)

T |
]

≥
∑
`∈L

(
k

n
· |M̂ (`)| − 78k5/6

)
(by (3.2))

=

(
k

n
·
∑
`∈L

|M̂ (`)|

)
−
(

78k5/6 · |D|
n

)
≥ k

n
·
(
|M | − |D|

k1/7

)
−
(

78k5/6 · |D|
n

)
(by (3.1))

=
k

n
·
(
|M | − |D|

k1/7
− 78|D|

k1/6

)

≥ k

n
·
(
|M | − C · |D|

k1/7

)(3.3)

for a constant C > 0, since 1
k1/7

dominates 1
k1/6

. (3.3)
gives the expected cardinality of our matching after
sampling. To recover the distance to monotonicity we
simply normalize by the size of the domain. Dividing

by |DT | = k
n |D|, we get ET [εfT] ≥ |M |

|D| −
C
k1/7

=

εf − C
k1/7

. This completes the proof of Lemma 2.1.

4 Stack Bound: Proof of Lemma2.2

We are given a Boolean function f : D → {0, 1} where

D = [n] ×
(∏d

i=2[ni]
)

is a rectangular hypergrid for

some n, n2, . . . , nd ∈ Z+. Lemma 2.2 asserts there
is a maximum cardinality matching M such that∑

(`,S):|M(`,S)|≥λ |M (`,S)| ≤ 5√
λ
· |D| for all λ ∈ Z+.

Given a matching M , we consider the vector
(or technically, the list) Λ(M) indexed by stacks
(`, S) with Λ`,S := |M (`,S)|, and list these in non-
decreasing order. Consider the maximum cardinality
matching M in the violation graph of f which has
the lexicographically largest Λ(M). That is, the
minimum entry of Λ(M) is maximized, and subject
to that the second-minimum is maximized and so on.
We fix this matching M and claim that it satisfies∑

(`,S):|M(`,S)|≥λ |M (`,S)| ≤ 5√
λ
· |D| for all λ ∈ Z+.

Note that the inequality is trivial for λ ≤ 100, since
M itself is of size at most εf |D| ≤ 1

2 |D|. Thus, in
what follows we prove that the inequality is true for
an arbitrary, fixed λ > 100. We first introduce the
following notation.

• (Low Stacks) L := {(`, S) : |M (`,S)| ≤ λ− 2}.
• (High Stacks) H := {(`, S) : |M (`,S)| ≥ λ}.

Let V (H) denote the set of vertices matched by⋃
(`,S)∈HM

(`,S). Let B (for blue) be the set of points

in V (H) with function value 0, and R (for red) be
the set of points in V (H) with function value 1. M
induces a perfect matching between B and R, and we
wish to prove |B| = |R| ≤ 5√

λ
· |D|. Indeed, define δ

to be such that |B| = δ|D|. In the remainder of the
proof, we will show that δ ≤ 5√

λ
.

We make a simple observation that for any fixed
line `, there cannot be too many non-low stacks (`, S).

Claim 4.1. For any line `, the number of non-low
stacks ` participates in is at most n

λ−1 .

Proof. Fix any line ` and consider the set⋃
S:(`,S)/∈L

{
x1 : ∃(x, y) ∈M (`,S)

}
. That is, the set

of 1-coordinates that are used by some non-low stack
involving `. The size of this set can’t be bigger than
the length of `, which is n. Furthermore, each non-
low stack contributes at least λ − 1 unique entries
to this set. The uniqueness follows since the union⋃
S:(`,S)/∈LM

(`,S) is a matching.

We show that if the number of blue points
|B| is large (> 5|D|/

√
λ), then we will find a line

participating in more than n/(λ− 1) non-low stacks.
To do so, we need to “find” these non-low stacks. We
need some more notation to proceed. For a vertex
z, we let `z (Sz, resp.) denote the unique line (slice,
resp.) containing z. For each blue point y ∈ B, we
define the following interval

Iy := {z ∈ `y : z1 ∈ [x1, y1]} ⊆ `y where (x, y) ∈M .

Note that Iy is the interval of `y whose endpoints
are given by the projection of (x, y) onto `y. Armed
with this notation, we can find our non-low stacks.
Our next claim, which is the heart of the proof and
uses the potential function, shows that for every high
stack (`, S), we get a bunch of other “non-low” stacks
participating with the line `. Refer to Fig. 3 for an
accompanying illustration of the proof.

Claim 4.2. Given y ∈ B, let x := M−1(y) and
suppose (`, S) ∈ H is such that (x, y) ∈ M (`,S)

(note that this stack, (`, S), exists by definition of
B). Then, for any z ∈ Iy ∩B, (`, Sz) /∈ L.

Proof. The claim is obviously true if z = y, since
this implies Sz = S (since y ∈ S) and (`, S) ∈ H by

1982
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

assumption. Therefore, we may assume z 6= y, and
we also assume, for contradiction’s sake, (`, Sz) ∈ L.
Note that x ∈ ` and by definition of Iy, we get
x ≺ z ≺ y.

Since z ∈ B, it is matched to some w ∈ R. Note
w ≺ z ≺ y. Furthermore, the stack (`w, Sz) ∈ H
(by definition of B). Thus, note that if `w = `
(i.e., w ∈ `), then we’re done and so in what follows
we assume `w 6= `. By assumption of the claim,
(`, S) ∈ H. In particular, x,w, z, y ∈ V (H). Now
consider the new matching N which deletes (x, y)
and (w, z) and adds (x, z) and (w, y). Note that the
cardinality remains the same, i.e. |N | = |M |.

We now show that Λ(N) is lexicographically
bigger than Λ(M). To see this, consider the stacks
whose sizes have changed from M to N . There
are four of them (since we swap two pairs), namely
the stacks (`, S), (`w, Sz), (`, Sz), and (`w, S). For
brevity’s sake, let us denote their sizes in M as
λ1, λ2, λ3, and λ4, respectively. In N , their sizes
are λ1 − 1, λ2 − 1, λ3 + 1, and λ4 + 1. Note that
λ3 ≤ λ − 2 and both λ1 and λ2 are ≥ λ. In
particular, the “new” size of stack (`, Sz) is still
smaller than the “new” sizes of stacks (`, S) and
(`w, Sz). That is, the vector Λ(N), even without the
increase in λ4, is lexicographically larger than Λ(M).
Since increasing the smallest coordinate (among some
coordinates) increases the lexicographic order, we get
a contradiction to the lexicographic maximality of
Λ(M).

Figure 3: Accompanying illustration for the proof of
Claim 4.2. The black connecting arrows represent
the matching, M , while the dashed green arrows
represent the new matching, N . The bold orange
segment of `y is the interval Iy.

The rest of the proof is a (slightly technical)
averaging argument to prove that |B| is small. We

introduce some more notation to carry this through.

For a blue point y ∈ B, let βy :=
|Iy∩B|
|Iy| denote the

fraction of blue points in Iy. For α ∈ (0, 1), we say
that y ∈ B is α-rich if βy ≥ α. A point x ∈ R is
α-rich if its blue partner y ∈ B (i.e. (x, y) ∈ M) is
α-rich. We also call the pair (x, y) an α-rich pair.
For what follows, recall that δ ∈ (0, 1) is defined such
that |B| = δ|D|.

Claim 4.3. At least δ|D|/2 of the points in B are
δ/4-rich.

Proof. Let B(poor) ⊆ B be the points with βy < δ/4.
We show |B(poor)| ≤ δ|D|/2 which proves the claim.
To see this, first observe B(poor) ⊆

⋃
y∈B(poor) (Iy ∩B).

