Downloaded 06/30/20 to 65.96.123.12. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

On a Decentralized (A+1)-Graph Coloring Algorithm

Deeparnab Chakrabarty*
Dartmouth

Abstract

We consider a decentralized graph coloring model where
each vertex only knows its own color and whether some
neighbor has the same color as it. The networking
community has studied this model extensively due to its
applications to channel selection, rate adaptation, etc.
Here, we analyze variants of a simple algorithm of Bhartia
[Proc., ACM MOBIHOC, 2016]. In particular,

we introduce a variant which requires only O(nlogA)

et al.

expected recolorings that generalizes the coupon collector
problem. Finally, we show that the O(nA) bound Bhartia
et al. achieve for their algorithm still holds and is tight
in adversarial scenarios.

1 Introduction

It is well known that an undirected graph G = (V, E)
with maximum degree A can be properly vertex-
colored using (A+1) colors. The simple “greedy”
algorithm makes one pass over the nodes, giving
each node one of the colors not currently used by
its neighbors.

Motivated by applications to channel selection for
access points, Bhartia et al. [3] investigate highly con-
strained decentralized algorithms for graph coloring.
In their setting, the only information a vertex knows
at any time is its own color and whether at least one
adjacent vertex has the same color. In the case of
networking applications, nodes correspond to access
points, colors correspond to transmission channels,
and edges correspond to whether two access points
interfere with each other when transmitting in the
same channel. Fittingly, an access point only knows
its own channel and whether some neighbor is us-
ing the same channel, which can be inferred from
the resulting packet loss. Accordingly, the network-
ing community has studied this model extensively
[3,7,9-12,15,20]. This model is sometimes called
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the conflict detection model [20)].

In the stylized setting below, we describe the
algorithm proposed by Bhartia et al. [3], arguably
the simplest and most natural one for the model.
This algorithm proceeds over time and maintains a
coloring x; : V. — {1,2,...,A + 1}. A vertex v is
conflicted at time t if there is some neighbor u of v
such that y¢(u) = x¢(v).

Decentralized Coloring (G = (V, E))

1. Initially, every vertex v chooses a color
Xo(v) at random from {1,2,..., A+ 1}.

2. At each time ¢, a vertex v is chosen uni-
formly at random among all conflicted ver-
tices.

3. v changes its color to a random color in
{1,2,...,A+1}.

4. Steps 2 and 3 repeat until there are no
conflicted vertices.

In the decentralized model, Bhartia et al. [3] imple-
ment this algorithm by having vertices wait random
amounts of time between recolors (Steps 3 and 2).
They also prove that the algorithm converges to a
proper (A+1)-coloring in O(nA) expected recolor-
ings. However, our results, which now summarize,
strongly suggest that this bound is not tight. As
an introduction, consider the special case when the
graph is a clique, which turns out to be trivial.

Ezxample. Let Hy = Zle% be the k' harmonic
number. On K, the clique of n vertices, Decentral-
ized Coloring converges to a (A+1)-coloring in exactly
nH, = ©(nlogn) expected recolorings.

To see this, observe that Decentralized Coloring
is essentially the coupon collector process on cliques.
That is, all n vertices require different colors, and
no color once in the graph can ever be fully removed
from the graph. Hence, the process terminates when
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all n colors have been chosen exactly once. Thus, the
number of recolorings (including the initial n from
Step 1) is precisely the number of draws to obtain all
n coupons, whose expected value is well known to be
nH,. O

Our first contribution is to introduce a variant of
Decentralized Coloring which is easier to analyze. The

sole difference is the while-loop of Step 3

Persistent Decentralized Coloring (G = (V, E))

1. Initially, every vertex v chooses a color
Xo(v) at random from {1,2,..., A+ 1}.

2. At each time ¢, a vertex v is chosen uni-
formly at random among all conflicted ver-
tices.

3. While v is conflicted, it keeps changing to a
random color in {1,2,..., A+ 1}.

4. Steps 2 and 3 repeat until there are no
conflicted vertices.

As our second contribution, we prove the follow-
ing theorem in Section 2.2.

THEOREM 1.1. The Persistent Decentralized Coloring
algorithm converges to a proper (A+1)-coloring in
O(nlog A) expected recolorings.

For our final two contributions, we analyze ad-
versarial variants of the two algorithms. For either
algorithm, if we allow an adversary to choose the ini-
tial coloring x( in Step 1, we say the algorithm uses
an adversarial start. Similarly, if we allow an adver-
sary to choose the conflicted vertex in Step 2, we say
the algorithm uses an adversarial order.

