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Réka AlbertID
1, Carlos F. Lopez2, Julien SageID

4, Vito QuarantaID
2*

1 Department of Physics, The Pennsylvania State University, University Park, Pennsylvania, United States of

America, 2 Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United

States of America, 3 Departments of Biomedical Informatics and Biostatistics, Vanderbilt University Medical

Center, Nashville, Tennessee, United States of America, 4 Departments of Pediatrics and Genetics, Stanford

University, Stanford, California, United States of America

☯ These authors contributed equally to this work.

* vito.quaranta@vanderbilt.edu

Abstract

Adopting a systems approach, we devise a general workflow to define actionable subtypes

in human cancers. Applied to small cell lung cancer (SCLC), the workflow identifies four sub-

types based on global gene expression patterns and ontologies. Three correspond to

known subtypes (SCLC-A, SCLC-N, and SCLC-Y), while the fourth is a previously unde-

scribed ASCL1+ neuroendocrine variant (NEv2, or SCLC-A2). Tumor deconvolution with

subtype gene signatures shows that all of the subtypes are detectable in varying proportions

in human and mouse tumors. To understand how multiple stable subtypes can arise within a

tumor, we infer a network of transcription factors and develop BooleaBayes, a minimally-

constrained Boolean rule-fitting approach. In silico perturbations of the network identify mas-

ter regulators and destabilizers of its attractors. Specific to NEv2, BooleaBayes predicts

ELF3 and NR0B1 as master regulators of the subtype, and TCF3 as a master destabilizer.

Since the four subtypes exhibit differential drug sensitivity, with NEv2 consistently least sen-

sitive, these findings may lead to actionable therapeutic strategies that consider SCLC intra-

tumoral heterogeneity. Our systems-level approach should generalize to other cancer

types.

Author summary

Small-cell lung cancer (SCLC) is an extremely aggressive disease with poor prognosis.

Despite significant advances in treatments of other cancer types, therapeutic strategies for

SCLC have remained unchanged for decades. We hypothesize that distinct SCLC subtypes

with differential drug sensitivities may be responsible for poor treatment outcomes. To

this end, we applied a computational pipeline to identify and characterize SCLC subtypes.

We found four subtypes, including one (termed “NEv2”) that had not previously been

reported. Across a broad panel of drugs, we show that NEv2 is more resistant than other
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SCLC subtypes, suggesting that this subtype may be partly responsible for poor treatment

outcomes. Importantly, we validate the existence of NEv2 cells in both human and mouse

tumors. Reprogramming the identity of NEv2 cells into other subtypes may sensitize these

cells to existing treatments. However, deciphering global mechanisms that regulate differ-

ent subtypes is generally unfeasible. To circumvent this, we developed BooleaBayes, a

modeling approach that only infers local regulatory mechanisms near stable cell subtypes.

Using BooleaBayes, we found master regulators and master destabilizers for each subtype.

These findings predict targets that may destabilize a particular subtype, including NEv2,

and lead to successful therapy, by either knocking out master regulators or turning on

master destabilizers.

Introduction

A major barrier to effective cancer treatment is the occurrence of heterogeneous cell subpopu-

lations that arise within a tumor via genetic or non-genetic mechanisms. Clonal evolution of

these subpopulations via plasticity, drug-induced selection, or transdifferentiation allows

tumors to evade treatment and relapse in a therapy-resistant manner. Characterizing cancer

subpopulations, or subtypes, has led to breakthrough targeted treatments that significantly

improve patient outcomes, as in the case of melanoma [1], breast [2], and lung cancer [3].

However, approaches to subtype identification suffer from several limitations, including: i)

focus on biomarkers, which frequently possess insufficient resolving power; ii) lack of consid-

eration for the system dynamics of the tumor as a whole; and iii) often phenomenological,

rather than mechanistic, explanations for subtype sources.

To accelerate progress in cancer subtype identification, we set out to develop a general sys-

tems-level approach that considers underlying molecular mechanisms to generate multiple sta-

ble subtypes within a histological cancer type. We focused on gene regulatory networks

(GRNs) comprised of key transcription factors (TFs) that could explain the rise, coexistence

and possibly transdifferentiation of subtypes. To enumerate subtypes, identify key regulating

TFs, and predict reprogramming strategies for these subtypes, we established the workflow

shown in Fig 1. Briefly, we use consensus clustering and weighted gene co-expression network

analysis on transcriptomics data to identify cancer subtypes distinguished by gene expression

signatures, biological ontologies, and drug response. We validate the existence of the subtypes

in both human and mouse tumors using CIBERSORT [4] and nearest neighbor analyses, and

develop a GRN that can explain the existence of multiple stable subtypes within a tumor. We

then introduce BooleaBayes, a Python-based algorithm to infer partially constrained regula-

tory interactions from steady state gene expression data. Applied to this GRN, BooleaBayes

identifies and ranks master regulators and master destabilizers of each subtype. In a nutshell,

starting from transcriptomics data, the workflow can predict reprogramming strategies to

improve efficacy of treatment.

We applied this workflow to Small Cell Lung Cancer (SCLC), in which genetic aberrations

cannot fully distinguish subtypes [5], or point toward a targeted therapy. SCLC treatment has

instead remained cytotoxic chemotherapy (a regimen of etoposide and a platinum-based agent

such as cisplatin) and radiation for over half a century, despite the fact that virtually all patients

relapse after therapy. This has caused SCLC to be designated as a recalcitrant cancer by the

Recalcitrant Cancer Research Act of 2012, with five year survival rates less than 5%.

Recently, efforts to stratify patients have led to the recognition of phenotypic heterogeneity

within and between SCLC tumors, raising hopes for more efficient subtype-based treatment
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strategies. As first described over 30 years ago, human SCLC cell lines can be categorized into

two broad subtypes: a neuroendocrine (NE) stem-cell-like “classic” subtype and a distinct

non-NE “variant” subtype [6–8]. In both human and mouse tumors, most cells appear to

belong to the NE subtype, corresponding to a pulmonary neuroendocrine cell (PNEC) of ori-

gin [9], with high expression of neuroendocrine genes such as ASCL1. However, several

groups have found evidence for non-NE variants within SCLC tumors [10–12], as well as an

NE variant driven by MYC overexpression and NEUROD1 overexpression, instead of

ASCL1 [13–15]. We previously described SCLC cell lines with hybrid expression of both NE

Fig 1. Workflow of our analysis. We use parallel analyses to identify strategies to reprogram resistant SCLC

subpopulations into sensitive ones. These strategies can then be tested in vitro and in vivo.

https://doi.org/10.1371/journal.pcbi.1007343.g001
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and non-NE markers [16], and proposed they could serve as a resistant niche since drug per-

turbations shifted most cell lines towards hybrid phenotype(s). Taken together, these observa-

tions indicate the existence of a complex landscape of SCLC phenotypes that may form a

tumor microenvironment robust to perturbations and treatment [10, 17]. However, previous

SCLC subtype reports were limited in their ability to systematically identify subtypes and

understand plasticity across them. We hypothesized that our workflow, by taking into account

the dynamics of underlying GRNs, could make systems-level predictions that more accurately

reflect the occurrence and transdifferentiation of coexisting subtypes within SCLC tumors.

Starting from transcriptomics data from SCLC cell lines, our pipeline identifies four tran-

scriptional subtypes, and a GRN that describes their dynamics. Three of these correspond to

known ones, the fourth is a previously unreported NE variant (termed NEv2) with reduced

sensitivity to drugs. Both CIBERSORT and single-cell validation reveal that in virtually every

human and mouse tumor heterogeneity encompasses NEv2, and that all other previously

reported subtypes are represented across tumors. BooleaBayes identifies both master regula-

tors and master destabilizers for each subtype, opening the way for treatment strategies that

may take SCLC subtypes into account. For instance, we hypothesize that by targeting these

master TFs, the NEv2 phenotype may be destabilized leading to increased treatment sensitivity

of SCLC tumors.

Materials and methods

Data

Human SCLC cell line data was taken from the Broad Institute’s CCLE RNA-seq expression

data (version from February 14, 2018) at https://portals.broadinstitute.org/ccle/data. 81

human tumors were obtained from George et al. dataset, courtesy of R.K. Thomas [5]. The

Myc-high mouse data set [15] was obtained from the NCBI GEO deposited at GSE89660.