Now consider the minimal subset B
(poor)
min ⊆ B(poor)

such that
⋃
y∈B(poor)

min

Iy =
⋃
y∈B(poor) Iy. That is,

given a collection of intervals, we are picking the
minimal subset covering the same points. Since these
are intervals, we get that no point is contained in

more than two intervals Iy among y ∈ B
(poor)
min . In

particular, this implies

(4.4)
∑

y∈B(poor)
min

|Iy| ≤ 2 ·

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

Iy

∣∣∣∣∣∣∣ .
Therefore,

∣∣∣B(poor)
∣∣∣ ≤

∣∣∣∣∣∣
⋃

y∈B(poor)

(Iy ∩B)

∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

(Iy ∩B)

∣∣∣∣∣∣∣
≤

∑
y∈B(poor)

min

|Iy ∩B| <
δ

4

∑
y∈B(poor)

min

|Iy|

≤ δ

2
·

∣∣∣∣∣∣∣
⋃

y∈B(poor)
min

Iy

∣∣∣∣∣∣∣ ≤
δ

2
· |D|.

The first equality follows from the definition of B
(poor)
min

(taking intersection with B), and the third (strict)
inequality follows from the fact that none of these
points are δ/4-rich. The fourth inequality is (4.4).
This completes the proof.

A corollary of Claim 4.3 is that there are at
least δ|D|/2 red points which are δ/4-rich. In par-
ticular, there must exist some line ` that contains
≥ δn/2 red points in it which are δ/4-rich. Let

1983
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

this line be ` and let R` ⊆ ` be the set of rich
red points. Let B` be their partners in M . Let
S` =

{
S ∈ S : ∃z ∈ S ∩

(
∪y∈B`Iy ∩B

)}
denote the

set of slices containing blue points from the collec-
tion of rich intervals, {Iy : y ∈ B`}. By Claim 4.2,
we know that all these stacks are non-low, that is,
(`, S) /∈ L for all S ∈ S`. We now lower bound the
cardinality of this set.

Consider the set of blue points in our union of rich
intervals from B`,

⋃
y∈B` Iy ∩B. There are precisely

n slices in total, and for a vertex z ∈ D, Sz is the
slice indexed by the 1-coordinate of z. Thus, we have
|S`| = |{z1 : z ∈

⋃
y∈B` Iy ∩ B}|. That is, |S`| is

exactly the number of unique 1-coordinates among
vertices in

⋃
y∈B` Iy ∩B.

Since we care about the number of unique 1-
coordinates, we consider the “projections” of our sets
of interest onto dimension 1. For a set X ⊆ D, let
proj1(X) := {x1 : x ∈ X} be the set of 1-coordinates
used by points in X. In particular, note that for
y ∈ B, proj1(Iy) := [x1, y1] ⊂ [n], where x := M−1(y)

and observe that |S`| =
∣∣∣⋃y∈B` proj1(Iy ∩B)

∣∣∣. Now,

given that each interval from {Iy}y∈B` is a δ
4 -fraction

blue, the following claim says that at least a δ
8 -

fraction of the union of intervals consists of blue
points with unique 1-coordinates.

Claim 4.4. | ∪y∈B` proj1(Iy ∩ B)| ≥ δ
8 | ∪y∈B`

proj1(Iy)|.

Proof. As in the proof of Claim 4.2, let B`min ⊆ B`

be a minimal cardinality subset of B` such that⋃
y∈B`

min
proj1(Iy) =

⋃
y∈B` proj1(Iy). For any y ∈ B,

y belongs to at most two intervals from B`min.∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy ∩B)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
⋃

y∈B`
min

proj1(Iy ∩B)

∣∣∣∣∣∣
≥ 1

2

∑
y∈B`

min

|proj1(Iy ∩B)|

≥ δ

8

∑
y∈B`

min

|proj1(Iy)|

≥ δ

8

∣∣∣∣∣∣
⋃

y∈B`
min

proj1(Iy)

∣∣∣∣∣∣
=
δ

8

∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy)

∣∣∣∣∣∣ .

Now importantly, |proj1(R`)| = |R`| ≥ δ
2 · n

since the 1-coordinates of elements of R` are distinct
(since R` is contained on a single line). Moreover,
by definition of Iy, proj1(R`) ⊆

⋃
y∈B` proj1(Iy) and

so
∣∣∣⋃y∈B` proj1(Iy)

∣∣∣ ≥ |proj1(R`)| ≥ δ
2 · n. Finally,

combining this with Claim 4.4, we get

|S`| =

∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy ∩B)

∣∣∣∣∣∣
≥ δ

8

∣∣∣∣∣∣
⋃
y∈B`

proj1(Iy)

∣∣∣∣∣∣ ≥ δ2

16
· n.

Therefore, ` participates in at least δ2

16 · n non-

low stacks. Thus, by Claim 4.1, δ2

16 · n ≤
n
λ−1 and so

δ ≤ 4√
λ−1

. Since λ > 100, we conclude that δ ≤ 5√
λ

.

This concludes the proof of Lemma 2.2.

5 Line Sampling: Proof of Lemma2.3

We recall the lemma for ease of reading. Given a line
` ∈ L, we have defined M (`) := {(x, y) ∈ M : x ∈ `}.
Given a stack S, we have defined M (`,S) := {(x, y) ∈
M (`) : y ∈ S}. Given a multi-set T ⊆ [n], recall

M
(`)
T is a maximum cardinality matching of violations

(x, y) such that (a) x and y are both matched byM (`),
and (b) x1 and y1 both lie in T . Given λ ∈ Z+ such
that |M (`,S)| ≤ λ for all ` ∈ L and S ∈ S, the line
sampling lemma (Lemma 2.3) states

ET

[
|M (`)

T |
]
≥ k

n
· |M (`)| − 3λ

√
k ln k.(5.5)

We note that BRY (Theorem 3.1, [4]) prove a
stronger theorem for the λ = 1 case (that gets an
additive error of Θ(

√
k)). Our proof follows a similar

approach.
Consider an arbitrary, fixed line ` ∈ L. We use

the matching M (`) to induce weights w+(i), w−(i)
on [n] as follows. Initially w+(i), w−(i) = 0 for all
i ∈ [n]. For each (x, y) ∈ M (`) if x ∈ Si then we
increase w+(i) by 1, and if y ∈ Sj then we increase
w−(j) by 1.

Claim 5.1. We make a few observations.

1. For any i ∈ [n], w+(i) ≤ 1.
2. For any i ∈ [n], w−(i) ≤ λ.

1984
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

3. For any t ∈ [n],
∑
s≤t(w

−(s)− w+(s)) ≤ 0.

Proof. The first observation follows since the lower
endpoints of M (`) all lie on `, and thus have distinct
1-coordinates. The second observation follows from
the assumption that |M (`,S)| ≤ λ for all (`, S) ∈
L × S. The third observation follows by noting that
whenever w−(j) is increased for some j, we also
increase w+(i) for some i < j.

Define V + := {i : w+(i) > 0} and V − := {j :
w−(j) > 0}. Given a multiset T ⊆ [n], denote V +

T :=
V +∩T and V −T := V −∩T . Also, define the bipartite
graph GT := (V +

T , V
−
T , ET) where (i, j) ∈ ET iff

i ≤ j. A w-matching A in GT is a subset of edges of
ET such that every vertex i ∈ V +

T has at most w+(i)
edges of A incident on it, and every vertex j ∈ V −T
has at most w−(j) edges of A incident on it. Let
ν(GT) denote the size of the largest w-matching in
GT .

Lemma 5.1. For any multiset T ⊆ [n] and any w-

matching A ⊆ ET in GT , we have |M (`)
T | ≥ |A|. In

particular, ET

[
|M (`)

T |
]
≥ ET [ν(GT)].

