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ABSTRACT: In a departure from conventional chemical ap-
proaches, data-driven models of chemical reactions have recently
been shown to be statistically successful using machine learning.
These models, however, are largely black box in character and have
not provided the kind of chemical insights that historically advanced
the field of chemistry. To examine the knowledgebase of machine-
learning models—what does the machine learn—this article
deconstructs black-box machine-learning models of a diverse
chemical reaction data set. Through experimentation with chemical
representations and modeling techniques, the analysis provides
insights into the nature of how statistical accuracy can arise, even
when the model lacks informative physical principles. By peeling
back the layers of these complicated models we arrive at a minimal,
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chemically intuitive model (and no machine learning involved). This model is based on systematic reaction-type classification and
Evans—Polanyi relationships within reaction types which are easily visualized and interpreted. Through exploring this simple model,
we gain deeper understanding of the data set and uncover a means for expert interactions to improve the model’s reliability.

B INTRODUCTION

A great deal of excitement has been growing among physical
scientists and engineers about machine learning. This excite-
ment stems from a host of interesting examples from the data
science field, including widely reported advances in image
recognition, artificial intelligence in games, and natural
language processing that have demonstrated extremely high
levels of performance and even abilities beyond expert human
capabilities. Substantial efforts have therefore been made to
bring the tools of machine learning to bear upon the physical
sciences,' > with some of the most interesting chemical
applications being in the areas of reactions and synthesis.””"’
Chemistry, however, is traditionally driven by a combination of
concepts and data, with its own heuristics, models, and
hypothesis-making approach to research. It is our view that the
contrast in approach between purely data-driven research and
concept-driven research begs questions such as the following.
What is the machine’s representation of knowledge? What does
the machine learn? It is these questions that will lead to more
effective synergies between machine learning and the chemical
sciences as useful answers will involve explainable and
interpretable concepts, not merely machine abstraction and
black-box decision making. The intent of this article is to
provide some preliminary indications of how current-
generation machine-learning tools operate on chemical data,
in partial answer to these two questions. Our emphasis will be
on application to computer prediction of chemical reactions, a
key target for recent generations of machine-learning methods.
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The potential for computers to assist in synthesis has a long
history, dating back to original proposals by E. J. Corey in the
1960s."'~"* These ideas were focused on the possibility for
expert systems to encode known chemical principles into a
systematic framework for predicting synthetic routes. Expert
systems, however, fell out of favor due to the tedious encoding
of rules and the rule exceptions required to maintain usability
and accuracy across a diversity of reaction types. While recent
efforts have challenged this conclusion,'* the manual efforts
needed to construct quality expert systems have by no means
decreased. Alternatively, machine-learning methodologies give
the appearance of being particularly fit for encoding chemical
reaction data without substantial human intervention and
tinkering. To date, millions of reactions have been reported
and are available in online databases, motivating recent efforts
to use methods such as neural networks to build predictive
tools for synthesis planning,'>~**

Nonlinear regressions, which include deep neural net-
works,”>™*” form the basis for machine learning to represent
complex relationships between input and output variables.*®
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Figure 1. Overview of the status of machine learning for chemical reactions. Popular deep neural networks are shown in the middle row, where the
internal “hidden” representations are hoped to be equivalent to the third row. In the third row, principles behind the predictions are chemically

intuitive concepts.

These methods can represent arbitrarily complex maps
between any number of input variables and output results*’
and can simply be applied to data, often with excellent
statistical results. Since expert understanding of the meaning
behind the data is not needed, the application of nonlinear
regressions to encode chemical reactions is vastly different than
applying expert systems (i.e., where specific rules are manually
encoded and easily understood). In the specific case of neural
networks, “hidden layers” constitute the intermediate repre-
sentations that are used to make predictions. While these layers
may well encode concepts and heuristics, they are indeed
hidden and do not provide transparent or interpretable reasons
for decisions made by the network. In other popular nonlinear
techniques, “kernel” functions are used, where similarity
between pairs of data points determines the structure of the
predictions. Kernels are relatively interpretable compared to
the hidden layers of neural networks, as similarity in the feature
space is the core concept that can be understood.

To improve interpretability, data scientists might make use
of input features that are comprehensible to chemists.*
Typical machine-learning features involve graph-based fea-
tures® 7** (e.g, based on covalent attachments in molecules),
strings (e.g., SMILES35), hashing, or substructure analysis, and
these techniques have been widely used in drug design
applications. Metrics such as Tanimoto distances,”’ which are
measures of similarity between molecules, provide some
grounding to chemical concepts but are otherwise not trivial
to interpret. In contrast, atomic charges or orbital energies
derived from quantum chemistry, for instance, might be used
alongside conventional physical organic descriptors®®’ to
capture chemical principles in quantitative form.”**” Progress
in this area is useful and ongoing, but more insight is needed
into the relationship between the physical content of these
features and how machine-learning models make use of the
features.

