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Abstract—Spike timing-dependent plasticity (STDP) is a 

fundamental synaptic learning rule observed in biology that leads 

to numerous behavioral and cognitive outcomes. Emulating STDP 

in electronic spiking neural networks with high-density 

memristive synapses is therefore of significant interest. While one 

popular method involves pulse-shaping the spiking neuron output 

voltages, an alternative approach is outlined in this paper. The 

proposed STDP implementation uses time-varying dynamic 

resistance (R(t)) elements to achieve local synaptic learning from 

spike-pair STDP, spike triplet STDP, and firing rates. The R(t) 

elements are connected to each neuron circuit thereby maintaining 

synaptic density and leverage voltage-division as a means of 

altering synaptic weight (memristor voltage). Example R(t) 

elements with their corresponding behaviors are demonstrated 

through simulation. A three-input-two-output network using 

single-memristor synaptic connections and R(t) elements is also 

simulated. Network-level effects such as non-specific synaptic 

plasticity are discussed. Finally, spatiotemporal pattern 

recognition (STPR) using R(t) elements is demonstrated in 

simulation. 

 
Index Terms—Memristor, spike-timing-dependent plasticity, 

spiking neural network, synapse. 

 

I. INTRODUCTION 

uman brains are made up of billions of neurons which 

generate voltage spikes called action potentials in response 

to stimulus [1]. Those billions of neurons are interconnected 

through trillions of synapses which effectively serve to scale the 

magnitude of action potentials that pass through them [2]. The 

amount of scaling that a synapse performs is referred to as its 

synaptic efficacy, strength, or weight. The weight of a synapse 

is not static, and changes over time based on learning rules that 

depend on pre- and post-synaptic neuron activity. Timing 

differences between two action potentials occurring in the 

neurons that the synapse connects is one mechanism that can 

alter the weight [3]–[5]. This is known as Spike-Timing-

Dependent Plasticity (STDP). 

Many forms of STDP have been observed in different brain 

regions across various species. It is known to be responsible for 
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abilities including rapid response to threats and sound source 

localization [4], [6]–[11]. However, it is also known that 

biological synapses implement much more complex and diverse 

learning rules than pair-based STDP [12]. In reality, synapses 

integrate multiple action potentials asymmetrically and can 

alter their weight over longer timescales containing multiple 

pre- and post-synaptic spikes [12]–[17]. Broader consequences 

of this observation are not well understood, but may enable 

many advanced cognitive functions. 

Electronic spiking neural networks comprised of STDP 

synapses have been shown to perform complicated learning 

tasks such as pattern recognition, classification, and feature 

extraction [18]–[24]. Due to these demonstrated abilities, many 

researchers have implemented STDP synapses using CMOS 

circuits [25]–[31]. The circuits generally contain at least a 

dozen devices and have relatively large footprints [28], [30]–

[32]. Both these traits are highly undesirable when the objective 

is to maximize synaptic density and the overall number of 

synapses. In other words, although local Hebbian learning rules 

such as STDP are essential for constructing networks with an 

extremely large number of elements, the synapse 

implementations must also be compact.  

Memristors are an ideal candidate for electronic synapses 

because they have only two terminals and can change their 

resistance based on previously applied bias. They can also be 

non-volatile with very small cross-sectional area, and densely 

fabricated in crossbar array structures [33]–[42]. Using single 

memristors as synapses requires that the neurons somehow 

control synaptic weight change. A dominant approach for 

obtaining STDP with memristive synapses is to engineer the 

shape of the neuron output voltage pulses to achieve the 

desired weight update function [21], [37], [41], [43]–[50]. In 

the pulse-shaping method, signals are directed toward both the 

axonic and dendritic synapses whenever a neuron fires. The 

potential across the memristor itself is given by the difference 

between the post- and pre-synaptic voltages. The main 

drawback of this approach is that it allows only nearest-

neighbor pairs of action potentials to contribute to synaptic 

weight changes, and has no dependence on firing rate [51]–

[53]. This paper presents an approach that is similar and 

complementary to pulse shaping and is compatible with 
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single-memristor synapses contained in crossbar arrays. The 

approach enables the realization of traditional pair-based 

STDP as well as rules that depend on multiple spikes and 

long-term firing rates. The key to facilitating these effects is 

the addition of dynamic resistance, or R(t), elements to the 

input and output of each hidden layer neuron circuit. In this 

work, we define R(t) elements as circuits or devices which 

possess time-varying resistance. This technique is similar to 

pulse shaping in that a time-varying quantity is driving STDP. 