Proof. Consider any w-matching A ⊆ ET . For any
vertex i ∈ V +

T , there are at most w+(i) edges in A
incident on it. Each increase of w+(i) is due to an
edge (x, y) ∈M (`) where x1 = i. Thus, we can charge
each of these edges of A (arbitrarily, but uniquely)
to w+(i) different x ∈ `. Similarly, for any vertex
j ∈ V −T , there are at most w−(j) edges in A incident
on it. Each increase of w−(j) is due to an edge
(x, y) ∈ M (`) with y1 = j. Thus, we can charge
each of these edges of A (arbitrarily, but uniquely) to
w−(j) different y ∈ Sj , the jth slice. Furthermore,
any z ∈ ` with z1 ≤ j satisfies z ≺ y. To summarize,
each (i, j) ∈ A can be uniquely charged to an x ∈ `
with x1 = i and y ∈ Sj such that (a) (x, y) forms
a violation, (b) x, y were matched in M (`), and (c)

x1, y1 ∈ T . Therefore, |M (`)
T | ≥ |A| since the LHS is

the maximum cardinality matching.

Lemma 5.2. For any T ⊆ [n], we have

ν(GT) =
∑
j∈T

w−(j)−max
t∈T

∑
s∈T :s≤t

(
w−(s)− w+(s)

)
.

Proof. By Hall’s theorem, the maximum w-matching
in GT is given by the total weight on the V −T
side, that is,

∑
j∈T w

−(j), minus the total deficit

δ(T) := maxS⊆V −T

(∑
s∈S w

−(s)−
∑
s∈ΓT (S) w

+(s)
)

where for S ⊆ V −T , ΓT (S) ⊆ V +
T is the neighborhood

of S in GT . Consider such a maximizer S, and
let t be the largest index present in S. Then note
that

∑
s∈ΓT (S) w

+(s) is precisely
∑
s∈T :s≤t w

+(s).

Furthermore note that adding any s ≤ t from V −T
won’t increase |ΓT (S)|. Thus, given that the largest
index present in S is t, we get that δ(T) is precisely
the summation in the second term of the RHS. δ(T)
is maximized by choosing the t which maximizes the
summation.

Next, we bound the expectation of the RHS
in Lemma 5.2. Recall that T := {s1, . . . , sk} is a
multiset where each si is u.a.r. picked from [n]. For
the first term, we have

ET

∑
j∈T

w−(j)

 =
k∑
i=1

n∑
j=1

Pr[si = j] · w−(j)

=
k

n
·
n∑
j=1

w−(j) =
k

n
· |M (`)|.(5.6)

The second-last equality follows since si is u.a.r.
in [n] and the last equality follows since

∑
j w
−(j)

increases by exactly one for each edge in M (`). Next
we upper bound the expectation of the second term.
For a fixed t, define

Zt :=
∑

s∈T :s≤t

(w−(s)− w+(s)) =

k∑
i=1

Xi,t

where

Xi,t =

{
w−(si)− w+(si) if si ≤ t
0 otherwise

.

Note that the Xi,t’s are i.i.d. random variables
with Xi,t ∈ [−1, λ] with probability 1. Thus, apply-
ing Hoeffding’s inequality we get

Pr [Zt > E[Zt] + a] ≤ 2 exp

(
−a2

2kλ2

)
.(5.7)

Now we use Claim 5.1, part (3) to deduce that

E[Zt] =
k∑
i=1

E[Xi,t]

=
k∑
i=1

∑
s≤t

(w−(s)− w+(s)) ·Pr[si = s] ≤ 0

1985
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

since Pr[si = s] = 1/n. Therefore, the RHS of
(5.7) is an upper-bound on Pr[Zt ≥ a]. In particular,
invoking a := 2λ

√
k ln k and applying a union bound,

we get

Pr

[
max
t∈T

Zt > 2λ
√
k ln k

]
= Pr

[
∃t ∈ T : Zt > 2λ

√
k ln k

]
≤ k · e−2 ln k = 1/k

and since maxt∈T Zt is trivially upper-bounded by
λk, this implies that

ET

max
t∈T

∑
s∈T :s≤t

(
w−(s)− w+(s)

)
≤ λk ·Pr

[
max
t∈T

Zt > a

]
+ a

≤ λ+ a ≤ 3λ
√
k ln k.(5.8)

Lemma 2.3 follows from Lemma 5.1, Lemma 5.2,
(5.6), and (5.8).

6 The Continuous Domain

We start with measure theory preliminaries. We refer
the reader to Nelson [30] and Stein-Shakarchi [35] for
more background. Given two reals a < b, we use (a, b)
to denote the open interval, and [a, b] to denote the
closed interval. Given d closed intervals [ai, bi] for 1 ≤
i ≤ d, we call their Cartesian product

∏
i∈[d][ai, bi]

a box. Two intervals/boxes are almost disjoint if
their interiors are disjoint (they can intersect only
at their boundary). An almost partition of a set S is
a collection P of sets that are pairwise almost disjoint
and

⋃
P∈P P = S. A set U is open if for each point

x ∈ U , there exists an ε > 0 such that the sphere
centered at x of radius ε is contained in U .

We let µ =
∏
i∈[d] µi be an arbitrary product

measure over Rd. That is, each µi is described by
a non-negative Lebesgue integrable function over R,
whose total integral is 1 (this is the pdf). Abusing
notation, we use µi([ai, bi]) = Prx∼µi

[ai ≤ x ≤ bi] to
denote the integral of µi over this interval. Indeed,
this is the probability measure of the interval. The
volume of a box B =

∏
i∈[d][ai, bi] is denoted µ(B) =∏

i∈[d] µi([ai, bi]) = Prx∼µ[x ∈ B].
We use the definition of measurability of Chapter

1.1.3 of [35]. Technically, this is given with respect

to the standard notion of volume in Rd. Chapter
6, Lemma 1.4 and Chapter 6.3.1 show that the
definition is valid for the notion of volume with
respect to µ, as we’ve defined above. The exterior
measure µ∗ of any set E is the infimum of the sum of
volumes of a collection of closed boxes that contain
E.

Definition 6.1. Given a product measure µ =∏
i µi over Rd, we say E ⊆ Rd is Lebesgue-measurable

with respect to µ if for any ε > 0, there exists an open
set U ⊇ E such that µ∗(U \E) < ε. If this holds, then
the µ-measure of E is defined as µ(E) := µ∗(E).

Given a function f : Rd → {0, 1}, we will often
slightly abuse notation by letting f denote the set it
indicates, i.e. the set in Rd where f evaluates to 1.
We say that f is a measurable function w.r.t. µ if
this set is measurable w.r.t. µ. Similarly, we use f to
denote the set where f evaluates to 0.

We are now ready to define the notion of dis-
tance between two functions. In §6.3, we prove that
all monotone Boolean functions are measurable (The-
orem 6.4) with respect to µ. Also, measurability is
closed under basic set operations and thus the follow-
ing notion of distance to monotonicity is well-defined.

Definition 6.2. (Distance to Monotonicity)
Fix a product measure µ on Rd. We define
the distance between two measurable functions
f, g : Rd → {0, 1} with respect to µ, as

distµ(f, g) := µ
({
z ∈ Rd : f(z) 6= g(z)

})
= µ (f∆g) .

(6.9)

The distance to monotonicity of f w.r.t. µ is defined
as

εf,µ := inf
g∈M

distµ(f, g) = inf
g∈M

µ (f∆g)(6.10)

where M denotes the set of monotone Boolean func-
tions over Rd.

We are now equipped to state the formal version
of Theorem 1.2, for testing Boolean functions over Rd.