PDX/CDX mouse data [18] was obtained from the NCBI GEO deposited at GSE110853. Data

from the CCLE was subsetted to only include SCLC cell lines (50). Features with consistently

low read counts (< 10 in all samples) and non-protein-coding genes were removed. All expres-

sion data was then converted to TPM units and log1p normalized by dataset.

Clustering and WGCNA

We applied Consensus Clustering to RNA-seq gene expression data from the 50 SCLC cell

lines in the Cancer Cell Line Encyclopedia (CCLE) using the ConsensusClusterPlus R package

[19]. Gene expression (TPM) was median-centered prior to clustering, and we clustered the

cell lines using a k-means method with a Pearson distance metric for k 2 {2, 12}. Other param-

eters were set as follows: reps = 1000, pItem = 0.8, pFeature = 0.8, seed = 1. Best k value was

chosen heuristically based on the cumulative distributive function plot, tracking plot, delta

area plot, and consensus scores.

To identify gene programs driving the distinction between the four SCLC phenotypic clus-

ters, we performed weighted gene co-expression network analysis (WGCNA) on the same

RNA-seq data. The softPower threshold was chosen as 12 to generate a signed adjacency

matrix from gene expression. A topological overlap matrix (TOM) was created using this adja-

cency matrix as input. Hierarchical clustering on 1-TOM using method = ‘average,’ and the

function cutTreeDynamic was used to find modules with parameters: deepSplit = 2,

pamRespectsDendro = TRUE, minClusterSize = 100. These settings were chosen based on an

analysis of module stability and robustness. We then computed an ANOVA comparing the

four subtypes for each module. 11 out of 18 modules were able to statistically distinguish

between the four clusters with an FDR-adjusted p-value < 0.05.

SCLC subtype master regulators and destabilizers
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Gene ontology enrichment analysis

We ran a gene ontology (GO) enrichment analysis on each module that was significantly able

to distinguish the phenotypes (11 total). The terms that were significantly enriched in at least

one module were culminated into a general list of terms enriched in SCLC, which had 1763

terms. To visualize these terms, we computed a distance matrix between pairs of GO terms

using GoSemSim [20], and used this matrix to project the terms into a low dimensional space

using t-SNE. t-SNE is a popular method that computes a low-dimensional embedding of data

points and seeks to preserve the high-dimensional distance between points in the low-dimen-

sional space.

Drug sensitivity analysis

Our drug sensitivity analysis used the freely available drug screen data from Polley, et al [21].

This screen included 103 Food and Drug Administration-approved oncology agents and 423

investigational agents on 63 human SCLC cell lines and 3 NSCLC lines. We subsetted the data

to the 50 CCLE cell lines used for our previous analyses that had defined phenotypes according

to Consensus Clustering (above). As described in [21], “the compounds were screened in trip-

licate at nine concentrations with a 96-hour exposure time using an ATP Lite endpoint.”

Curve fitting, statistical analysis, and plotting was done by Thunor Web, a web application for

managing, visualizing and analyzing high throughput screen (HTS) data developed by our lab

at Vanderbilt University [22]. To fit a dose response curve for each drug and cell line pair, we

fit percent viability data from the screen to a three parameter log-logistic model. The three

parameters are Emax, EC50, and the Hill coefficient, where each coefficient is constrained to

reasonable ranges (Emax is constrained to be between 0 and 1, and the Hill coefficient (slope) is

constrained to be non-negative.) Activity area (AA) was calculated as described in [23]. Briefly,

AA is the area (on a log-transformed x-axis) between y = 1 (no response) and linear extrapola-

tions connecting the average measured response at each concentration. A larger activity area

indicates greater drug sensitivity, characterized either by greater potency or greater efficacy, or

both. By segregating the cell lines by subtype, we were able to evaluate the relationship between

drug response and subtype.

CIBERSORT

CIBERSORT is a computational inference tool developed by Newman et al. at Stanford Uni-

versity [4]. We utilized the interactive user interface of CIBERSORT Jar Version 1.06 at

https://cibersort.stanford.edu/runcibersort.php. Gene signatures were automatically deter-

mined by the software from a provided sample file with a matching phenotype class file. For

this sample file and class file, the RNA-seq data from 50 human SCLC cell lines were inputted

with their consensus clustering class labels. For each run, 500 permutations were performed.

Relative and absolute modes were run together, with quantile normalization disabled for

RNA-seq data, kappa = 999, q-value cut-off = 0.3, and 50-150 barcode genes considered when

building the signature matrix.

Single cell RNA sequencing of TKO SCLC tumors

The Tp53, Rb1 and p130 triple-knockout (TKO) SCLC mouse model with the Rosa26mem-

brane-Tomato/membrane-GFP (Rosa26mT/mG) reporter allele has been described (Denny

and Yang et al., 2016). Tumors were induced in 8-weeks old TKO; Rosa26mT/mG mice by

intratracheal administration of 4x107 PFU of Adeno-CMV-Cre (Baylor College of Medicine,

Houston, TX). 7 months after tumor induction, single tumors (one tumor each from two
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mice) were dissected from the lungs and digested to obtain single cells for FACS as previously

described [10, 24]. DAPI-negative live cells were sorted using a 100 μm nozzle on a BD FAC-

SAria II, spundown and resuspended in PBS with 10% bovine growth serum (Fisher Scientific)

at a concentration of 1000 cells/μl. Single cell capture and library generation was performed

using the Chromium Single Cell Controller (10x Genomics) and sequencing was performed

using the NextSeq High-output kit (Illumina).

Single cell analysis

Cells with� 500 detected genes per cell or with� 10% of transcripts corresponding to mito-

chondria-encoded genes were removed. Low abundance genes that were detected in less than

10 cells were excluded. Each cell was normalized to a total of 10,000 UMI counts, and log2-

transformed after the addition of 1. Top 1000 highly variable genes were selected and clusters

of cells were identified by the shared nearest neighbor modularity optimization based on the

top 10 PCs using the highly variable genes and visualized by t-SNE in R package Seurat [25].

The k-nearest neighbors (kNN) with k = 10 of human cell lines was detected for each mouse

cell to predict subtypes of the individual cell based on signature genes of each subtype. If at

least 80% nearest human cell line neighbors for a mouse cell belong to one subtype, the mouse

cell was assigned to that subtype. Otherwise, the subtype was undetermined (not assigned).

Genomic analysis

Mutational Analysis was performed by MutSigCV V1.2 from the Broad Institute [26]. First, a

dataset of merged mutation calls (including coding region, germ-line filtered) from the Broad

Cancer Dependency Map [27] was subsetted to only include SCLC cell lines. Background

mutation rates were estimated for each gene-category combination based on the observed

silent mutations for the gene and non-coding mutations in the surrounding regions. Using a

model based on these background mutation rates, significance levels of mutation were deter-

mined by comparing the observed mutations in a gene to the expected counts based on the

model. MutSigCV was run on the GenePattern server using this mutation table, the territory

file for the reference human exome provided for the coverage table file, the default covariate

table file (gene.covariates.txt), and the sample dictionary (mutation_type_dictionary_file.txt).

Only genes with an FDR-corrected q-value < 0.25 were considered significant.

Gene regulatory network construction

Transcription factors from significantly differentiating gene modules were used as input to

network structure construction. A list of connections between these TFs was curated from the

literature and added as edges between the TF nodes. The ChEA database of ChIP-seq-derived

interactions [28] was queried to add additional connections between TFs that may not have

been found in the literature. Our edge list thus comprises the literature-based connections that

are verified from ChEA, and additional connections from the ChEA database directly. The net-

work was built using NetworkX software [29].

BooleaBayes inference of logical relationships in the TF network

A Boolean function of N input variables is a function F: {0, 1}N 7! {0, 1}. The domain of F is a

finite set with 2N elements, and therefore F is completely specified by a 2N dimensional vector

in the space f0; 1g
2N

in which each component of the vector corresponds to the output of F for

one possible input. In general, knowledge of the steady states of F is unlikely to be sufficient to

fully constrain all 2N components of the vector describing F. BooleaBayes is a practical

SCLC subtype master regulators and destabilizers
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approach that constrains F in the neighborhood of stable fixed points based on steady-state

gene expression data. In practice, we let each component of the vector be a continuous real-

value vi 2 [0, 1] reflecting our confidence in the output of F, based on available constraints.

