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NeckSense: A Multi-Sensor Necklace for Detecting Eating Activities
in Free-Living Conditions
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Fig. 1. Our non-contact, day-long battery life necklace, NeckSense, collects proximity, ambient light, and motion signals to
detect chewing actions, feeding gestures, and lean forward motion, which allows detection of eating episodes occurring
throughout the day. NeckSense enables long-term studies for monitoring eating behavior in free-living conditions.

We present the design, implementation, and evaluation of a multi-sensor, low-power necklace, NeckSense, for automatically

and unobtrusively capturing fine-grained information about an individual’s eating activity and eating episodes, across an
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entire waking day in a naturalistic setting. NeckSense fuses and classifies the proximity of the necklace from the chin, the

ambient light, the Lean Forward Angle, and the energy signals to determine chewing sequences, a building block of the eating

activity. It then clusters the identified chewing sequences to determine eating episodes. We tested NeckSense on 11 participants

with and 9 participants without obesity, across two studies, where we collected more than 470 hours of data in a naturalistic

setting. Our results demonstrate that NeckSense enables reliable eating detection for individuals with diverse body mass

index (BMI) profiles, across an entire waking day, even in free-living environments. Overall, our system achieves an F1-score

of 81.6% in detecting eating episodes in an exploratory study. Moreover, our system can achieve an F1-score of 77.1% for

episodes even in an all-day-long free-living setting. With more than 15.8 hours of battery life, NeckSense will allow researchers

and dietitians to better understand natural chewing and eating behaviors. In the future, researchers and dietitians can use

NeckSense to provide appropriate real-time interventions when an eating episode is detected or when problematic eating is

identified.

CCS Concepts: • Human-centered computing → Mobile devices; Ubiquitous and mobile computing; Empirical
studies in ubiquitous and mobile computing; • Applied computing → Law, social and behavioral sciences.

Additional Key Words and Phrases: eating activity detection, automated dietary monitoring, human activity recognition,

wearable, neck-worn sensor, sensor fusion, free-living studies
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1 INTRODUCTION
Automatically and unobtrusively monitoring an individual’s eating activity in free-living settings has been a long-

standing objective of the research community [11]. The possibility of monitoring eating activity automatically

will allow individuals, researchers, and ultimately clinicians to support various wellness goals in the form of

interventions. For example, clinicians can design a system to trigger real-time interventions when people spend

too much time eating [51], or a researcher can request for timely information about energy consumption in an

individual’s diet [12]. It has been well established that such interventions can help treat eating disorders in the

long term and improve the quality of life [16]. However, it is difficult to provide eating-related interventions

without automatically detecting the eating activityand fine-grained actions associated with it. Thus, it is extremely

important for any eating activity monitoring system to detect the eating activity that occurs every day, with

diverse food choices, at varying times and contexts during the waking day, and a myriad of environments.

The current gold-standard techniques for monitoring an individual’s dietary habits are either asking the

individual to maintain a food journal or for dietitians to perform 24-hour dietary recalls to record food items

that were consumed by the individual in the previous 24 hours. As participants often record all their meals at

the end of the day, such techniques are subject to user bias and forgetfulness [5, 25]. To complement 24-hour

dietary recalls and enable more timely feedback, a large body of work around automatic dietary monitoring

has emerged, with wearable sensors showing promise in automatically detecting eating behaviors and linking

them to eating episodes [5, 27]. Researchers have explored the possibility of detecting eating activity using

wrist-based inertial sensor data [18, 55, 61], on-ear- or on-throat-based audio sensor data [8, 13, 45], image-based

information [41, 46, 56], or a combination of one or more of these techniques [33, 35, 50]. There is existing support

among behavioral researchers, social scientists, and clinicians for mobile adaptive interventions such as ecological

momentary interventions (EMIs) and just-in-time adaptive interventions (JITAIs) [29]. These interventions

use contextual inputs, such as detection of an eating episode or number of mouthfuls consumed, to adapt the

content and timing of interventions to participants. The behavioral researchers, or social scientists can use

the fine-grained output of the automatic dietary monitoring systems to provide necessary interventions (e.g.,

providing intervention when they detect poor chewing habits [53]).
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However, many of the existing automated eating detection systems are either obtrusive, or they have not been

tested in a completely free-living setting with diverse BMI populations (the people most likely to benefit from

such a technology) or have not been tested in longitudinal studies beyond a few days. Indeed, many of the existing

dietary monitory studies have been validated on a student population and in a university environment. This

population might not be representative of a population that could benefit from real-time interventions intended

to prevent problematic eating behaviors. It is currently unknown whether a model developed on people with a

normal BMI will likely succeed when tested on people with obesity, a population most likely to benefit from

such adaptive interventions. In our study, we recruited people with varying BMI levels and found that automatic

dietary monitoring system models trained on participants without obesity have a worse performance when tested

on individuals with obesity (details in Section 6). It is therefore necessary to build systems and models that can

support real-time eating detection in various demographic groups.

To bridge this gap, in this paper, we present the design and evaluation of NeckSense, a multi-sensor necklace for

automatically detecting an eating episode. The goal of NeckSense is to ensure that it can accurately, automatically,
and unobtrusively monitor its wearer’s eating activities that occur at any time during the day, in any setting, while
ensuring that the device has at least an entire waking day of battery life. However, most importantly, we want

to ensure that NeckSense generalizes and detects eating accurately for a demographically diverse population,

including people with and without obesity.

In this work, we assume that the combination of an individual’s leaning forward action, performing the feeding

gestures, and then periodicity of chewing behavior together constitutes an in-moment eating activity. We design

and develop NeckSense, a necklace with an embedded proximity sensor, an ambient light sensor, and an Inertial

Measurement Unit (IMU) sensor that can capture these aforementioned actions. Although researchers have

previously explored using the proximity sensor to detect the eating activity by monitoring the jaw movement [15],

in this work we demonstrate that we can detect the eating activity more accurately if we augment the proximity

sensor data with the ambient light and IMU sensor data. To detect the eating activity,NeckSense fuses and classifies
features extracted from these sensors. It then clusters the predicted eating activity to determine an eating episode.

Figure 1 provides an overview of NeckSense. We evaluate the feasibility of NeckSense by conducting two user

studies: a longer, intermittently-monitored free-living Exploratory Study (semi-free-living) and another completely

Free-Living Study . The Exploratory Study allowed us to identify sensors that were useful in detecting the eating

activity. It also allowed us to identify usability concerns with the necklace. The findings of the Exploratory Study

allowed us to improve NeckSense. We evaluated the improved necklace on a diverse non-student population

recruited for two full days in a completely free-living scenario, while participants carried out their everyday

activities.

While designing, developing, and evaluating NeckSense to address practical challenges in free-living studies

pertaining to (a) accurately monitoring the eating activity that occurs in diverse settings and with participants

with in varied BMI range, (b) usability and comfort of wearing the device, and (c) collecting the sensor data

energy efficiently, we make the following key contributions:

(1) We describe the design and implementation of a multi-sensor necklace for detecting eating episodes.

The necklace utilizes sensor data from its proximity, ambient light, and IMU sensors to determine eating

activity. We utilize periodicity in chewing to apply a longest periodic subsequence algorithm on the

proximity sensor signal, and then show the benefits of adding ambient light, IMU, and hour-of-day to

improve proximity-based detection of eating episodes.

(2) We evaluate the system in two studies: an exploratory semi-free-living and another completely free-living

study to determine the possibility of detecting eating episodes in naturalistic settings. The studies involved

participants with varied BMIs. The participants consumed 117 meals during this study period. Overall,

we found that in a semi-free-living setting, the necklace could identify eating episodes at an ambitious
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fine-grained per-second level with an average F1-score of 76.2% and at a coarse-grained per-episode level

of 81.6%. This is an 8% improvement over using only data from the proximity sensor for eating episode

detection. As expected, the fine-grained performance drops to 73.7% and the coarse-grained performance

to 77.1% in a completely free-living setting. We also show improvement when comparing our algorithm to

a prior system’s algorithm that uses solely proximity sensing for eating detection.

