
A Comparison of Two Pair Programming Configurations for
Upper Elementary Students

Jennifer Tsan
1
, Jessica Vandenberg

1
, Zarifa Zakaria

1
, Joseph B. Wiggins

2
, Alexander R. Webber

2
,

Amanda Bradbury
1
, Collin Lynch

1
, Eric Wiebe

1
, Kristy Elizabeth Boyer

2

jtsan@ncsu.edu,jvanden2@ncsu.edu,zzakari@ncsu.edu,jbwiggi3@ufl.edu,alexwebber@ufl.edu

aebradbu@ncsu.edu,cflynch@ncsu.edu,wiebe@ncsu.edu,keboyer@ufl.edu

1
North Carolina State University, Raleigh, North Carolina

2
University of Florida, Gainesville, Florida

ABSTRACT
As computer science education opportunities for elementary stu-

dents (grades K-5) are expanding, there is growing interest in using

pair programming with these students. However, previous research

findings do not fully support its use with younger learners, and

some researchers have begun to examine whether introducing a

second computer with a shared coding workspace can provide

important benefits. This experience report describes a series of

classroom activities in the 4
th
and 5

th
grades (ages 9-11 years old)

with two different pair programming configurations: one-computer

pair programming, in which both students share a keyboard, mouse,

and monitor; and two-computer pair programming, in which each

student has a separate computer but coding workspaces are syn-

chronized over the web. In both cases the students sat next to each

other and engaged in face-to-face conversation. We found that

students largely preferred two-computer pair programming over

one-computer pair programming. We conducted focus groups and

transcribed collaborative dialogues to gain more insight into this

preference. We learned that students felt more independence in

two-computer pair programming, although they struggled with

coordinating their edits with their partner. In one-computer pair

programming, students reported not wanting to wait for their turn

to drive, but feeling as though they communicated more with their

partner. Both configurations can be productive for students, but

the tradeoffs described in this experience report are important for

CS educators and researchers to consider when determining which

collaborative configuration to use in each K-5 classroom context.

CCS CONCEPTS
• Social and professional topics→K-12 education; •Applied
computing → Collaborative learning.

KEYWORDS
Pair programming, K-5, collaborative learning

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGCSE ’20, March 11–14, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-6793-6/20/03. . . $15.00

https://doi.org/10.1145/3328778.3366941

ACM Reference Format:
Jennifer Tsan

1
, Jessica Vandenberg

1
, Zarifa Zakaria

1
, Joseph B. Wiggins

2
,

Alexander R. Webber
2
, Amanda Bradbury

1
, Collin Lynch

1
, Eric Wiebe

1
,

Kristy Elizabeth Boyer
2
. 2020. A Comparison of Two Pair Programming

Configurations for Upper Elementary Students. In The 51st ACM Technical
Symposium on Computer Science Education (SIGCSE ’20), March 11–14, 2020,
Portland, OR, USA. ACM, New York, NY, USA, 7 pages. https://doi.org/10.

1145/3328778.3366941

1 INTRODUCTION
Pair programming, a configuration inwhich two programmerswork

on one computer while taking turns at the controls, has been used

in introductory computer science courses and in the programming

industry for over two decades [3, 4]. Typically, in this configuration,

the person controlling the keyboard and mouse acts as the driver
making all code changes, while the other person acts as the navi-
gator and is tasked with planning ahead and looking for mistakes

[30]. Both programmers are expected to engage with each other

continuously as they work, to solve problems collaboratively, and

to switch roles after a set amount of time or a set portion of the task

has been completed. We refer to this configuration as one-computer
pair programming because both programmers share one computer.

There is a growing interest in using pair programming with

younger students to build strong, early foundations in computer

science (e.g., [7, 10, 27]). Although one-computer pair program-

ming has been shown to be beneficial for older novices, studies

indicate that this collaborative configuration may not be suitable

for younger learners [20, 27, 28]. This may be due in part to the fact

that cognitive, learning, and communication capabilities essential

to effective pair programming are still developing for students at

this age and show wide student-student variance [17, 18, 24].

