CLASSIFICATION OF DARBOUX TRANSFORMATIONS FOR OPERATORS OF
THE FORM 8,8, + ad, + bd, + ¢

EKATERINA SHEMYAKOVA

ABSTRACT. Darboux transformations are non-group type symmetries of linear differential operators. One
can define Darboux transformations algebraically by the intertwining relation ML = L1 M or the inter-
twining relation ML = L1 N in the cases when the former is too restrictive.

Here we show that Darboux transformations for operators of the form L = 0,0y + a0z + b0y + ¢
(sometimes referred to as 2D Schrodinger operators or as to Laplace operators) are always compositions of
atomic Darboux transformations of two different well-studied types of Darboux transformations, provided
that the chain of Laplace transformations for the original operator is long enough.

1. INTRODUCTION

A Darboux transformation (DT), in the general sense of the word, is a non-group symmetry of linear
differential operators (partial or ordinary), which simultaneously transforms the kernels (solution spaces) or
eigenspaces. Darboux transformations form a category. Their structure is under active investigation. See,
in particular, recent (2018) works of Ch. Athorne [2], S. Smirnov [40], and G. Hovhannisyan et al. [18, 19].

Darboux transformations originated in the work of Darboux and others on the theory of surfaces, as
in [10], while particular examples were known to Euler and Laplace. In XXth century, Darboux transfor-
mations were rediscovered in quantum mechanics [32, 20], and later, in 1970s, in Integrable Systems. A
large number of works can be mentioned here, but the very name ‘Darboux transformations’ was intro-
duced by V. B. Matveev in 1979 in a series of works, see e.g. [27], and then the theory was elaborated
further in the fundamental monograph [28] by V. B. Matveev and M. A. Salle (see also [11]).

The model example of Darboux transformations is the following transformation of single variable Sturm—
Liouville operators: L — L1, where L = 82 + u(z), Ly = 02 + u;(z), and () is obtained from u(x) by
the formula u(z) = w(z) + 2(In po(x)) .- Here pp(x) is a ‘seed’ solution of the Sturm-Liouville equation
Lyg = Moo (with some fixed Ag). Then the transformation ¢ = (9, — (Inpg).)p sends solutions of
Ly = Ay to solutions of L1p = A@ (with the same \). The seed solution is mapped to zero. (According
to [29], this transformation was already known to Euler.) This example is model in two ways.

First, the formula for the transformation of solutions can be written in terms of a Wronskian deter-
minant: @1 = W(po,¢)/wo. This generalizes to a construction based on several linearly independent
seed solutions and higher order Wronskian determinants (Crum [9] for Sturm-Liouville operators and
Matveev [27] for general operators on the line).

Secondly, if one lets M = 9, — (Inyy).., then the following identity is satisfied:

(1) ML =1I,M.

This identity is equivalent to the relation between the old potential u(z) and the new potential u; (z).
This example can be generalized to the case of two operators with the same principal symbol, L and L,

that satisfy (1) for some M. In this case, (1) is called the intertwining relation. One can see that if (1) is

satisfied, then the operator M defines a linear transformation of the eigenspaces of L to the eigenspaces of
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L, (for all eigenvalues). The relation (1) can be taken as a definition of the Darboux transformations. The
intertwining relation (1) appeared, for Sturm-Liouville operators, in work of Shabat [33, eq. 19], Veselov—
Shabat [43], and Bagrov—Samsonov [3]. Intertwining relation (1) is also related with supersymmetric
quantum mechanics initiated by E. Witten [44], see in particular [8, 7]. In 2D case, intertwining relation (1)
was studied in the series of papers by A. Andrianov, F. Cannata, M. Ioffe, see e.g. [21] and references
therein. It also appeared for higher dimensions, in Berest—Veselov [6, 5] for the Laplace type operators
L = —A 4 u. The same relation was used in [16] for differential operators on the superline.

Problem 1: classification of all Darboux transformations defined by intertwining rela-
tion (1).

Problem 1 is solved for operators on the line and on the superline, which is an analogue of the 1D case,
but has in principle two variables, one even (“bosonic”) and one odd (“fermionic”). In both of these cases,
it was established that all Darboux transformations (for any operator L; in supercase an extra condition of
non-degeneracy is required) is a composition of atomic Darboux transformations of first order which arise
from seed solutions and are given by “Wronskian formulas”. In the supercase, these involve Berezinians.

In the classical setting for the Sturm—Liouville operators, this was proved in [43, Theorem 5] when the
new potential u(x) differs from the initial u(x) by a constant, ui(x) = u(z) + ¢. It was proved in [34] for
transformations of order two; and, finally in the general case, in [3] and the follow-up paper [4], see also [31,
Sec.3]. Finally, for general operators on the line, it was proved in [1]. For the superline, the classification
was obtained in [16, 23].

The intertwining relation (1), with a single transformation operator M, implies a linear mapping between
the eigenspaces of the operators L and L;. It turns out that such symmetries are too restrictive for
differential operators in higher dimensions. So the following more flexible version is considered, which can
be extracted from the work of Darboux himself [10] (see for example [42, eq. 2]):

(2) NL=L,M.