(3) We evaluate the energy performance of the system during these studies and observed that on average the

battery life of the device during the Exploratory Study was 13 hours, while the battery life improved to

15.8 hours in the Free-Living Study.

(4) We will anonymize and make both our datasets, the source code, and the design files for the NeckSense
hardware available for use by the community.

1
The dataset contains the sensor traces collected from 20

participants, tagged with ground truth labels generated from video and clinical standard labeling practices.

Overall, the necklace provides a practical solution for automatically monitoring eating activity in completely

free-living settings. The system has been validated in both individuals with and without obesity, improving

reliability of the eating detection system and laying the ground work for future mobile adaptive interventions to

gain further insight on dietary habits. In the near future we anticipate that other researchers will use our dataset

to validate their own methods for chewing sequence and eating episode detection.

2 RELATED WORK
Large-scale, whole-population interventions [34], such as advertising campaigns targeted towards curtailing

eating-related disorders, have had little or no success in addressing the obesity epidemic [38, 39, 43, 58]. Instead,

researchers are proposing just-in-time interventions [19, 28, 36, 37] to test personalized interventions that are

tailored to person-specific needs [47, 54]. Detecting eating automatically is the first step towards testing these

personalized just-in-time interventions. However, several factors make automated eating detection challenging

to implement. These factors range from identifying the right device, signals, or form-factor to validating eating

activity using visual confirmation in real-world settings.

2.1 Eating Detection Techniques
Researchers have proposed several techniques to automatically detect the eating activity. We detail some of the

proposed techniques, grouped based on signal type.

Audio and Video: Automated sensing platforms using image- and audio-based techniques with sensors placed

around the throat or ear have shown promise in detecting eating [7, 13, 35, 40, 45, 56, 57]. However, the utility

of these sensors is limited by short battery life (reducing autonomy) and security or privacy concerns. Eating

detection systems designed without camera or audio components (as in this work) reduce privacy concerns and

enable longer battery life [3].

Physiological: Various techniques have been used to indirectly detect chewing, which involve electromyography

(EMG) [60] sensors on an eye-glass frame, in-the-ear microphones combined with photoplethysmography (PPG)

sensors [42], and mechanoelectrical sensors placed directly around the neck [7], among others [30, 31]. While

these sensors have shown promise in controlled environments, they have not been tested in free-living populations

or over significant periods of time, and many need direct skin contact, which can be uncomfortable and affect

adherence, thereby limiting their potential utility in longitudinal studies.

Inertial or Proximity: Several researchers have proposed techniques to automatically detect eating using inertial

sensors embedded in wrist-worn devices and phones [18, 35, 50, 55]. However, wrist-worn sensors are limited

by several confounding gestures [61]. More recently, researchers have explored the possibility of detecting

1
The dataset and code can be found at http://doi.org/10.5281/zenodo.3774395.
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Table 1. Comparing the literature on in-wild eating detection to this work.

Year Study Sensors position

On-body

participants

No. of

per day

Avg hours

video

Validation

student

Non-

Obese

2014 Fontana et al. [22] S1, S4, S6 Ear, wrist, chest 12 24.0 ✗ ✓ ✓

2015 Thomaz et al. [55] S1 Wrist 7+1 5.7/13.6 ✗ ✗ ✗

2015 Bedri et al. [10] S2, S5 Ear, head 6 6.0 ✗ ✓ ✗

2016 Farooq et al. [21] S4 Temple 8 3.0 ✗ ✓ ✗

2017 Bedri et al. [9] S1-S3, S5, S7 Neck, ear 10 4.5 ✓ ✓ ✗

2017 Zhang et al. [60] S8 Ear 10 6.1 ✗ ✗ ✗

2017 Mirtchouk et al. [35] S1-S3, S7 Ear, wrist, head 11 11.7 ✗ ✓ ✗

2018 Sen et al. [49] S1, S2, S10 Wrist 9 5.8 ✗ ✓ ✗

2018 Chun et al. [15] S5 Neck 17 4.6 ✗ ✗ ✗

2018 Bi et al. [13] S7 Ear 14 2.3 ✓ ✗ ✗

2020 This work S1-S3, S5, S9 Neck 10+10 4.9/9.5 ✓ ✓ ✓

S1 - accelerometer, S2 - gyroscope, S3 - magnetometer, S4 - piezo, S5 - proximity, S6 - radio frequency, S7 -
microphone, S8 - electromyography, S9 - light, S10 - camera

chewing bouts and eating episodes using only an on-neck proximity sensor, combined with a threshold-based

algorithm [15]. We show that our multi-sensor method outperforms such a threshold-based method in recalling

chewing sequences, even in a naturalistic setting.

Our method re-imagines inertial or proximity sensing modality by fusing them with data from an ambient

light sensor, chewing-related periodic subsequence features, and time of day. We present an eating detection

framework that uses this fusion and is tested in free-living settings.

2.2 Eating Detection in Naturalistic Setting
Researchers have explored the use of various sensors for detecting the eating activity outside laboratory settings [9,

10, 20–22, 42, 60], but the length of continuously recorded experimentation rarely exceeds more than few hours

in a day, limiting its potential for longitudinal eating-related studies. Table 1 lists some existing research that

utilizes various sensing modalities to detect the eating activity. Overall, we identified some key factors that have

made these free-living studies hard to execute:

Validation Requirement: A straightforward validation technique that researchers commonly adopt is self-

reporting; that is, the researchers requested participants to note down the start and end time of every meal that

the participant consumes [17, 48, 49] or create a food journal [42, 60]. However, manually noting details about

every meal can be burdensome and error-prone [25]. To reduce the burden on participants, several researchers

have proposed the use of a front-, upward-, or downward-facing camera [9, 13, 26, 55, 56, 59] for validating their

system’s performance. Researchers have tested various on-body camera positions and found that the shoulder

camera is the best for privacy and easiest to wear [2]. This placement was also found to be best at capturing

eating-related activities [4]. We thus use a shoulder-mounted camera for validating our device’s performance.

Diverse Population Requirement: While several sensing systems have shown promise in the wild, they have pre-

dominantly been validated within the student population [13, 15]. Before such systems can be truly generalizable,

additional data are needed from a diverse population sample (especially including people belonging to various

body mass ranges) that are not only student based or focused on people without obesity. People with varied

body shapes may experience varied comfort levels and accuracy of any eating detection system, potentially

confounding the system, but enabling deeper insight and translation of research to practice. To the best of our
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Chewing Sequence

Eating Episode

C1

< 900 sec < 900 sec> 900 sec

C1 C1 C1 C2C2C2C2

Eating EatingTalking

Fig. 2. Schematic of eating episodes that is composed of
multiple chewing sequences. C1 and C2 correspond to
start and end, respectively, of each chewing sequences.
We use an data-driven approach to determine minimum
interval between chewing sequences to identify episode
boundaries.
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Fig. 3. Cumulative distribution function representing an
empirical approach to determine eating episode bound-
aries based on the time between the end of one chewing
sequence and the start of the next chewing sequence. Our
empirically determined inter-episode gap is similar to the
inter-episode gap as suggested by Leech et al. [32].

knowledge, we are among the few to explicitly validate an automated eating detection system with a population

of people with obesity.