Whereas machines have no prior expectations of the
meaning of input features, chemists are clearly the opposite.*’
Chemists use explainable, physical features to make pre-
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dictions, and they have strong expectations about how their
models should behave based on these features.*' In the case of
a polar reaction, an atom with a high positive charge might be
expected to react with an atom of large negative charge due to
Coulomb interactions. This fundamental physical interaction is
described by chemists in terms of electronegativity and bond
polarity, which are chemically specific descriptors that are
highly useful for predicting the reaction outcome. Due to these
relationships, invoking atomic charge as a descriptor brings in a
wealth of expectations for an expert chemist due to their
knowledge of firmly established physical laws.

Machine-learning models thus face a significant challenge in
providing advances in chemical reactions (Figure 1), as it is not
obvious how they are rooted in physical reality or whether they
use chemical features in a way that in any way resembles
chemical thought. In the machine-learning world, it is known
that neural networks focus on distinctly different regions of
images compared to humans when recognizing objects*” and
yet still reach high accuracy. In the text that follows, this issue
is investigated in detail by examining a data set of chemical
reactions with two qualitatively distinct, powerful machine-
learning methods. In short, we will show deep neural network
and support machine (SVM) models to be quantitatively
accurate but missing a basic, qualitative representation of
physical principles. Using this knowledge, it will be shown that
a well-known, interpretable chemical principle better describes
this data set and even provides higher quantitative accuracy
than machine learning. On the basis of these results, Figure 1
outlines our viewpoint of the relationship between current-
generation machine-learning methods and chemical methods.
This figure will be discussed in more detail in the Discussion
section after the main results of this study.

B FIRST CHALLENGE: REPRESENTING CHEMICAL
DATA

For algorithmic techniques to learn relationshi?s between
chemical properties and reaction outcomes,”*”*™* the
representation of those features is vitally important. A basic
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i 15,16 . .
principle used here and elsewhere ™ is to consider reactions

as being composed of bond-breaking and bond-forming events.
This places the features squarely into the chemical domain and
automatically injects accepted chemical principles into the
choice of representation: chemical bonding is an a priori
accepted concept that does not need to be “learned” by the
machine. This assumption in turn allows each reaction to be
expressed in terms of atom-centered properties (possibly
including neighboring atoms, next neighbors, etc.), such that
characteristics of the features are dominated by the properties
of the reactive atoms. The choice of reactive-atom-centered
properties therefore gives a list (a vector) of real numbers that
specify a particular reaction. Many choices are conceivable for
this feature list.

To represent an atom, one approach is to consider features
of the molecular graph centered on the (reactive) atom
(Scheme 1). Prior efforts in this area have used graphs in a

Scheme 1. Atomic Representations Based on Atomic
Connectivity and First-Principles Computation”

# Connections

Atomlc # Charge
R1\ l
[6 3] —> <— [0.38]
R3

“Similar features are available through the neighbors to the central
atom, allowing more contextual information to inform the model.

similar way, where in some contexts the assignment of this
graph is a key step to classify reactions'” and in others graphs
are key frameworks for the ranking of reactions.">'**"** To
form such graphs in the present context, the atomic number,
number of covalent bonds, and formal hybridization can be
used, where hybridization can usually be inferred from the
former two properties. To build a more detailed picture of the
atomic environment, these three features can also be added for
the atom’s neighbors or next neighbors as appropriate. While
the features themselves are easy to determine, a number of
atoms are involved in any particular reaction. The order of
these atoms in a feature vector may influence a machine-
learning algorithm’s results, so in this work the ordering of the
atoms is standardized according to a prescription given in the
Computational Details section.

Atomistic simulations can also be used to derive the
properties of atoms and molecules using procedures that are
now considered routine. These techniques can provide a
wealth of chemically relevant information, for instance,
energies and shapes of molecular and atomic orbitals, atomic
charges, molecular multipole moments, and excitation energies.
While more expensive to calculate than graphical features,
these features are expected to provide more precise, physically
meaningful information compared to purely graphical features.
In this work, charges and effective hybridization (ie., a
measure of s/p character for an atom) from natural bond
order” (NBO) calculations are specifically considered as
chemically informative atomic features.

In addition to graphical and quantum-chemical features, the
energy of the reaction is a particularly informative feature for
predicting reaction outcome. The energy of reaction (AE) is
simple to compute with quantum chemistry and provides a
basic thermodynamic principle that directly relates to reaction
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outcome: increasingly positive energies of reaction correspond
to a reduction in reactivity. AE for a single reaction can be
found in seconds to minutes on modern computers, and the
activation energy, which will be the focus of the predictions
herein, costs at least an order of magnitude more computa-
tlonagl0 ;c}me, even with advanced algorithms for its evalua-
tion.