Relation (2) implies a linear mapping of the kernels only. The connection between intertwining relations (1)
and (2) is yet to be understood. In the present paper we solve the following problem for an important
class of operators.

Problem 2: classification of all Darboux transformations defined by intertwining rela-
tion (2).

Note that one of the differences between the two intertwining relations, is that the intertwining rela-
tion (2) admits the following equivalence relation: (M, N) ~ (M + AL, N + L1 A), for an arbitrary linear
partial differential operator A. The importance of this is that using it one can define invertible Darboux
transformations in a natural way, first suggested in [35], see also in the introduction of [17] (and more in
Sec. 2). It it also the point of view that we have to take if we want to factor Darboux transformations,
and this is the one we use in this paper. Putting everything together, we essentially have a category where
objects are operators L of the same fixed principal symbol and Darboux transformations are morphisms
in this category (again see more in Sec. 2).

In work [36], we classified Darboux transformations for operators of the form

(3) L= 0,0, + ad, + b3y + ¢

with a = a(z,y), b = b(x,y), ¢ = ¢(x,y), where operator M is of order 2. This type of operators (3) can
be called ‘2D Schrédinger operator’ in ‘algebraic form’ !, In [36], regularized moving frames of Fels and
Olver [30] were used to invariantize the system of nonlinear partial differential equations describing the
Darboux transformations. This system, when transformed on the space of joint differential invariants of
the operators M and L, becomes simple and can be solved exactly.

1Calling it Schrodinger is some abuse of language justified by the fact that on the formal algebraic level it is equivalent
to the actual elliptic Schrodinger operator [29].
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In the present paper, we prove factorization for Darboux transformations of arbitrary order defined
by the intertwining relation (2), for operators of type (3). Specifically we proved that every Darboux
transformation can be presented as a consequent application of Darboux transformations of two classically
known types: Wronskian type and Laplace transformations. Such a factorization is only possible if we
consider Darboux transformations as equivalence classes up to the equivalence relation mentioned above
(see Definition 2.1). We obtain our result under the technical assumption of the existence of a long enough
Laplace chains for the original operator.

The proof is an induction on the order of the operator M. At every step, if the intersection of the kernels
of L and M is non-zero, we use a common element ¢ to construct the first-order operator M, = 0, — gt
and M = M'M,. We then show that for M’ and M, there are corresponding Darboux transformations
which provide a factorization of the initial Darboux transformation. If the intersection of the kernels of L
and M is zero, we show that we can similarly factor out a Laplace Darboux transformation.

Since the first versions of this work appeared on the arXiv, its results were commented in several papers.
Very recently, in [40], S. Smirnov by a modification of the proof in this paper was able to establish the
discrete and semi-discrete analogues of our main statement.

The structure of the paper is simple. In Sec. 2, we recall the key results about Darboux transformations,
their known types, and as much as it is known so far about their general structure. In Sec. 3 we give a
proof of the main statement.

2. STRUCTURE AND KNOWN TYPES OF DARBOUX TRANSFORMATIONS

In this section we recall some general facts about Darboux transformations. Consider a differential field
K of characteristic zero with a number of commuting derivations. We shall work with the corresponding
ring of linear partial differential operators over K. One can either assume the field K to be differentially
closed, or simply assume that K contains the solutions of those partial differential equations that we
encounter on the way.

Darboux transformations viewed as mappings of linear partial differential operators can be defined
algebraically as follows, where we write o(L) for the principal symbol of L.

Definition 2.1. [36, 37] We introduce a category where the objects are linear partial differential operators
with the same arbitrary but fixed principal symbol, and the morphisms are defined as follows. A pair
(M, N) defines a morphism from L to Ly if

NL=LM
and such pairs (M, N) are considered up to the equivalence

where A is an arbitrary linear partial differential operator. Another notation for this morphism indicating

M,N
the source and target, is L (—’>) L;. In the notation, we shall not distinguish between a pair (M, N) and

its equivalence class (the corresponding morphism). Morphisms with compatible source and target are
composed as (M, N) - (M1, N1) = (M1M,N1N). For any object L, the identity morphism is 15, = (1,1).
So defined morphisms are called Darboux transformations.

Every Darboux transformation (M, N) defines a linear mapping of the kernels, from ker L to ker L4,
where a function ¢ is mapped to M ¢. The equivalence relation above then have a natural meaning: since
(M + AL)¢p = M ¢, the operators M and M + AL give the same linear map on the kernel of L.

Note if L and M are known, then the coefficients of I; and N are defined from a system of linear
algebraic equations. Also not every operator M can give a Darboux transformation for given operator
L. As we shall see, intertwining relation (2) is, in a sense, an overdetermined system and M must satisfy
compatibility conditions.
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In [36] it was proved that the composition of morphisms is well defined (one has to check the compatibility
with the equivalence relation).

Observe that given NL = L1 M, we have o(L) = o(L;) iff o(N) = o(M). Note also that we have
defined a category for the operators with fixed principal symbol.