3 SYSTEM DESIGN & IMPLEMENTATION
While keeping the challenges of free-living data collection in mind, we present our multi-sensor neck-worn

device that is tolerant of varying sensor positions as captured in real-world settings, comfortable to wear, semi-

autonomous (only requiring users to turn on/off and charge the device at the end of the day), and validated

using a custom-designed ground truth camera with full-day battery life (allowing uninterrupted ground truth

monitoring). We next present the design of the multi-sensor eating detection system and also describe the camera

used for ground truth validation. These devices were used in two user studies: a semi-free living Exploratory

Study and a completely Free-Living Study.

3.1 Defining Eating
We consider the act of mastication (i.e., the act of periodically bringing the jaw together to grind food) as a

chewing sequence. In this paper, we define an eating episode as an aggregate of chewing sequences that occur
within a short duration of time, and these chewing sequences are separated from other chewing sequences by a

large time gap. An eating episode can represent either a snack or a meal. Figure 2 pictorially represents a chewing

sequence and an eating episode.

Chewing Sequence: We define a chewing sequence as a combination of chews that occur together with

breaks no greater than 3 seconds between subsequent chews. In this work we determine chews (detailed in

Section 4) by applying a prominent-peak detection algorithm on the proximity sensor data, followed by running

a longest period subsequencing algorithm, and finally extracting and classifying features from proximity, IMU,

and ambient light sensors.

Eating Episode: We define an eating episode as a group of chewing sequences with inter-chewing sequence

breaks no larger than δ seconds. Two adjacent chewing sequences with a gap longer than δ seconds are identified

as two separate eating episodes. We use a data-driven approach to determine the value of δ . Figure 3 presents
the cumulative distribution function (CDF) of the interval between subsequent chewing sequences. From the

figure we can observe that a value for δ between 540 and 1100 seconds provides a clear boundary between

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 72. Publication date: June 2020.
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Processor 
NRF52832

BLE

Battery

IMU RTC

Proximity + 
Ambient

Hardware Architecture

NGen1

NGen2

Fully Realized NGen2 NecklaceOverview

Fig. 4. Hardware architecture and overview of two generations of necklace. NGen1 was used in the Exploratory Study, while
NGen2 was used in the Free-Living Study.

eating episodes. We decided to use δ = 900 seconds in our evaluation. This choice of δ empirically validates the

inter-episode interval reported or used by researchers previously [13, 32]. Applying this rule allowed us to turn

chewing sequence labels to eating episode labels with exemption from ambiguity when evaluating eating episode

prediction.

Our definition of eating episodes as well as the choice of δ is similar to the definition presented by Bi et al. [13].

However, Bi et al. do not provide a definition of the chewing sequence. On the other hand, Chun et al. propose the

idea of sub-dividing the chewing action into both chewing and chewing bouts, where chewing was described as an
uninterrupted sequence of chews that lasted for 5 seconds; chewing that occurred within 30 seconds of another

chewing was part of the same chewing bout. Unlike prior works, our choice of grouping chewing sequences into

episodes is from a data-driven approach.

3.2 Necklace Design
To evaluate the feasibility of using a neck-worn method for eating and chewing detection, we designed and

developed a multi-sensor necklace prototype, NGen1, that was used in the Exploratory Study. Lessons learned

from the study helped in designing and developing the NGen2 prototype necklace that was used in the Free-Living

Study (Section 5 presents the study details). Figure 4 presents the overview and hardware architecture of the

necklace. The NGen2 device is still a prototype, and the form-factor of a finished NeckSense product is beyond the

scope of our research and will likely result in a much smaller prototype than the NGen2.

Signal and Sensors: Our proposed system design is based on observation and validation of eating activities in

laboratory settings. We observed numerous eating activities and noticed that during most eating activity an

individual leans forward to reach for the food; the hand feeds the food to the mouth; and the jaw continuously

grinds to perform the repetitive chewing action. To capture these eating related signatures, we evaluated several

sensors and finally chose an IMU sensor, a proximity sensor, and an ambient light sensor, all of which were

embedded into a neck-worn device. The IMU sensor facilitates determining leaning forward movement (i.e.,

the Lean Forward Angle [LFA]). The proximity sensor on the necklace is directed towards the chin and allows

monitoring the variation in signal while an individual is chewing. The on-necklace ambient light sensor’s reading

drops when the individual’s hand moves towards the mouth during a feeding gesture, thus allowing detecting of

the feeding gesture. We observed (described in Section 6) that although each sensor can individually detect the

eating action, fusing the signals from these sensors improves the overall detection performance. We thus use all

the sensors in the final NeckSense’s design.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 72. Publication date: June 2020.
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Fig. 5. Participant wearing the devices during the Free-Living Study . (A) Representative still image of the ground truth
camera output showing the chin, hand, food, and utensil. (B) Participant wearing the necklace and Ground Truth camera. (C)
All devices for Free-Living Study.

Hardware Design: Both NGen1 and NGen2 are centered around a Nordic NRF52832 SiP that has an ARM Cortex

M4 CPU and a Bluetooth Low Energy (BLE) communication interface. Two sensors chips, VCNL4040 and BN0080,

are embedded onto the necklace. The VCNL4040 is a combination of proximity and ambient light sensor. We

intend to capture the chewing action using this sensor, and thus it faces upward, toward the user’s chin. The

BN0080 is an IMU sensor that is utilized for computing the Lean Forward Angle (LFA). All sensors were sampled

at 20 Hz. The proximity, ambient light, and IMU sensors sequentially write to a memory buffer. When the buffer

reaches its capacity, the data are written to a local micro SD (µSD) card. The buffer helps in increasing the writing

throughput and reducing the power consumption by writing periodically. The whole device is powered by a 350

mAh Li-ion battery, which guarantees more than 14 hours of battery life, making it possible to monitor eating

activities during an entire waking day.

Time Keeping and Synchronization: Each chewing gesture is a short-lived action, and thus to ensure synchro-

nization it is important to maintain a highly accurate time keeping system. The necklace has to ensure that it

always records an accurate timestamp without any manual calibration and time setting. NGen1 did not have a

real-time clock (RTC) module with a backup battery, and so when the main battery failed, the data had invalid

timestamps, making synchronization of the necklace data and camera video challenging. As an improvement, we

introduce an RTC in the NGen2 necklace so that it maintains time at a 2-ppm accuracy. With its rechargeable

backup battery, it can keep time for more than 1 year after the main power source is dead. The accurate RTC

timestamp ensures that the system’s clock does not drift substantially. Additionally, whenever the necklace

connects with a hub device (e.g., a smartphone), it automatically fetches the current time from a time server by

calling the Current Time Service via BLE; the service helps to correct the time and keep it during a long period of

study. We empirically observed that this feature eliminates the inevitable time drift of <180 msec per day.

Mechanical Design:We designed the necklace along with a case and a strap, as shown in Figure 4. This design has

evolved over multiple iterations (with feedback from the Exploratory Study) to ensure that, in addition to being

functional, it is comfortable to wear. The necklace’s band is a sports-style porous silicone band that wraps around

the neck. This was an improvement in NGen2 over NGen1 where we used a leather band. The case housing the

printed circuit board (PCB) and sensors is connected to this band. The silicone material and carefully balanced

weight of the case ensures that the sensor’s position is stationary, even during vigorous activities. This property

guarantees that we can collect quality data, even in noisy free-living environments. The resin material used

for manufacturing the case (commonly used in wearable jewelry) is smooth and skin friendly. One face of the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 4, No. 2, Article 72. Publication date: June 2020.
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ent light) captured while the wearer is walking, resting,
utensiling, and eating.

case in NGen2 was curved to ensure that it was comfortable on the neck; this was an improvement based on

feedback from NGen1. Based on user feedback, we also add breathable holes to the band to increase user comfort.