However, the distinguishing characteristic of R(t)-based STDP 

is that the path resistance between neurons changes as a 

function of the pre- and post-synaptic neuron outputs. Table I 

compares and contrasts the R(t) and shaped pulse methods of 

facilitating STDP.  

A simple digital pulse is used in the examples presented in 

this work to activate the R(t) elements which creates the time-

varying resistance. This creates a network of time-dynamic 

voltage dividers, and maximizes the simplicity of the synapses 

while only slightly increasing the complexity of the neurons. 

Simple digital pulses are used for mathematical convenience; 

however, shaped pulses can also be used with R(t) elements 

for even more complicated learning rules, but this is beyond 

the scope of this introductory work.  

The remainder of this paper is organized as follows: Section 

II describes perfect STDP using R(t) elements and single 

memristor synapses and explains the process involved in 

component value selection. Section III presents examples and 

simulations of R(t) implementations that result in pair-based 

and triplet STDP behavior. Section IV contains simulations 

demonstrating STDP in networks using R(t) elements and 

single-memristor synapses, and discusses other characteristics 

of the network. Conclusions are presented in Section V. 

II. STDP WITH R(T) ELEMENTS 

 An R(t) element is a circuit or device which possess a time-

varying resistance. To design an R(t) element, one must design 

a circuit or device such that a controlling quantity varies in time 

to produce the desired R(t) response. One way to do this is to 

design a circuit or device which implements an activation 

function, 𝑄, to bridge the gap between R(t) and the controlling 

quantity function, ₵. The relationship between the activation 

function, the time-varying controlling quantity, and the 

resulting effective resistance is depicted in Fig. 1a. To facilitate 

excitatory STDP behavior, the activation functions should be 

implemented such that the R(t) element’s resistance decreases 

sharply when exposed to stimulus and increases slowly once the 

stimulus is removed. In this work we use the term activated to 

describe a condition where the controlling quantity abruptly and 

temporarily increases resulting in a temporary state of reduced 

resistance for the R(t) element. R(t) elements have been 

modeled using 

 𝑅(𝑡) = 𝑅𝑉𝑄(₵(𝑡)) + 𝑅𝑆, (1) 

where 𝑅𝑉 is the variable portion of the R(t) element, 𝑅𝑆, is the 

static portion of the R(t) element which represents its minimum 

series resistance, 𝑄 is an activation function which converts a 

controlling quantity into a real number in the range [0,1], and ₵ 

is the controlling quantity function which represents a 

controlling quantity, such as potential or charge, at a particular 

time. 

From the model one can see that the R(t) element has a 

minimum resistance of 𝑅𝑆 and a maximum resistance of 𝑅𝑆 +
𝑅𝑉. Using two resistors instead of a single resistor is a 

mathematical convenience to describe the R(t) element’s 

resistance with a single activation factor between zero and one. 

Fig. 1b depicts a two-resistor model of an R(t) element. The 

angle of the arrow going from left to right in the figure is a 

graphical approximation of the effective resistance of 𝑅𝑉 in the 

range from zero to 𝑅𝑉 at a particular moment in time. 

A. Synaptic Weight Change 

Two R(t) elements combined with a memristor form a circuit 

which can implement STDP through voltage division. In very 

general terms, when only one R(t) element is activated, neural 

spiking is insufficient to cause the voltage across the memristor, 

𝑉𝑀, to exceed the memristor’s threshold, 𝑉𝑇𝐻. However, when 

both R(t) elements are sufficiently activated, the resistance of 

the memristor, relative to the rest of the branch, is large enough 

to cause neural spike voltage to exceed its threshold voltage. 

More specifically, an increase in synaptic strength through an 

STDP circuit using digital spiking neurons and R(t) elements 

with single-memristor synapses can be explained in four stages, 

as depicted graphically in Fig. 1 c-f. In the first stage, it is 

Fig. 1. An R(t) Element model and the four stages of R(t)-based STDP. a) 

Illustration showing that R(t) is a composition of three functions. b) An R(t) 

element model represented as a static resistance, 𝑅𝑆, and a variable resistance, 

𝑅𝑉, capable of sweeping between 0 and 𝑅𝑉 in time. c) An STDP circuit, 

consisting of two R(t) elements on either side of a memristor, is in its initial 
state with pre- and post-synaptic R(t) elements at their maximum resistances. 

d) A digital pre-synaptic pulse arrives, driving its associated R(t) element to its 

minimum value. e) Some time passes, over which the resistance of the pre-

synaptic R(t) element rises. f) A post-synaptic pulse arrives, driving the post-

synaptic R(t) element to its minimum value, and placing a potential across the 

memristor, 𝑉𝑀, greater than its negative threshold 𝑉𝑇𝐻
− , causing memristance to 

decrease. 