We define the order of a Darboux transformation (M, N) as the minimal possible order of a transfor-
mation in its equivalence class, that is the least possible order of an operator of the form M + AL.

We also have the invertibility in terms of equivalence classes, and say that the Darboux transformation
(M,N) : L — L is invertible iff there exists (M’,N’) : Ly — L such that the compositions (M, N) o
(M',N") and (M’,N’) o (M,N) are identity morphisms (i.e. equivalent to identity morphism in the
category). By expanding the definition we obtain that (M, N): L — Ly and (M’, N’): L; — L are mutual
inverses if and only if there are some operators A, B so that the following hold:

(4) M'M =1+ AL,
(5) N'N=1+LA,
(6) MM’ =1+ BL, ,
(7) NN =1+ IL,B.

Lemma 2.1. Invertible Darboux transformations induce isomorphisms on the kernels of the operators L
and L.

In particular, (4) implies that ker L N ker M = {0} is necessary for a Darboux transformation to be
invertible. Also note that the order of a Darboux transformation is not related in an obvious way to the
order of its inverse.

The first steps in the general study of invertible Darboux transformations along with the analysis of one
particular invertible class of Darboux transformations—the Darboux transformations of Type I—can be
found in [35, 37].

Lemma 2.2. (1) Given the intertwining relations NL = LM and N'Ly = LM’, the equalities for
N, N’ follow from the equalities for M, M'. Specifically, (5) follows from (4), and (7) follows from
(6),
(2) If (M,N) and (M',N') are mutually inverse morphisms satisfying (4) through (7), then BN =
MA.

Recall that a gauge transformation of an operator L is defined as LI = g~ 'Lg, where g € K. Gauge
transformations commute with Darboux transformations in the sense that if there is a Darboux transfor-
mation (M, N) : L — L, then there are also Darboux transformations

(M9,N9): L9 — LY,
(Mg,Ng):L? = Ly,
(g7'M,g"'N): L — LY .

Definition 2.2. If a pair (M, N) defines a Darboux transformation from L to L;, then the same pair
defines a different Darboux transformation from L + AM to Ly + N A for every operator A. We shall say
that Darboux transformations L — Ly and L + AM — L1 + N A are related by a shift. Note that this is
a symmetric relation.

The shift of the Darboux transformation (M, N): L — L is a Darboux transformation. We have that
N(L+ AM) = (L + NA)M for the intertwining relation, and (L) = o(L;) implies 0(M) = o(N), which
implies o(L + AM) = o(L; + NA).

In general, shifts of Darboux transformations do not commute with compositions of Darboux transfor-
mations. However, shifts are useful when dealing with invertible Darboux transformations. The following
lemma was proved in [36].
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Lemma 2.3. Shifts of Darboux transformations preserve invertibility.

Darboux transformations and their variations are actively studied by physicists and mathematicians,
and there is a great variation in terminology and understanding of the term. E.g. one author’s “Laplace
transformation” can be called “Darboux transformation” by another author. Authors motivated by Physics
call Darboux transformations what we below name “Wronskian type”. Ultimately all structures are in-
terrelated and useful. Below we list several types of such transformations. All of them except Ganzha’s
Intertwining Laplace transformations are Darboux transformations as defined above.

1 Darbouzx transformations of Wronskian Type

These are the classical Darboux transformations. The operator M is given by

~ WA(f1, o fons f)
M(f) B W(flanv---vfm)

where W(f1, fo,..., fm) denotes a Wronskian determinant with respect to one of the variables t,z,y, ...
of m linearly independent f; € K, which are elements of ker L.

For arbitrary operators on the line, it was proved by V. Matveev [27] that a composition of consecutive
application of n Darboux transformations of this type of order 1 (he calls them 1-fold Darboux transforma-
tions) is given by a Wronskian formula of the corresponding larger size (more exactly, a Wronskian of size
n + 1 in the numerator, and of size n in the denominator; he calls them n-fold Darboux transformations).

Wronskian Type Darboux transformations are proved to be admitted by several different types of
operators [27, 28, 22, 16], and direct applications of these transformations for solving famous nonlinear
equations are well known. Wronskian type transformations are never invertible, since ker L N ker M #
{0}. (An abstract framework for Wronskian type transformations was considered by Etingof-Gelfand-
Retakh [12] and Li-Nimmo [22]. An analog of Wronskian Darboux transformations for super Sturm-—
Liouvlle operators was discovered in Liu and Liu-Manas [24, 26, 25].)

Note that in 1D case with intertwining relation having M = N, (1), similar Wronskian construction
is used (same formula), but f; are arbitrary eigenfunctions with not necessarily zero eigenvalues. For the
1D case, every Darboux transformations is of Wronskian type in this extended sense, see in [1]. There
is a recent very general result describing all operators admitting first-order Darboux transformations of
Wronskian type [17].

Definition 2.3. For a given variable ¢, call a differential operator ¢-free if it does not contain 9; and none
of its coefficients depend on ¢.

Theorem 2.1 (a criterion). Given a linear partial differential operator L and a v € ker L, the operator
M = 0, — b~ ' generates a Darbouz transformation if and only if there exists some operator A, and a
t-free operator B, and non-zero function c possibly depending on t such that, for the gauge transformed
operator,

LY = Ad, + ¢B .