In our work in elementary school classrooms, we initially used

one-computer pair programming. However, we noticed the students

sometimes struggled to regulate control of the keyboard and mouse,

leading to conflicts. We turned to the literature where we found

examples of alternative pair-programming configurations. CS Edu-

cation researchers have investigated collaborative configurations

such as “intermittent collaboration” [19] or “side-by-side program-

ming” [8, 22], in which two programmers work on independent

computers and can work on separate coding assignments or divide-

and-conquer joint tasks as they deem appropriate. Multi-user input

with a shared computer has also been explored, such as giving each

programmer a separate mouse or other independent input device

[12, 16, 26].

https://doi.org/10.1145/3328778.3366941
https://doi.org/10.1145/3328778.3366941
https://doi.org/10.1145/3328778.3366941


Inspired by that work, we decided to investigate an alternative

to one-computer pair programming by providing each child with a

computer and synchronizing their workspaces over the web using

the NetsBlox programming environment [6]. In this paper will re-

fer to this configuration as two-computer pair programming. While

prior researchers have sometimes referred to this model using other

terms such as “intermittent collaboration” [19], or “side-by-side

programming” [22] we believe that two-computer pair programming
best describes our approach. In our view “collaboration” can en-

compass any number of participants, but our work focuses on pairs.

Additionally, “side-by-side programming” can imply any type of

interaction including work on separate projects, but our students

share a single task. This structure leads to dynamics that are similar

to a one-computer condition with students communicating about

their work, offering suggestions, and exchanging control of code,

even though the driver/navigator roles are not strictly enforced.

We use the term two-computer pair programming to refer to con-

texts in which each of two programmers has a computer and 1)

each has full, parallel input control and viewing; 2) they are in

close physical proximity so that they can talk and gesture, includ-

ing pointing at each other’s computer screens; 3) they work in a

synchronized, shared development environment (Figure 1).

Figure 1: Pair Programming Configurations [32]

We have used both a one-computer and two-computer configu-

ration with 4th-5th grade students in the southeastern US over the

past two years as part of a project to integrate CS into elementary

school classrooms. This experience report describes the trade-offs

that we observed between those two configurations. For brevity, we

refer to one-computer pair programming as 1C and two-computer

pair programming as 2C. We observed that students generally

preferred 2C because they felt that it gave them more hands-on

experience and independence. Some students felt that they learned

more in 1C while others felt that they learned more in 2C. Students

also found that it was easier to coordinate and keep track of what

their partners were working on in 1C. The lessons learned from this

experience report can inform future classroom efforts involving

pair programming with upper elementary learners.

2 RELATEDWORK
Pair programming began as an industry practice and has since been

shown to improve adult programmers’ efficiency, satisfaction, and

confidence [30]. Additionally, Nosek found that developers who

used the pair programming configuration created code that was

more readable and functional than individual programmers [23].

Not long after pair programming was introduced, postsecondary

faculty began exploring this configuration in introductory computer

science classrooms. Studies at the undergraduate level showed

that students who engaged in pair programming had a higher rate

of earning a C or better in their classes, and performed better

on tests and projects than students that worked individually [31].

Course retention and major retention have also improved with pair

programming, along with confidence, especially for women [29].

Compared to a sizeable body of research findings on the ef-

fectiveness of pair programming with adult developers including

undergraduate students, the study of pair programming with K-12

students began more recently. Denner et. al. found that middle

school students who engaged in pair programming did better in

computational thinking post-tests and had a greater increase in Al-

ice knowledge than individual programmers [10]. In a sixth grade

coding camp, Lewis collected collaboration data to understand

which collaborative configuration was better for younger students

solving computer science problems: pair programming or “inter-

mittent collaboration” [19]. In the pair programming condition, the

students were required to switch roles every five minutes. In the

“intermittent collaboration” condition, participants worked next to

each other without a synchronized workspace and were required

to discuss their progress and challenges every five minutes, and ask

each other for help before they could ask an instructor. Lewis found

that students in the “intermittent collaboration” condition had more

positive responses to continuing Scratch and programming in the

future, and completed activities in less time.

Side-by-side programming is often conceptualized as two pro-

grammers working in close proximity to each other, on their own

computers, but with the ability to complete shared tasks [8, 22, 25].

Cockburn [8] surmises that side-by-side programming is an appro-

priate alternative to pair programming, which often leaves program-

mers feeling that they are being monitored and with little time to

work on other projects. Side-by-side programmers typically cease

independent work to talk with their partner about work strategies

or next steps, to share knowledge, to debug the code, or to combine

their work [25].

Distributed variants of side-by-side programming have also been

proposed [11]. In this configuration, programmers can work re-

motely, but each has an awareness computer that displays the work
their partner is completing in real-time. Programmers working in

this configuration structure their time in varied ways; they work

independently without talking, they work on sub-tasks and speak

when needed, they pair program, one programs while the other

browses, and they jointly browse. The authors maintain the su-

periority of distributed side-by-side programming because of the

flexibility with which the programmers could engage in joint and

independent work.