Recent research indicates that a participant will adhere to wearing a device if the participant can decide on the

device from a collection of devices with varied designs [1]. We thus manufactured devices with diverse designs

and colors. We anecdotally observed that when participants chose their own device, they wore it for a longer

duration.

3.3 Ground Truth Video Camera
We used a fish-eye lens fitted wearable camera (that captured both audio and video) to continuously record

participant behavior including fine-grained eating related activities. This recording provided the ground truth

labels for learning models and validating free-living studies [2]. Once the neck-worn sensor is validated, we

envision that the necklace’s user will not use this camera. Figure 5 illustrates the various components of the

wearable camera system. The system comprises of a Qcam QSD-722 camera, a fish-eye lens, a shoulder strap,

and an ID card to conceal the device. The camera is positioned around the shoulder with the lens facing the

participant’s dominant hand rather than pointing outward (e.g., as in SenseCam [26]). This minimizes privacy

concerns of bystanders, although bystanders to the side of the participant are noticeable. At this angle, the

wearable camera can capture the mouth, the jaw, the neck, and the utensil and foods consumed (see Fig. 5A). As

privacy is a significant concern for the participant, we provided participants with the option of deleting segments

of video data they did not want study supervisors to see.

4 EATING DETECTION FRAMEWORK
We next present our method of predicting the chewing sequences and eating episodes from the signals generated

by the sensors. The entire processing pipeline is presented in Figure 6. The pipeline consists of five steps that we

next describe.

4.1 Signal Pre-processing
The signals extracted or calculated from the necklace’s sensors include (i) proximity to chin, (ii) ambient light

value, (iii) LFA, and (iv) energy signal defined as the sum of squares of tri-axial accelerometer values.
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(i) Proximity to chin: We extract the proximity to the chin from the necklace’s proximity sensor. The sensitivity

range of the proximity sensor is set between 5 and 250 mm. Since the average neck length of a human being

varies between 100 and 120 mm, this setting should sufficiently capture the chewing action. Figure 7 shows

representative signals when the participant was walking, resting, utensiling (using utensils, but not eating), and

eating. During the eating activity, smaller peaks in the proximity sensor’s signal signify chews, while the larger

peaks signify bites.

(ii) Ambient light value: The necklace’s ambient light sensor provides the ambient light value. The ambient

light value is highest when the users turn their heads right or left, since the sensor is not obstructed by the head.

The value is lowest when the users lower their heads and move their hands toward their mouths during a feeding

gesture. We can see the periodic drop in ambient light values during the eating activity in Figure 7.

(iii) LFA: We obtained the necklace’s absolute orientation in the form of quaternions from the on-necklace

IMU sensor. The quaternion is a 4D vector q representing the rotation axis and the angle of rotation around that

axis. q can be projected into different planes to gain physical angles and infer activities, such as leaning forward

and to the side, and to determine the orientation of the wearer. However, not all of these angles are related to

the eating process. The most informative angle is the LFA, the angle between the IMU and the Earth’s surface.

When the wearer sits straight, the LFA is close to 90
◦
. LFA is calculated by applying the dot product of the normal

vectors of two planes:

LFA = acos < n1,n2 >

where the normal vector of the Earth’s surface is the z-axis, and the normal vector of the IMU is obtained

through the quaternion transformation:

n1 = [0, 0, 1] n2 = qn1q−1

where q is a unit quaternion that rotates n1 to obtain the normal vector of the IMU. It is worthwhile to note

that while LFA does not always occur in the field, particularly when snacking while sitting on a couch, features

from LFA can enhance detection of bites.

(iv) Accelerometer’s energy value: The on-necklace IMU also provides the tri-axial accelerometer data (ax ,ay ,az )
capturing acceleration from the three axes. We calculate the energy signal as the sum of squares of the tri-axial

acceleration components, E = a2x + a
2

y + a
2

z . Features computed from E help reduce false positive rates generated

during physical activities. From Figure 7 we can see that during the eating gesture there are peaks in the energy

signal. However, unlike the peaks observed in the signal during the walking activity, the peaks observed during

eating are sparse.

4.2 Labeling
The process of labeling the data allows establishing the ground truth. Annotators labeled the start and end of

every chewing sequence by visually and acoustically confirming the information using the video captured by

the camera. If a participant continuously chewed during her entire meal, the entire episode was labeled as one

chewing sequence. Annotators marked the end of a chewing sequence when the participant stopped chewing for

at least 3 seconds. For example, if the participant took four breaks that were each at least 3 seconds long during

the meal, there were five chewing sequence labels in that meal.

From the labeled chewing sequences, the annotators identified the eating episodes. As discussed in Section 3.1,

we define an eating episode as a group of chewing sequences with chewing sequence breaks no longer than 900

seconds. Any two adjacent chewing sequences with a gap longer than 900 seconds were regarded as two separate

eating episodes. Applying this rule allowed the annotators to establish eating episode labels from the chewing

sequence labels.
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Fig. 8. Prominence-based peak finding algorithm (height=4.5) vs local maxima peaks (using 2 samples before and after the
time point.)

4.3 Segmentation
We employed time-based methods on the necklace’s proximity signals to detect periodic chewing patterns. The

proximity sensor was selected for the segmentation step as it provides the right balance between identifying most

periodic chewing patterns, which are considered eating segments (high recall), and not introducing many false

positives (acceptable precision). As described in Section 4.3.1, to detect the candidate chewing subsequence, we

used a peak-finding algorithm followed by a periodic subsequence algorithm in the segmentation step. Overall,

we observed that both the proximity sensor and the IMU sensor could independently capture all eating episodes

(recall = 1) for certain parameter value combinations. However, if we considered all sensor combinations and

parameter choices that yielded a recall of over 85% in detecting eating episodes, the F1-score of detecting eating

episodes using the proximity sensor was 17.2%, as compared with an F1-score of 8.8% when using the IMU sensor.

This was almost a 2x improvement, and it indicated that more data could be safely discarded in the segmentation

step if the proximity sensor data were used for the segmentation, as compared with using the IMU. Compared

with proximity and IMU, the light sensor had a much lower recall during the segmentation step, indicating that

we would miss several eating episodes if the ambient light sensor was used for the segmentation step. Thus it

was not considered useful for the segmentation step.

4.3.1 Prominence-based Peak-finding Algorithm. The first step in detecting periodic sequences is to identify

peaks in the proximity signal. We applied a typical peak-finding algorithm that returned both prominent and

non-prominent peaks (non-prominent peaks may be associated with noise and other activities). Chewing peaks

are often prominent peaks that stand out due to their intrinsic height and location relative to other nearby peaks.

For example, in Figure 8 we observe several local maximum, yet non-prominent, peaks that are identified during

the resting period. However, more prominent peaks are apparent during the eating (chewing action) period.

4.3.2 Longest Periodic Subsequence Algorithm. We adapted the longest periodic subsequence algorithm to identify

chewing peaks that were ϵ-periodic [24]. The time points of the peaks from the prominence algorithm generated

a sequence of timestamps for each peak. In this section we explain the significance of ϵ-periodic, define the
periodic subsequence problem, and present a dynamic programming solution for the problem.

Definition 1. ϵ-periodic: Given a sequence of increasing timestamps ti , where i ∈ {1 . . .N }, the difference
between consecutive numbers is pi = ti+1 − ti ,∀i = {1 . . . (N − 1)}, if pmin and pmax are the smallest and largest
values of these differences, respectively, then the sequence is defined to be ϵ-periodic if:

pmax
pmin

< 1 + ϵ

Problem 1. Relative error periodic subsequence: Given a sequence of increasing numbers ti , find all longest
subsequences that are ϵ-periodic.
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Fig. 9. Dynamic programming solution for absolute error
periodic subsequence of proximity signal.