B RELATIONSHIPS BETWEEN REPRESENTATIONS

To understand how choices of feature representations affect
the ability for machine learning to predict reaction outcomes, a
machine-learning model was set up based on two databases of
chemical reactions (723 elementary steps and 3862 elementary
steps). These reactions—described further in the Computa-
tional Details—come from first-principles atomistic simula-
tions of reaction pathways.’>>®> The simulations cover two
reaction classes: one of interest to atmospheric chemistry”* >’
and the other to CO, reduction chemistry.’*~*° The choice of
this data set allows two significant advantages over other data
sets: (1) Activation energies are available for feasible as well as
infeasible reactions and (2) noise and uncertainties are
decreased, as all data points were generated with the same
simulation method. In summary, the two data sets include a
host of polar and radical reactions involving unimolecular and
bimolecular elementary steps. While we report primarily on the
first data set in this article, the Supporting Information will
show that the second data set behaves similarly to the first,
with little differences in statistical errors and interpretation
compared to the first data set.

Two types of regression techniques were chosen as
nonlinear machine-learning models for further study: neural
networks (NNs) and SVM. Both are considered powerful tools
with strong theoretical foundations®”®" in the machine-
learning community, but the SVM provides simpler, less
ambiguous choices of model setup compared to NNs. Vitally,
the NN approach is believed to be able to form internal
features that represent the core quantities for accurate
predictions. To test this hypothesis, a number of network
topologies were constructed and tested with the most
generalizable model being presented in the main text (see
Supporting Information for full details). These methods are
therefore expected to predict activation energies for chemical
reactions to high accuracy, assuming that the input feature
representation is meaningful. In addition, the least-squares
(LS) variant of SVM—LS-SVM* —can provide error bars on
all predictions, giving it an internal validation metric to gauge
generalizability.

For the first round of machine-learning modeling, graphical
features of reactive atoms, augmented by the energy of
reaction, were utilized as features for the NN and the SVM.
Upon cross-validation and testing on data points outside of the
training set, a good correlation (NN: R*> = 0.88. SVM: R* =
0.87) is found between quantum chemical activation energies
(E,) and machine-learning estimates of the same quantities
(Figure 2, left). While higher R* values have been found for
larger data sets with millions of data points (e.g,, potential
energies from quantum chemlstry),éw these R* values are
more typical of machine-learning studies of chemical
reactions.”” The Supporting Information shows the error
distribution for SVM matches the expected error distribution
over the entire data set (Figure S2), indicating that these error
estimates are reliable. Similar models without graphical
features or energy of reaction showed much lower R values
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Figure 2. Comparison of graphical and quantum chemical feature sets
in deep neural network modeling.

(Figure S2). In short, NN and LS-SVM using the chemically
relevant graphical and reaction energy features provided
quantitative estimates for activation energies that it was not
trained on and reasonable estimates of uncertainties in the LS-
SVM case. By these statistical metrics, NN and SVM are each
successful at learning activation barriers from first-principles
simulations.

Next, the quantum chemically derived atomic charges were
used as features in place of the graphical features (Figure 2,
right). Being sensitive to the electronic structure of the reactive
molecules and atoms, these charges should in principle be
more detailed descriptors than graphical features. The
quantum chemical features performed similarly to purely
graphical features in terms of test set R (SVM: 0.84 vs 0.87.
NN: 0.84 vs 0.88). Correlations between the predicted and the
actual error (Figure S2) further show that LS-SVM can predict
the activation energies just as well using either graphical or
quantum chemical features with consistent uncertainties. While
the NN provided a slight advantage using graphical features
compared to the atomic charges, the difference was not
dramatic.

The similar utility of graphical and electronic features
suggests that the two sets contain similar information. We
hypothesized that one feature set implies the other: the atomic
connectivity around each reactive atom dictates the physical
charge. To test this hypothesis, all molecules in the benchmark
set were collected and specific atom types extracted based on
the graphical features. For example, a trivalent, sp2 carbon
would be one atom type, distinct from a tetravalent, sp’
carbon. Atomic charges across this set were averaged on an
atom-type by atom-type basis, yielding a lookup table that
maps atom type to a characteristic charge (Figure 3). The
mean change in charge associated with this averaging is small
(0.05 au vs the original charges), suggesting that the charge
assignments are reasonable.

The NN and SVM models trained on the graphically derived
electronic properties of atoms (Figure 4, top left) show similar
prediction accuracy for SVM (R* = 0.83) and slightly worse for
NN (R*> = 0.80). This similarity suggests that the graph
implicitly contains sufficient information to reproduce mean-
ingful electronic features, which in turn work well in building
effective NN and SVM models. For the purposes of predicting
activation energy in the benchmark set of reactions, these
qualitatively different feature sets appear to be equally
successful. Up until this point, the NN and SVM modeling
of elementary chemical reactions of main group elements is
performing well and has no obvious deficiencies.
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Figure 3. Method for generating the average charge features. First, the
reactant molecules are collected and charges are computed for all
atoms. For each atom in all of these reactants, atoms with equivalent
connectivity are aggregated and their partial charges averaged. Mean
charges are used for all atoms of each respective type in machine
learning.
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Figure 4. (Top left) NN results using electronic features derived from
graphical features. (Top right) NN results based on random values of
atomic charges. There is no physical meaning to these charges in the
sense that they have no value in representing Coulomb interactions.
(Bottom) One-hot encoding of reaction types using graphical atomic
features.