In our examination of the literature for guidance on how to

support pair programming with elementary students, we did not

find any studies that examined two-computer pair programming

with this young student population. This experience report aims

to shed light on the tradeoffs involved between the one-computer

and two-computer programming configurations.



School White Latinx Black/Afr.

Am.

Asian Multi. NSLP*

Clark 51 27 14 3 5 44

Frederick 58 19 16 1 4 42

Greg 64 3 22 3 8 63

Table 1: Demographics of the schools by percentage.
*National School Lunch Program - free/reduced lunch

3 CLASSROOM EXPERIENCES
In this experience report, we detail a series of CS learning oppor-

tunities that we brought to 4th and 5th grade students. In these

learning opportunities we had students try 1C and 2C pair pro-

gramming as they developed code in NetsBlox [6], a block-based

programming platform that permits students to invite collaborators

to help create content. The code is synchronized over the web as

each coder makes edits.

The first classroom experience (State 1) used a science-based

curriculum. The remaining two classroom experiences and focus

groups (State 2) used a computational thinking/computer science

curriculum. The demographics of the students are listed in Table 1.

The states and names of elementary schools have been anonymized.

Informed consent was obtained for all students whose data are

analyzed here according to an IRB-approved protocol. For each

classroom experience, we made observations and developed ques-

tions based on the observations. This required us to take on different

annotation schemes to analyze the data from each experience.

3.1 Classroom Experience 1 - Science
3.1.1 Curriculum. The curriculum for this classroom experience

was designed and taught by the authors. We collaborated closely

with our partner teacher to plan, create, and revise these tasks. It

covered not only the computational thinking concepts, but also

science concepts surrounding the classroom’s science focus prior

to our classroom experience, pollination. The experience spanned a

three-day period in a 4th grade science class, each lesson designed

to last 45-50 minutes. The learners in these classes had participated

with our team in a previous learning experience within the same se-

mester, during which they learned fundamental block-based coding

concepts, including message passing, conditionals, and loops.

On day 1, we led an overview of a computer science concept,

nested conditionals, which built upon the lessons students had

completed in the previous experience. On days 2 and 3, students

worked in pairs to complete learning tasks focused on the science

concept of pollination using nested conditionals. Student pairs were

created by the teacher prior to our classroom experience (randomly

or by who would work best together). The morning class first

experienced the 1C configuration and then the 2C configuration on

the following day. The afternoon class experienced the conditions

in the opposite order.

3.1.2 Demographics. This experiencewas offered at a public school
with 38 fourth grade students. Participants included 16 girls and 22

boys between the ages of 9 and 11. The students attended one of

two science classes (18 in morning, 19 in afternoon), each instructed

by the same teacher. The classes were both 50-minute sessions.

3.1.3 Observations. The 4th and 5th grade students at Greg Ele-

mentary had previous experience with our group and were excited

to work with us again. As they were already familiar with the block-

based language, we gave them a minimal overview of the material.

Our student population was split between two distinct class groups,

one in the morning and one in the afternoon with no participant

overlap. We observed that students in the 1C configuration for both

classes experienced more interpersonal conflict than the days in

which they worked in 2C. However, we also noticed some students

in the 2C configuration were not contributing to the solution and

did not seem fully engaged in the learning process.

We were interested in how conversations unfolded in the two

different configurations since this is an indicator of the depth of

collaboration and learning. A preliminary analysis focused on the

ways students asked questions of each other, labeling eight question

types: description (e.g., What’s the stage?), method (e.g., How do
we get out of this?), explanation (e.g., Why do you have to go to
motion?), rationale (e.g., What are you doing?), comparison (e.g.,
Should we shorten it up?), preference (e.g., Do you want to read it
better?), binary (e.g., So red or yellow?), and status (e.g., What did
I do?!). These question types are taken from a widely used question

taxonomy for learning [14].

To label these questions, two researchers independently reviewed

two videos in order to find occurrences of question-asking behavior.

Each researcher transcribed each instance, which included the start

and end time of each question episode and the reason for includ-

ing the event as a question. Disagreements in transcription were

resolved through discussion and iterative refinement. For the be-

ginning and end time of each question, we added 5 seconds before

and after the timestamps labeled for each question. For example,

if the question asking behavior episode began at the timestamp

of 00:55 and ended at 01:00, we stamped the episode to start at

00:50 and end at 01:05. After the instances of question asking were

extracted, the two researchers discussed each instance. Cases of

disagreement were resolved by either reaching consensus that a

question-asking episode had occurred, or removing that instance

if it was not agreed upon. Once the discussion period for each

transcribed question episode concluded, we completed the same

process for annotating each question.