Here either B = 0, or any one non-zero coefficient in B may be taken to be 1. If the DT exists, then L
and N are given by LY = LY — A9, + N¥A, N¥ = 8,51/6, where 82/0 = cOy o (1/c).

Corollary 2.2 (a necessary condition). Suppose for some operator L, ¢ € kerL, My = 0; — RV
generates a Darboux transformation. Then there exists some operator A, and a t-free operator B such that

L=AMy+cB, [My,B]=0.

Here B is not necessarily t-free.
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2 Darboux transformations obtained from a factorization
Suppose L = CM for some C, M € K|[0;,0y,...|\ K. Then for any operator N with o(N) = (M), there
is a Darboux transformation
(M,N): CM — NC ,
since N(CM) = (NC)M. Since ker M C ker L, these transformations are never invertible.

In the proofs, one can frequently see a trick where the transformation operator M can be (using some
reasoning) considered in a form where it is effectively an ordinary differential operator while everything
else is multidimensional. In this case if Darboux transformation is of factorization type (and with this
particular M), then it is also of Wronskian type. This uses the fact that every linear ordinary differential
operator can be expressed by a Wronskian formula.

3 Laplace transformations
These are another type of Darboux transformations, introduced in [10]. They are distinct from the Wron-
skian Type. They are only defined for 2D Schrodinger type operators, which have the form

8) L= 0,0, + ad, + b3, + c,

where a,b,c € K. By interesting coincidence, the obstructions i and k to factorization of this operator
are gauge (differential) invariants of operators of this form:

(9) L=(9y+a)(0:+b) -k,
(10) = (0 +b)(0y +a)—h.

If the Laplace invariant k = b, 4+ ab — c is nonzero, then L admits a Darboux transformation with
M = 0, +b (in the “a-direction”). (Explicit formulas for L; and N are given below.) If the other Laplace
invariant, h = a; + ab — ¢ is nonzero, then L admits a Darboux transformation with M = 0, + a (in the
“y-direction”).

Laplace transformations are invertible, and are (almost) inverses of each other. This has been mentioned
in the literature, e.g. [41]. Classically, the invertibility of Laplace transformations was understood to mean
that they induce isomorphisms of the kernels of the operators in question. Interestingly, it is exactly the
equivalence relation on Darboux transformations that makes it possible to understand the invertibility
of Laplace transformations in the precise algebraic sense. The detailed proof of the following (classical)
statement can be found in [35, 17].

Theorem 2.3. (1) The composition of two consecutive Laplace transformations applied to L, first
in « direction, and then in y direction is equal to the gauge transformation L — L'/*. If the
transformation is first in x direction, and then in y direction then the composition is equal to the
gauge transformation L — L'/".

(2) The inverse for the Laplace transformation L — Ly given by the operator M = 0, +b is (M',N') :
Ly — L, where M' = =k~ (9, +a), N' = —k~* (0, + a — kyk™'). The inverse for the Laplace
transformation L — Ly given by the operator M = 9, + a is (M',N') : Ly — L, where M’ =
—~h=1 (9, +b), N' = —h~1 (BI +b— hyh_l).

(Note that the formulas for the inverse for Laplace transformations can be generalized, as we do below,
for Darboux transformations of Type I, which is a generalization of Laplace transformations to operators
of a more general form.)

4 Ganzha’s Intertwining Laplace transformations
These were introduced in [15], and generalize Laplace transformations to linear partial differential operators

L € K[0y,0y,...] of very general form. One starts with any representation L = X;X, — H, where
L,X1,X5,H € K[0y,0y,...]. Then it was proved that there is a Darboux transformation for the operator
L,

(XQ,X2+OJ)I L— L,
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where L1 = XoX; +wX; — H, and w = —[Xj, H]H’l. The latter is a pseudodifferential operator in the
general case, an element of the skew Ore field over K that extends K[J;,0y,...]. In [15], E. Ganzha then
adds the requirement that w is a differential operator. This is a very general class of transformations and
contains both invertible and non-invertible Darboux transformations.

5 Darboux transformations of Type I
These were introduced in [37], and are admitted by operators in K [0, 0y, ...] that can be written in the
form L =CM + f, where C, M € K[D,,0y,...], and f € K. We have

(M,MY7y: L — Ly,
where Ly = MY/C + f, writing M*// for fM(1/f). The inverse Darboux transformation always exists

and is as follows:
(-1 o cl> Lo L
f f

The original theory of Laplace transformations is very naturally formulated in terms of differential in-
variants. In [37], analogous ideas were developed for Darboux transformations of Type I for operators of
third order and in two independent variables. This can also be done for operators of a general form using
regularized moving frames [13, 14] and ideas from [38]. The classical Laplace transformations are a special
case of transformations of Type I. We will see that Darboux transformations of Type I can be identified
with a subclass of the Intertwining Laplace transformations defined above.

Note that the composition of two Darboux transformations of Type I is (in general) not of Type 1.