REMARK 1.1. In adversarial order Decentralized Col-
oring, the adversary could choose wvertices so as to
mimic Persistent Decentralized Coloring. Therefore, a
lower bound for Persistent Decentralized Coloring im-
plies a lower bound for adversarial order Decentral-
ized Coloring.

It may be interesting to ponder whether the algo-
rithms even converge given one or both modifications.

As our third contribution, in Section 3 we show
that in fact Decentralized Coloring still only requires
O(nA) expected recolorings in the adversarial start,
adversarial order case.

THEOREM 1.2. Fven with an adversarial initial col-
oring xo in Step 1 and an adversarial choice of con-
flicted wvertices in Step 2, the Decentralized Coloring
algorithm converges to a proper (A+1)-coloring in
O(nA) expected recolorings.

In other words, we achieve the same bound as
Bhartia et al. [3], whose proof would only yield
an O(nA?) bound in this case, while forgoing the
randomness from all but Step 3.

Encouraged by Theorem 1.1 and the clique ex-
ample, one may simply conjecture that all vari-
ants require only O(nlogA) recolorings. However,
our fourth contribution is a counterexample we give
in Section 2.1 showing that Theorem 1.2 is tight in
certain cases, even when the order of vertices is still
random.

THEOREM 1.3. With an adversarial initial coloring
Xo in Step 1 and random choice of vertices in Step 2,
Persistent Decentralized Coloring requires Q(nA) ex-
pected recolorings in the worst case.

Notably, this counterexample will not apply to
random order Decentralized Coloring. So, finally, we
offer the following conjecture, which motivated this
research, but whose proof eludes us.

CONJECTURE 1.1. The Decentralized Coloring algo-
rithm finds a proper (A+1)-coloring in O(nlogA)
recolorings.

2 Persistent Decentralized Coloring

2.1 Adversarial Start, Random order
As a warmup, we begin with the counterexample
proving Theorem 1.3.

~

A vertices ~ - A vertices

Figure 1: A bad initial coloring for Persistent Decen-
tralized Coloring

Proof. Consider the complete bipartite graph Ka a.
Suppose we initially color every left side vertex with
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the same color, green, and use A colors on the right
half, including the color green (see Figure 1). In
this configuration, every left side vertex is conflicted,
and there is only one conflicted right side vertex wv.
Furthermore, the left side vertices have only one free
color, and hence would each expect to recolor A+1
times if selected.

On average, we recolor half of the left side vertices
before fixing the right side vertex v (at which point
the process terminates). Hence, the total expected
run time is Q(nA). O

2.2 Random Start, Random Order
In this section, we prove Theorem 1.1, restated here
for convenience.

THEOREM 2.1. The Persistent Decentralized Coloring
algorithm converges to a proper (A+1)-coloring in
O(nlog A) expected recolorings.

Our strategy is to localize our analysis to an arbitrary
vertex v and then proceed by coupling. In particular,
we couple v with an arbitrary vertex from the clique
of size deg(v), whose behavior we understand from
the coupon collector coupling.

Now, fix v to be an arbitrary vertex.

LEMMA 2.1. The expected number of recolorings of v
is < Hyeg(v)- The expectation is over (a) the random
initial coloring xo in Step 1, (b) the random order in
which conflicted vertices are picked in Step 2, and (c)
the randomness in the recoloring in Step 3.

Lemma 2.1 immediately implies Theorem 1.1 because
the expected number of recolorings of any vertex is
thus < Ha = O(log A). Again, it is essential to take
the expectation over the random initial colorings xo,
otherwise Figure 1 would act as a counterexample.

Proof. We begin by setting some notation. As usual,
we let I'(v) denote the neighborhood of v, not in-
cluding v itself. For simplicity let d := deg(v), and
D := A + 1. Next, observe that Step 2 in Persistent
Decentralized Coloring can be simulated by first select-
ing a random permutation 7 of the vertices, and then
selecting the conflicted vertices in the 7 order. This
is valid because no vertex can ever be chosen twice in
Step 2 (unlike in Decentralized Coloring). Recall that
Xo is the initial coloring of the graph.