B DECONSTRUCTION OF MACHINE MODEL
MAKING

At this point in our study important insight has been gained
with respect to representing chemical information. When
expert chemists look at a 2D chemical structure (e.g, a
ChemDraw), deep properties are inferred based on their
knowledge, intuition, and experiences. Chemists can identify
reactive centers, hypothesize the most likely transformations to
occur, and propose experiments to reduce uncertainty in
challenging cases.””®” This expert skill is the concept-centered
approach mentioned in the Introduction, which relies on the
physical properties inferred from the 2D structure (for
example, atomic charge).

Since a 2D chemical structure is equivalent to its graph, one
might suppose that the machine is inferring principles and
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properties in a way similar to the expert. The graph implies
electronic features, which are the same physical properties that
dictate chemical reactivity. While this is easy to imagine and is
the hoped-for goal of machine learning, such principles are by
no means necessary for nonlinear machine-learning tools to
provide quantitative accuracy. Not only could the machine
develop an entirely alternative viewpoint not held by chemists,
it could also be making predictions using properties an expert
would consider physically incorrect.

The second possibility appears to be closer to the truth. As
the next numerical experiment, the machine-learning models
were built using random values of atomic charge. Instead of
using (physically meaningful) average values of charge from
graphically derived atom types, each atom type was assigned to
a random number from a standard Gaussian distribution.
Using the randomized “charges”, the two machine-learning
models performed similarly to the previous models, with R* =
0.86 for SVM and R* = 0.80 for NN, showing approximately
equal quantitative accuracy (Figure 4). The atomic charge used
by SVM therefore must be a label, not a physical measure;
increasing or decreasing this number does not reflect a varying
chemical environment but simply a renaming of the label.
Adjacency or proximity between two of these charges holds no
particular meaning, as the random charges have no particular
relationship with physical charge.

B REESTABLISHING CHEMICAL CONCEPTS

If electronic or graphical features of atoms are simply labels, it
is likely that using “good” labels would yield a somewhat better
procedure. An improvement in accuracy should result because
the charges might be mistakenly seen by the NN or SVM to be
“ordered” (—0.2 < —0.1 < 0.0 < 0.1), which is unrealistic given
that the actual ordering is random. A good labeling procedure
would not entail any artificial ordering, and this can be done
with one-hot encoding. This encoding entails constructing a
set of features with values of 0 or 1, where each feature is
treated independently of the others. A single one-hot feature
corresponds to a particular assignment of atom type based on
the graph, just like in the feature-averaging strategy discussed
above (but with no charge assignment).

A small increase in machine-learning predictive performance
is observed when using one-hot encoded atom types, giving a
test set R* of 0.87 (NN) and 0.89 (SVM) (Figure 4). This R” is
slightly higher than that of the random features and close to or
better than the best-case models with the other feature types
(0.88 NN and 0.87 SVM). This result suggests that the
machine-learning models using labels of atomic type appear to
be fully sufficient to reach quantitative accuracy. The
implications of this simplified feature representation are
important to understanding nonlinear regressions in machine
learning and will thus be further discussed.

The high accuracy achieved using one-hot labels challenges
whether machine learning requires quantitative physical
principles as underlying features for making accurate
predictions. Recall that the reaction feature vector is simply a
composite of the atomic features of reactive atoms, augmented
by the energy of reaction. Where graphical features and
properties derived from quantum chemistry remain close to
basic principles such as periodic trends, covalency, and
electronic structure, atom labels contain no such properties.
A one-hot encoding of a 3-valent carbon is equally different
from a 2-valent carbon or a hydrogen in an O—H bond. In
other words, all one hots are unique labels with no special
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relationships to each other, much less physical relationships.
This uniqueness means that (in the feature set) a pair of atom
types of the same element are just as different from each other
as a pair of atom types with different elements! Periodic trends,
bonding patterns, and electronic properties are lost to such
atom labels that do not contain this information.

To push this hypothesis even further, a k-nearest neighbors
model was applied to the data set using the base graphical
teatures. With K = 2, predictions are made by assuming that
the average of the two most closely related data points gives
the unknown data point. In this case, an R* of 0.86 on the test
sets was achieved with the one-hot encoding feature set
(Figure S3). This surprising result suggests that machine
learning is doing little more than memorizing,68 as predictions
are made to reasonably high accuracy by mere similarity with
training data points. No believable trends in physical properties
are possible using only pairs of data points.