It was recently proved [17] that every first order Darboux transformation for every operator is either of
Type I or of Wronskian type.

It is interesting to find out the exact relation between Intertwining Laplace transformations of
Ganzha [15] and Darboux transformations of Type I

6 Continued Type I Darbour transformations

Continued Type I Darboux transformations were introduced recently in [17] as a further generalization of
Darboux transformations of Type I. They are present when L can be divided by some M, and then M
divided by the “remainder”, and so on, until we have a function. All these transformations are invertible,
and the explicit formulas for the inverses can be obtained by induction.

Definition 2.4. Suppose that for operator L and some operator M = M; there are nonzero operators
Ay, As ... Ak, My, ... My and a nonzero function f = My € K so that

L =AM+ M,
M1 = A2M2 + M3

Mi,1 = AzMz + Mi+1 s for 1 < ) < k s and ﬁnally

My_1 =AMy + f
Then there exists a Darboux transformation for operator L
(M,N):L— I,

where Ny 1 = M1 = f, N = fMpf~', N =Ny, Ly = Ny and N; for 0 < i < k — 1 can be found by
downward recursion using

N; = Niy1Ait1 + Nigo .
The corresponding Darboux transformation is not obtained from a factorization, nor a multiple of a DT of
Wronskian Type, and if £ > 1 it is not of Type I. We shall call these Darboux transformations Continued
Type I Darboux transformations.
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7 Athorne’s generalized Laplace transformations

Ch. Athorne [2] has started recently an entirely original approach towards generalization of Darboux
transformations (which he prefers to call Laplace transformations) for a particular but large class of
operators of the form:

L = 010203 4+ 010203 + a20103 4 430102 + a1203 + a2301 + 1302 + ai123 .

The approach has potential to be generalized. A particular restriction is that the order of the operator is
equal to the number of independent variables. A key role is played by differential invariants (relative to
the gauge transformations of the operator).
Note also that in the Physics literature there are examples of Darboux transformations for concrete
differential operators such as non-stationary Schrodinger operator or Fokker-Planck operator, see [7].
Also analogues of Darboux transformations are used for discrete and semi-discrete cases, and also for
operators on a space scale, see recent works of S. Smirnov [40], and G. Hovhannisyan et al. [18, 19].

3. THE FACTORIZATION PROBLEM FOR L = 0,0, + a0, + b0y, + ¢

3.1. Factorization of Darboux transformations. Suppose there is a Darboux transformation L — L
defined by (M, N). When can it be factorized into a composition of Darboux transformations L — Ly and
Ly — L7 Theoretically speaking, to obtain a factorization

(M',N")

Mo, N,
(Mo, No) Lo

L

we need:
(1) M = M’ M, (a factorization of M);
(2) N = N'Ny (a factorization of N);
(3) so that (My, Ny) defines a Darboux transformation L — Lo;
(4) so that (M’, N') defines a Darboux transformation Ly — L.
First of all notice a simple but useful observation: to establish a factorization of a Darboux transfor-
mation, it is enough to establish (1), (2), (3).

Theorem 3.1. Statements (1), (2), (3) above imply (4).

Proof. The equality NL = L{M can be re-written as follows N’ NogL = L; M’ My, which implies N’ LoMy =
Ly M' My, and thus, (N'Lg — L1 M’) My = 0. Then the consideration of the principal symbols implies that
N'Lg— LM’ = 0. 0

3.2. Reduction to the case where M is an ordinary differential operator. The special form of the
operators L = 0,0, + a0, + b0, + ¢ implies some special properties of Darboux transformations for them.
Firstly, it makes it possible to find an operator A so that M + AL does not contain mixed derivatives.
That means that in every equivalence class we can choose a standard representative — a pair (M, N) such
that M does not contain mixed derivatives. We call it the projection of M with respect to L and denote
7 (M). Thus, for some oy, 55, mo

(11) TI'L(M) :ai8;+ﬁj8§+mo ,

where we assume summation over the indices i = 1,...,d; and j =1,...,ds.
Let M be an operator of the form (11), where ag, # 0 and 4, # 0. Then we define the bi-degree of M
as
deg(M) = (d1,d2) -
If M is an arbitrary operator in K [0y, 0y, .. .], then we define the bi-degree of such operator with respect
to some given operator L of the form (3) as the bi-degree of its projection

degy, (M) = deg(m.(M)) .
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Consider a Darboux transformation of a 2D Schrddinger operator with M of the form (11). It can be
further reduced to an ordinary differential operator of order less than d; + ds.

Theorem 3.2. Let L be an operator of the form (3) and M be an operator of the form (11) and deg M =
(dv,d2). Then for operators My, = 0, +b, M, = 0, +a defining two Laplace transformations, the following
18 true.

(1) deg; (MM,) = (d1 + 1,d2 — 1), where dg # 0.

(2) deg; (MM,) = (dy — 1,dy + 1), where d; # 0,

(8) mp,(MyMy) =k (do =0 in this case),

(4) mr,(MyMy) = h (di =0 in this case),
where h and k are the Laplace invariants.