We found no significant differences in the number of any ques-

tion type across 1C and 2C configurations. The most frequent ques-

tion types were explanation questions and status questions. An

explanation question asks for the clarification of the causes, con-

text, and consequences of facts, such as “Why do you have to go to

motion?”. A status question refers to the current condition of the

program as produced by a partner or the self, such as “What did I

do?!” Although further analysis is needed, these initial results indi-

cate that there may be no significant differences in question-asking

frequency across 1C and 2C configurations.

3.2 Classroom Experience 2 - CT 1
3.2.1 Curriculum. The curriculum for this classroom experience

was designed by the authors and taught by the school media center

teacher. Each lesson was intended to last an hour.Students were

first taught about programming and algorithms before they were

introduced to the block-based programming environment. On day 2,



(a) 1C Poster (b) 2C Poster

Figure 2: 1C and 2C Posters.

students were introduced to the categories of blocks and practiced

their use. Day 3’s lesson consisted of three activities on conditionals

and conditional trees, culminating in an activity in which students

created their own idea for a program that would require condi-

tionals, draw the conditional tree, and then program it. On day 4,

students learned about repeating patterns and loops. They worked

in pairs to identify a program they could write that needed loops

and then implemented it. On day 5, students learned about taking

in user input and adapting program behavior based on input, while

on day 6 they learned about broadcasting and receiving. Finally, on

day 7, students created a game that brought together many of the

concepts covered previously.

At Clark Elementary, the students were in the class for 45 min-

utes; therefore, the lessons had to be reduced to fit in that time

slot. The course was taught by the media center specialist who had

some experience teaching block-based programming. In addition

to shortening the lessons, the teacher decided to cover conditionals

and loops for two days each after seeing the students struggle with

the concepts during the first day of each lesson. The final lesson

the teacher taught was loops.

As part of this curriculum, the students were taught about both

1C and 2C pair programming. They were introduced to the roles and

responsibilities of the driver and navigator and they were taught

about the importance of talking through their decision making

process. The teacher shared digital posters for both 1C (Figure 2a)

and 2C (Figure 2b) and reminded students of how they should work

in each configuration. She did not, however, remind the students to

switch roles in 1C. The first and third programming days were 1C

and the second and fourth were 2C.

3.2.2 Demographics. At Clark Elementary, the three 5th-grade

classrooms in which the experiences occurred contained approx-

imately 28 students each and were representative of the overall

population of the school. 68 students participated in the study (29

girls, 39 boys). The students were paired by their homeroom teach-

ers based on their prior collaborative behaviors; the pairs remained

the same over the course of the entire experience.

3.2.3 Observations. The students at Clark Elementary hadminimal

experiencewith coding andwere excited to spend theirmedia center

time engaged in this opportunity. After receiving instruction from

the teacher, we noticed that some of the students jumped right into

the coding task, whereas others took time to plan. Moreover, we

observed that the ways the students talked to each other seemed

to change depending on whether they were using one computer

or two. Based on these experiences, we wanted to explore more

deeply how students interact in 1C and 2C pair programming.

All 68 consenting students across the three classrooms were

video recorded as they worked together on one or two computers.

Videos were transcribed verbatim of each day the students pro-

grammed. We annotated the transcripts according to which task

phase they were in (planning, monitoring, or evaluating) and how

their language indicated they were working together (collabora-

tive, agreement, tutoring, disagreement, confusion, or individualis-

tic). We analyzed annotated transcripts from four pairs (four girls

and four boys) in which the students participated in all four pro-

gramming lessons, described previously. Moreover, we calculated

frequencies of each type of talk each student used each day.

In general, for both conditions, the analysis found that students

rarely planned before starting their work, nor did they reflect on

their work after completing a task. Regarding differences in 1C and

2C, we noticed there was more disagreement-annotated conversa-

tions on 1C days and more collaboration-annotated conversations

on 2C days. Of note, when the task became more challenging—

on the final two days—the conversations shifted to become more

individualistic, and to reflect more disagreement and confusion,

regardless of whether the students were in 1C or 2C.

3.3 Classroom Experience 3 - CT 2
3.3.1 Curriculum. We modified the original curriculum to fit the

requirements needed for the 5th grade classes at Frederick Ele-

mentary. On day 1, students learned conditionals and completed

two programs where the sprites acted differently based on certain

conditions. On the next day, students learned about variables and

completing debugging activities. On day 3, students learned about

loops and on day 4 students were given starter code and instruc-

tions for programming four games, and chose which one(s) they

wanted to make. On the fifth day of instruction, we conducted focus

groups with the students to explore how they felt about 1C and 2C

pair programming. There were three to four students in the focus

groups. We divided them up randomly. The questions we asked

were: 1) Which way did you prefer? 1C or 2C? 2) What were some
things that did not go well during 1C? 3) What were some things that
did not go well during 2C? 4) Do you feel you learned more of the
programming concepts using one setup over the other? Why? 5) What
did you like about 1C? Do you have any specific examples? 6) What
did you like about 2C? Do you have any specific examples?