Fig. 10. Spectrogram of proximity signal for chewing, talk-
ing, walking, and resting.

Problem 2. Absolute error periodic subsequence: Given a sequence of increasing numbers ti , find all longest
subsequences such that consecutive differences are bounded by pmin and pmax .

During chewing activity, periodic peaks are generated in the proximity signal. In terms of ϵ-periodic subse-
quence, the value ϵ determines to what extent the frequency of these peaks is changing over time. A smaller ϵ
indicates less change in the frequency during the periodic subsequence (i.e., candidate chewing activity). We

empirically investigate and set ϵ = 0.1 to remove periodic subsequences with high variability in the frequency,

which are most likely generated by non-chewing activity. We empirically set the range of the number of peaks

for a periodic subsequence to be between 4 and 100.

Problem 1 is not trivial when the lower pmin and upper bound pmax are not known. However, given that the

chewing frequency range is known [44], these bounds can be estimated. The problem can then be solved by

evoking multiple calls to a function that implements the absolute error periodic subsequence problem. Each time

a function call is made by passing a new pmin and pmax starting from the smallest inter-chew distancemin all

the way until the largest inter-chew distancemax (incrementing pmin by multiples of [1 + ϵ]). Chewing activity

has been shown to mainly occur in the range of 0.94 Hz (5
th

percentile) to 2.17 Hz (95
th

percentile); as a result

we setmin = 0.4 seconds andmax = 1.5 seconds. We solve the absolute error periodic subsequence problem

using dynamic programming, by defining the following recurrence:

OPT [i] = max

L
OPT [j], ∀j ∋ pmin < ti − tj < pmax

The absolute error periodic subsequence algorithm is called by passing the entire array of timestamps t[i], a
value for pmin and pmax . It then iterates through the entire array, and for every index i it calculates the longest
subsequence that ends at index i , searching only the previous indices in the array that satisfy the inter-chew

distance pmin and pmax . Figure 9 shows an example where prominence peaks are detected at times 0, 0.8, 0.9, and

1.9 seconds. If pmin is 0.9 and pmax is 1.1 seconds, then the optimal subsequence is of length 2 at timestamps (0,

0.9, 1.9) seconds. Sequence (0, 0.8) is not valid because the difference between 0.8 and 0 is 0.8 which is <pmin , the

same as sequence (0.8, 0.9) .

The time complexity analysis of the absolute error periodic subsequence algorithm is O(N ), assuming the

valid number of predecessors is constant. If the distance between pmin and pmax is a function of N , then this
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Table 2. List of features extracted for classification

Category Features

Statistics Max, min, mean, median, std. dev., RMS, correlation, skewness, kurtosis, 1st & 3rd quartile, interquartile range

Frequency Frequency amplitude of 0.25 Hz, 0.5 Hz, 0.75 Hz, 1 Hz, 1.25 Hz, 1.5 Hz, 1.75 Hz, 2 Hz, 2.25 Hz, 2.5 Hz

Statistics of frequency Skewness and kurtosis of spectrum from frequency features

Time-series Count below/above mean, first location of min/max, longest strike below/above mean, number of peaks

Periodic subsequence pmin , pmax , ϵ , length
Time Hour of day

assumption does not hold. However, in practice, the difference between the smallest inter-chew distancemin,
and the longest inter-chew distancemax is a small constant.

4.4 Feature Extraction
We extracted features from all the identified periodic subsequences to classify and validate whether the candidate

subsequence identified in the Segmentation step (Section 4.3) was truly a chewing sequence. We extracted

statistical-based features which are known to be useful in detecting physical activity [6] and eating [55], including

maximum, minimum, mean, median, variance, root mean square (RMS), correlation, skewness, kurtosis, 1st and

3rd quartile values, and interquartile range. We plotted the spectrogram of the proximity signal for the dominant

chewing frequencies (refer to Figure 10) and observed that the dominant frequencies during chewing occur

between 1 and 2 Hz. As a comprehensive measure, we captured the amplitude of the dominant frequencies from

0.25 to 2.5 Hz.

Given a candidate sequence with start and end time [c1, c2], the features listed in Table 2 are calculated from

two window lengths. The first window is CW = [c1 − 2sec, c2 + 2sec], referred to as the ChewingWindow. The
second window is BW = [c1 − 2sec, c1 + 2sec], referred to as the BiteWindow. Features from both these windows

were concatenated into a single feature vector. CW is useful in capturing information related to the chewing

segment, while BW captures bite-related features that occur at the beginning and end of the chewing sequence.

Overall, we extracted 257 features for every sequence.

4.5 Classification
We used a gradient boosting classifier based on Friedman’s Gradient Boosting Model (GBM), which is an ensemble

classifier comprising multiple weak learners (high bias, low variance) [23] to train a model that classifies each

subsequence as belonging to a chewing sequence or not. We employed an open source software package,

XGBoost [14], for classification. Gradient boosting uses regularized model formalization that controls over-fitting

the training data, providing more generalizable performance.

Gradient boosting has several parameters that can be tuned to optimize its performance including general,

booster, and learning task parameters. For the general parameters, we used the gbtree model. For the booster

parameters, we optimized the learning rate (eta), the maximum depth of the a tree (max_depth), the minimum loss

reduction required to make a further partition on a leaf node of a the tree (дamma), the minimum sum of instance

weight needed in a child (min_child_weiдht ), and the subsample ratio of the training instance (subsample). We

performed binary classification (chewing vs others) using a softmax objective.

Every positively detected chewing subsequence is then combined to generate a time-point distribution of

predicted chewing sequences (at the per-second level). This distribution is a type of confidence weighting to

estimate the likelihood of the duration belonging to a chewing sequence. Each second is then converted into a

score according to the number of overlapping predicted chews. We then apply the DBSCAN algorithm to cluster

the data. The sequences with low weights and sparse positioning are filtered during the clustering step. We then
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Fig. 11. After periodic subsequences are classified, DBSCAN filters out predicted single chewing subsequences and clusters
the remainings into meals. If a ground truth eating episode overlaps with a predicted eating episode, then it is a true positive.
If a predicted eating episode has no overlap with a ground truth eating episode, then it is a false positive.

perform eating episode evaluation at the coarse-grained event level and fine-grained per-second level. Figure 11

provides an overview of the processing pipeline.

5 STUDY DESIGN & DATA COLLECTION
Demonstrating usefulness of our eating activity monitoring system necessitates that we test the system on a

representative population, throughout the day while participants carry out their daily routine. Prior work has

demonstrated that systems that are evaluated only in laboratory settings often perform poorly in naturalistic

settings. This performance degradation is quite pronounced in eating- and behavior-tracking devices, as the

behavior and habits of participants can easily be influenced by the in-lab setting, and the short duration of

sessions rarely capture numerous real-life situations.

With this context, we conducted an Exploratory Study for optimizing various system parameters. Using the

learning outcome from the Exploratory Study, we conducted a Free-Living Study to determine the system’s

performance in a completely free-living condition. Both studies were conducted in naturalistic settings, while the

participants performed their everyday activities. We recruited 20 participants (10 for the Exploratory Study and

10 for the Free-Living Study ) from an urban Midwestern city in the United States using paper flyers and via
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Table 3. Number of hours of video and necklace data in the Exploratory Study and the Free-Living Study. Necklace valid
hours exclude data with incorrect timestamp resulting from RTC going out of battery or when the necklace was not worn by
the participant. Participants with obesity are highlighted in orange . Days are unique days in the data. Only data captured
by both the camera and necklace were used in validation. From the 271.3 hours analyzed in the Exploratory Study and the
Free-Living Study, 14.3 hours correspond to eating, while 257 hours are non-eating.