Given 7 and xo, we define recolors, ,,(v) to
be the random variable indicating the number of
times v recolors given that the initial coloring was
xo and the order of vertices was w. Note that

the randomness of recolorsy ,,(v) arises solely from
Step 3 of Persistent Decentralized Coloring. Our
goal is to bound E ,,E[recolorsy ,, (v)], the expected
number of recolors of v, averaged over all 7 and xg.

Given 7, let B, (v) and A, (v) denote the subsets
of I'(v) which come before and after v in the permu-
tation , respectively. Let free, ,,(v) be the random
variable denoting the number of colors not used by
I'(v) when v begins recoloring, given that the initial
coloring is xg and the order is .

We now proceed with a coupling argument. Let
V1, V3, ..., be an arbitrary labeling of T'(v). Let K
denote the (d+1)-sized clique with vertices arbitrarily
labeled w, w1, ..., wq. We now consider the Persistent
Decentralized Coloring process on K, but using D
colors even if d < A. We couple the initial coloring
X0 with xo, and the order #’ with 7. In particular, let
Xo(w) = xo(v) and x{(w;) = xo(v;) for all 1 <4 <d.
Let the order 7" of {w,wy,...,wq} be equal to the
order 7 restricted to {v,v1,...,vq}, with the same
vertex pairings as before. To be clear, A, (w) =
{w; 1 v; € Az(v)}, and Br(w) = {w; : v; € Bz(v)}.
Finally, free, ,, (w) is the number of colors not used
by I'(w) when w begins recoloring.

LEMMA 2.2. For any xo and w, we have
E[recolorsy y, (v)] < E[recolors,: ./ (w)].

Proof. Observe that v has to recolor ifft xo(v) €
Xo (Ax(v)). This is because each vertex of Bj(v)
necessarily fixes to a different color than v’s color
(which is still xo(v)) prior to v’s turn. Thus, the
only way v could be still be conflicted is if xo(v) €
X0 (Ax(v)). Similarly, w has to recolor iff x((w) €
Yo (Am(w)). But xo (As(®) = xb(Aw(w)) and
Xo(v) = x4 (w), so recolors(v) > 0 iff recolors(w) > 0
under our coupling.

Next, observe that freer ,,(v) > freey ,, (w)
under our coupling. To see this, note that free, ,, (v)
is equivalently the total number of colors, D, minus
the number of different colors used by I'(v) when v
begins recoloring. In the case of the (d+1)-clique K,
when w begins recoloring, we can guarantee that the
set of colors used by B,/ (w) has size |B,(w)| and is
disjoint from the set of colors used by A, (w), because
the vertices are all connected. So Ar(v) and A (w)
use the same colors, and B, (w) uses at least as many
additional colors as B (v).

Finally, note that recolors, ,,(v) is either 0 or
the geometric random variable whose probability

TWe use the notation xo(S) := {xo0(2) : z € S}.
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parameter is free, y,(v)/D, with a similar statement
for w. Thus,

[E [recolorsy y, (v)]
D
—E|1 " Tree, - (v)
|: {reCOlOTSw,xO (U)>O} fI'eeﬂ-7X0 (U) :|

D
< [, 0120} ooy )
= E [recolors/ s (w)] .
d
LEMMA 2.3. For any 1 < i <d, we have
Er/ i E[recolorsy: \» (w)] = Eq s E[recolorsy . (w;)]

Proof. This is by symmetry of the clique. It may be
instructive to point out that the randomness of
and 7’ are both necessary. For example, if we fix an
initial coloring X, then no initially happy vertex ever
recolors. If we fix an ordering 7/, then the last vertex
never recolors. 0

Lemma 2.2 and Lemma 2.3 together imply that

Ex yoElrecolors, y,(v)]

< Eq y, E[recolors s v (w)]

1
Z Er/ i E[recolorsy: . (2)].

(2.1) =
d+1 2

We already know how to bound the sum in Equa-
tion (2.1). It is precisely the expected total number
of recolors of Persistent Decentralized Coloring on a
(d+1)-clique, but with D colors available. In fact,
for any " and x(), we know that

Z E[recolorsys ./ ()]

zeK
(2.2) <7+...+L
~ D-1 D—d
(2.3) < (d+1)Hg.