One of the authors taught the class, and each lesson lasted one

hour. Similar to the Clark Elementary curriculum described previ-

ously, the students were taught about both 1C and 2C pair program-

ming. They were introduced to the roles and responsibilities of the

driver and navigator and they were taught about the importance

of talking through their decision-making process. We had printed

versions of the posters that were placed in front of the students. At



Config. Challenges

1C

1. Problems with Turn Taking

2. Challenging to Wait for Turn to be the Driver

3. Poor Communication: Arguing and Not Listening

to Partner

4. Physical Setup Was Too Cramped

5. Lack of Hands-on Experience

6. Navigator Not Paying Attention

2C

1. Technical Issues

2. Working Independently: Poor Coordination be-

tween Partners

3. Can’t See What Partner is Doing

Config. Benefits

1C

1. Learn More from Watching Partner

2. Easier to See What Partner is Doing

3. Easier to Find Mistakes

2C

1. Chunking

2. More Independence and Control

3. Learned More

4. Less Cramped

5. More Hands-on Experience

Table 2: Benefits and Challenges of 1C and 2C.

the beginning of each class, we reminded the students about 1C

and 2C pair programming. Another difference between this imple-

mentation and the previous one is that during 1C days, we set a

timer for the students and announced when it was time to switch.

3.3.2 Demographics. Frederick had 11 participants, 33.33% were

girls. These students participated in the five-day curriculum with

each lesson spaced a week apart. The students were randomly

paired by their teacher every lesson.

3.3.3 Observations. TheAcademically or Intellectually Gifted (AIG)

students were excited about the programming experience where the

teacher would quiz them on the roles of driver and navigator (in 1C)

or the function of certain blocks. The children would talk among

themselves about their plans for the day, deciding who would be

responsible for which component of the task or how they might

change what they had previously completed. The students were

enthusiastic but we were unsure of the quality of their collaborative

conversations. This led us to look at how the kids critically talked to

each other, how they were positive towards each other, and how the

students pushed each other’s thinking to higher levels. Literature

shows that conversation is considered productive when individuals

are critical of each others’ propositions by challenging and explain-

ing themselves along with offering alternative ideas (Exploratory

conversation) [13], and less productive either when students un-

critically converse with intention to avoid conflict (Cumulative

conversation) or when they tend to have unsolved disagreements

(Disputational conversation) [21].

We used video recordings of student conversations during pair

programming to examine the types of conversations that they par-

ticipated in throughout the activities. We watched 20 minutes of

concurrent video with transcripts of students’ collaboration to qual-

itatively annotate the three categories of conversation mentioned

above. Video recordings were divided into 120 ten-second intervals

and we annotated each interval exclusively to one of the three

categories (Exploratory, Cumulative, or Disputational).

We found that overall, students used Cumulative conversation

more than the other two categories in both 1C and 2C conditions

[32]. There were no significant quantitative differences in types

of conversation between 1C and 2C, however, we had three in-

teresting qualitative observations: First, in 1C, challenging ideas

resided primarily with the driver while the navigator was left de-

fending their ideas. Second, instances of Exploratory conversation

were often preceded or followed by Disputational in 1C, whereas, it

transitioned into Cumulative conversation in 2C. Finally, evidence

suggested that 2C has the risk of dissipating the collaborative rela-

tionship by turning into a cooperative one, where students worked

in parallel rather than focused on the same immediate task [9].

Nonetheless, even when the students worked more cooperatively

in 2C, partners had consulted each other regularly and had a bal-

anced opportunities to challenge and explain their thoughts to each

other.

4 EXAMINING STUDENTS’ EXPERIENCES
One of our goals in these classroom experiences was to better

understand how the students felt about 1C and 2C. We asked the

students at Frederick Elementary about what they liked and disliked

about each experience (described in Section 3.3). When asked which

method they preferred, twelve out of fifteen students stated they

preferred 2C over 1C [5].

We then asked the students about challenges they ran into while

using the methods (Table 2). For 1C, students stated that a partner

could monopolize the driver role (which we observed on many

occasions). The students preferred the driver over the navigator

role and did not enjoy waiting their turn to be the driver again.