Proof. (1). Let us consider M in the form M = M?®+ MY +mq, where M® = Zf;l ;0L MY = 2?2:1 ;07
and then consider first M¥(9, + b) — AL for some A € K[0,0y,...]. Using representation (9) of L, we
see that MY(0, +b) — AL = MY(0, + b) — A(0y + a)(0y + b) + Ak = (MY — A(0y + a)) (0, + b) + Ak.
Choose A so that MY = A(9, + a) + r for some r € K. In this case A is an ordinary differential
operator in 0, and deg A = dy — 1. Hence, M¥(0, +b) — AL = (0, + b) + Ak, and M (0, +b) — AL =
M?®(0y + b) + mo(0y + b) + (0 + b) + Ak = (M® +mo+7r) (0 + b) + Ak. As we use the Laplace
transformation defined M,, Laplace invariant k£ is not zero, and thus the bi-degree of this operator is
(d1 +1,d2 — 1). Part (2) is similar.

(3). As MyM, — AL = (0y + a)(0y +b) — AL = (0y + a)(0y +b) — A(Dy + a)(0y +b) + Ak =
(1 —A)(0y + a)(0y +b) + Ak, then if A =1, then M, M, — AL = k. Part (4) is similar. O

Applying one or several times Theorem 3.2 we can completely eliminate either all the derivatives with
0y or all the derivatives with d, in M, provided we can move far enough along the chain of the Laplace
invariants for the initial operator L. This can be formulated as follows.

Theorem 3.3. Consider a Darboux transformation L M, Ly, where M is an operator of the form (11)
and deg M = (dy,d3). Then if the Laplace chain has length at least do on the right, or at least di on the
left, then there exists a sequence of Laplace transformations

for some Z, so that there exists a Darboux transformation JAEN Ly with M depending on 0% or 82 only,
and the diagram

s commutative.

3.3. The case of factoring out a Wronskian type Darboux transformation. In this section we
analyze the case ker M Nker L # {0}. We show that in this case the Darboux transformation has a
Wronskian type factor.

Recall first the following statement, which follows from the fact that ordinary differential operators over
K form a Euclidean ring.

Theorem 3.4. Let M be an ordinary differential operator in 0, over K, and ¢ € ker M \ {0}. Then
M = M - (05 — ™) for some My € K|[0,].

We recall here the following well known statement which is going to be used later.
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Proposition 3.1. Let L = 0,0, + a0 + b0y + ¢, where a,b,c € K. Then for every f(y) € K depending
only ony, L(f(y)¥) = f(y)L(¢) + f'(y)My(v), where M, = 0y +b.

The next statement is probably new in a sense that it never appeared in a rigorous form with all the
formulas, however the existence of “Wronskian type” Darboux transformations for operator of the form
L = 0,0, + a0y + b0, + c is well known. The proof is rather technical and is given in the appendix.

Theorem 3.5. [Existence of Wronskian transformations for the second order hyperbolic operator] Consider
operator L = 0,0, + a0y + b0y + ¢, a,b,c € K and a non-zero element 1 in its kernel.
Then for L there is a (“Wronskian type”) Darbouz transformation NyL = Ly My with

(12) Mw = 8x - %:1/1_1 )

and where Ny, is as follows.
Case I (general case). If T = 1,0~ 1 + b # 0, then

(13) Ny = 0y — 9, In(T)
and the dressing formulas are

(14) Ly =0;0y+ 010, + 010y + 1
where

ar=a, bi=b—0,(InT) , ¢ =ay—ad,In(TY)—T0o,(Inv)
Case IL If T = thytp=L + b 40, then

(15) Ny = 05 — n(z,y)
(no constrains on n(x,y)) and operator L can be factored as
(16) L= (0y+a)(0;+D)

and the dressing formulas are
ap=a, bp=n, co=na+a,;.

We can now formulate and prove the first building block of our inductive proof.

Theorem 3.6. Consider operator L = 0,0y + a0, + b0y + ¢ with Laplace invariant k being non-zero and
let there be a Darbouz transformation

(17) NL = LM ,

where M is an ordinary differential operator in O, of arbitrary order d over K. Suppose the kernels of L
and M has an non-trivial intersection:

YekerLNkerM , ¥ #0.

Then this Darboux transformation can be represented as a consecutive application of two Darbouz trans-
formations, the first one of which is generated by My = 0, — 0~ .

Proof. Applying gauge transformation, P — e~/ Pe to all the operators in the (17), we can reduce the
problem to the case where the coefficient b of the operator L is zero.

For a nonzero ¢ € ker LNker M, Theorems 3.4 and 3.5 imply that there exist a Darboux transformation
for L generated by My. Let it be defined by equality NyL = LyM,y. Theorem 3.1 implies that to prove
the theorem it is enough to prove that N is divisible by Ny on the right, that is N = N'N, for some
N' € K[0y,0y,...].

According to Theorem 3.5 two cases are possible, but in Case II invariant k is zero, so we need to
consider Case I only. In this case T = ¢, 0~ ' +b # 0, and M,, generates a unique Darboux transformation
defined by Ny = 9, — 9, In(T¢). Recall that b = 0 now, and therefore, T = 1,90~ # 0, and so T = 1)y,
and so Ny = 0, — 05 In(¢,).
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As it follows from Proposition 3.1, to prove that N is divisible by Ny, it is enough to prove that non-zero
1 is in the kernel of N.