This follows from another coupon collector argument.
Here, Equation (2.2) represents the time to collect
d+1 out of D coupons, and Equation (2.3) represents
the time to collect d+1 out of d+1 coupons. (We
can omit the leading 1 in both sums because the
initial coloring includes at least a first color.) Simple

manipulation shows that Dlz - < cgiﬁi)i when ¢ > 0,
because D > d+1. Thus, the second inequality holds.
Together, Equation (2.1) and Equation (2.3) imply

Lemma 2.1. O

Because v was an arbitrary vertex, Theorem 1.1
follows from Lemma 2.1 and linearity of expectation.

3 Decentralized Coloring with Adversarial
Start and Order

In this section, we prove Theorem 1.2, restated here
for convenience.

THEOREM 3.1. Even with an adversarial initial col-
oring xo in Step 1 and an adversarial choice of con-
flicted vertices in Step 2, the Decentralized Coloring
algorithm converges to a proper (A+1)-coloring in
O(nA) expected recolorings.

Recall that D := A+1. Before we begin, observe
that this bound is fairly trivial for Persistent Decen-
tralized Coloring: in Step 3, there is always at least a
% chance that recoloring satisfies the chosen vertex,
implying that each vertex recolors at most D times
in expectation. However, in Decentralized Coloring,
there is no similar concept of vertices becoming fixed.
Instead, our strategy is to analyze the rate at which
Decentralized Coloring drifts toward convergence.

One way to analyze drift is with a potential
argument. This entails defining a potential function
which monotonically changes in expectation with
each iteration of the algorithm.

In our case, we define a potential function ®
on graph colorings x such that y is valid iff ®(y)
is some value A. Then, we show that E[®(x:)]
converges toward A monotonically in expectation at
a bounded rate as t increases. Indeed, this is the
approach of Bhartia et al. [3], who choose ®(x) to
denote the number of conflicted edges in G with
respect to x, in which case A = 0. (An edge is
conflicted iff its end points have the same color.)
It is easy to show that the expected number of
conflicted edges decreases by at least 1/D with each
recoloring. If the initial coloring x¢ is random, then
it is easy to see that E[®(xo)] = O(n), which in turn
implies? that the expected number of recolorings is
O(nA). Unfortunately, with an adversarial start, this
particular argument only implies an O (nAZ) bound
because there can be €2 (nA) conflicted edges initially.

The other obvious choice for ® () is the number
of conflicted vertices in G under x. However, we can
concoct examples where we would actually expect
® (x¢) to increase, given an adversarial selection. For
example, if we recolor v in Figure 2, the number of
conflicted vertices increases (additively) by 1/4, on
average.

2To make this formal, one needs to use a stopping theorem

which Bhartia et al. [3] do not explicitly mention. We prove
and use such a theorem explicitly.
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Figure 2: An example of a graph in which the number
of conflicted vertices would be expected to increase,
given an adversarial selection. There are 4 colors
available: R,G,B and Y. If v, whose color is G,
recolors to G, then the number of conflicted vertices
remains the same. If v recolors to Y, then the number
decreases by 1. However, if v recolors to R or B, then
the number increases by 1.

To achieve our O(nA) upper bound, we define
® such that ®(x) is the number of monochromatic
connected components in G under x. That is, ®(x) is
the number of connected components induced by the
vertices of the same color, taken over all colors. For
example, in Figure 2, there are three monochromatic
components. Note that x is a proper coloring iff
®(x) = n, because the monochromatic components
all need to be singletons.

LEMMA 3.1. Fort > 0, let x+ be the coloring after
the t'" recoloring in Decentralized Coloring. Then,

. . 1
E[®(x:) — P(xt—1) | x¢—1 invalid | > Il

where the expectation is over the randommness in
Step 3 for the vertex chosen at the t*" recoloring.

Proof. Let v be the vertex which recolors at time ¢
(so that x; has the new color of v), where v could be
chosen adversarially. Given a color ¢ € {1,2,...,D}
define my(c) to be the number of monochromatic
components with respect to x; of color ¢ which
contain at least one vertex from I'(v) U {v}. We
exclude components of color ¢ which have no vertices
in I'(v)U{v} because v’s recoloring cannot affect those
components. Similarly define m;_1(c). Observe that

(34)  ©(x) —®0a-1) = D mulc) —me_s(o).

c€[D]

With this, the proof follows from three observations.
First, m:(x:(v)) = 1 because all adjacent components
of v’s color are connected through v. Second, for any
other color ¢ # xi(v), we have m;(c) —my_1(c) > 0
(meaning improvement). This is because recoloring

v to a color besides ¢ cannot possibly create any new

paths of color ¢. Third, > cipme-1(c) < A. This

is because v is conflicted with respect to x;_; and

hence has the same color as one of its neighbors.
Therefore,

E[®(xt) — P(xt—1) | xt—1 invalid]