Theorem 6.3. Let µ =
∏d
i=1 µi be a product mea-

sure for which we have the ability to take indepen-
dent samples from each µi. There is a randomized
algorithm which, given a parameter ε > 0 and a mea-
surable function f : Rd → {0, 1} that can be queried

at any x ∈ Rd, makes Õ(d5/6ε−4/3) non-adaptive
queries to f , and (a) always accepts if f is monotone,
and (b) rejects with probability > 2/3 if εf,µ > ε.

1986
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

We give a formal proof of Theorem 6.3 in §7. The
proof requires some tools to discretize measurable
sets, which we provide in the next two sections.

6.1 Approximating measurable sets by grids
We first start with a lemma about probability mea-
sures over R.

Lemma 6.1. Given any probability measure µ over
R, and any N ∈ N, there exists an almost partition
of R into N intervals IN = {I1, . . . , IN} of equal µ-
measure. That is, for each j ∈ [N], Prx∼µ[x ∈ Ij] =
1
N . Furthermore, for any k ∈ N, IkN is a refinement
of IN .

Proof. µ is a probability measure, and thus is de-
scribed by a non-negative Lebesgue-integrable func-
tion (it’s pdf). Chapter 2, Prop 1.12 (ii) of [35]
states that the Lebesgue integral is continuous and
thus it’s CDF, F (t) := µ({x ∈ R : x ≤ t}),
is continuous. Moreover F is non-decreasing with
range [0, 1]. Therefore, for every θ ∈ (0, 1) there
is at least one t with F (t) = θ. Thus, let’s de-
fine F−1(θ) to be the supremum over all t satisfying
F (t) = θ. Let F−1(0) = −∞ and F−1(1) = +∞.
The lemma is proved by the intervals Ij = [F−1((j−
1)/N), F−1(j/N)] for j ∈ {1, . . . , N}. The refine-
ment is evident by the fact that any interval in IN
can be expressed as an almost partition of intervals
from IkN (for k ∈ N).

Thus, given a product distribution µ =
∏d
i=1 µi

and any N ∈ N, we can apply the above lemma to
each of the d coordinates to obtain the set of Nd in-
tervals

{
I(i)
j : i ∈ [d] : j ∈ [N]

}
for which µi

(
I(i)
j

)
=

1/N for every i ∈ [d], j ∈ [N]. We define

GN :=

{
d∏
i=1

I(i)
zi : z ∈ [N]d

}
and observe that (a) GN is an almost partition of Rd
and (b) GkN is a refinement of GN for any k ∈ N.
(Since d is fixed, we will not carry the dependence
on d.) We informally refer to GN as a grid. Since
GN is an almost partition, we can define the function
boxN : Rd → [N]d as follows. For x ∈ Rd, we define
boxN (x) to be the lexicographically least z ∈ [N]d

such that the box
∏d
i=1 I

(i)
zi , of GN , contains x. (Note

that for all but a measure zero set, points in Rd are
contained in a unique box of GN .)

In the following lemma, we show that any mea-
surable set can be approximated by a sufficiently fine

grid. In some sense, this is the definition of measur-
ability.

Lemma 6.2. For any measurable set E and any α >
0, there exists N = N(E,α) ∈ N such that there is a
collection B ⊆ GN satisfying µ(E ∆

⋃
B∈BB) ≤ α.

Proof. Chapter 1, Theorem 3.4 (iv) of [35] states
that for any measurable set E and any ε > 0, there
exists a finite union

⋃m
r=1Br of closed boxes such that

µ(E∆
⋃m
r=1Br) ≤ ε. We invoke this theorem with

ε = α/2 to get the collection of boxes B1, . . . , Bm.
Note that these boxes may intersect, and might not
form a grid. We build a grid by setting N = d2md/αe
and considering GN . The desired collection B ⊆ GN

is the set of boxes in GN contained in
⋃m
r=1Br.

Observe that

µ

(
E∆

⋃
B∈B

B

)

≤ µ

(
E∆

m⋃
r=1

Br

)
+ µ

(
m⋃
r=1

Br \
⋃
B∈B

B

)

≤ α/2 +

m∑
r=1

µ

(
Br \

⋃
B∈B

B

)
(6.11)

by subadditivity of measure. We complete the proof
by bounding µ(Br\

⋃
B∈BB) for an arbitrary r ∈ [m].

Let Br :=
∏d
i=1[ai, bi] denote an arbitrary box

from {B1, . . . , Bm} and let δi := µi([ai, bi]). Observe
that the interval [ai, bi] contains exactly bδiNc con-

tiguous intervals from the almost partition {I(i)
j : j ∈

[N]} of R. Let Ii denote the set of such intervals.
Thus, µi([ai, bi] \

⋃
I∈Ii

I) ≤ δi − (1/N) (bδiNc) ≤
δi−(1/N) (δiN − 1) = 1/N . Thus, the total measure
of Br we discard is µ(Br \

⋃
B∈BB) ≤

∏
i δi−

∏
i(δi−

1/N). This quantity is maximized when the δi’s are
maximized; since δi ≤ 1 (each µi is a probability mea-
sure), we get that µ(Br\

⋃
B∈BB) ≤ 1−(1−1/N)d ≤

d
N .

Finally, plugging this into (6.11), we get
µ(E∆

⋃
B∈BB) ≤ α/2 + m · dN ≤ α, since N ≥

2md/α.

We are now ready to prove our main tool, the
discretization lemma.

Lemma 6.3. (Discretization Lemma) Given
a measurable function f : Rd → {0, 1} and
δ > 0, there exists N := N(f, δ) ∈ N, and

1987
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

a function fdisc : [N]d → {0, 1}, such that
Prx∼µ[f(x) 6= fdisc(boxN (x))] ≤ δ.

Proof. By assumption, f and f are measurable sets.
By Lemma 6.2, there exists some N1 and a collection
of boxes Z1 ⊆ GN1 such that µ(f∆

⋃
B∈Z1

B) ≤ δ/6.

(An analogous statement holds for f , with some N0

and a collection Z0.) Since Lemma 6.2 also holds for
any refinement of the relevant grid, let us set N =
N0N1. Abusing notation, we have two collections
Z0,Z1 ⊆ GN such that µ(f∆

⋃
B∈Z1

B) ≤ δ/6 and

µ(f∆
⋃
B∈Z0

B) ≤ δ/6.
For convenience, let us treat the boxes in Z0∪Z1

as open, so that all boxes in the collection are disjoint.
Define h : Rd → {0, 1} as follows:

h(x) =


1 if x ∈

⋃
B∈Z1\Z0

B

0 if x ∈
⋃
B∈Z0\Z1

B

0 if x ∈
⋃
B/∈Z0∆Z1

B

.

Since f and f partition Rd, µ(
⋃
B∈Z0∩Z1

B) and
µ(
⋃
B/∈Z0∪Z1

B) are both at most µ(f∆
⋃
B∈Z1

B) +

µ(f∆
⋃
B∈Z0

B) ≤ δ/3. Combining these bounds, we
have µ(

⋃
B/∈Z0∆Z1

B) ≤ 2δ/3. Thus

distµ(f, h) = Prx∼µ[f(x) 6= h(x)]

≤ µ

 ⋃
B∈Z1\Z0

B ∩ f

+ µ

 ⋃
B∈Z0\Z1

B ∩ f


+ µ

 ⋃
B/∈Z0∆Z1

B

 ≤ δ/6 + δ/6 + 2δ/3 = δ.

By construction, h is constant in (the interior of)
every grid box. Any z ∈ [N]d indexes a (unique)
box in GN (recall the map boxN : Rd → [N]d).
Formally, we can define a function fdisc : [N]d →
{0, 1} so that ∀x ∈ Rn, fdisc(boxN (x)) = h(x). Thus,
Prx∼µ[f(x) 6= fdisc(boxN (x))] = distµ(f, h) ≤ δ.