We prove it using a small trick and Proposition 3.1. Indeed, consider the action of the both sides of
operator equality (17) on y1. We have then NL(yy) = L1 M (yv) implying N (yL(¢) + ¢,) = L1 (yM (v)),
and then N (¢,) = 0. Applying Theorem 3.4 for N and non-zero element of its kernel v,, we have
N = N’'Ny, for some N’ € K[0;,0y,...].

O

3.4. The case of factoring out a Laplace transformation. Suppose now ker M Nker L = {0}. Here
we exclude from consideration the case where L possesses a factorization of the form L = (9, + a)(0, +b).
In this case the corresponding Laplace transformation does not exist. Instead we can still factor out a
Wronskian type Darboux transformation, as it was shown in [39].

Theorem 3.7. Let for an operator L = 0,0, + a0, + b0y + c its Laplace invariant k be non-zero and let

there be a Darbouz transformation L M, Ly generated by M which is an ordinary differential operator in
0y of arbitrary order d over K, and
ker L Nker M = {0} .

Then the Darbouz transformation can be represented as a consecutive application of the Laplace transfor-
mations generated by My, = 0, + b and some other Darboux transformation of order one.

The rest of the section is devoted to a proof of this theorem.
Let the given Darboux transformation be defined by the equality

(18) N-L=L-M.

The equality implies that N is an ordinary differential operator, N = n;0%, for some n; € K, i =0,...,d.
Since k # 0, then there exists the Laplace transformation generated by M, = 0, + b:

(19) NyL=L_ 1M, .

Our goal is to factor out this transformation from the initial Darboux transformation. By Theorem 3.1
this is true if there are corresponding factorization of M and N: M = M'M,, and N = N'N, for some
M',N'. However, here the factorization for N follows from the factorization of M. Indeed, M = M'M,
implies that there exists a nonzero

P e ker M, \ ker L.

Equality (19) implies that L(¢) € ker N, while (18) implies L(¢) € ker N. Therefore, by Theorem 3.4,
N is divisible by N,. By Theorem 3.4, to show M = M’M,, is the same as to show that there is some
non-zero element in the intersection of the kernels of M and M,,.

In the rest of the proof we assume the opposite,

ker M Nker M, = {0}

and show that it leads us to a contradiction.
The main intertwining relation (18) implies a mapping

L: ker M — ker N .

Moreover, the equality L(f(y)y) — f(y)L(v) = f'(y)M,(¢) (proved in Proposition 3.1) implies a C(y)-
linear (by construction) mapping

(20) M, : ker M — ker N .

With an abuse of notation we denote these mappings L and M, by the same symbols as the corresponding
operators.

Lemma 3.1. The map M, in (20) is an isomorphism of vector spaces over C(y).
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Proof. Show that M, sends bases to bases. Let {e;}, i =1,...,d, be a C(y)-basis for ker M. Suppose there
is a non-trivial linear relation fM,(e;) = 0, where f; € C(y). Then by linearity, 0 = f*M,(e;) = M, (f'e;).
Since the kernel of the mapping is trivial, we have fie; = 0, which contradicts {e;} being a basis. Therefore,
M, is a monomorphism, and since ker M and ker N are of the same dimension, we conclude that it is an
isomorphism. O

Lemma 3.2. One can choose a C(y)-basis {e;}, i =1,...,d, for ker M, so that u; = L(e;), i = 1,...,d,
form a C(y)-basis for ker N.

Proof. We construct such {e;}, i =1,...,d, by induction.

Choose arbitrarily a non-zero e; € ker M. Since the kernel of the mapping L is trivial, then u; = L(e;)
is non-zero too, and the vector space (u;) over C(y) is one-dimensional. This is the basis of induction.

Assume that there are k, k < d, linearly independent over C(y) elements e; in ker M, such that
u; = L(e;), i =1,...,d, are linearly independent over C(y) in ker N.

Choose arbitrarily a non-zero ex11 € ker M that is linearly independent (over C(y)) withe;, i =1,... k.
If upy1 = L(egs1) is linearly independent with all w;, ¢ = 1,...,k (over C(y)), the step of induction is
proved.

Suppose now that ug11 = L(egs1) is not linearly independent with {u;}, i = 1,...,k (over C(y)).
Consider then {v;}, where v; = M, (e;), i =1,...,k+ 1. By Lemma 3.1 they are linearly independent and
span a vector subspace of dimension k + 1 in ker N. On the other hand, {u;}, i = 1,...,k, are linearly
independent too, and span a vector subspace of dimension k in ker N. Thus, there is at least one v; that
is linearly independent with {u;}, i =1,...,k (over C(y)). Without loss of generality, we can assume that
this v; is vq.