They found that in 1C, communication was less effective because

of arguing and partners not listening (which we also documented).

Additionally, there were fewer opportunities for hands-on experi-

ence in 1C. Since each student had a computer, the students felt that

there was not enough space to sit comfortably. The students stated

that the navigator was not always attentive to what the driver was

doing. For 2C, students mostly spoke about technical issues such

as latency issues with NetsBlox in which the programs did not

synchronize quickly. As the students were not able to easily see

their partners’ actions in real time, these issues often led to students

working in parallel and not fully coordinating their work.

Finally, we asked them about positive aspects of each method

(Table 2). For 1C pair programming, some students felt they were

able to learn more because they could see what their partners were

doing, and as a result, they could see their partners’ mistakes more

easily. For 2C pair programming, the students felt that they were

able to chunk the work into sub-tasks and work in parallel. They felt

that they had more independence and control in 2C. Additionally,

since there was only one computer per pair, it was less cramped than

in 2C. On the other hand, the students believed that 2C allowed for

more hands-on experience. Additionally, there were some students

that thought they learned more in 2C than 1C.



5 DISCUSSION AND TAKEAWAYS
After observing students in the three schools try both 1C and 2C

pair programming, we began to reflect on how those experiences

went. Overall, the students expressed greater satisfaction with 2C,

but they were able to identify benefits and challenges of both. We

summarize a set of takeaways for practitioners to consider when

deciding between using 1C and 2C pair programming.

Independence. Students mentioned that they could work more

efficiently in 2Cwith independence and control over the task. While

working independently may be desirable in some contexts, we no-

ticed that the students often worked on different parts of their

program while talking to each other about the code, which could be

considered cooperative work instead of collaborative work [15]. Al-

though the students’ process may resemble cooperative work, Class-

roomExperience 1’s question-asking analysis suggests that students

may ask a similar number of questions regardless of whether they

were in the 1C or 2C configuration, indicating that meaningful dia-

logue is still occurring. Additionally, as suggested by the analysis

of Computational Thinking 2, students had an equal number of

Cumulative, Exploratory or Disputational statements in 1C and 2C.

Therefore, we recommend the use of 2C when practitioners would

like to provide more agency to their students and when there is

less concern that imbalance of ability or motivation would lead to

one student doing a majority of the work.

Coordination. We also noticed an interesting pattern as stu-

dents negotiated over the task. The students felt there was often

poor coordination between partners when using 2C. One student

stated, “you’re both kind of doing your own thing, so it just kind

of jumbles up.” Moreover, in 1C, students found it hard to wait

for their turn, leading to problems with fair turn-taking as most

students wanted to be the driver. Tension over who controlled the

code led to poor communication methods such as arguing or the

driver ignoring navigator suggestions. Many navigators chose not

to pay attention to the driver’s work because they did not think

their role was important, and when they offered suggestions, the

driver often ignored them. We have observed this pattern many

times where some students remain the driver the entire session.

Practitioners who use either method should be aware of the need to

scaffold effective communication practices, specifically turn-taking

in 1C and task coordination in 2C.

Learning. Students stated that they “learned more” in both 1C

and 2C; however, the reasons they offered as explanation differed

between the two configurations. Students suggested 1C allowed for

more partner-to-partner learning (“you can learn from what your

partner is doing”), whereas 2C enabled learning via more hands-on

experience. Students mentioned preferring 2C as they found this

configuration provided more agency than 1C (“learn more because

you had more of a chance to experiment and learn more about what

each thing did.”). This is not surprising given that the setting of 1C

permits only the driver to control the input devices. Although we

do not have evidence of students learning more in either condition,

students’ perception of how much they learn can affect their self-

efficacy [2]. Practitioners should monitor this affective dimension

as different students pairs may respond differently to 1C and 2C.

Conversations. There were important, though subtle, differ-

ences in the patterns of conversations between the two conditions.

We noticed that conversations turned into unresolved disagree-

ments more in 1C than in 2C. In addition, we also observed that as

the difficulty of tasks rose, the students disagreed more. Practition-

ers should be alert that when the task difficulty rises, they need to

be attuned to increases in disagreement, especially in 1C.

Chunking. Some students expressed that they enjoy the 2C

configuration because they could divide the tasks and complete the

subtasks in parallel. One student stated that this was “because one

person can work on one thing and another could work on the other.”

This is an important practice in computer science, “At any grade

level, students should be able to break problems down into their

component parts” [1]. Practitioners can support this by teaching

the students how to chunk their tasks in 2C. However, they also

need to be aware that a higher level of coordinating communication

will be required of the students.