6.2 Proof of Theorem1.4

Proof. Recall that T = T1 × · · · × Td is a randomly
chosen hypergrid, where for each i ∈ [d], Ti ⊂ R is
formed by taking k i.i.d. samples from µi. We need
to show that

ET [εfT] ≥ εf −
C ′ · d
k1/7

for some universal constant C ′ > 0.

Set δ ≤ k−d · C·d
k1/7

, where C is the universal con-
stant in Theorem 1.3. Applying Lemma 6.3 to f with
this δ, we know there exists N > 0 and fdisc : [N]d →
{0, 1}, such that Prx∼µ[f(x) 6= fdisc(boxN (x))] ≤ δ.

Given a random T sampled as described above,
define T̂ := {boxN (x) ∈ [N]d : x ∈ T }. Observe that

(a) T̂ is a [k]d sub-hypergrid in [N]d which (b) can

be equivalently defined as T̂ = T̂1 × · · · × T̂d where
each T̂i is formed by taking k i.i.d. uniform samples
from [N]. This is by construction of the partition
{boxz : z ∈ [N]d} and by definition of boxN (x).
Theorem 1.3 and the observations above imply

(6.12) ET̂

[
εfdisc

T̂

]
≥ εfdisc − C · d

k1/7

where C is some universal constant. Next, we relate
εfdisc and εf . Observe that there is a bijection between

T and T̂ (namely, boxN restricted to T). We say
fT = fdisc

T̂
if for all x ∈ T , f(x) = fdisc(boxN (x)).

By a union bound over the kd samples,

PrT

[
fT 6= fdisc

T̂

]
= PrT

[
∃x ∈ T : f(x) 6= fdisc(boxN (x))

]
≤ δ · kd ≤ C · d

k1/7
=: δ′

since each x ∈ T has the same distribution as
x ∼ µ, and Prx∼µ[f(x) 6= fdisc(boxN (x))] ≤ δ. Thus,

we get ET [εfT] ≥ (1 − δ′)ET̂

[
εfdisc

T̂

]
− δ′, since in

the case fT 6= fdisc
T̂

, the difference in their distance to

monotonicity is at most 1. Substituting in (6.12), we
get
(6.13)

ET [εfT] ≥ (1−δ′)·
(
εfdisc − C · d

k1/7

)
−δ′ ≥ εfdisc−3C · d

k1/7

by definition of δ′.
Now, let g : [N]d → {0, 1} be any monotone

function satisfying d(fdisc, g) = εfdisc . Define the

monotone function f̂(x) = g(boxN (x)) for all x ∈
Rd. Note that εf ≤ dist(f, f̂) ≤ Prx∼µ[f(x) 6=
fdisc(boxN (x))] + dist(fdisc, g) ≤ δ + εfdisc . This, in

turn, implies εfdisc ≥ εf − δ ≥ εf − C·d
k1/7

. Substituting
in (6.13), we get

ET [εfT] ≥ εf −
4C · d
k1/7

which proves the theorem.

1988
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

6.3 Measurability of Monotone Functions

Theorem 6.4. Monotone functions f : Rd → {0, 1}
are measurable w.r.t. product measures µ =

∏d
i=1 µi.

Proof. The proof is by induction over the number of
dimensions, d. For d = 1, the set f is either [z,∞) or
(z,∞) for some z ∈ R, since f is a monotone function.
Any open or closed set is measurable.

Now for the induction. Choose any ε > 0.
We will construct an open set O such that µ∗(O \
f) ≤ 8ε. Consider the first dimension, and the
corresponding measure µ1. We use µ−1 for the
(d−1)-dimensional product measure in the remaining
dimensions. (We use µ−1,∗ for the (d−1)-dimensional
exterior measure.) As shown in Lemma 6.1, there
is an almost partition of R into N = d1/ε2e closed
intervals such that each interval has µ1-measure at
most ε2. Let these intervals be I1, I2, I3, . . . , IN .
We will consider the set of intervals I = {I1 ∪
I2, I2 ∪ I3, . . . , IN−1 ∪ IN} (let us treat these as open
intervals). Observe that ∪I∈II = R, and µ1(I) ≤ 2ε2

for all I ∈ I.
For any x ∈ R, let Sx be the subset of f with

first coordinate x. We will treat Sx as a subset of
Rd−1 and use {x} × Sx to denote the corresponding
subset of Rd. By monotonicity, ∀x < y, Sx ⊆ Sy.
By induction, each set Sx is measurable in Rd−1 and
thus there exists an open set Ox ⊆ Rd−1 such that
µ−1,∗(Ox \ Sx) ≤ ε. Define the function h : R →
[0, 1] such that h(x) is the measure of Sx (in Rd−1).
Crucially, h is monotone because f is monotone.

Call an interval (x, y) jumpy if h(y) > h(x) + ε
and let J ⊆ I be the set of jumpy intervals in I. For
a non-jumpy interval I = (x, y) ∈ I \J , define OI :=
I × Oy. Note that OI is open and by monotonicity,
OI ⊇

⋃
z∈I({z} × Sz) = {z ∈ f : z1 ∈ I}.

The open set O := (
⋃
J∈J J × Rd−1) ∪

(
⋃
I∈I\J OI) contains (the set) f . It remains to

bound

µ∗(O \ f) ≤ µ∗

(⋃
J∈J

J × Rd−1

)
+ µ∗

 ⋃
I∈I\J

OI \ f


≤
∑
J∈J

µ1(J) +
∑
I∈I\J

µ∗(OI \ f)

≤ 2ε2|J |+
∑
I∈I\J

µ∗(OI \ f).

(6.14)

To handle the first term, note that there are
at least |J |/2 disjoint intervals in J and each such

interval represents a jump of at least ε in the value
of h. Thus, |J |/2 ≤ 1/ε and so |J | ≤ 2/ε.

Now, consider I = (x, y) ∈ I \ J . We have
OI = I×Oy. By monotonicityOI\f ⊆ OI\(I×Sx) =
(I ×Oy) \ (I × Sx) = I × (Oy \ Sx). Since Sy ⊇ Sx,
Oy \ Sx = (Oy \ Sy)∪ (Sy \ Sx). By sub-additivity of
exterior measure, µ−1,∗(Oy \ Sx) ≤ µ−1,∗(Oy \ Sy) +
µ−1,∗(Sy \ Sx). The former term is at most ε, by the
choice of Oy. Because I is not jumpy, the latter term
is h(y)− h(x) ≤ ε. Thus,

∑
I∈I\J

µ∗(OI \ f)

≤
∑
I∈I\J

µ1(I) · (µ−1,∗(Oy \ Sy) + µ−1,∗(Sy \ Sx))

≤ 2ε
∑
I∈I\J

µ1(I) ≤ 4ε.

All in all, we can upper bound the expression in
(6.14) by 2ε2(2/ε) + 4ε = 8ε.

7 The Monotonicity Tester

In this section we prove our main monotonicity
testing results, Theorem 1.1 and Theorem 1.2 (recall
the formal statement, Theorem 6.3). We use the
following theorem of [7] on monotonicity testing for
Boolean functions over [n]d.

Theorem 7.1. (Theorem 1.1 of [7]) There is a
randomized algorithm which, given a parameter ε ∈
(0, 1) and a function f : [n]d → {0, 1}, makes O(d5/6 ·
log3/2 d·(log n+log d)4/3 ·ε−4/3) non-adaptive queries
to f and (a) always accepts if f is monotone, and (b)
rejects with probability > 2/3 if εf > ε.