TABLE I 
COMPARING AND CONTRASTING THE R(T) AND SHAPED PULSE METHODS OF 

FACILITATING STDP 

 aThis depends on the desired behavior. The equations presented in this work 

represent a rigid case where synaptic weight change is guaranteed not to occur 

outside of the influence of related spikes. However, if merely facilitating 
STDP is desired, then component value selection can be relaxed. 

TABLE I 
COMPARING AND CONTRASTING THE R(T) AND SHAPED PULSE METHODS OF 

FACILITATING STDP 

 aThis depends on the desired behavior. The equations presented in this work 

represent a rigid case where synaptic weight change is guaranteed not to occur 

outside of the influence of related spikes. However, if merely facilitating 
STDP is desired, then component value selection can be relaxed. bIf the 

network doesn’t use neurons which control the potential  at their inputs, then 

the network will have sneak paths. 



assumed that no spikes have occurred for a long enough time 

period that both pre- and post-synaptic R(t) elements are in their 

most resistive states. It is also assumed that the value of the 

memristor is somewhere between its most resistive (𝑅𝑂𝐹𝐹) and 

least resistive (𝑅𝑂𝑁) states. The second stage begins when a pre-

synaptic spike occurs. The resistance of the pre-synaptic R(t) 

element is suddenly reduced, and the voltage across the 

memristor is less than the memristor positive threshold voltage, 

𝑉𝑇𝐻
+ , meaning that its value will remain unchanged. In the third 

stage the pre-synaptic R(t) element’s resistance has increased 

with the passage of time, but is still not at its maximum value. 

The fourth stage begins with the arrival of a post-synaptic spike. 

The reduced resistances of the R(t) elements results in a 

negative voltage, greater in magnitude than the absolute value 

of the negative memristor threshold voltage, |𝑉𝑇𝐻
− |, across the 

memristor. This causes its memristance to decrease. As the 

memristance is decreased, the total path resistance is reduced. 

This results in a higher current for a given potential. So, more 

charge is transferred to the post-synaptic neuron through the 

synapse for a given spike—the synaptic connection has 

strengthened. A decrease in synaptic resistance due to a post-

pre spike pair is achieved similarly. One final thing to note is 

that if the memristors used in the simulation are additive in 

nature, meaning that a change in their memristance is not 

dependent on their instantaneous memristance value, R(t) 

element-based STDP causes non-additive behavior to manifest 

due to the state of the memristor affecting the voltage that it 

drops in the resistive voltage divider. 

B. Component Value Selection for Perfect STDP 

In this work we define perfect STDP as a synaptic connection 

where synaptic change is guaranteed not to occur outside of 

related spikes. The rest of this section describes how to choose 

component values that will result in perfect STDP. Before 

choosing to design STDP circuits which implement perfect 

STDP, circuit designers should bear in mind that perfect STDP 

has very strict requirements, results in very small synaptic 

changes, and as will be demonstrated in Section IV, is not 

necessary to facilitate spatiotemporal pattern recognition 

(STPR) with R(t) elements. This section is included to 

demonstrate that perfect STDP is mathematically possible 

rather than to be a design guide that one should rigidly follow. 

To design a perfect STDP circuit with R(t) elements and a 

memristor, one must determine the values of 𝑅𝑆 and 𝑅𝑉 for each 

R(t) element, decide on an activation function 𝑄, and 

implement the design. Instead of defining a specific 

implementation of 𝑄, we will use particular values of 𝑄, 

denoted as 𝑋 and 𝑌, to determine values of R which will enable 

STDP to occur, as implementing a particular activation function 

is beyond the scope of this work. Our strategy is to focus on 

selecting particular values of 𝑅𝑉 and 𝑅𝑆 which will facilitate 

STDP for all possible values that a particular memristor could 

have. The shape of a particular STDP curve is due to the 

composition of 𝑅∘𝑄∘₵=𝑅 (𝑄(₵(𝑡))), and so to attain a specific 

desired STDP curve one must carefully design their circuits; 

however, the point of this work is not to design any particular 

STDP curve, but rather to show how STDP is possible in the 

first place and to provide a model which, when properly 

implemented, guarantees perfect STDP behavior. 