Other Logistical Considerations. Physical comfort of students
is an important consideration. In our experience, some desks were

too full with one device per student, while other desks had plenty

of room. Device size is also important: devices with smaller screens

create scenarios in which students had to sit quite close to each

other or staggered so the navigator sat looking over the driver’s

shoulder. 2C would require classrooms to have a sufficient number
of devices for each student to have an individual computer.

6 CONCLUSIONS
When teaching computer science, it is important to consider the

social and learning needs of all students and choose appropriate

methods to support learning. Pair programming is often used to

facilitate communication and collaboration in classrooms, although

its effectiveness with different age groups is still under investigation.

Our observations from classroom experiences are consistent with

the suggested conclusions from prior research, that elementary-

aged students have vastly different cognitive and communication

capabilities than adults, and that these differences need to be taken

into account when designing pair programming activities.

To help inform solutions that address these differences, this expe-

rience report has compared a one-computer (1C) and two-computer

(2C) configuration for pair programming with these young students.

Among other findings, students felt that they had stronger com-

munication with their partners while using 1C, whereas students

felt they were getting better hands-on experience while using 2C.

Although students reported better coordination while working on

the same task in 1C, they frequently argued over who should be in

control of the computer and, once in control, would be resistant to

considering input from their partner. While using 2C, students feel

more efficient, dividing and conquering parts of the code, though

disconnected from what their partner was doing.

We are only at the beginning of understanding elementary-aged

students’ perceptions and experiences during pair programming.

While our experiences point to benefits and challenges of both

configurations, it is critical that we observe how partner collabo-

ration unfolds out over longer periods of time. The CS Education

community needs to continue to investigate how students come to

develop a sense of identity toward computer science, the language

that unfolds between pair programmers, as well as other factors

that drive classroom pedagogy.



7 ACKNOWLEDGMENTS
This work is supported by the National Science Foundation through

the grant DRL-1721160. Any opinions, findings, and conclusions

or recommendations expressed in this material are those of the

author(s) and do not necessarily reflect the views of the National

Science Foundation.

REFERENCES
[1] Julie Alano, Derek Babb, Julia Bell, Tiara Booker-Dwyer, Leigh Ann DeLyser,

CaitlinMcMunnDooley, Diana Franklin, Dan Frost, Mark A. Gruwell, Maya Israel,

and et al. 2018. K12 Computer Science Framework. (2018). https://k12cs.org/

[2] Albert Bandura. 1993. Perceived self-efficacy in cognitive development and

functioning. Educational psychologist 28, 2 (1993), 117–148.
[3] Kent Beck. 1998. Extreme Programming: A Humanistic Discipline of Software

Development. In International Conference on Fundamental Approaches to Software
Engineering. Springer, 1–6.

[4] Kent Beck. 1999. Embracing Change with Extreme Programming. Computer 32,
10 (1999), 70–77.

[5] Amanda Bradbury, Eric Wiebe, Jessica Vandenberg, Jennifer Tsan, Collin Lynch,

and Kristy Boyer. 2019. The Interface Design of a Collaborative Computer

Science Learning Environment for Elementary Aged Students. In Proceedings of
the Human Factors and Ergonomics Society Annual Meeting. Sage publications
Sage CA: Seattle, WA, 493–497.

[6] Brian Broll, Péter Völgyesi, János Sallai, and Akos Lédeczi. 2016. NetsBlox: A vi-

sual language and web-based environment for teaching distributed programming.

(2016).

[7] Shannon Campe, Jill Denner, Emily Green, and David Torres. 2019. Pair pro-

gramming in middle school: variations in interactions and behaviors. Computer
Science Education 0, 0 (2019), 1–25. https://doi.org/10.1080/08993408.2019.1648119
arXiv:https://doi.org/10.1080/08993408.2019.1648119

[8] Alistair Cockburn. 2004. Crystal clear: a human-powered methodology for small
teams. Pearson Education.

[9] Neil Davidson and Claire Howell Major. 2014. Boundary crossings: Coopera-

tive learning, collaborative learning, and problem-based learning. Journal on
excellence in college teaching 25 (2014).

[10] Jill Denner, Linda Werner, Shannon Campe, and Eloy Ortiz. 2014. Pair program-

ming: Under what conditions is it advantageous for middle school students?

Journal of Research on Technology in Education 46, 3 (2014), 277–296.

[11] Prasun Dewan, Puneet Agarwal, Gautam Shroff, and Rajesh Hegde. 2009. Dis-

tributed side-by-side programming. In Proceedings of the 2009 ICSE workshop on
cooperative and human aspects on software engineering. IEEE Computer Society,

48–55.