We refer to the tester of Theorem 7.1 as the
grid-path-tester. Using this result along with
our domain reduction theorems Theorem 1.3 and
Theorem 1.4, we design testers for Boolean-valued
functions over [n]d and Rd (refer to Alg. 1). We
restrict our attention to the Rd case and prove
Theorem 1.2 (that is, Theorem 6.3); the proof of
Theorem 1.1 is analogous (and the corresponding
tester is analogous to Alg. 1). In what follows we
let C denote the universal constant from Theorem 1.4
and we define L := dlog(2/ε)e.

Remark 7.2. Our tester (Alg. 1) uses Levin’s work
investment strategy (see [24], Section 8.2.4) to opti-
mize the dependence on ε. We remark that if one only

1989
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

cares about achieving a dependence of poly(1/ε), then
the following simpler tester suffices: invoke Step 4
and Step 5 (with ε` replaced by ε/4) of Alg. 1 16/ε
times. By Markov’s inequality and the fact that
ET [εfT] ≥ ε/2, with high probability at least one of
the calls to Step 4 will yield a reduced hypergrid T
satisfying εfT ≥ ε/4. Step 5 will then reject the re-
striction fT , and thus reject f , with high probability.
This leads to an ε−7/3 dependence on ε, as opposed
to the ε−4/3 achieved by Alg. 1.

Algorithm 1 Monotonicity Tester for f : Rd →
{0, 1}. Inputs: f and ε ∈ (0, 1).

1: for all ` ∈ [L+ 1]:

2: set Q` := d 32`2

2`ε
e and ε` := 1/2`.

3: repeat Q` times:
4: Sample T = T1 × · · · × Td as in

Theorem 1.4 with k = (2C · dε)7.
5: if grid-path-tester(fT , ε`, k) returns

REJECT, then return REJECT.
6: return ACCEPT.

Proof of Theorem6.3: In Step 4 of Alg. 1 we
set k := (2C · dε)7 and sample a hypergrid T =∏d
i=1 Ti, where each Ti is formed by k i.i.d. draws

from µi. By Theorem 1.4, ET [εfT] ≥ εf − C·d
k1/7

.
Thus, if εf > ε, then ET [εfT] ≥ ε/2. By Claim 7.3
there exists `∗ ∈ [L+ 1] such that PrT [εfT ≥ ε`∗] ≥
2`∗ε

8(`∗)2 ≥ 4/Q`∗ . Thus when ` is set to `∗ in Alg. 1

at least one of the Q`∗ iterations of Step 4 returns
T satisfying εfT ≥ ε`∗ with probability ≥ 1 − (1 −
4/Q`∗)

Q`∗ ≥ 1 − (1/e)4 ≥ 15/16. Thus, if εf > ε,
then Alg. 1 rejects with probability> 15

16 ·
2
3 = 5/8. On

the other hand, if f is monotone, then fT is always
monotone and so Alg. 1 accepts with probability 1.

We now analyze the query complexity.
Let q(ε, n, d) denote the query complexity of
grid-path-tester with parameters ε, n and d.
In particular, q(ε, k, d) ≤ Õ(d5/6ε−4/3). Thus, the
query complexity of Alg. 1 is

L+1∑
`=1

Q` · q(ε`, k, d) =
L+1∑
`=1

⌈
32`2

2`ε

⌉
· Õ
(

d5/6

2−4`/3

)

= Õ
(
d5/6ε−1

) L+1∑
`=1

`2 · Õ
(

2`/3
)

≤ Õ
(
d5/6ε−1

)
L3Õ

(
2L/3

)
≤ Õ

(
d5/6ε−4/3

)
where in the last step we used the fact that L =
Θ(log(1/ε)). This concludes the proof of Theo-
rem 6.3.

Claim 7.3. If ET [εfT] ≥ ε/2, then there exists `∗ ∈
[L+ 1] such that Pr

[
εfT ≥ 2−`

∗] ≥ 2`∗ε
8(`∗)2 .

Proof. We have
∫ 1

0
Pr [εfT ≥ t] dt = E[εfT] ≥ ε/2

and so
∫ 1

ε/4
Pr [εfT ≥ t] dt ≥ ε/4. Thus,

ε

4
≤
∫ 1

ε/4

Pr [εfT ≥ t]

≤
L∑
`=0

∫ 1/2`

1/2`+1

Pr [εfT ≥ t] dt

≤
L∑
`=0

1

2`+1
Pr
[
εfT ≥ 1/2`+1

]
=

L+1∑
`=1

1

2`
Pr
[
εfT ≥ 1/2`

]
.(7.15)

For the sake of contradiction, assume

Pr
[
εfT ≥ 1/2`

]
< 2`ε

8`2 for all ` ∈ [L + 1]. Us-
ing (7.15), we have

ε ≤ 4
L+1∑
`=1

1

2`
Pr
[
εfT ≥ 1/2`

]
<
ε

2

L+1∑
`=1

1

`2
<
ε

2
· π

2

6
< ε.

This is a contradiction.

8 Lower Bound for Domain Reduction

In this section we prove the following lower bound
for the number of uniform samples needed for a do-
main reduction result to hold for distance to mono-
tonicity. Recall the domain reduction experiment for
the hypergrid: given f : [n]d → {0, 1} and an integer
k ∈ Z+, we choose T := T1 × · · · × Td where each Ti

1990
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

is formed by taking k i.i.d. uniform draws from [n]
with replacement. We then consider the restriction
fT .

Theorem 8.1. There exists a function f : [n]d →
{0, 1} with distance to monotonicity εf = Ω(1), for

which ET [εfT] ≤ O(k2/d). In particular, k = Ω(
√
d)

samples in each dimension is necessary to preserve
distance to monotonicity.

8.1 Proof of Theorem8.1 We define the func-
tion Centrist : [0, 1]d → {0, 1}. The continuous do-
main is just a matter of convenience; any n that is a
multiple of d would suffice. It is easiest to think of d
individuals voting for an outcome, where the ith vote
xi is the “strength” of the vote. Based on their vote,
an individual is labeled as follows.

• xi ∈ [0, 1− 2/d]: skeptic
• xi ∈ (1− 2/d, 1− 1/d]: supporter
• xi ∈ (1− 1/d, 1]: fanatic

Centrist(x) = 1 iff there exists some individual
who is a supporter. The non-monotonicity is created
by fanaticism. If a unique supporter increases her
vote to become a fanatic, the function value can
decrease.

Claim 8.2. The distance to monotonicity of Centrist
is Ω(1).

Proof. It is convenient to talk in terms of probability
over the uniform distribution in [0, 1]d. Define the
following events, for i ∈ [d].

• Si: The ith individual is a supporter, and all
others are skeptics.
• Fi: The ith individual is a fanatic, and all others

are skeptics.

Observe that all these events are disjoint. Also,
Pr[Si] = Pr[Fi] = (1/d)(1 − 2/d)d−1 = Ω(1/d).
Note that ∀x ∈ Si, Centrist(x) = 1 and ∀x ∈ Fi,
Centrist(x) = 0.

We construct a violation matching M :
⋃
i Si →⋃

i Fi. For x ∈ Si, M(x) = x + ei/d, where ei
is the unit vector in dimension i. For x ∈ Si,
xi ∈ (1 − 2/d, 1 − 1/d], so M(x)i ∈ (1 − 1/d, 1], and
M(x) ∈ Fi. M is a bijection between Si and Fi, and
all the Si,Fi sets are disjoint. Thus, M is a violation
matching. Since Pr [

⋃
i Si] = Ω(d · 1/d), the distance

to monotonicity is Ω(1).

Lemma 8.1. Let k ∈ Z+ be any positive integer. If
T := T1 × · · · × Td is a randomly chosen hypergrid,
where for each i ∈ [d], Ti is a set formed by taking
k i.i.d. samples from the uniform distribution on
[0, 1], then with probability > 1 − 4k2/d, CentristT
is a monotone function.