Consider €1 = eg4+1 + ye1. Using Proposition 3.1 we compute g1 = L (€x11) = L (ep41) +yL(e1) +

y' My(e1) = ug41 + yus + v1. Thus, vector space (uq,...,ux, Ugt+1) over C(y) is (k + 1)-dimensional.
Since the dimensions of the vector spaces (over C(y)) ker M and ker N are the same, this process can
be continued until the desired basis is constructed. (|

Using Lemma 3.2 we can choose {e;} ,i = 1,...,d, a basis over C(y) for ker M, so that {u;}, where
u; = L(e;) and {v;}, where v; = My (e;), i = 1,...,d, are two bases of ker N.
We define a C(y)-linear operator A by its action on its basis elements: A(u;) = v;, i =1,...,d, that is

(21) ker M S e; — =~ u; €ker N

T )

v; € ker N

and the diagram is commutative. Below we show that this cannot be true, and by this we arrive to a
contradiction with our assumption that ker M N ker M, = {0}.

If A is not degenerate, let F' = (f1,...,f%) be a row of f* € C(y). By Proposition 3.1 L(fe;) =
FiL(ed)+(fY) My(e;) = flui+(f) vi = flui+(f) A(u;) = (F+F'A)U, where U is a column (ug, ..., ug)".
Since A is not degenerate, then the system of linear ordinary differential equations F 4 = —F has a non
zero solution F' = (f1,..., f%). Thus L(f'e;) = 0 and since {e;} is a basis for ker M, f'e; belongs to the
intersection of the kernels of L and M, which is trivial by the condition of the theorem. Thus, ]Rei =0,
and since this is a non-degenerate linear combination of the basis vectors, we come to a contradiction.

If the matrix A is degenerate, then for some non-zero u € ker N, Au = 0. Consider its pre-image, a
non-zero € such that L(€) = w. Since diagram (21) is commutative, M, (€) = 0, which contradicts with
the assumption that the intersection of the kernels of M and M, is trivial.

This concludes the proof of Theorem 3.7.
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3.5. The general statement. Theorems 3.6 and 3.7 and the result of paper [39] describing a particular
case when the operator L is factorizable (see more details in Sec. 3.4), imply together the following theorem.

Theorem 3.8. Consider operator
(22) L =0,0y+ a0, + b0y +c,

where a,b,c € K. Suppose a Darboux transformation of L is defined by a pair (M, N), where the operator
M is of bi-degree (dy,ds). If the Laplace chain of L has length at least da on the right, or at least dq on
the left, then the Darbouz transformation can be represented as the composition of first-order elementary
Darboux transformations.
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APPENDIX

For the completeness of the exposition we give here the proof that due to its technical nature was skipped
in the main part of the text. Although the theorem may be known in general, it had never appeared in
this complete form with all the formulas in the literature.

Theorem 3.9 (Existence of Wronskian transformations for the Laplace operator). Consider operator
L =0,0y+ a0, + b0y +c, a,b,c € K and a non-zero element 1 in its kernel.
Then for L there is a (“Wronskian type”) Darbous transformation Ny L = Ly My, with

(23) Mw = aﬂc - %1/71 )
and where Ny, is as follows.
Case I (general case). If T = b~ + b # 0, then

(24) Ny = 0, — 0, In(T)

and the dressing formulas are

(25) Ly = 0.0y +a10; + 010y + 1
where

ar=a, bi=b—-0,(InT), ¢ =ay—ad,n(TY)—T0,(Inv)
Case II. If T = 00~ + b # 0, then
(26) Ny =0, —n
(no constrains on n) and operator L can be factored as
(27) L=(9,+a)( +0)
and the dressing formulas are
ap=a, bi=n, c=na+ay.

Proof. Let N =0y +n, L1 = 0;0y + a10; + 010y + ¢1, n,a1,b1,¢1 € K.
From the fact that 1 is in the kernel of L, obtain c as
C= - (a¢x + bd)y + ¢xy) d’il

Then comparing the coefficients at 92 and then at 9,0,, and then at 9, on the both sides of NL = L1 M
(and recalling that v is not zero), we have

ar=a, bi=b+n+(nvY), , c1=na+a;— by (Y + b)) .
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Comparing coefficients at 9, and at 1 (free), we have two equivalent equations of the form
(28) ("/Jw + b¢)n + 690('(/)90 + bw) =0
Case 1. Assuming 9, + by # 0, we obtain

(bY)e + 2z
by + 1,

Substituting into the formulas above we get
by =b—-0,(InT) , c1 =a;—ad, n(TyY)—T0,(Invy)

where we have introduced notation

(29) T=v¢0""+b.
In this notation we have
(30) n = —0, In(T)

and also the case splitting condition v, + b # 0 is equivalent to 1" # 0.
Case II. Assume v,, + by = 0, we obtain a rather interesting small case:

(31) ai=a, bi=0b, ci=na+ta,

and no constrains on n.
It might be immediately interesting for the reader to look at Laplace invariants of L and L; (h, k and
hi, ki, respectively):

h=ay+0,0,In(¢), k=0, hi1=0, ki =ny,—a,.
So in this case the original operator L is factorizable as
(32) L= (0y+a)(0;+0b) .

This particular small but interesting case is further described in [39] (see more details in Sec. 3.4).
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