Components of F that are near 0.5 will indicate uncertainty about whether the output should

be 0 or 1, given the available constraining data.

Given M observations (in our case, each observation is a measurement of gene expression

of the N regulator TFs and the target TF in M = 50 cell lines), we want to compute this vector

(~V ) describing a probabilistic Boolean function F of N variables. First, we organize the input-

output relationship as a binary tree with N layers leading to the 2N leaves, each of which corre-

sponds to a component of vector ~V . For instance, given two regulators A and B (N = 2), the

leaves of the binary tree correspond to the probabilities that (�A ^ �B), (�A ^ B), (A ^ �B), and

(A ^ B). Collectively, the observations define an M × N matrix R ¼ ½~R1;
~R2; . . . ; ~RN � quantify-

ing the input regulator variables (columns) for each observation (rows), as well as an M dimen-

sional vector ~T ¼ ½t1; t2; . . . ; tM� quantifying the output variable. A Gaussian mixed model is

then used to transform the columns of R (regulator variables) and the vector ~T into probabili-

ties R0 and ~T 0 of the variables being OFF or ON in each observation (row).

Let Pj ¼ ð
~R 0iÞ be a function that quantifies the probability that the input variables of the ith

observation belong to the jth leaf of the binary tree. For instance using the example above, the

second leaf of the binary tree is (�A ^ B). Therefore, Pj=2(A, B) = (1 − A) � B. Note that by this

definition,
P2N

j¼1
Pjð

~R0 iÞ ¼ 1. Using this, we define an M × 2N weight matrix W = wi,j as

wi;j ¼ Pjð
~R0 iÞ

that describes how much the ith observation constrains the jth component of ~V . Additionally,

to avoid overfitting under-determined leaves, we define the uncertainty ~U ¼ ½u1; u2; . . . ; u2N �

of each leaf

uj ¼ 1� max
i2f1;...;Mg

ðwi;jÞ

From these, we then define the vector ~V describing function F as

vj ¼

XM

i¼1

t0i � wi;j þ 0:5 � uj

XM

i¼1

wi;j þ uj

Thus, each component of ~V is the average of the output target variable ~T weighted by W, with

an additional uncertainty term ~U to avoid overfitting. For leaves j of the binary tree that are

poorly constrained by any of the observables, vj� 0.5, indicating maximal uncertainty in the

output of F at those leaves. Uncertainty of a leaf j also arises when observations i with large

weight wi,j have inconsistent values for t0i , such as if t0
1
¼ 0 and t0

2
¼ 1.

BooleaBayes network simulations

As input to the BooleaBayes simulations, we know the network structure defining regulatory

relationships as described above, and regulatory rules (from BooleaBayes algorithm for rule fit-

ting, see above). We first pick a random initial state by choosing a vector V = [v1, v2, . . ., vg],
where g is the number of genes in the network. We initialize each vi in this vector to be 0

SCLC subtype master regulators and destabilizers
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(OFF) or 1 (ON). For in silico perturbation experiments, this initial state is be chosen as one of

the pseudo-attractors corresponding to a specific subtype. We then randomly pick one tran-

scription factor x (where each gene has probability 1

g of getting picked) to update.

Using the rule for x given by the rule fitting method above, find the column that corre-

sponds to the current state (V) of the parent genes (pa(x)) of x (in other words, find the col-

umn corresponding to (V[pa(x)]). This column is defined by the state of the parent nodes of x,

and it has some probability associated with it for how likely it is to turn on x when in the state

V[pa(x)]. In Results section Transcription factor network defines SCLC phenotypic heterogeneity
and reveals master regulators, this probability is visualized as a color (blue to red) at the bottom

of the figures. We then flip a weighted coin with this probability, and turn x ON or turn x OFF

based on the outcome. This will result in moving to a state 1 step away (if we do indeed flip the

expression of x from 0 to 1 or 1 to 0), or in staying in the same state (if we “flip” from 0 to 0 or

1 to 1). The state has now moved to a new state in the state transition graph. If all transition

probabilities to neighboring states are less than 0.5, this state is considered a pseudo-attractor.

For the in silico perturbation experiments, the number of steps in the shortest path from the

current state to the starting state is recorded instead.

See Algorithm 1 for pseudo-code describing the pseudo-attractor finding algorithm, and

Algorithm 2 for pseudo-code describing the random-walk stability scores.

Ethics statement

Mice were maintained according to practices prescribed by the NIH (Bethesda, MD) at Stan-

ford’s Research Animal Facility, accredited by the Association for the Assessment and Accredi-

tation of Laboratory Animal Care (AAALAC). All animal studies were conducted following

approval from the Stanford Animal Care and Use Committee (protocol 13565).

Results

Consensus clustering uncovers new SCLC variant phenotype

Recently, the occurrence of variant SCLC subtypes has been reported [13, 15, 16]. Given the

translational value of defining subtypes, a more global approach to comprehensively define

SCLC subytpes would be desirable. To this end, we devised the workflow described in Fig 1.

First, we applied Consensus Clustering [30] to RNA-seq gene expression data from the 50

SCLC cell lines in the CCLE [31]. Here, the underlying assumption of bulk RNA-seq data is

that single-cells from each cell line belong to one cellular state. While this is consistent with

our previous findings that SCLC cell lines resolve into discrete clusters by flow cytometry

[16], future cell-line analysis at single-cell resolution may refine our results, and it will be

interesting to see to what extent subtype heterogeneity may be reflected within one cell line.

We clustered the cell lines using a k-means method with a Pearson distance metric for k 2

{2, 20} (Fig 2A, S1 Table). Consensus Clustering is a method in which multiple k-means

clustering partitions have been obtained for each k. Consensus Clustering is then used

to determine the consensus (or best) clustering across these multiple runs of the k-means

algorithm, in order to determine the number and stability of clusters in the data. Using crite-

rion such as the tracking plot and delta area plot (S1 Fig), both k = 2 and k = 4 gave well

defined clusters. Since recent literature suggests that more than two subtypes are necessary

to adequately describe SCLC phenotypic heterogeneity, we selected k = 4 for further

analyses.

To align the 4-cluster classification (Fig 2B) with existing literature, we considered well-

studied biomarkers of SCLC heterogeneity across the clusters. Three of the four consensus

SCLC subtype master regulators and destabilizers
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Fig 2. Consensus clustering and WGCNA of 50 SCLC cell lines reveals four subtypes differentiated by gene modules. A. Consensus clustering with

k = 4 gives most consistent clusters. K = 3 and K = 5 add complexity without a corresponding increase in accuracy. LDA plot shows separation of 4

clusters, with non-SCLC cell lines falling near non-NE cell lines. B. Current biomarkers in the field of SCLC are able to distinguish between three of the

subtypes; The fourth subtype, NEv2, is not separable from NE using markers from SCLC literature.

https://doi.org/10.1371/journal.pcbi.1007343.g002
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clusters could be readily matched to subtypes previously identified with 2 to 5 biomarkers: the

canonical NE subtype (SCLC-A [14, 32]), an NE variant subtype (referred to here as NEv1,

corresponding to SCLC-N in [15, 32]), and a non-NE variant subtype (SCLC-Y) [10, 32, 33].

The fourth cluster (referred to here as NEv2) could not be easily resolved using few markers.

For example, NEv2 may be considered a tumor propagating cell (TPC, which encompasses the

NE, or SCLC-A, subtype) by biomarkers in Jachan et al [24], yet expression of a single bio-

marker, HES1, would suggest this subtype falls outside of the NE subtype according to Lim

et al [10]. Discrepancies like this drove us to consider broader patterns of gene expression,

rather than a limited number of biomarkers, to characterize each subtype.