=E Z my(c) —me—1(c) | Xt—1

c€[D]

(3.5) = Z Prx:(v) = ] - (mi(c) — mi—1(c))
]

ce[D
+Prixi(v) # ¢] - (mi(c) —mi-1(c))
(36) =) Prlx(v) = (1-mii(c)
]

ce[D
1
=Y e me(e)
ce[D]
A 1
. >1——==—.
(3.7) - D D

Recall that the expectation is over the random re-
coloring of v at time t. We lose the conditioning on
Xt—1 in Equation (3.5) because the new color is inde-
pendently random. Also note that m;_; is fixed once
we know y;_1. Equation (3.5) follows from Equa-
tion (3.4). Equation (3.6) follows from the first two
observations mentioned after Equation (3.4). Equa-
tion (3.7) follows from the third observation and the
fact that D = A + 1. O

Using Lemma 3.1 to prove that the expected stopping
time 7(G) of our process is O(nA) requires one more
theorem. In particular, we use the following adjusted
version® of Wald’s equation [22]. We also note that
this allows one to provide a formal proof of the
Bhartia et al. [3] claim.

LEMMA 3.2. Let ® be a real-valued function of color-
ings for a graph G such that x is valid iff ® (x) = A,
for some constant \. Let x; be the state of x aftert
recolorings. Let T(G) be the random number of recol-
orings required to produce a valid coloring of G. If
E[[A=®(x-1)| = [A =@ (xe)| | xe—1 invalid] > C
for some positive constant C, then E[r(G)] <
E[A—® (vo)l] /C.

We first show how Lemma 3.1 and Lemma 3.2
imply Theorem 1.2. Recall that x is valid iff ®(y) =

SWe don’t claim novelty here; a theorem similar to

Lemma 3.2 may exist elsewhere.
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n. We have

E [l — @ (o) n— @ (x0) \ s invahd]

=E[® (x¢) — D (x¢-1) | Xt—1 invalid]
1

v

5.
Because 1 < ®(x) < n, we have E[|n — ® (xo)|] <
n — 1. Hence, E[7(G)] < (n — 1)D. This completes

the proof of Theorem 1.2. 0
We now prove Lemma 3.2.

Proof. For each t € ZT, let

0 otherwise.

Z,Z{M—@&fﬁwﬁA—@um t < 7(G)

By assumption, ® (x-()) = A. Hence, ZZLC{‘) Zy

telescopes to |[A — @ (xo)|. From here, we see that
E[JA =@ (xo)]]

=K ZZt

o0
(3.8) =E|> Zi- Lz |-
Lt=1

Next, we prepare to apply the following analogue of
linearity of expectation for infinite sums.

THEOREM 3.2.
(INFINITE LINEARITY OF EXPECTATION [18])

Let X1, Xo, ... be random variables. If > ,°  E[|X;]]
converges, then

o0

E[iXt] => E[X].

To apply Theorem 3.2, we need to show that
S E HZt - Lgr(G)>t}|] converges. Observe that @
must be bounded, because it is real-valued and there
are only finitely many possible colorings of G. Thus,

|Z:| < p for some constant p. Hence,

[e o]

(3.9) Y E[Z - Tiraznl]

t=1

=Y E[1Z| 1m0
t=1

<p) E[lrc=n]

= E[(G)).

Trivially, we can bound E [7(G)] by nD™, because at
worst we need to select the lone satisfying color for n
consecutive vertices, which can be cast as a geometric
random variable with probability (%)n that uses at
most n recolors per trial. Hence, E [7(G)] is finite.
Because Equation (3.9) has positive terms and is
bounded above, it indeed converges. Thus, we have

> 7 ]1{T<G>zt}]
t=1

E[Z - 1ir6)2n)

E

Theorem 3.2

e

1

~+
Il

M

[Z: | 7(G) = 4] - Pr[7(G) > 1]

o~
Il

> Pr(r(G) > 1]

=C-E[r(G)].