The analysis so far (Figure S and statistically summarized in
Table S2) suggests that the nonlinear regressions of this work

Individual cross validation fold scores

One-Hot Encoding { @  Nearest neighbor [ 4 ." ’
SVM d
Base Graphical Representation { @ Deep NN ‘ ’ ’.'
Partial Charges - e o000 o ,...’”
Graphical - Partial Charge - (X o0 o edec o
Graphical - Random - ] “ [ ] ..n 1
0.5 0.6 0.7 0.8 0.9 1.0
R2

Figure S. Comparison of three machine-learning approaches using
various representations of the underlying features. Each filled circle is
an R* on a cross-validated test set, so there are S R* values per
method/feature combination.

are largely agnostic to the underlying feature representations
(with the exception of the energy of reaction, which is
important and thus we will focus on this shortly). The
Supporting Information shows analysis of a larger data set with
1 order of magnitude additional data points (3862); no
qualitative change in outcome was observed, and only minor
differences in quantitative accuracy were found. We therefore
ask whether a highly simplified representation of chemical
information may be just as effective as the machine learning.
When atomic features are represented by simple labels,
reaction types therefore are just composites of these labels.
Incidentally, chemists have worked with labeled reaction types
for centuries: they are called named reactions. For each reaction
type, simple relationships have been developed to relate the
molecular properties to the reaction rate. This approach will
provide a much more transparent picture of reactions than
nonlinear regression.

B EVANS—POLANYI RELATIONSHIPS

At this point, it is clear that machine learning views reactions
categorically rather than by any deeper physical relationship.
The well-known Evans—Polanyi relationship can also do the
same, where a linear trend between the activation energy and
the energy of reaction is constructed. The statistical errors on
the top-10 most prevalent reaction types are shown in Table 1.
In this data set certain reaction types appear repeatedly, and
the trends in reactivity fit well to the linear relationship (first
row). The SVM model is able to perform almost as well as the
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Table 1. Comparison of Statistical Accuracy of the Evans—Polanyi Relationship Compared to SVM and NN for Common

Reaction Types (RMSE, kcal/mol)“

1 2 3 4
Evans—Polanyi relationship 5.00 4.98 4.69 4.86
one-hot SVM 5.69 6.41 4.45 5.70
one-hot DNN S.71 5.93 5.84 4.73
no. of data points 44 39 26 21

S 6 7 8 9 10 total
S.12 4.13 6.63 9.09 6.12 1.99 5.35
4.64 4.67 6.12 7.34 7.24 2.56 5.68
4.13 5.01 5.54 8.42 5.90 3.07 5.62
18 15 15 15 15 15 223

“Evans—Polanyi relationship errors are based on leave-one-out cross validation with RMSE reported for the hold-out points.

Evans—Polanyi relationship for the same reactions, with an
overall RMSE about 6% higher. The NN model is similar, at
5% higher overall error than the Evans—Polanyi relationship.
This trend remains when analyzing the full data set, shown in
Figure 6, which affirms that the Evans—Polanyi relationship is

Prediction Accuracy by Reaction Type

14 4

12 4
2 10
T g
L@ A 4
o A
0 6
=
4

4

2 -

Evans-Polanyi SVM Deep NN

Figure 6. Error distributions for all data set 1 reaction types with at
least 3 data points. Green triangles are mean values.

slightly numerically improved over the SVM and NN models.
See the Supporting Information, Figure S8, showing that the
same picture holds when analyzing the second data set, which
was generated using density functional theory.

Figure 7 shows a hydrolysis reaction as an interesting
example (reaction type 1 of Table 1). The Evans—Polanyi
relationship on these 44 data points gives an R* of 0.74 and
provides a simple interpretation: water-assisted elimination of
ROH at an sp® carbon has barriers that trend with the energy
of reaction. While this statement is not particularly profound, it
is easily constructed and can be performed for any reaction
type represented by at least two points in the data set. Further
analysis of the data in Figure 7 (top), however, shows this
reaction is somewhat more nuanced. While in the original
feature set rings were not identified, these were found to be
important. The data points of Figure 7 therefore divide
themselves into two sets: (A) reactions without 4-membered
rings and (B) reactions involving 4-membered ring breakup.
The B reactions break the 4-membered ring, release significant
strain, and sit to the left of the other data points in Figure 7
(lower AE). In region B, the Evans—Polanyi relationship has a
nearly flat slope. Removing these data points increases the R?
of the A region to 0.81, indicating an improved linear fit.
Predicting A and B data regions separately gives an overall
RMSE of 3.37 kcal/mol compared to 4.40 kcal/mol for the
original, single Evans—Polanyi relationship.

The Evans—Polanyi relationship can break down within
specific sets of reactions, giving an indication that the
chemistry is more complex than originally envisioned.”” For
example, an Evans—Polanyi relationship plot with a multi-
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modal structure suggests that there are significant mechanistic
differences within the reaction type.”” One such “bad” Evans—
Polanyi relationship was easily identified within the data set.