SCLC phenotypes are differentially enriched in diverse biological processes,

including drug catabolism and immuno-modulation

To capture global gene expression patterns, we applied Weighted Gene Co-expression Net-

work Analysis (WGCNA) [34] to RNA-seq data from CCLE for multiple SCLC cell lines (See

Methods). This analysis revealed 17 groups, or modules, of co-expressed genes. Module eigen-

genes could be used to describe trends of gene expression levels. 11 of these 17 groups of co-

expressed genes could statistically distinguish between the four consensus clusters (Fig 3A, S2

Table, Kruskal-Wallis, FDR-adjusted p < 0.05). To specify the biological processes enriched in

each of these 11 gene modules, we performed gene ontology (GO) enrichment analysis using

the Consensus Path Database [35], which resulted in a combined total of 1,763 statistically

enriched biological processes (Fig 3B, S3 Table). In particular, the turquoise, yellow, salmon,

and pink modules are enriched for neuroendocrine differentiation and neurotransmitter

secretion and are upregulated in the canonical NE and NEv1 phenotypes, as quantified by

Gene Set Enrichment Analysis [36] (Fig 3C, S2 and S3 Figs, S4 Table). PNECs, the presumed

cell of origin for SCLC, group into neuroendocrine bodies (NEBs) that are innervated by sen-

sory nerve fibers and secrete neuropeptides that affect responses in the autonomic and/or cen-

tral nervous system. This is consistent with the NE- and NEv1-enriched GO terms “learning

or memory” and “chemical synaptic transmission” (Fig 3C). Evidently, such functions may be

maintained in NE and NE-v1 subtypes, as reflected by the frequent occurrence of paraneoplas-

tic syndromes in SCLC patients [37]. In contrast, the blue, black, and purple modules, enriched

for cell adhesion and migration processes, are upregulated in the non-NE variant phenotype,

in agreement with the observed adherent culture characteristics of these cell lines (S4 Fig,

S1 File).

Genes within the brown, midnight blue, and green modules are upregulated in the NEv2

phenotype (Fig 3A, S3 Fig). The brown module is enriched for canonical phenotypic features

of SCLC, particularly cellular secretion and epithelial differentiation, and accordingly is also

upregulated in the canonical NE subtype. The midnight blue module, enriched in nervous sys-

tem processes and lipid metabolism, is highly expressed in the NEv2 cell lines. The green mod-

ule is enriched for immune/inflammatory response, wound healing, homeostasis, drug/

xenobiotic metabolism, and cellular response to environmental signals (Fig 3C). Enrichment

of these GO terms suggest that NEv2 cells may more easily adapt to external perturbations

such as therapeutic agents, and potentially show higher drug resistance.

To visualize these enriched GO terms in an organized way (Fig 3B), we used the GOSem-

Sim package [20] in R to compute a pairwise dissimilarity score, or distance, between all

enriched GO terms (FDR-adjusted p < 0.05 in at least one of the 11 significant modules). We

then projected all significant GO terms into a 2D space by t-distributed stochastic neighbor

embedding (t-SNE) [38]. In this t-SNE projected phenospace, GO terms that describe semanti-

cally similar biological processes are placed close to one another and grouped into a general
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Fig 3. SCLC subtypes can be distinguished by gene expression patterns. A. Transcriptional patterns that distinguish the four subtypes are captured in

WGCNA analysis. Gene modules by color show patterns of expression that are consistent across the subtypes. Only modules that significantly distinguish

between the subtypes are shown (ANOVA, FDR-corrected p-value < 0.05). B. SCLC heterogeneity biological process phenospace. A dissimilarity score

between pairs of SCLC-enriched GO terms was calculated using GoSemSim, and used to create a t-SNE projection grouping similar biological processes

together. Several distinct clusters of related processes can be seen. C. Module-specific phenospace. A breakdown of where some of the 11 statistically

significant WGCNA modules fall in the GO space from A. Of particular interest, the green module, which is highly upregulated in the NEv2 phenotype, is

enriched in metabolic ontologies, including drug catabolism and metabolism and xenobotic metabolism. The yellow module is enriched in canonical

neuronal features.

https://doi.org/10.1371/journal.pcbi.1007343.g003
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biological process. This map allows exploration of biological processes enriched in individual

gene modules or subtypes, and it shows that SCLC heterogeneity spans biological processes

that can largely be grouped as 1) related to neuronal, endocrine, or epithelial differentiation; 2)

metabolism and catabolism; 3) cell-cell adhesion and mobility; and 4) response to environ-

mental stimuli, including immune and inflammatory responses. In summary, the phenospace

constructed from global gene expression patterns captures the unique characteristics of each

SCLC subtype.

Drug resistance is a feature of the NEv2 subtype

As mentioned previously, the enriched GO terms for drug catabolism and xenobiotic metabo-

lism in the green module suggest that the NEv2 phenotype may have a higher ability to metab-

olize drugs and therefore exhibit decreased sensitivity. To test this possibility, we reanalyzed

drug responses of SCLC cell lines to a panel of 103 FDA-approved oncology agents and 423

investigational agents in the context of our four subtype classification [21]. We used the Activ-

ity Area (AA) metric as a measure of the resultant dose-response curves. The drugs were ana-

lyzed individually and clustered by common mechanism of action and target type, and the cell

lines were grouped by the four subtypes (S5 Table). Across all evaluated drugs, the NEv2 sub-

type exhibited the most resistance (54% of drugs showed NEv2 as most resistant). In contrast,

both NE and NEv1 exhibited less resistance (20%), with non-NE exhibiting the least resistance

(6%) (Fig 4A). Taken together, these results confirm that based on the prediction from the

gene-regulation based classification, the subtypes exhibit different levels of resistance and that

high resistance is a feature of the NEv2 subtype (Fig 3C), even though the subtypes do not

show differential response to the standard of care (etoposide and platinum based agents, Fig

4B). In particular, mTOR inhibitors are a class of compounds to which NEv2 was significantly

more resistant (Fig 4C). PI3K pathway mutations have previously been implicated as onco-

genic targets for SCLC, as about a third of patients show genetic alterations in this pathway

[39]. Among the four subtypes, NEv2 is also the least sensitive to AURKA, B, and C inhibitors

(AURKA shown); TOPO2 inhibitors; and HSP90 inhibitors (Fig 4C–4F). These results have

implications for interpreting expected or observed treatment response with respect to tumor

heterogeneity in individual patients.

Neuroendocrine variants are represented in mouse and human SCLC

tumors

Next, we investigated whether the four subtypes we detected in human SCLC cell lines are also

present in tumors. We used CIBERSORT [4] to generate gene signatures for each of the 4 sub-

types. These gene signatures could then deconvolve RNA-seq measurements on 81 SCLC

tumors from George et al [5] to specify relative prevalence of each subtype within a single

tumor. Consistent with studies of intra-tumoral heterogeneity in other types of cancer, such as

breast cancer [40], CIBERSORT predicted that a majority of tumors were comprised of all four

subtype signatures, in varying proportions across tumor samples (Fig 5A). We then analyzed

the patient/cell-derived xenograft models (PDXs/CDXs) developed by Drapkin et al [18], and

the tumors also showed vast differences across samples (Fig 5B). Some of these samples were

taken across multiple time points from the same patient, thus enabling us to test both tumor

composition and dynamic changes in tumor subpopulations. Three samples taken from

patient MGH1514, before and after treatment, indicated a change in tumor composition in

favor of the NE phenotype. In contrast, patient MGH1518 showed a reduction of NEv1 and

increase in NEv2 after treatment. Similar observations of phenotypic changes over treatment

time courses, made in breast cancer patients [40] have recently been explained in the context
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of a mathematical model of epithelial to mesenchymal transition (EMT) [41]. It is possible that

the tumor composition changes we observe may also be explained by molecular level and/or

cell population level models [42]. Overall, the high variance in proportions of each subtype

suggest a high degree of intertumoral, as well as intratumoral, dynamic heterogeneity and

plasticity.