With Equation (3.8), we have E[7(G)] <
E[IA—® (x0)|] /C, which completes the proof
of Lemma 3.2. a

Y
Q

4 Related Work

The decentralized model of graph coloring has been
studied extensively [3,7,9-12,15,20]. Most of this
work appears in the networking literature, motivated
by the need to minimize the communication between
nodes. We mention two works which are most sim-
ilar to our work, and comment on the differences.
The first work is by Motskin et al. [20] which con-
siders an algorithm very similar to Decentralized Col-
oring, except that all conflicted vertices simultane-
ously randomly recolor. It is not too hard to show
that a ﬁ—fraction of the nodes become happy in
each round, and therefore, O(A log n)-rounds suffice
with high probability. Still, this leads to O(nA) re-
colorings, which is no better than what Bhartia et
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al. [3] achieve (note that the first random recolor-
ing constitutes a random start). The second work
is by Checco and Leith [7], which itself generalizes
works by Barcelo et al. [2] and Duffy et al. [9, 10],
where again all conflicted vertices recolor simultane-
ously, but according to a distribution that evolves
with time. Their algorithms, which also converge in
O(nlogn) rounds, are robust to changes in the graph.
In this paragraph, we describe other decentral-
ized models which are unrelated to the model we
study but may be interesting to the reader. Syn-
chronous graph coloring in minimal number of rounds
arises in distributed computing. Unlike our decen-
tralized setting, this model, first defined in Linial’s
seminal paper [16], allows nodes to pass messages
among each other, and the number of rounds is one
key complexity parameter. Johansson [21] obtains an
(A+1)-coloring in O(logn) rounds using a simple al-
gorithm is similar to, and indeed inspired by, Luby’s
MIS algorithm [17]. This was recently improved by
Harris, Schneider and Su [13] to a O(y/logn)-round
algorithm, and more recently to a O(polyloglog n)-
round algorithm by Chang et al. [6]. (A+1)-colorings
have also recently been considered in the streaming
model by Assadi et al. [1] where edges stream in
and there is only O(n)-space available to help main-
tain a (A+1)-coloring. The same paper also gives
algorithms in the graph-query and MPC (massively
parallel computation) models. (A+1)-coloring has
also recently been considered in the dynamic graph
model where edges may be added or deleted and the
objective is to maintain a (A+1)-coloring with quick
updates. Bhattacharya et al. [4] describe a random-
ized algorithm with O(logn) amortized update time
which has very recently been improved upon by Hen-
zinger and Peng [14], and Bhattacharya et al. [5].

5 Conclusion and Discussion

In this paper we considered variants of two decen-
tralized graph coloring algorithms: Decentralized Col-
oring, introduced by Bhartia et al. [3], and Persis-
tent Decentralized Coloring, our proposed modifica-
tion. Beyond the Persistent Decentralized Coloring al-
gorithm itself, we produced three primary contribu-
tions:

e Adversarial start, random order Persistent De-
centralized Coloring requires 2(nA) expected re-
colorings in the worst case.

e Random start, random order Persistent Decen-
tralized Coloring requires only O(nlogA) ex-

97

pected recolorings.

e Adversarial start, adversarial order Decentralized
Coloring requires only O(nA) recolorings.

We proved the first result with a counterexample
involving a bipartite graph, the second through cou-
pling and generalization to the coupon collector prob-
lem, and the third through analysis of an interesting
potential function. We also note that our stopping
theorem may be extensible to other stochastic pro-
cesses that tend to drift toward convergence. Lastly,
we formalized the conjecture that the O(nlogA)
bound holds for random start, random order Decen-
tralized Coloring.

It is perhaps instructive to remark that Decen-
tralized Coloring resembles, in spirit, the celebrated
Moser-Tardos [19] randomized algorithm for finding
satisfying assignments to CSPs obeying the Lovasz
Local Lemma. Indeed, if we tweak the Decentralized
Coloring algorithm so that we pick a conflicted edge in
every round and randomly recolor its endpoints, we
get the Moser-Tardos algorithm. However, (A+1)-
coloring is outside the LLL regime: the probability of
a bad event (of getting an unhappy edge) is p = ﬁ,
and the degree d of the dependency graph is 2A—2 (a
single edge is independent of all but its 2A—2 neigh-
boring edges), giving pd =~ 2, which causes the general
analysis of [19] to break down.

Our hope is that our new understanding of Per-
sistent Decentralized Coloring may lead to a proof of
Conjecture 1.1. A first question to answer may be
whether Persistent Decentralized Coloring always re-
quires more expected recolorings than Decentralized
Coloring on any particular graph. We also wonder
whether understanding random start, adversarial or-
der variants could help solve the mystery.
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