Exploratory Study Free-Living Study

Necklace Overlap w/ Videos Necklace Overlap w/ Videos

Participant

Total

hours

Ave. Per

Day

Total

hours

Ave. Per

Day Meal Participant

Total

hours

Ave. Per

Day

Total

hours

Ave. Per

Day Meal

P1 35.7 5.9 27.8 5.6 7 P11 23.9 11.9 17.2 8.6 4

P2 8.7 1.7 3.5 0.9 7 P12 14.6 7.3 15.2 7.6 1

P3 74.6 6.8 31.6 2.9 15 P13 12.4 6.2 12.4 6.2 5

P4 20.3 3.4 10.1 3.3 5 P14 15.1 7.6 12.8 6.4 3

P5 40.4 10.1 33.3 8.3 11 P15 19.2 9.6 17.4 8.7 4

P6 19.3 3.9 4.9 1.6 9 P16 20.2 10.1 16.9 8.5 5

P7 23.0 7.7 14.0 7.0 3 P17 23.2 10.6 15.1 7.6 6

P8 20.1 2.5 5.2 0.7 11 P18 14.9 7.5 11.0 5.5 4

P9 20.0 10.0 0.7 0.4 2 P19 20.2 10.1 13.6 6.8 3

P10 15.0 2.5 3.1 0.8 6 P20 27.0 13.5 21.8 10.9 5

Total 277.1 - 134.2 - 76 Total 193.0 - 137.1 - 40

ResearchMatch. The inclusion criteria were: 18-63 years of age and BMI above 18. The exclusion criteria included

anyone unwilling to wear the study devices (due to a history of skin irritations or device sizing limitations) and

anyone who did not own a smartphone. None of the participants were members of our research team. Overall,

we used 134.2 hours of data from the Exploratory Study to fine-tune our system and 137.1 hours of data from the

Free-Living Study to evaluate our system. Specific details about data collection are presented in Table 3. We plan

to anonymize and release this dataset for use by clinicians and researchers for evaluating their own devices and

approaches to eating detection.

During their first laboratory visit (for both the Exploratory Study and Free-Living Study), we trained the

participants about how to wear and charge their devices. After the final day of the study, participants returned

the devices and completed a post-study survey. During this visit, participants were given the option to review

captured video and remove segments they felt uneasy about sharing.

5.1 Exploratory Study
To determine the eating sensing system’s feasibility, we recruited 10 participants (4 males, 6 females; between 19

and 54 years old) and instructed them to wear the prototype device, including the NGen1 necklace for 2 weeks.

Participants were free to wear the device for as many or as few hours as they wanted during this study. However,

we instructed them to wear the prototype device during as many meals as possible. Since we are interested in

ensuring that our system performs reliably across a varied BMI range, we allocated participants so that 50% of

the participants in this study were categorized as obese (BMI >30 kg/m
2
). The BMI of the 10 participants ranged

between 21 and 46 kg/m
2
. Participants were compensated monetarily for their time (smartwatch and $100; total

value of $300). Overall, we collected 277.1 hours of data during the Exploratory Study. However, after removing
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Fig. 12. Evaluation criteria for the eating activity detection at two levels: a commonly used per-episode level evaluation
approach and a challenging per-second level evaluation approach. If there is a 50% overlap at the per-episode level, we infer
that the episode has been detected correctly.

data that had synchronization issues or raised privacy concerns, we acquired 134.2 hours of usable data from the

Exploratory Study for our analysis.

5.2 Free-Living Study
After optimizing reliability and usability of the neck-worn sensor, we designed the newer necklace, NGen2. To

test this device, we recruited 10 participants (5 obese, 5 non-obese) to participate in a 2-day Free-Living Study.

None of these participants had participated in the previous Exploratory Study. Participants were between 24

and 60 years old, and their BMI ranged from 20.1 to 38.1 kg/m
2
. Table 3 summarizes the device usage for each

participant. Unlike the Exploratory Study, for this study we instructed the participants to wear the device during

the entire waking day, removing the device only when it was completely discharged or when they had privacy or

other concerns. Participants did not delete any data in this study. Overall, after removing data segments with

synchronization issues, we extracted 137.1 hours of usable data. We provided $50 compensation to participants

for their time participating in the study.

6 EVALUATION AND RESULTS
As stated in Section 1, the overall goal of NeckSense is to detect eating activity, while ensuring that the device has

acceptable battery life. We thus evaluated NeckSense using the Exploratory Study and Free-Living Study data,

while answering the following questions:

• Q1: Can NeckSense effectively detect eating activity? How does the system perform as compared with other

similar techniques?

• Q2: How do factors such as sensor choice, device position, and classification features affect the detection

performance?

• Q3: Can NeckSense’s battery support monitoring an individual’s eating activities throughout the waking

day?

Before answering the questions, we describe the evaluation metric used to evaluate NeckSense.

6.1 Evaluation Criteria and Metric
Eating Activity detection: We evaluate the eating activity detection at two levels: (1) the possibility of detecting

eating at a per-second level and (2) the possibility of detecting the overall eating at a per-episode level. Figure 12
pictorially describes the two levels. For each level we compute the precision, recall, and F1-score. A high precision

value indicates that the seconds (or episodes) identified by NeckSense as eating were actually seconds (or episodes)
when eating occurred, whereas a high recall indicates that NeckSense could find most of the moments (either

per-second level or per-episode level) when a participant performed an eating action. The F1-score presents the
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Table 4. Comparison of performance (F1-score) of various sensor combinations for eating episode detection. The proximity
sensor is used for segmenting the chewing sequences, and various sensor combinations subsequently detect the eating
episodes. One-way repeated measures ANOVA determined that the mean F1-score differed significantly between the four
sensor combinations.

Sensor(s) used Exploratory Study Free-Living Study

Proximity only (ref) 73.4% 66.4%

Proximity + IMU
∗

81.5% 78.7%

Proximity + ambient light 72.7% 70.3%

All Sensors∗ 81.6% 77.1%
*Post hoc analyses with Bonferroni correction show statistically significant improvement of Proximity+IMU and
All Sensors over Proximity only at the P<.05 level.

harmonic mean between the precision and recall. We evaluated NeckSense by performing a leave-one-subject-out

cross validation (LOSOCV) and reporting the average performance of NeckSense, which is the average of every

participant’s precision, recall, or F1-score. The output of the GBM classifier, after sparse segment removal, is

utilized for the per-second level evaluation, while the output after merging adjacent chewing segments is utilized

for the per-episode level evaluation. If there was 50% overlap between the time of the predicted episode and the

actual episode, we considered the episode as a true positive episode.

Battery Lifetime: Since the necklace operates in several modes (e.g., time-keeping mode, data collection mode,

data logging mode), it is necessary to monitor the power consumption in each mode. Additionally, since our goal

is to ensure that the necklace can operate without frequent charging, it is necessary to understand the average

battery lifetime. We measure the power consumption of each mode of operation in milliWatts and the average

battery lifetime in terms of number of hours for which the device can operate after it is fully charged, until it is

completely discharged.

Now that we have established the evaluation criteria and metric, we next evaluate the performance ofNeckSense.

6.2 Q1 : Eating Activity Detection
Although several previous studies have demonstrated the feasibility of automatically detecting eating in laboratory

settings, very few researchers have explored the possibility of detecting eating over multiple days in free-living

conditions and evaluating their system at a per-second level. We thus conducted the Exploratory Study to evaluate

this possibility. We performed an LOSOCV to generate the classification model, as well as to determine the

DBSCAN clustering parameters.

Analyzing the performance of NeckSense in the Exploratory Study: At a per-second level analysis, the system

attained an F1-score of 76.2%. At per-episode level analysis, we observed that among the 76 meals that participants

consumed in the Exploratory Study, we could correctly detect 63 meals. The system’s average precision, recall,

and F1-score across the participants during this Exploratory Study were 80.8%, 86.8%, and 81.6%, respectively.