Proof. Each Ti consists of k u.a.r. elements in [0, 1].
We can think of each as a sampling of the ith
individual’s vote. For a fixed i, let us upper bound
the probability that Ti contains strictly more than
one non-skeptic vote. This probability is

1− (1− 2/d)k − k(1− 2/d)k−1(2/d)

= 1− (1− 2/d)k−1(1− 2/d+ 2k/d)

≤ 1−
(

1− 2(k − 1)

d

)(
1 +

2(k − 1)

d

)
≤ 4k2/d2

where we have used the bound (1 − x)r ≥ 1 − xr,
for any x ∈ [0, 1] and r ≥ 1. By the union bound
over all dimensions, with probability > 1− 4k2/d, all
Ti’s contain at most one non-skeptic vote. Consider
CentristT , some x ∈ T , and a dimension i ∈ [d]. If
the ith individual increases her vote (from x), there
are three possibilities.

• The vote does not change. Then the function
value does not change.

• The vote goes from a skeptic to a supporter.
The function value can possibly increase, but not
decrease.

• The vote goes from a skeptic to a fanatic. If
CentristT (x) = 1, there must exist some j 6= i
that is a supporter. Thus, the function value
remains 1 regardless of i’s vote.

In no case does the function value decrease. Thus,
CentristT is monotone.

Theorem 8.1 follows from Claim 8.2 and
Lemma 8.1.

9 Domain Reduction for Variance

In this section, we prove that, given f : [n]d →
{0, 1}, restricting f to a random hypercube (domain
reduction with k = 2) suffices to preserve the variance
of f . Recall that the variance is defined var(f) :=
E[f2]−E[f]2. In the proof, we will consider f : [n]d →
{−1, 1} and so var(f) = 1−E[f]2 = 1− f̂(∅)2.

Theorem 9.1. Let f : [n]d → {0, 1} be any function.
If T := T1 × · · · × Td is a randomly chosen sub-
hypercube, where for each i ∈ [d], Ti is a (multi)-set

1991
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

formed by taking 2 i.i.d. samples from the uniform
distribution on [n], then ET [var(fT)] ≥ var(f)/2.

Proof. We will interpret f as a Boolean function
with d log n (Boolean) inputs, so f : {−1, 1}d logn →
{−1, 1}. We will index the inputs in [d log n], where
the interval Ii := [(i − 1) log n + 1, i log n] (the ith
block) corresponds to the ith input in the original rep-
resentation. Henceforth, i will always index a block
(and thereby, an input in the original representation).
We use xj to denote the jth input bit.

Let us think of the restriction in Boolean terms.
Note that fT : {−1, 1}d → {−1, 1}, and we use y to
denote an input to the restriction. In Boolean terms,
Ti picks two u.a.r. log n bit strings, and forces the
ith block of inputs, Ii, to be one of these. The choice
between these is decided by yi. Let us think of Ti
as follows. For every j ∈ Ii, it adds it to a set
Ri with probability 1/2. All the inputs in Ri will
be fixed, while the inputs in Ii \ Ri are alive (but
correlated by yi). Then, for every j ∈ Ii, it picks a
u.a.r. bit bj . (Call this string Bi.) This is interpreted
as follows. For every j ∈ Ri, xj is fixed to bj . For
every j ∈ Ii \ Ri, xj is set to yibj . The randomness
of Ti can therefore be represented as independently
choosing Ri and Bi.

Consider some non-empty S ⊆ Ii. We have

∏
j∈S

xj =
∏

j∈S∩Ri

bj
∏

j∈S\Ri

bjyi = y
|S\Ri|
i

∏
j∈S

bj .

The expected value of the Fourier basis function is
(as expected) zero. Recall that S is non-empty and
so

ETi

Ey
∏
j∈S

xj

 = ERi,Bi

Ey
y|S\Ri|

i

∏
j∈S

bj


= ERi

[
Ey

[
y
|S\Ri|
i

]]
EBi

[∏
j∈S

bj

]
= 0.(9.16)

If |S \Ri| is even, then
∏
j∈S xj is independent of y.

Then, Ey

[∏
j∈S xj

]2
= 1. If |S \ Ri| is odd, then∏

j∈S xj is linear in yi and Ey

[∏
j∈S xj

]
= 0. Thus,

(9.17)

ETi

Ey
∏
j∈S

xj

2
 = PrRi [|S \Ri| is even] = 1/2.

Let us write out the Fourier expansion of f :

f(x) =
∑

S⊆[d logn]

f̂(S) · χS(x)

=
∑

S=S1∪...∪Sd
∀i,Si⊆Ii

f̂(S)
∏
i∈[d]

∏
xj∈Si

xj .

Let us write an expression for the square of the zeroth
Fourier coefficient of the restriction:

ET

[
f̂T (∅)2

]
= ET


 ∑
S⊆[d logn]

f̂(S)Ey[χS(x)]

2
 .

(9.18)

We stress that the choice of x inside the expectations
depend on y (or y′) in the manner described before
(9.16). Expanding the squared sum in (9.18) and
applying linearity of expectation, we get

ET

[
f̂T (∅)2

]
= ET

[∑
S

f̂(S)2Ey[χS(x)]2

+
∑

S,T :S 6=T

f̂(S)f̂(T)Ey[χS(x)]Ey[χT (x)]
]

=
∑
S

f̂(S)2ET

[
Ey[χS(x)]2

]

+
∑

S,T :S 6=T

f̂(S)f̂(T)ET [Ey[χS(x)]Ey[χT (x)]] .

(9.19)

We will write S = Si1 ∪ Si2 · · · ∪ Sik , where all Sir ’s
are non-empty. We deal with the first term of (9.19),
using (9.17) as follows:

ET

[
Ey[χS(x)]2

]
= ET

Ey
∏
`≤k

∏
j∈Si`

xj

2


=
∏
`≤k

ET

Ey
 ∏
j∈Si`

xj

2
 = 1/2k.(9.20)

The cross terms will be zero, using calculations
analogous for (9.16) (which is not directly used). We
write S = S1 ∪ · · · ∪ Sd, where some of these may
be empty. We deal with the second term of (9.19) as
follows:

1992
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

ET [Ey[χS(x)]Ey[χT (x)]]

= ET

Ey
∏
i∈[d]

∏
j∈Si

xj

Ey

∏
i∈[d]

∏
j∈Ti

xj


=
∏
i∈[d]

ERi,Bi

[
Eyi

[
y
|Si\Ri|
i

∏
j∈Si

bj

]
Eyi

[
y
|Ti\Ri|
i

∏
j∈Ti

bj

]]

=
∏
i∈[d]

ERi

[
Eyi

[
y
|Si\Ri|
i

]
Eyi

[
y
|Ti\Ri|
i

]
EBi

[∏
j∈Si∆Ti

bj

]]
.

(9.21)

There must exist some i such that Si∆Ti 6= ∅.
For that i, EBi

[∏
j∈Si∆Ti

bj

]
= 0, and thus for S 6=

T , ET [Ey[χS(x)]Ey[χT (x)]] = 0. Finally, plugging
(9.20) and (9.21) into (9.19) yields

ET

[
f̂T (∅)2

]
≤ f̂(∅)2 +

∑
S 6=∅

f̂(S)2/2

= 1− var(f) + var(f)/2

= 1− var(f)/2.

Recall var(fT) = 1 − f̂T (∅)2. Thus, we rearrange

to get ET [var(fT)] = ET

[
1− f̂T (∅)2

]
≥ var(f)/2.

Acknowledgments We would like to thank the
anonymous reviewers who have given constructive
comments and pointed us to relevant material. In
particular we would like to thank an anonymous
reviewer who suggested the use of Levin’s work
investment strategy in §7.