Fig 4. Differential response of SCLC subtypes to a wide variety of oncology drugs and investigational agents. A. Ranked sensitivity of subtypes

across 526 compounds. NEv2 is least sensitive for over half of the drugs tested. B. No significant differences can be seen in response to etoposide and

platinum-based agents cisplatin and carboplatin, the standard of care for SCLC. C-F. Significantly differential response by ANOVA, p < 0.05, shown

in drugs that target C. mTOR, D. HSP90, E. BRD2, and F. AURKA. NEv2 is significantly more resistant to all of these drugs.

https://doi.org/10.1371/journal.pcbi.1007343.g004

SCLC subtype master regulators and destabilizers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007343 October 31, 2019 13 / 29

https://doi.org/10.1371/journal.pcbi.1007343.g004
https://doi.org/10.1371/journal.pcbi.1007343


We also investigated phenotypic patterns in mouse tumors from two different sources to

determine whether human SCLC subtype signatures are conserved across species [15] (Meth-

ods). The first mouse model is a triple knockout (Rb1, Tp53, and P130, conditionally deleted

in lung cells via a Cre-Lox system, TKO), and these tumors were primarily composed of the

NE and NEv2 subtypes (Fig 6Ai). Of note is the lower percentage of non-NE cells found in

each tumor in Fig 6Ai; we suspect this is due to a filtering step before sequencing (Methods),

as the non-NE subtype signature is more similar to tumor-associated immune cells in an unfil-

tered tumor population. The second mouse model was generated with Myc overexpression

(double knockout of Rb1 and Tp53, and overexpression of Myc) (Fig 6Aii) as reported previ-

ously [15]. Using the subtype gene-signatures developed in the previous sections, the Myc-
high tumors showed a clear increase in the percentage of NEv1 detected compared to the triple

Fig 5. Computational evidence for existence of subtypes in human tumors. A. Absolute proportion of each subtype in 81 human tumors as determined

by CIBERSORT. The 81 tumors can then be sorted by hierarchical clustering, which finds four main groups of subtype patterns across tumors. B. Similar

analysis in mouse PDX/CDX tumors from Drapkin et al. [18].

https://doi.org/10.1371/journal.pcbi.1007343.g005
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knockout tumors in Fig 6Ai, corroborating the correlation between NEv1 and a previously

described Myc -high mouse tumor subtype.

Lastly, we analyzed two primary TKO mouse tumors by single cell RNA-seq (scRNA-seq).

For each mouse single cell transcriptome, we computed the k = 10 nearest human cell line
neighbors (kNN with k = 10), and assigned each mouse cell to a subtype based on its neighbors

(Methods). As shown in Fig 6B, a large portion of the cells from each tumor correspond to one

of the four human subtypes. A small non-NE population can be seen in both tumors, and

about a third of the assigned cells correspond to the NE subtype (Fig 6B). Tumor 1 has a large

proportion of the NEv2 subtype, corresponding to the tumors in Fig 6Ai. In contrast, tumor 2

has a large NEv1 subpopulation, similar to the tumors in Fig 6Aii. Taken together, these results

indicate that subtypes in SCLC tumors are conserved across species, and can be categorized

either by CIBERSORT analysis of bulk transcriptomics data, or by kNN analysis of scRNA-seq

data.

Fig 6. Similar analysis in mouse tumors. A. Ai. TKO (Rb1, Tp53, P130 floxed) mouse tumors showing a high proportion of NE and NEv2 subtypes. Aii.

As described in [15], these mouse tumors were generated by crossing Rb1 fl/fl Trp53 fl/fl (RP) animals to knockin Lox-Stop-Lox (LSL)-MycT58A-

IRES-Luciferase mice. These Rb1 fl/fl Trp53 fl/fl Myc LSL/LSL (RPM) mice have overexpressed Myc and have been shown to be driven towards a variant

phenotype, which is corroborated in this CIBERSORT analysis. It is clear that RPM mice contain greater portions of NEv1 compared to the tumors in Ai.,

which seems to correspond to the Aurora-Kinase-inhibitor-sensitive, Myc-high phenotype published by Mollaoglu et al. B. t-SNE plots of single cell

RNA-seq from two TKO mouse tumors. The k-nearest neighbors (kNN) with k = 10 was computed for each mouse cell to predict subtypes of individual

cell using signature genes of each subtype. If at least 8 of the 10 nearest human cell line neighbors for a mouse cell were of one subtype, the cell was

assigned that subtype. Large amounts of intratumoral and intertumoral heterogeneity are evident.

https://doi.org/10.1371/journal.pcbi.1007343.g006
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Genetic mutations alone cannot account for four SCLC phenotypes

The evidence above for intratumoral and intertumoral heterogeneity led us to investigate how

the subtypes arise and coexist in both human and mouse SCLC tumors. To determine whether

mutations could be responsible for defining the four SCLC subtypes, we analyzed genomic

data in the Broad Cancer Dependency Map [27]. We subsetted these data to the 50 SCLC cell

lines with matching CCLE RNA-seq data, and using MutSigCV [26], we found 29 genes (S5

Fig) mutated more often than expected by chance (using a significance cutoff of q-value� 0.5

to be as inclusive as possible). However, none of these genes were able to separate the four

subtypes by mutational status alone (S5 Fig), suggesting alternative sources of heterogeneity.

Transcription factor network defines SCLC phenotypic heterogeneity and

reveals master regulators

To investigate these alternative sources of heterogeneity, we hypothesized that different SCLC

subtypes emerge from the dynamics of an underlying TF network. We previously identified a

TF network that explained NE and non-NE SCLC subtype heterogeneity [16]. That analysis

suggested the existence of additional SCLC subtypes but did not specify corresponding attrac-

tors [16]. Here, we performed an expanded TF network analysis to find stable attractors for all

four SCLC subtypes. As an initial step, we identified putative master TF regulators within each

of the 11 WGCNA modules (Fig 3B) based on differential expression. Regulatory interactions

between these TFs were extracted from public databases, including ChEA, TRANSFAC, JAS-

PAR, and ENCODE, based on evidence of TF-DNA binding sites in the promoter region of a

target TF, as well as several sources from the literature. This updated network largely overlaps

with, but contains several refinements compared to our previous report [16], as detailed in

Fig 7A.

Following the procedure we previously used [16], we simulated the network as a dynamic

Boolean model. In a Boolean model, the state of the network at a given time, t, is defined by

the value of all TFs, each of which can be either ON or OFF. Each TF can be updated to deter-

mine its value at time t + 1 based on a Boolean rule, or logical statement, that represents how

that TF is regulated by its regulators. For example, if At+1 = Bt or Ct, and if A(t) = OFF, B(t) =

ON, and C(t) = OFF, then updating A will give A(t + 1) = ON or OFF = ON, so A turns ON.

Boolean models are powerful tools to investigate the regulation of attractors corresponding to

stable subtypes or oscillators of biological systems. Because precise update rules are often not

known, one of two approximations are commonly applied: inhibitory dominant [43], or

majority rules [43, 44]. Inhibitory dominant rules assert that the target node turns ON only

when at least one activator is ON and all inhibitors are OFF, otherwise the target turns OFF

(S6C Fig). Majority rules, conversely, assert that the target node turns ON as long as it has

more activators ON than inhibitors, otherwise the target turns OFF (S6C Fig). Using the net-

work in Fig 7A, neither of these approximations stabilized attractors corresponding to either

the NEv1 or NEv2 phenotypes (S6 Fig), suggesting that the regulatory rules governing stability

of these phenotypes are more complex.

To address this complexity, we developed BooleaBayes, a method to infer logical relation-

ships in gene regulatory networks (Fig 7B) using gene expression data, by enhancing confi-

dence in Boolean rules via a Bayes-like adjustment approach (see Methods). BooleaBayes

leverages sparsity (the in-degree of any node is much less than the total number of nodes) in

the underlying regulatory network structure, allowing it to make partially constrained predic-

tions about regulatory dynamics, even in regions of state space that are not represented in the

data. An advantage of this method is that its predictions are intrinsic to the parts of the
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Fig 7. TF network simulations reproduce subtypes as attractors. A. Regulatory network of differentially expressed TFs from each of the 11

co-expressed gene modules in Fig 2B. Colors indicate which phenotype each TF is upregulated in. Red edges indicate inhibition (on average),

and green activation (on average). B. Probabilistic Boolean rule fits for ASCL1. The target gene is a function of all the genes along the binary tree

at the top, while expression of the target is shown on the left. Each row represents one cell line, each column represents one possible input state,

and the bottom shows the inferred function F for every possible input state. Color ranges from 0 = blue (highly confident the TF is off), to

0.5 = white, to 1 = red (highly confident the TF is on). Rows are organized by subtype (top to bottom: NE, NEv1, NEv2, non-NE). C. Attractors

found with asynchronous updates of Boolean network. 10 attractors were found, and each correlates highly with one of the four defined
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network in which we are most confident, based only on relationships between each TF and its

parent nodes. See Methods for more details about the BooleaBayes algorithm.

BooleaBayes rules, like the Boolean example above, describe when a target node will be ON

or OFF, given that state of all its regulators. Unlike the Boolean example, BooleaBayes rules are

probabilistic, accounting for the (un)certainty with which we can state a target node will turn

ON or OFF. For instance, values of 0 means it is certain the target node will turn OFF, 1 means

it is certain the target node will turn ON, 0.5 means it is equally likely the target node will turn

ON or OFF. BooleaBayes rules were derived for each node of the SCLC TF network in Fig 7A.