[12] Alejandro Echeverría, Matías Améstica, Francisca Gil, Miguel Nussbaum, Enrique

Barrios, and Sandra Leclerc. 2012. Exploring different technological platforms

for supporting co-located collaborative games in the classroom. Computers in
Human Behavior 28, 4 (2012), 1170–1177.

[13] Manuel Fernández, Rupert Wegerif, Neil Mercer, and Sylvia Rojas-Drummond.

2002. Re-conceptualizing “scaffolding” and the zone of proximal development in

the context of symmetrical collaborative learning. Journal of Classroom Interaction
36, 2/1 (2002), 40–54.

[14] Arthur C Graesser, Cathy L McMahen, and Brenda K Johnson. 1994. Question

asking and answering. (1994).

[15] Lesley G Hathorn and Albert L Ingram. 2002. Cooperation and collaboration

using computer-mediated communication. Journal of Educational Computing
Research 26, 3 (2002), 325–347.

[16] Cristián Infante, Pedro Hidalgo, Miguel Nussbaum, Rosa Alarcón, and Andrés

Gottlieb. 2009. Multiple Mice based collaborative one-to-one learning. Computers
& Education 53, 2 (2009), 393–401.

[17] Patrick J Leman. 2015. How do groups work? Age differences in performance and

the social outcomes of peer collaboration. Cognitive science 39, 4 (2015), 804–820.
[18] Patrick J Leman and Gerard Duveen. 1996. Developmental differences in chil-

dren’s understanding of epistemic authority. European Journal of Social Psychol-
ogy 26, 5 (1996), 683–702.

[19] Colleen M Lewis. 2011. Is pair programming more effective than other forms

of collaboration for young students? Computer Science Education 21, 2 (2011),

105–134.

[20] Colleen M Lewis and Niral Shah. 2015. How Equity and Inequity Can Emerge in

Pair Programming. In Proceedings of the Eleventh annual International Conference
on International Computing Education Research. ACM, 41–50.

[21] Neil Mercer. 2002. Words and minds: How we use language to think together.
Routledge.

[22] Jerzy R Nawrocki, Michał Jasiński, Łukasz Olek, and Barbara Lange. 2005. Pair

programming vs. side-by-side programming. In European Conference on Software
Process Improvement. Springer, 28–38.

[23] John T Nosek. 1998. The case for collaborative programming. Commun. ACM 41,

3 (1998), 105–108.

[24] Jean Piaget. 2013. The construction of reality in the child. Routledge.
[25] Lutz Prechelt, Ulrich Stärk, and Stephan Salinger. 2008. 7 types of cooperation

episodes in Side-by-Side programming. (December 2008).

[26] Stacey D Scott, Regan L Mandryk, and Kori M Inkpen. 2003. Understanding

children’s collaborative interactions in shared environments. Journal of Computer
Assisted Learning 19, 2 (2003), 220–228.

[27] N Shah, C Lewis, and R Caires. 2014. Analyzing equity in collaborative learn-

ing situations: A comparative case study in elementary computer science. In

Proceedings for the 11th International Conferences of the Learning Sciences (ICLS).
495–502.

[28] Jennifer Tsan, Collin F Lynch, and Kristy Elizabeth Boyer. 2018. “Alright, what

do we need?”: A study of young coders’ collaborative dialogue. International
Journal of Child-Computer Interaction (2018).

[29] Linda L Werner, Brian Hanks, and Charlie McDowell. 2004. Pair-programming

helps female computer science students. Journal on Educational Resources in
Computing (JERIC) 4, 1 (2004), 4.

[30] Laurie Williams, Robert R Kessler, Ward Cunningham, and Ron Jeffries. 2000.

Strengthening the case for pair programming. IEEE software 17, 4 (2000), 19–25.
[31] Laurie Williams, Eric Wiebe, Kai Yang, Miriam Ferzli, and Carol Miller. 2002.

In support of pair programming in the introductory computer science course.

Computer Science Education 12, 3 (2002), 197–212.

[32] Zarifa Zakaria, Danielle Boulden, Jessica Vandenberg, Jennifer Tsan, Collin Lynch,

Eric Wiebe, and Kristy Elizabeth Boyer. 2019. Collaborative Talk Across Two

Pair-Programming Configurations. (2019), 224–231.

https://k12cs.org/
https://doi.org/10.1080/08993408.2019.1648119
http://arxiv.org/abs/https://doi.org/10.1080/08993408.2019.1648119

	
	
	
	
	
	
	

	
	
	
	
	