These results indicated that it was indeed possible to detect most meals that the individual consumes, even in

naturalistic settings.

Importance of each sensor in NeckSense: To understand how each sensor assisted in the detection of meals in

the Exploratory Study, we segmented the signal from all the participants’ data using the proximity sensor data

and the longest subsequence algorithm. For each segment, we used each sensor either independently or in

combination with other sensors. Overall we observed that we could identify eating episodes with an F1-score

of 73.4% when we used only the proximity sensor, whereas including other sensors with the proximity sensor

helped in improving the overall F1-score by more than 8%, demonstrating that the other sensors were useful,

as compared with using the proximity sensor in isolation. Table 4 shows the performance of various sensors in
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Fig. 13. Eating episode prediction evaluation for the Free-Living Study using LOSOCV method for per-second level and
per-episode level analysis.

detecting the eating episodes in the Exploratory Study and Free-Living Study. To determine significant difference

between sensor combinations, we combined participants’ results from both the Exploratory and Free-Living study

(both studies used the same algorithm and sensor combinations). A one-way repeated measures ANOVA (used to

determine whether three or more group means are different when the participants are the same in each group)

determined that the mean F1-score differed significantly between the four groups: Proximity only, Proximity+IMU,

Proximity+ambient light, and All Sensors (F[3,57]=8.555, P<.0001). Post hoc tests using a paired sample t-test

with Bonferroni correction revealed that Proximity+IMU and All Sensors exhibited significant improvement in

mean F1-Score (P<.05) compared to Proximity only, while Proximity only was not significantly different from

Proximity+ambient light (P>.05). Therefore, we conclude that there is statistically significant improvement when

the proximity sensor is used either in conjunction with the IMU, or when using all signals, compared to using the

proximity sensor only. This indicates that the eating activity generates some specific movement pattern, which

the IMU sensor can capture. Orthogonally, it is interesting to note that in both studies, the system performs

poorly when only the light and proximity sensor data are used for the classification. However, light sensor

data augmented with the IMU data helps improve the system’s overall performance, indicating that additional

features from the light sensor might contribute toward improving performance. While annotating the dataset we

observed that several participants consumed their meal while watching television and sitting in a dark location.

Understandably, the light sensor was not useful for these episodes.

Analyzing the performance of NeckSense in the Free-Living Study: Through the Exploratory Study we demon-

strated that the necklace could indeed determine eating in a semi-free-living condition. To understand the

system’s performance in a completely uncontrolled setting, we analyzed the data from the Free-Living Study.

Overall, we found that at a per-second level, our system could detect eating with an average F1-score of 73.7%

(average precision = 80.5%, average recall = 73.4%), while at a per-episode level, the F1-score was 77.1% (average

precision = 86.6%, average recall = 78.3%). This was an improvement of over 10% as compared with using only

data from the proximity sensor. Figure 13 presents the per-participant performance of NeckSense. It is interesting
to note here that every sensor combination provided a better F1-score as compared with using only the proximity

data. Overall, the system could identify 35 of the 40 meals when using either the proximity and IMU data or

when using all sensor data. Although our system performed well in semi-free-living settings, the performance

degrades while evaluating in an uncontrolled free-living setting. This observation should motivate researchers to

evaluate their systems not only in semi-controlled free-living conditions, but also in truly free-living conditions

to identify their system’s actual performance.
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Table 5. Performance of NeckSense for different training and testing groups

Test

Obese Non-obese

Train

Obese 71.21% 75.33%

Non-obese 66.75% 79.88%

3~5 cm from the chin

<2 cm from the chin

Above Laryngeal Prominence

On Laryngeal Prominence
Loose Placement

Right of Laryngeal 
Prominence

Left of Laryngeal 
Prominence

>5 cm from the chin

Rotated 2.5 cm to
the left

Rotated 2.5 cm to the right

Fig. 14. Five different positions for the necklace on the neck: above the laryngeal prominence, on the laryngeal prominence,
loose placement, left of the laryngeal prominence, and right of the laryngeal prominence.

Exploring BMI-based models: To evaluate whether models trained on participants with obesity perform reliably

when tested on participants without obesity and vice-versa, we generated two models, one trained with data only

from participants without obesity (MN−O ) and the other with data from only the participants with obesity (MO ).

When we tested MN−O with the data from people with obesity, we observed that the F1-score for detecting eating

episodes dropped to 66.75%. This is substantially lower than the generalized model trained on multiple body types

and tested in participants with obesity. Table 5 presents the results for different combinations of the training and

test sets. The system performs fairly consistently when tested in people without obesity, independent of the BMI

of the training set. However, the performance is lower when tested in participants with obesity. Several factors

can be attributed to this discrepancy. These included factors such as differences in movement patterns while

eating, change in the distance of the proximity sensor from the neck, and difference in posture during the eating

activity. In the future, to ensure generalizability, researchers developing automatic dietary monitoring systems

should consider testing their wearable system in participants that are recruited from a population with different

BMI profiles and refrain from solely testing in a single, homogeneous population to prove efficacy of their system.

6.3 Q2 : Effect of Various Factors

Performance of various sensors: To understand the usefulness of each sensor in determining the chewing sequence

and the eating activity, we analyzed the Exploratory Study’s data and observed that for the per-episode level

evaluation, we could achieve an average precision of 77.2%, recall of 74.0%, and F1-score of 73.4% across participants

when we use only the proximity sensor’s signal, as compared with an average precision, recall, and F1-score

of 80.8%, 86.8%, and 81.6%, respectively, when we use all sensors. This improvement in performance validates
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Fig. 15. Performance in detecting the chewing activity when NeckSense is placed at different locations from the chin. It shows
the actual and predicted average and standard deviation of the number of chews at various on-neck positions of NeckSense.

the usefulness of employing multi-sensor modalities over using a single sensing modality, proximity, for eating

detection.

Feature importance: Since the number of instances for each feature in the gradient boosting tree is proportional to

the feature’s contribution among all the features, we ranked the features accordingly. In Section 4.4 we described

the features were extracted from either the bite window (BW ) or the chewing window (CW ). We observed

that the top five features that aided in classification, as selected by the gradient boosting algorithm, were: (1)

Frequency: FFT 2.5 Hz of energy signal (BW ), (2) Time-series: first location of minimum of energy signal (CW ),

(3) Time-series: first location of maximum of energy signal (CW ), (4) Frequency: FFT 0.5 Hz of ambient signal

(CW ), and (5) Time-series: count above mean of ambient signal (CW ). All top five features were extracted from

both the ambient light and energy signals. Two of the five features were FFT-based features, while three were

time-series-based features. Four features were extracted from the CW , and one was from the BW .