The reaction type of Figure 7 (bottom) illustrates this point
well (reaction type 9 of Table 1). The single-line relationship is
poor (R* = 0.39), and 3 points on the left appear to be well
separated from the points on the right. While this is insufficient
data for statistical significance, mechanistic differences are
responsible for the bimodal structure in this example.
Examining the individual reactions revealed that the 3 data
points differed qualitatively from the others and involved
release of strain from a 4-membered ring. This shifted the
reaction energies (AE) significantly downward for elementary
steps that otherwise had the same reaction classification.
Dividing the two cases based on the ring-release criterion
provides two Evans—Polanyi relationships with R* of 0.98 and
0.73, indicating good fits to the linear relationships.

B DISCUSSION

The above results and analysis of a chemical reaction data set
highlight a certain tension between machine-learning and
chemical approaches. Whereas chemistry usually seeks
explanations based on the physical properties—and inherently
cares whether those physical properties are real—machine-
learning approaches can reach their criteria for success (test-set
statistical accuracy) without achieving a convincing relation-
ship to chemical principles.”®”" While the machine approach
could in theory provide physical relationships, there is no
reason to believe this will come automatically with currently
available algorithms, which are agnostic to expert knowledge.
In the cases examined above, it is reasonable to conclude the
machine-learning models do little more than memorize values
from clusters of data points, where those clusters happened to
be similar reaction types.

This limitation applies just as well to similarity-based SVM
models as to deep NN machine-learning tools. In the latter
case, NNs provide no obvious correspondence between their
hidden representations and chemical concepts, though in
principle these hidden representations could be valuable. Such
a valuable hidden representation, however, is clearly not
present when formed in the two data sets of this study, as the
NN was unable to generalize its predictions beyond the
specific reaction types that appeared in the input vector.

The two questions posed in the Introduction (what is the
machine’s representation of knowledge and what does the
machine learn) can be succinctly answered, at least in the case
of the NN and SVM models used herein. Since NN and SVM
recognize similarity between data points, it does not appear to
greatly matter what form the input data comes in. Since the
features can take many forms and still discriminate between
reaction classes, these features need not be physically
grounded. SVM therefore learns to recognize reaction types
based on similarity within an abstract feature space. The NN

https://dx.doi.org/10.1021/acs.jcim.9b00721
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Figure 7. (Top) Example of the Evans—Polanyi relationship from a reaction type with many examples in the data set. (Bottom) Bimodal Evans—
Polanyi relationship for a second reaction type. Dashed green lines represent the (poor) linear fits when including all data points.

performs similarly, does not provide any additional general-
izability, and does so in a less transparent manner. While it is
possible that machine learning through NNs can provide
improved representations of chemistry with larger data sets, no
improvement in statistical accuracy was found on a second data
set with 3862 reactions (see Supporting Information, especially
Figure S8).

Despite these concerns, however, machine learning still has
strong abilities. It can operate directly on data and quickly give
quantitative accuracy, in contrast to the chemical approach
which relies on existing knowledge and highly developed
insight. Certain questions of value therefore deserve further
consideration.

(1) Does the method solve an unsolved chemical problem or
does it simply reproduce what is known?

(2) Does the method offer clear advantages in time to
solution compared to existing approaches?

(3) Does the method provide transferable chemical insight,
where transferable refers to the ability to work well
outside of the current data set?

In our opinion, contemporary approaches used by expert
chemists address points 1 and 3. New approaches for handling
chemical problems are being developed by domain scientists
for 2. In the area of chemical reactions, some progress has been
made using machine learning to achieve 2 as well but not
necessarily 1 and a few examples of 3 within specific
domains.””> While there remains a lot of room for new
machine-learning approaches for chemical problems that may
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perform at a much higher level, one fundamental difficulty
remains.

Figure 1 compared three types of models for relating data to
predicted outcomes. The first most closely resembles expert
procedures, where knowledge is represented in precise,
explainable concepts developed over years of experience.
These concepts are clearly understood, and chemists know the
contexts in which each concept may be applied. In many cases,
simple mathematical expressions can be written down that
show the relationship between the physical properties and the
outcome of interest (i.e, Table 1 and Figure 6). In the second
case (in the middle of Figure 1), machine learning performs a
complicated transformation of raw features into a hidden
representation, which in turns leads to quantitative predictions.
The second case provides no clear interpretation of how it
obtains its high accuracy, and this is essentially what is
expected of current-generation machine-learning methods. In
the third case shown at the bottom of Figure 1, an idealized
machine-learning setup takes raw chemical features (e.g,
graphs) and relates them to concepts that are recognizable to
chemists. This represents an automatic reduction in
dimensionality of the feature set into more concise features
that are primarily predictive of outcome. While this is a
beautiful procedure, more work will be needed to achieve such
a goal.

While these three procedures may seem like three equivalent
means to the same end, in practice this is far from the truth.
The two procedures using interpretable features employ a low-
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dimensionality, transferable representation of the chemical
information, which is an incredibly important advantage
(Figure 7). With a low-dimensionality representation,
predictive accuracy can be obtained with exponentially fewer
data goints compared to a high-dimensionality representa-
tion.”” Consider, for instance, the (linear) Evans—Polanyi
relationship: given perhaps 3 data points, the data can be fit
and predictions made. An SVM or neural network with an
input feature vector of dimension 10 can do little to nothing
with 3 data points. In addition, chemical principles are backed
up by physical considerations, making them much more likely
to be transferable outside of the current training/test set. For
example, in polar reactions the Coulomb relationship states
that positive and negative charges attract, leading to faster
reactions (and physical charges are required to capture this
relationship in full). Physical models built directly from
physical features will therefore be the most generalizable
predictive tools.