As an example, Fig 7B shows the rule fitting for one node, ASCL1. Rules for all other nodes are

given in S7 Fig. Cross-validation suggested BooleaBayes did not overfit the data (S6 Fig). We

simulated the dynamics of the Boolean network using a general-asynchronous update scheme

[43]. This formed a state transition graph (STG), in which each state is defined by a vector of

TF ON/OFF expression values.

Initial states for simulation were chosen near where we expected the four subtypes would

be, by discretizing the average TF expression for each of the four SCLC subtypes. We exhaus-

tively searched the neighborhood of each of these starting states out to a distance of 6 TF

changes in the STG (Algorithm 1). Within these neighborhoods, we found 10 states for which

all 27 TFs had at least a 50% chance of remaining unchanged. Transitions into these states are

therefore more likely, and escapes less likely. Thus, these 10 states represent semi-stable states

of the network dynamics (Fig 7C), that we refer to as pseudo-attractors. We also searched

within neighborhoods of over 200 random initial states (allowing us to search over 200,000

total additional states), and found no additional pseudo-attractors (S6 Table).

These 10 pseudo-attractor states each correlated with, and could be assigned to, one of the 4

SCLC subtypes (stars in Fig 7C); this indicates that the updated network structure and Boolea-

Bayes rules are sufficient to capture stability of the four SCLC phenotypes. Having identified

network dynamics that closely match experimental observations, we are now in a position to

perform in silico (de)stabilizing perturbations and predict the resulting trajectory through the

STG for each subtype. We do so in the next section.

In silico SCLC network perturbations identify master regulators and

master destabilizers of SCLC phenotypes

To quantify the baseline stability of the steady states in Fig 7C, we performed random walks

(algorithm described in Methods) starting from each of the 10 pseudo-attractors. We counted

how many steps were required to reach a state more than 4 TFs away (Hamming distance

greater than 4) from the starting state (Fig 8, Algorithm 2). We chose a 4-TF neighborhood to

account for the models’ greatest intra-subtype attractor variability (Fig 7C, Hamming Dis-

tance), and therefore movement within the 4-TF neighborhood of a starting state is still con-

sidered reflective of that subtype. For each simulation, one TF in the network was either

activated (held constant at TF = 1) or silenced (TF = 0) in each of the stable states (Fig 7C).

1000 random walks were executed for each condition. The number of steps in each random

walk required to leave the 4-TF neighborhood was recorded in a histogram (Fig 8A). We

defined (de)stabilization as the percent decrease or increase of the average number of steps

subtypes (represented by stars). Hamming distance between intra-subtype attractors and inter-subtype attractors are shown. The average

distance between intra-subtype attractors was around 2.5, while the average distance between subtype attractors was around 16, signifying that

the variation between subtypes is much greater that that within a single subtype. Specifics of the probabilistic simulation are described in

Results.

https://doi.org/10.1371/journal.pcbi.1007343.g007
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Fig 8. Destabilization of subtypes by perturbation to network. A. Random walks starting from the attractors in Fig 7C will eventually leave the start state

due to uncertainty in the Boolean rules. Control histogram shows how many random steps are required to reach a state with a Hamming distance� 4 under

the network’s natural dynamics. The knockdowns and activations shown here hold expression of the perturbed gene OFF or ON in an attempt to destabilize

the start state, such that the random walk leaves the neighborhood sooner. A shift to the left in the perturbed distribution signifies that the perturbation

“pushed” the simulated cell out of the 4-TF neighborhood more quickly, and the perturbation thus “destabilized” the subtype represented by the start state.

This indeed occurs for several perturbations, shown for NE, NEv1, NEv2, and non-NE starting states. Dotted line shows mean for each histogram, which is
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under perturbation relative to the unperturbed reference (Fig 8B, S8 Fig). For example, either

activation of GATA4 or silencing FOXA1 are predicted to destabilize both the NE and NEv2

subtypes (Fig 8C).

TFs that, when silenced, cause destabilization greater than 20% (score� -0.2) of a specific

subtype were considered master regulators of that subtype. They include REST (non-NE) (in

agreement with [10]), TEAD4 (non-NE), ISL1 (NE), and TCF4 (NEv1). TEAD4 is downstream

mediator of YAP1 action, which has been previously identified as a possible phenotypic mod-

ulator in a subset of SCLC cell lines [45]; our analyses suggest that expression of TEAD4 may

be able to stabilize this phenotype. Simulations of the network also identified the novel NEv2

master regulators, ELF3 and NR0B1.

Our network simulations further identified TFs that can be considered master “destabili-

zers”, i.e., activation of these TFs destabilizes a specific phenotype by at least 20%. For instance,

activation of ELF3 is predicted to destabilize non-NE, while activation of NR0B1 would desta-

bilize both non-NE and NE subtypes. Simulations identified a single master destabilizer for

NEv2, the TF TCF3 (Fig 8C). Taken together, our pipeline, which includes subtype identifica-

tion, drug response analysis, and network simulations, suggests possible therapeutic perturba-

tions that could shift the phenotypic landscape of SCLC into a more sensitive state for

treatment.

Discussion

We report a systems approach to understanding SCLC heterogeneity that integrates transcrip-

tional, mutational, and drug-response data. Our findings culminate in discrimination and

mechanistic insight into the four SCLC subtypes shown in Table 1: NE, non-NE, NEv1, and

NEv2. Within the context of the broader literature on SCLC heterogeneity, we showed that

used to calculate the change in average number of steps under perturbation. B. Ranking of phenotype stabilization of NEv2 by TF activation and

knockdown. The percent change of stability measures the percent change in the average number of steps needed to leave the neighborhood of the stable

states. Negative stabilization scores indicates destabilizing perturbations, while positive indicates increasing stability. Results are shown for 1000 iterations

starting from NEv2. Similar plots for the other subtypes can be found in S8 Fig. Dotted line at y = −0.2 signifies the cutoff for “destabilizing” perturbations

shown in C. C. A Venn diagram demonstrating overlap of destabilization strategies. A single activation (green text) or knockdown (red text) can sometimes

destabilize multiple phenotypes.

https://doi.org/10.1371/journal.pcbi.1007343.g008

Table 1. Comprehensive framework for SCLC heterogeneity. Using our workflow, we have characterized 4 SCLC subtypes by gene expression, drug response, and master

regulators and destabilizers.

Subtype GO Terms Gene Modules Drug

Response

Regulators Destabilizers Nomenclature

adapted from [32]

NE Neuron differentiation, Synaptic transmission,

Cell-cycle regulation, Epithelial cell differentiation,

Sensory perception

Turquoise,

Brown, Yellow

ISL1, ASCL1, FLI1,

SMAD4, FOXA1,

FOXA2

GATA4, OLIG2, NR0B1 SCLC-A1

NEv1 Neuron differentiation, neurotransmitter secretion,

Synapse organization, Cardiac muscle cell

contraction, Mechanoreceptor differentiation,

Sensory perception

Yellow,

Salmon, Pink,

Red

Sensitive to

AKIs

TCF4 FLI1, FOXA1, FOXA2,

SMAD4

SCLC-N

NEv2 Immune response, Drug catabolism, Ion transport,

Homeostasis, Epithelial cell differentiation,

Glycosylation

Brown, Green,

Midnight blue

Least

sensitive

ELF3, NR0B1,

FOXA1, FOXA2,

SMAD4, ASCL1,

FLI1

TCF3, GATA4,

NEUROD2, OLIG2

SCLC-A2

NON-NE Immune Response, Stress Response, Defense

response, Macrophage activation, Myeloid cell

differentiation and activation, neutrophil-mediated

immunity, vesicle-mediated transport,

Angiogenesis, Viral processes

Black, Blue,

Red

Most

sensitive

TEAD4, REST,

MITF, SIX5, ZNF217

ELF3, ASCL1, SOX11,

FOXA1, FOXA2,

SMAD4, NR0B1, OLIG2

SCLC-Y

https://doi.org/10.1371/journal.pcbi.1007343.t001

SCLC subtype master regulators and destabilizers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007343 October 31, 2019 20 / 29

https://doi.org/10.1371/journal.pcbi.1007343.g008
https://doi.org/10.1371/journal.pcbi.1007343.t001
https://doi.org/10.1371/journal.pcbi.1007343


NE, non-NE, and NEv1 correspond to several subtypes that have been previously reported

based on a few markers–more specifically, SCLC-A, SCLC-Y, and SCLC-N, respectively [32].