References

[1] N. Ailon and B. Chazelle. Information theory
in property testing and monotonicity testing in
higher dimension. Information and Computation,
204(11):1704–1717, 2006.

[2] N. Ailon, B. Chazelle, S. Comandur, and D. Liu. Es-
timating the distance to a monotone function. Ran-
dom Structures Algorithms, 31(3):371–383, 2007.

[3] A. Belovs and E. Blais. A polynomial lower bound
for testing monotonicity. In Proceedings, ACM
Symposium on Theory of Computing (STOC), 2016.

[4] P. Berman, S. Raskhodnikova, and G. Yaroslavtsev.
Lp-testing. In Proceedings, ACM Symposium on
Theory of Computing (STOC), 2014.

[5] A. Bhattacharyya. A note on the distance to mono-
tonicity of boolean functions. Technical Report 012,
Electronic Colloquium on Computational Complex-
ity (ECCC), 2008.

[6] A. Bhattacharyya, E. Grigorescu, M. Jha, K. Jung,
S. Raskhodnikova, and D. Woodruff. Lower
bounds for local monotonicity reconstruction from
transitive-closure spanners. SIAM Journal on Dis-
crete Mathematics (SIDMA), 26(2):618–646, 2012.

[7] H. Black, D. Chakrabarty, and C. Seshadhri. A o(d)·
polylog(n) monotonicity tester for Boolean func-
tions over the hypergrid [n]d. In Proceedings, ACM-
SIAM Symposium on Discrete Algorithms (SODA),
2018.

[8] E. Blais, J. Brody, and K. Matulef. Property
testing lower bounds via communication complexity.
Computational Complexity, 21(2):311–358, 2012.

[9] E. Blais, S. Raskhodnikova, and G. Yaroslavtsev.
Lower bounds for testing properties of functions
over hypergrid domains. In Proceedings, IEEE
Conference on Computational Complexity (CCC),
2014.

[10] J. Briët, S. Chakraborty, D. G. Soriano, and A. Mat-
sliah. Monotonicity testing and shortest-path rout-
ing on the cube. Combinatorica, 32(1):35–53, 2012.

[11] D. Chakrabarty, K. Dixit, M. Jha, and C. Seshadhri.
Property testing on product distributions: Optimal
testers for bounded derivative properties. In Pro-
ceedings, ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), 2015.

[12] D. Chakrabarty and C. Seshadhri. Optimal bounds
for monotonicity and Lipschitz testing over hyper-
cubes and hypergrids. In Proceedings, ACM Sympo-
sium on Theory of Computing (STOC), 2013.

[13] D. Chakrabarty and C. Seshadhri. An o(n) mono-
tonicity tester for Boolean functions over the hy-
percube. SIAM Journal on Computing (SICOMP),
45(2):461–472, 2014.

[14] D. Chakrabarty and C. Seshadhri. An optimal lower
bound for monotonicity testing over hypergrids.
Theory of Computing, 10:453–464, 2014.

[15] X. Chen, A. De, R. A. Servedio, and L.-Y. Tan.
Boolean function monotonicity testing requires (al-
most) O(n1/2) non-adaptive queries. In Proceedings,
ACM Symposium on Theory of Computing (STOC),
2015.

[16] X. Chen, R. A. Servedio, and L.-Y. Tan. New algo-
rithms and lower bounds for monotonicity testing.
In Proceedings, IEEE Symposium on Foundations of
Computer Science (FOCS), 2014.

[17] X. Chen, E. Waingarten, and J. Xie. Beyond tala-
grand: New lower bounds for testing monotonicity
and unateness. In Proceedings, ACM Symposium on
Theory of Computing (STOC), 2017.

[18] A. De, E. Mossel, and J. Neeman. Is your function
low dimensional? In Conference on Learning

1993
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

Theory, COLT 2019, 25-28 June 2019, Phoenix,
AZ, USA, pages 979–993, 2019.

[19] Y. Dodis, O. Goldreich, E. Lehman, S. Raskhod-
nikova, D. Ron, and A. Samorodnitsky. Im-
proved testing algorithms for monotonicity. Pro-
ceedings, International Workshop on Randomization
and Computation (RANDOM), 1999.

[20] F. Ergun, S. Kannan, R. Kumar, R. Rubinfeld, and
M. Viswanathan. Spot-checkers. J. Comput. System
Sci., 60(3):717–751, 2000.

[21] S. Fattal and D. Ron. Approximating the distance
to monotonicity in high dimensions. ACM Trans.
on Algorithms (TALG), 6(3), 2010.

[22] E. Fischer. On the strength of comparisons in
property testing. Information and Computation,
189(1):107–116, 2004.

[23] E. Fischer, E. Lehman, I. Newman, S. Raskhod-
nikova, and R. Rubinfeld. Monotonicity testing over
general poset domains. Proceedings, ACM Sympo-
sium on Theory of Computing (STOC), 2002.

[24] O. Goldreich. Introduction to property testing.
Cambridge University Press, 2017.

[25] O. Goldreich, S. Goldwasser, E. Lehman, D. Ron,
and A. Samordinsky. Testing monotonicity. Combi-
natorica, 20:301–337, 2000.

[26] S. Halevy and E. Kushilevitz. Distribution-free
property testing. Proceedings, International Work-
shop on Randomization and Computation (RAN-
DOM), 2003.

[27] S. Halevy and E. Kushilevitz. Testing monotonic-
ity over graph products. Random Structures Algo-
rithms, 33(1):44–67, 2008.

[28] S. Khot, D. Minzer, and M. Safra. On monotonicity
testing and Boolean isoperimetric type theorems. In
Proceedings, IEEE Symposium on Foundations of
Computer Science (FOCS), 2015.

[29] E. Lehman and D. Ron. On disjoint chains of
subsets. Journal of Combinatorial Theory, Series
A, 94(2):399–404, 2001.

[30] G. S. Nelson. A user-friendly introduction to
Lebesgue measure and integration, volume 78.
American Mathematical Soc., 2015.

[31] M. Parnas, D. Ron, and R. Rubinfeld. Tolerant
property testing and distance approximation. Jour-
nal of Computer and System Sciences, 6(72):1012–
1042, 2006.

[32] S. Raskhodnikova. Monotonicity testing. Masters
Thesis, MIT, 1999.

[33] D. Ron, R. Rubinfeld, M. Safra, and O. Weinstein.
Approximating the Influence of Monotone Boolean
Functions in O(

√
n) Query Complexity. In Pro-

ceedings, International Workshop on Randomization
and Computation (RANDOM), 2011.

[34] M. E. Saks and C. Seshadhri. Parallel monotonicity
reconstruction. In Proceedings, ACM-SIAM Sympo-
sium on Discrete Algorithms (SODA), 2008.

[35] E. Stein and R. Shakarchi. Real Analysis: Measure
Theory, Integration, and Hilbert Spaces. Princeton
University Press, 2005.

1994
Copyright © 2020 by SIAM

Unauthorized reproduction of this article is prohibited

D
ow

nl
oa

de
d

06
/3

0/
20

 to
 6

5.
96

.1
23

.1
2.

 R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

	Introduction
	Domain Reduction
	Related Work
	Further Remarks

	Proving the Domain Reduction [thm:dirdomainreduction]Theorem1.3: Overview
	Domain Reduction: Proof of [lem:domredmain]Lemma2.1
	Stack Bound: Proof of [lem:stackbound]Lemma2.2
	Line Sampling: Proof of [lem:linesampling]Lemma2.3
	The Continuous Domain
	Approximating measurable sets by grids
	Proof of [thm:contdomainreduction]Theorem1.4
	Measurability of Monotone Functions

	The Monotonicity Tester
	Lower Bound for Domain Reduction
	Proof of [thm:lowerbound]Theorem8.1

	Domain Reduction for Variance