The low-dimensionality representation of knowledge ex-
pressly used by expert chemists allows them to operate in
uncertain domains and make considerable progress in
developing new chemical reactions. Machine learning in
high-dimensional spaces is, on the other hand, unlikely to
provide any value for new chemistries where the number of
data points is low. The concern raised in question 3 seems to
require low dimensionality and an underlying physicality in
models and feature space, which deviates substantially from
contemporary machine-learning methods.

B CONCLUSIONS

The present investigation started with an analysis of feature
representations (Figure 8) for machine learning of chemical
reaction barrier heights. Atomic labels that lacked physical
trends were found to be the basis for which the model made its
predictions, and recognition of reaction types was the full basis
for this model. This analysis showed that the machine-learning
method was simply recalling reaction types, and we therefore
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Figure 8. Summary of feature experimentation steps. All feature types
produce similar results in deep neural network or SVM regression,
including random atomic charge assignments and one-hot labels.
Machine-learning algorithms treat all atom types as completely unique
and essentially unrelated to one another.
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give a tentative, weak answer to “what does the machine
learn?” The machine learns to recognize the reaction types that
were already encoded directly in the input features.

The machine-learning model was subsequently replaced by a
simple, well-known chemical principle called the Evans—
Polanyi relationship. Statistically, the linear Evans—Polanyi
model slightly outperformed the nonlinear machine-learning
models (by about 5% RMSE) and provided a simple
interpretation of the results. This low-dimensionality model
(2 parameters per reaction type) is algorithmically and
conceptually easier to apply and can be evaluated using
chemical principles, making it transferable to new reactions
within the same class. While Evans—Polanyi relationships are
not expected to be universal,””’ they provide a metric for
reactivity that can be easily applied and tested and give a
starting point for more complex models to be proposed.

The interpretable superiority—alongside reasonable stat-
istical accuracy—of a simple chemical relationship compared
to nonlinear machine regression suggests that deeper analysis is
needed of machine-learning methods for chemical sciences.”'
The approaches should not be used as black boxes, and careful
investigations are required to reveal whether simpler, more
easily interpreted methods could replace the complex workings
of these machines. It should be recalled that machine-learning
tools have seen their greatest benefits when working with giant
data sets that are not well understood. Chemical research is not
necessarily in this limit: chemists understand their data and do
not necessarily have available millions of poorly understood
data points that are ripe for machine-learning models.

B COMPUTATIONAL DETAILS

Reaction Representations. To represent a reaction,
which involves bond-forming and/or -breaking events, the
representations of the two atoms involved in the bond were
concatenated. Consistency in ordering is important to ensuring
that driving coordinates involving the same atoms are treated
appropriately when algorithmically learning. Therefore, the
atoms’ representations were sorted in descending order, which
provides a unique representation. Due to this ordering,
however, if two driving coordinates share an atom in common,
it is possible that the two driving coordinates will appear to
have no atoms in common.

Representing a reaction using a collection of bond changes is
somewhat complex, however, due to the two types of driving
coordinates (formed and broken bonds) and a variable number
of driving coordinates of each type. Therefore, separate
representations for the sets of formed and broken bonds
were created and concatenated. For each type’s representation
we utilized pooling to generate a fixed length representation
from a variable number of driving coordinates (Scheme 2).
Min, mean, and max pooling were tested as each of these
seems plausibly important in conveying chemical meaning,
with mean pooling not utilized in the final feature
representation. Our representation also tested a few reaction
level features in addition to the aggregate atomic representa-
tions. These were the number of bonds formed, number of
bonds broken, and AE of the reaction (the former two were
not used in the final machine-learning strategy). While
obtaining AE requires geometry optimizations, this step is
much lower in computational cost than optimizing a reaction
path including its associated transition state.”’ The various
atomic feature sets examined in the main text are denoted in
Table 2.
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Scheme 2. Graphical Feature Vector for Machine-Learning
Applications”

Feature vector (graphical feature sets, for results reported in main text)

[ AE [ Max(add) [ Min(add) | Max(break) | Min(break) |

Representation of additions or breaks to covalent connections graph, second line is an example

Higher Coordination | Lower Coordination
atomic # # atomic # #
8 1 6 3

“While more complicated feature vectors were examined (e.g,
including nearest neighbor atom descriptors), none showed
substantial improvement over this simple choice. See the Supporting
Information for additional test cases.