Significantly, we find that one (NEv2) has not been described previously, and which is nearly

indistinguishable from NE based on currently used markers of SCLC heterogeneity. Because

this subtype has high expression of ASCL1, it would be SCLC-A2 in the nomenclature used in

a recent review [32].

Tumor deconvolution by CIBERSORT and scRNA-seq data indicate that a large proportion

of human and mouse tumors comprise more than one subtype (Fig 6). While MutSigCV

mutational analysis did not find any significant differences in mutated genes between subtypes

(S5 Fig), we cannot rule them out, and future studies may uncover genomic mechanisms inter-

facing with the epigenetic heterogeneity reported here. Existing examples of epigenetic intratu-

moral heterogeneity are often framed in the context of transitions between epithelial and

mesenchymal differentiation states [41]. Mechanisms underlying SCLC differentiation hetero-

geneity remain to be defined, and they may include functional states of PNECs, distinct cells of

origin, or response to microenvironmental factors. It remains to be seen whether changes in

tumor composition after treatment (Fig 5B) are due to phenotypic transitions, selection, or

both.

A drug screen across a broad range of compounds indicated that the NEv2 subtype is more

resistant than the others, especially in response to AURK and mTOR inhibitors. This is remi-

niscent of a new hybrid EMT phenotype recently identified as more aggressive and drug resis-

tant than other phenotypes [46–48]. More broadly, recent reviews have suggested that both

genetic mutations and epigenetic regulators such as histone demethylases may affect intratu-

moral heterogeneity and modulate therapeutic response [49]. Additionally, non-genetic pro-

cesses such as phenotypic plasticity and stochastic cell-to-cell variability may enable tumor

cells to evade therapy and give rise to drug-tolerant persisters [47, 50]. Our findings of differ-

ential drug response across subtypes corroborate the significance of these reports. In vivo veri-

fication of NEv2’s drug resistant properties in mouse and human tumors will be an important

next step. Along these lines, it is tempting to speculate that the increase of the NEv2 signature

in patient MGH1518 after drug treatment (Fig 5B) may be responsible for acquired drug-resis-

tance in this patient. However, this study was under-powered for our analyses, and more

experimental data will be necessary to strengthen this conclusion.

A significant advance of our work is the introduction of BooleaBayes, which we developed

to infer mechanistic insights into regulation of the heterogeneous SCLC subtypes. By consider-

ing the distinct subtype clusters as attractors of a gene regulatory network, BooleaBayes infers

partially-constrained mechanistic models. A key benefit of this method is that it does not over-

fit data: predictions are based only on parts of the network for which available data can con-

strain the dynamics, while states that lack constraining data diffuse randomly. With this

method we were able to recapitulate known master regulators of SCLC heterogeneity, as well

as identify novel ones such as ISL1 (NE) and TEAD4 (non-NE). Additionally, we predict ELF3
and NR0B1 to be master regulators of the NEv2 phenotype. Furthermore, we introduce the

label of “master destabilizers” to describe TFs whose activation will destabilize a phenotype.

Our method gives a systematic way to rank perturbations that may destabilize a resistant phe-

notype. We emphasize that BooleaBayes provides an adaptive roadmap to systematically walk

the circle from prediction to experimental validation and back. Thus, a prediction from Boo-

leaBayes about stabilizers can be experimentally tested, and the outcome will inform a new

datapoint to further constrain the BooleaBayes model to refine predictions. For instance, if

cells become stuck in a previously unknown partially reprogrammed attractor [51], expression

data from these cells may be added to constrain BooleaBayes in a region where no data previ-

ously existed. In ongoing work, we are validating these predictions experimentally. We
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propose that with BooleaBayes, our approach for identifying master TFs could be applicable to

other systems, including other cancer types or transcriptionally-regulated diseases. This

approach parallels other modeling techniques to identify phenotypic stability factors, such as

recent bifurcation analysis on an EMT network [52, 53].

While many of the previously reported subtypes of SCLC fit into our framework, a few

are noticeably absent, and will require further study. The vasculogenic subtype of SCLC

described by Williamson et al. [54] did not emerge from our analysis. We speculate that this

may be due to the rarity and/or instability of this CTC-derived phenotype among the avail-

able SCLC cell lines. Denny and Yang et al. have previously reported that Nfib amplification

promotes metastasis [55]; however, our clusters do not correlate with location of the tumor

sample from which each cell line was derived (e.g., primary vs metastatic, S1 Table). Poirier

et al., using a similar clustering approach to ours, identified highly methylated SCLC sub-

types (M1 and M2) [33], and the correspondence of these subtypes with the ones described

here is intriguing and remains to be defined. Finally, Huang et al. recently reported an SCLC

subtype defined by expression of POU2F3 [12]. In our data, POU2F3 was highly expressed

in only four cell lines and was placed into a small (328 genes, green-yellow) module, and

therefore represented only a small signal in our data. Overall, future studies with additional

cell line and/or mouse data may be used to further investigate these different subtypes,

underscoring that the delineation of four subtypes here does not preclude the existence of

others.

To identify subtype clusters and BooleaBayes rules, we rely on the underlying assumption

of bulk RNA-seq data that single-cells from each cell line belong to one cellular state. While

this is consistent with our previous findings that SCLC cell lines resolve into discrete clusters

by flow cytometry [16], future cell-line analysis at single-cell resolution may refine our results,

and it will be interesting to see to what extent subtype heterogeneity may be reflected within

one cell line.

An advantage of our analyses is that each subtype is defined by distinct co-expressed gene

programs, rather than by expression of one or few markers, which has been customary in the

field but has limited ability to discriminate between phenotypes (Fig 2B). In addition, these

modules participate in unique biological processes (e.g., as identified by GO), such that the sys-

tems-level approach presented here may provide a comprehensive framework to understand

the regulation and functional consequences of SCLC heterogeneity in a tumor. This under-

standing can be actionable since SCLC subtypes show differential drug sensitivity; for example,

our analyses in this paper support the hypothesis that NEv2 may be a drug-resistant phenotype

of SCLC. We propose that identification of drugs targeting the NEv2 subtype, or perturbagens

that reprogram it toward less recalcitrant states, may lead to improved treatment outcomes for

SCLC patients.

Algorithm 1 Limited Pseudo-Attractor Search
procedure SEARCH ENTIRE STG IN NEIGHBORHOOD OF GIVEN STATE TO FIND PSEUDO-ATTRACTORS

state init 2 {0, 1}N Initial Boolean state (N dimensional vector of 0’s and 1’s, where N is the number of TFs)

f: {0, 1}N 7! [0, 1]N Probabilistic update rules mapping the current state 2 {0, 1}N to a probability (value

between 0 and 1) for each TF to flip (ON to OFF, or OFF to ON)

d : f0; 1g
N
� f0; 1g

N
7!R Function to calculate distance between two states (we use the Hamming distance)

R Maximum radius to search from state init
PT Threshold probability used to define pseudo-attractors (we used PT = 0.5 so that pseudo-

attractors are defined to have out-transitions with probability less than 50%.)
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Inputs:
Output:
PseudoAttractors—A set of strongly connected components of the state
transition graph for which transitions in have probability greater
than PT
pending  {state_init} (A set containing the initial state)
STG  empty directed graph
oob  dummy vertex (this will be the “out-of-bounds” vertex—all

states in the STG with distance greater than R from the initial state
will point to this vertex, preventing them from being detected as
attractors)
Add oob to STG
Add state_init to STG
while pending is not empty do
state  POP any state from pending
if d(state, state_init) > R then
Add edge from state ! oob with weight = 1

else
for i in 1‥N do
neighbor  state
neighbori  NOT statei (Flip TF i to get the neighbor)
if neighbor is not in STG then
Add neighbor to STG
Add neighbor to pending

Add edge from state ! neighbor with weight = f(state)i (add the
transition, with probability given by f)
STGpruned  STG
Remove all edges with weight < PT (prune edges with probability less

than given threshold)
PseudoAttractors  empty set
for SCC in strongly connected components of STGpruned do
### First make sure this SCC does not contain the dummy vertex,

which by definition has no out-transitions
if obb is not in SCC then
if There are no edges in STGpruned, from any node within SCC to any

node not within SCC then
Add SCC to PseudoAttractors

Return: PseudoAttractors

Algorithm 2 Probabilistic Boolean Random Walk
procedure RANDOM WALK TO DETERMINE STABILITY OF INITIAL CONDITION