Effect of various necklace positions: The necklace form factor, worn loosely around the neck, lets participants

adjust and move the necklace closer or farther from their mouths. To investigate the effect of positioning of

the necklace on the body, we conducted a small in-laboratory investigatory study where two participants (one

male, one female) wore the necklace in multiple positions and orientations and consumed a meal. We present the

five different positions in Figure 14. Overall, each participant wore the necklace at five positions: (i) above the

laryngeal prominence, where the necklace was less than 2 cm from the chin, (ii) on the laryngeal prominence,

where the necklace was between 3 and 5 cm from the chin, (iii) loose placement, where the necklace was more

than 5 cm from the chin, (iv) left of the laryngeal prominence, where the necklace was rotated 2.5 cm to the left

of the laryngeal prominence, and (v) right of the laryngeal prominence, where the necklace was rotated 2.5 cm to

the right of the laryngeal prominence. Figure 15 presents the result for the average (with standard deviation)

of actual and predicted number of chews for every mouthful during these episodes. The periodic subsequence

algorithm could detect chews with an average difference of less than 4 chews when the necklace is placed on the

laryngeal prominence, and the prediction was not affected when the necklace rotated a couple of centimeters

toward the left or right of the laryngeal prominence. Our algorithm is designed to detect a chewing sequence

even when some of the periodic peaks (or chews) are detected during a chewing event. Thus, even for loose

or high placement, we can still detect the occurrence of a chewing sequence. This indicates that the necklace’s

eating activity detection performance is robust to various on-neck positions. Figure 16 presents a signal trace
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(a) < 2 cm (b) 3 to 5 cm (c) > 5 cm

(d) 2.5 cm left (e) 2.5 cm right

Fig. 16. Sample proximity sensor signal captured from different positions. The orange dot indicates the time frame when a
chewing action occurred, while the green dot indicates whether the time point was identified as a chew by NeckSense.

collected from various on-neck positions during the study. We have also indicated the time points when the

chewing action occurred, along with our periodic subsequence algorithm’s output. Most chewing gestures were

captured by the periodic subsequence algorithm.

6.4 Q3 : Battery Lifetime
Now that we established that NeckSense can indeed detect eating activities in a naturalistic setting, we next analyse
whether the device can collect sensor data continuously during an individual’s waking hours. The necklace is

powered by a 350-mAh battery to ensure a relatively small size. To conserve power we implemented several

power saving schemes. First, we selected the Nordic NRF52832 SiP, which includes a low-powered microcontroller

and a BLE interface. Overall, this choice helped in reducing power consumption and size. Second, we identified

that the SD card writes consumed substantial power. We thus implemented a batch-and-write approach for data

logging. Third, we designed the super-low-power time keeping mode with an extra-small battery so we maintain

valid system time even if the main battery is off. The necklace can operate in four modes: timekeeping mode (only

running the RTC), time syncing mode (communicating over BLE to synchronize time ), data collecting mode

(recording sensor reading), and data logging mode (writing data to SD card). We measured the average power for

each mode using the STM32 Nucleo expansion board [52] for power measurement and tested the battery life time

for a single charge. The power consumption for each mode, as shown in Figure 17, was 3.8µW, 36.8 mW, 56.6

mW, and 64.9 mW for timekeeping, time syncing, data collecting, and data logging mode, respectively. Overall, in

the Exploratory Study the average battery life was 13 hours, and it improved to 15.8 hours in the Free-Living

Study, which is sufficient to record data for most of the day and cover all meals that occur during a waking day.

This lifetime allows for simplified deployments and little, if any, study coordinator oversight. The participants

can charge the device once a day before sleeping.
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Fig. 17. Power consumption for each active mode of NeckSense.

6.5 Comfort and Usability
At the end of the Exploratory Study, we asked participants to indicate their feedback about NeckSense. Of the
participants who completed the survey, 90% (9/10) claimed the device did not change how they performed their

daily activities, how they socialized, or how they felt at home; 80% (8/10) claimed the device did not change how

they ate or felt in public places. Two participants suggested that the velcro in the back of the necklace bothered

them, suggesting a clasp or button may be more comfortable, and two other participants suggested that the

device should be miniaturized to appear less obvious.

All the participants responded with agreement to the question, "I am willing to wear the necklace for 2 weeks

continuously with compensation (if I am paid in cash)". The compensation amount preference varied largely

among participants. In general, a greater number of participants reported willingness to wear with increasing

monetary value. Interestingly, on average, people with obesity were willing to wear the device for less monetary

compensation, compared with people with a normal BMI, suggesting we may have improved adherence in future

studies in a population group that feels they will benefit most from such a device or system. When we asked

participants to select all the factors that motivated them to wear the necklace for 2 weeks; 9 participants selected

monetary compensation, 5 selected health, and 8 selected contribution to research.

6.6 Summary of Results
From these results we observe that: (i) It is indeed possible to detect the eating activity in a completely naturalistic
setting at an extremely challenging per-second granularity with a F1-score of 73.7% (76.2% in semi-free living

conditions), thus presenting the possibility of performing real-time interventions. This is an improvement over

similar existing techniques. (ii) It is possible to determine the eating episodes, even as individuals perform

their everyday activities, with an F1-score of 77.1% (81.6% in semi-free living conditions). (iii) A combination of

multi-sensor eating detection outperforms the eating detection by a single sensing modality by 8% to 12%. (iv) It

is necessary to build eating activity detection models while using data from various demographic groups because

we identified that models trained on participants without obesity fail to accurately detect eating episodes for

participants with obesity. (v) NeckSense is robust to the on-neck position and can capture chewing sequences

during an eating episode. (vi) Once NeckSense’s battery is completely charged, it can continuously monitor

a participant’s eating activity in free-living conditions for over 15 hours, thus making it possible to monitor

individuals through an entire waking day. These results demonstrate that the necklace can be a promising avenue
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for identifying eating-related activities through an individual’s entire waking day and for deploying and testing

eating-related interventions in real time.

Overall, our results are promising. However, given that both the studies were conducted using a prototype

device and in a truly free-living population setting, challenging eating postures and scenarios confounded some

of our chewing and eating episode detection. For example, lying down while eating confounded our ability to

capture the lean forward motion during eating and also chewing from the proximity sensor. Similarly, eating in

total darkness confounded the classification model because the ambient light sensor gave readings far below the

normal range, while eating during exercising resulted in several false chewing detection, although our aggregate

filter successfully filtered out these isolated chewing sequences. Meals that included no chewing also presented a

challenge; this was seen in one of our participants who had 50% of the labeled eating episodes as ice cream, yogurt,

or other non-chewing foods. This issue has also been reported by other researchers exploring chewing-based

activity detection [13]. In the future we will explore techniques to overcome these challenges.

7 CONCLUSION
In this paper we present the design, implementation, and evaluation of a necklace suite for detection and validation

of chewing sequences and eating episodes in free-living conditions. We utilize sensor data from a proximity

sensor, an ambient light sensor, and an IMU sensor to detect chewing activity. We performed two free-living

studies using the necklace. In our exploratory study, where selective meals were captured and non-continuous

wear time was observed, we were able to outperform other methods with an F1-score of 76.2% at the per-second

leveland 81.6% at the per-episode level. Overall, our system achieved an F1-score of 73.7% in detecting the chewing

sequences at an extremely challenging per-second-level granularity in a truly free-living study. Additionally, our

system could detect eating episodes with an F1-score of 77.1%. This is an improvement of over 10% as compared

with using only the neck-worn proximity sensor for eating detection. Moreover, our work showed that models

trained on participants without obesity underperformed when tested on participants with obesity. To ensure

generalizability, future automatic dietary monitoring researchers should ensure BMI diversity in their training

set while developing the models. In terms of hours of battery life, the necklace could monitor the participants for

15.8 hours during the waking day, making it possible to monitor an individual’s eating activity occurring during

an entire day.

Our dataset is unique in that it comprises a 2-week and 2-day study of eating detection collected from 20

participants in free-living conditions. These data are accompanied by videos that were validated and professionally

labeled, marking the ground truth. This dataset includesmany unique eating events and eating situations, including

eating in cars, slouching, talking and eating, and eating a variety of soft foods. We hope this dataset, the associated

code base, and the hardware design will provide useful information from which researchers can glean insights

from the data and inform future studies. Understanding the effects of chewing speed and duration on overeating

can help interventionists design and test improved treatments for monitoring eating behaviors. Our user survey

showed that we may have improved adherence in future studies in a population that feels they will benefit most

from such a system. NeckSense is the next step in enabling behaviorists to imagine, design, deploy, and test for

effective interventions during and immediately after an eating episode.
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