Data Set. The Z-Struct reaction discovery method”*~"® was

used to combinatorically propose intramolecular and inter-
molecular reactions between small-molecule reactants, which
include carbon, hydrogen, and oxygen (Scheme 3, data set 1).
Even with these relatively simple reactants, the full extent of
elementary reactions that may appear when the species are
combined is unknown, due to the significant number of
plausible changes in chemical bonding. On the basis of their
relevance to atmospheric chemistries’ >’ and the difficulty in
studying the host of possibilities using experiment, details of
these reactions are best provided via first-principles simulation.
For this study, a systematic simulation approach was used to
generate this set of possibilities. Specifically, the Z-Struct
technique used the Growing String Method (GSM)*" to search
for reaction paths with optimized transition states for each
proposed reaction (thousands of possibilities). Postprocessing
scripts then attempted to include only reactions that were
unique and well-converged single elementary steps. Machine-
learning tests exposed a few (<10) outliers that passed the
automated filters but were clearly incorrect and were manually
removed. The PM6 method as implemented in MOPAC”"~"”
was used as the underlying potential energy surface. The
resulting data set contained 723 unique reactions from 6
original reactants. This data set is openly available online at
https://github.com/ZimmermanGroup/reactivity-ml-data
along with the data set of the next paragraph.

To confirm the scalability of the methodology to a larger,
higher quality data set, a second set of reactant molecules was
examined (Scheme 3, data set 2). This larger, more chemically
complicated set of reactants was examined at the density
functional theory (B3LYP/6-31G**) level using the same
ZStruct/GSM  strategy to generate a second data set of
reactions. Data set 2 includes nitrogen and boron in addition
to carbon, oxygen, and hydrogen, so many types of reactions
were possible, and nearly one-half of the reactions were the
only reaction of their type. These single-instance reactions
were removed, leaving 3862 reactions in data set 2. For analysis

Scheme 3. Reactants Involved in Data Set 1 and Data Set 2“
Dataset 1:

Hy
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“Results in this paper from data set 1, with data set 2 analyzed in the
Supporting Information.

on this data set, see the Supporting Information. No
qualitatively significant changes were observed compared to
data set 1.

Machine-Learning Pipeline. For the machine-learning
pipeline, each feature set was extracted from the data set to
give the aggregate reaction representation including the
relevant atomic representation of reactive atoms and reaction
level features. The features were standardized to zero mean
and unitary standard deviation except in the case of one-hot
encoding, in which the atomic representation was one-hot
encoded and the energy of reaction was scaled to a standard
deviation of 3 to balance its influence. This reaction
representation was provided as input into an LS-SVM®* with
radial basis function kernel that can compute confidence
intervals. Since the data set size is relatively small by machine-
learning standards, cross-validation was used to tune hyper-
parameters and generate generalization predictions on all data
points. For final predictions, 5-fold cross validation was used
for all models. For nearest neighbors, no hyperparameters were
trained by cross validation. For SVM, within each split of the
outer cross validation, hyperparameters for the test set were
chosen using 3-fold cross validation within the training folds.
Deep NN training was more resource intensive, so hyper-
parameters were chosen globally by 3-fold cross validation on
the entire data set. In the final 5-fold cross validation weights
and biases were trained only on training folds, but the globally
chosen hyperparameters were used for all folds. Data were
leaked into the models through comparisons between classes
of algorithms and feature sets. Examining extreme outliers in

Table 2. Feature Sets for Atomic Representations

feature set description

one hot

representation)
base graphical atomic no. and coordination no.
partial charge effective atomic charge
graphical — partial charge

graphical — random

one-hot encoded atom type (atom type determined by base graphical

average partial charge of all atoms of an atom’s type

random real number is drawn from a normal distribution for each atom type; this

overall feature set
size (8n + 1)

size of atom
representation

5 (no. of atom types in 41
PM6 data set)
17
9

[ )

number is used to represent all atoms of this type
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early predictions uncovered a few clearly invalid data points
(e.g., reaction profile lacking a single, defined transition state)
that evaded automated filters for validating the data generation
process, so these data points were removed manually. These
extreme outliers were a result of reaction pathways passing
through high-energy intermediates (e.g, multiradicals) that
could not be effectively treated by the quantum chemical
methods and were obviously nonsense pathways upon
examination. Additionally, since R* is sensitive to outliers
and can be dominated by a single extreme outlier, when
generating the plots and metrics above, all predictions were
clipped into the interval [0, 200] kcal/mol. This clipping was
performed only after the “nonsense” pathways were removed
and was necessary due to the machine-learning tools
occasionally predicting barriers outside of a sensible range
(i.e, 0—200 kcal/mol).

For the charge averaging in Figure 3, the charges for all
reactive atoms in all driving coordinates in all reactions in the
data set were grouped into atom types by element and
coordination number. Within each atom type, the mean of all
charges of all atoms of each type was computed and the charge
of each atom within the type was set to this mean charge. This
counting strategy implies that, for example, if there are more
methanediol reactions involving the hydroxyl hydrogen than
the alkyl hydrogen then the charge on the hydroxyl hydrogen

will be effectively weighted heavier in the charge averaging.
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