Inputs:
Output:
Number of steps taken before the random walk is a distance greater
than R from state_init

state init 2 {0, 1}N Initial Boolean state (N dimensional vector of 0’s and 1’s, where N is the number of TFs)

f: {0, 1}N 7! [0, 1]N Probabilistic update rules mapping the current state 2 {0, 1}N to a probability (value

between 0 and 1) for each TF to flip (ON to OFF, or OFF to ON)

d : f0; 1g
N
� f0; 1g

N
7!R Function to calculate distance between two states (we use the Hamming distance)

R Maximum allowed distance from state init
fixed TFs Set of TFs that are held constant (i.e., perturbed to be ON or OFF)
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state  state_init
steps  0
while d(state, state_init) � R do
steps  steps + 1
i  a random integer between 1 and N, excluding fixed_TFs (ran-

domly chose one, non-fixed, TF to update)
probability_update  f(state)i (probability of flipping TF i)
r  a uniform random number between 0 and 1
if r < probability_update then
statei  NOT statei (flip TF i from ON to OFF, or OFF to ON)

Return: steps

Supporting information

S1 Fig. Tracking plot, delta area plot, and CDF for consensus clustering and ProgenyClust

scores with different values of k. A. Tracking plot shows slight inconsistency for cell lines

with k = 3. One of these is assigned to the “light green” cluster in the k = 3 clustering scheme,

whereas when k = 4, it returns to the “light blue” cluster. The others are in the “dark blue” clus-

ter when k = 2 and “light blue” cluster when k = 3. Thus k = 3 is not a good fit to the data B.

The delta area plot shows the relative change in the area under the CDF curve (Fig 2A). The

largest changes in area occur between k = 2 and k = 4, at which point the relative increase in

area becomes noticeably smaller (from an increase of 0.5 and 0.4 to 0.15). This suggests that

k = 4,5, or 6 are the best clustering that maximizes detail (more, smaller clusters present a

more detailed picture than a few large clusters) and minimizes noise (by minimizing average

pairwise consensus values and maximizing extreme pairwise consensus values). Average clus-

ter consensus scores (CCS) across clusters show that k = 4 may be the best choice because it

has the highest average (k = 4 average CCS: 0.848, k = 5 average CCS: 0.814, k = 6 average

CCS: 0.762). C. Consensus Cumulative Distribution Function. This CDF show that k = 4 has

more black cells and white cells than gray, suggesting the consensus clusters are more robust.

D. ProgenyClust suggests that the optimal number of clusters is 3 or 4, as determined by the

maximum of the Gap and Score criteria values. As k = 3 was already ruled out above, we chose

k = 4 to describe the heterogeneity between cell lines.

(EPS)

S2 Fig. Gene set enrichment analysis. Enrichment plots for significantly enriched gene co-

expression modules, as determined by Gene Set Enrichment Analysis, for the NE and NEv1

subtypes.

(EPS)

S3 Fig. Same as S2 Fig, for the NEv2 and non-NE subtypes.

(EPS)

S4 Fig. GO maps for each gene module. GO phenospace maps, as in Fig 3C, for all modules.

(PDF)

S5 Fig. Significant mutations across subtypes. Significantly mutated genes across 50 SCLC

cell lines, as determined by MutSigCV, ordered by significance. As expected, significant muta-

tions were found in both the Rb1 and Tp53 genes. Inspection by eye shows that no significant

mutations can distinguish completely between two or more phenotypes. This suggests an alter-

nate source of heterogeneity, such as transcriptional regulation. Significance cut-off: q (p-value

corrected for multiple comparisons)� 0.25. q� 0.5 shown.

(EPS)
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S6 Fig. Cross-validation of network inference and comparison to other Boolean rule

schemes. A. To test for overfitting, we partitioned the samples into training sets (80% of sam-

ples) used to fit BooleaBayes rules, and testing sets (20%), over 70 iterations. We calculated the

squared error between BooleaBayes predictions and the true values in both the training and

testing sets. The squared error was similar for the training and testing data, suggesting the

results are not due to overfitting. B. Correlation between prediction and measured expression

is a function of predicted expression from the BooleaBayes rule. For values x < 0.5 along the x-

axis, correlation is calculated on a subset of the data for which prediction < x or prediction >

1 − x (e.g., at x = 0.1, correlation is calculated on subset with prediction 0 to 0.1 or 0.9 to 1.

When x = 0.5, all data are included. When x = 0.9, data subset is identical to when x = 0.1). In

cases where the BooleaBayes predictions are confident whether a gene was ON (near 1) or

OFF (near 0), the correlation between the prediction and the actual expression approaches 1.

When BooleaBayes is not confident (near 0.5), the correlation decreases. Both (A) and (B) are

consistent with our interpretation that BooleaBayes is fitting rules only where the data are well

constrained. BooleaBayes on both the training and testing data sets predicts expression with

high confidence, especially when the actual expression is near 0 or 1. C. Inhibitory dominant

and majority rule update schemes both converge onto the same, single attractor (left-most

state). This attractor has a Hamming distance of 4-6 away from both the NE and NEv2 attrac-

tors found by BooleaBayes (right 4 states), suggesting that it may represent an “average’’ NE

attractor. We speculate it is an artifact of the coarse-graining imposed by those rules, as they

both assume simplistic TF interactions.

(EPS)

S7 Fig. Rules for all transcription factors in network. Rules for all TFs, as in Fig 7B.

(PDF)

S8 Fig. Stabilization of SCLC phenotypes by TF knockdown and activation. The percent

change of stability measures the percent change in the average number of steps needed to leave

the neighborhood of the stable states. Negative indicates destabilizing, while positive indicates

increasing stability. Results are shown for 1000 iterations starting from A. NE, B. NEv1, and C.

non-NE. NEv2 is shown in Fig 8.

(EPS)

S1 File. Interactive GO maps, as in Fig 3C.

(ZIP)

S1 Table. Cell line characteristics and consensus clusters.

(CSV)

S2 Table. WGCNA module eigengenes.

(CSV)

S3 Table. Enriched gene ontology terms in subtype modules.

(CSV)

S4 Table. Enriched modules in subtypes: Gene set enrichment analysis statistics.

(CSV)

S5 Table. Drug response of subtypes grouped by drug target.

(CSV)

S6 Table. Network simulations starting at random states in the state transition graph. We

ran multiple simulations searching various regions of the state transition graph, and did not
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find any additional attractors. This suggests that BooleaBayes was capable of identifying all of

the biologically relevant attractors, but does not preclude the possibility of additional unseen

attractors using our network structure and BooleaBayes rules.

(CSV)
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a Widespread Increase in Chromatin Accessibility. Cell. 2016. https://doi.org/10.1016/j.cell.2016.05.

052 PMID: 27374332

SCLC subtype master regulators and destabilizers

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007343 October 31, 2019 29 / 29

https://doi.org/10.1111/cas.13078
https://doi.org/10.1111/cas.13078
http://www.ncbi.nlm.nih.gov/pubmed/27627196
https://doi.org/10.1073/pnas.1318192110
https://doi.org/10.3389/fonc.2018.00050
https://doi.org/10.1073/pnas.1812876116
https://doi.org/10.1016/j.tcb.2019.03.003
http://www.ncbi.nlm.nih.gov/pubmed/30987806
https://doi.org/10.1016/j.cell.2010.02.027
https://doi.org/10.1016/j.cell.2010.02.027
http://www.ncbi.nlm.nih.gov/pubmed/20371346
https://doi.org/10.1371/journal.pcbi.1003734
https://doi.org/10.1371/journal.pcbi.1003734
http://www.ncbi.nlm.nih.gov/pubmed/25122086
https://doi.org/10.1371/journal.pcbi.1004569
http://www.ncbi.nlm.nih.gov/pubmed/26554584
https://doi.org/10.18632/oncotarget.3623
https://doi.org/10.1038/ncomms13322
https://doi.org/10.1016/j.cell.2016.05.052
https://doi.org/10.1016/j.cell.2016.05.052
http://www.ncbi.nlm.nih.gov/pubmed/27374332
https://doi.org/10.1371/journal.pcbi.1007343