With this in mind, to facilitate STDP the memristor voltage, 

𝑉𝑀, must be considered with respect to its threshold voltage for 

two cases: where change is desired (|𝑉𝑀| ≥ 𝑉𝑇𝐻) and where 

change is undesired (|𝑉𝑀| < 𝑉𝑇𝐻). We assert that the activation 

of an R(t) element occurs when a bias is applied to its input 

terminal. In other words, when a voltage spike is applied to 

Terminal 1 (Terminal 2) in Fig. 1, 𝑅1(𝑅4) is activated. Its 

resistance suddenly decreases toward 𝑅𝑆 and then slowly rises 

over time toward 𝑅𝑉 + 𝑅𝑆. 

1) Choosing the RV values: R1 and R4 

Resistances 𝑅1 and 𝑅4 are the variable portions of the R(t) 

elements. They control whether, or not, and by what amount the 

memristor will be changed in response to spiking stimulus. 

Consider the STDP circuit model depicted in Fig. 1b. If a 

potential of 𝑉𝑃𝑅𝐸 were applied to Terminal 1, and ground were 

applied to Terminal 2, then the memristor voltage would be 

 
𝑉𝑀 = 𝑉𝑃𝑅𝐸

𝑅𝑀

𝑋𝑅1 + 𝑅2 + 𝑅𝑀 + 𝑅3 + 𝑌𝑅4

 
(2) 

where 𝑋 and 𝑌 are real values between zero and one which 

represent how resistive, at the moment when 𝑉𝑃𝑅𝐸 is applied, 

𝑅1 and 𝑅4 are, respectively. Assume that the R(t) element 

connected to Terminal 1 is fully activated, and therefore 

minimally resistive (𝑋=0). Depending on the type of R(t) 

element it may not be true that a single neural spike would fully 

activate it. However, this is a safe assumption to make because, 

for the purpose of determining component values, we are 

assuming some activation of 𝑅4 and applying a DC bias, and 

not neural spikes, to Terminal 1. For the case when change is 

desired, the component values must result in a situation where 

𝑉𝑀 ≥ 𝑉𝑇𝐻. Substituting into (7) and rearranging gives us 

 
𝑅𝑀 (

𝑉𝑃𝑅𝐸

𝑉𝑇𝐻
+ − 1) ≥ 𝑅2 + 𝑅3 + 𝑌𝑅4. 

(3) 

This inequality describes all of the factors which determine 

whether, or not, memristance will change: the current value of 

𝑅𝑀, the values chosen for 𝑉𝑃𝑅𝐸, 𝑅2, 𝑅3, and 𝑅4, and the 

resistance of 𝑅4, at the time 𝑉𝑃𝑅𝐸 is applied. 

A similar inequality can be derived for the case when change is 

undesired (𝑉𝑀 < 𝑉𝑇𝐻): 

 
𝑅𝑀 (

𝑉𝑃𝑅𝐸

𝑉𝑇𝐻
+ − 1) < 𝑅2 + 𝑅3 + 𝑌𝑅4. 

(4) 

Let A denote the resistance of 𝑅4, above which 𝑉𝑀 < 𝑉𝑇𝐻, 

regardless of 𝑅𝑀, and let B denote the resistance of 𝑅4, below 

which 𝑉𝑀 > 𝑉𝑇𝐻, regardless of 𝑅𝑀. Choosing A and B is 

accomplished by examining the fringe cases where change is 

undesired with the memristor at its highest resistance value 

(𝑅𝑀 = 𝑅𝑂𝐹𝐹) and where change is desired with the memristor 

at its lowest resistance value (𝑅𝑀 = 𝑅𝑂𝑁), and then selecting 

from the allowed values. The fringe cases can be expressed as 

 
𝑉𝑇𝐻

+ ≤ 𝑉𝑃𝑅𝐸

𝑅𝑂𝑁

𝑅2 + 𝑅𝑂𝑁 + 𝑅3 + 𝐵𝑅4

 and 
(5) 

 
𝑉𝑇𝐻

+ > 𝑉𝑃𝑅𝐸

𝑅𝑂𝐹𝐹

𝑅2 + 𝑅𝑂𝐹𝐹 + 𝑅3 + 𝐴𝑅4

 
(6) 

which can be combined and rearranged to yield 

 (𝑅2 + 𝑅3)(𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁)
< 𝑅4[𝑅𝑂𝑁𝐴 − 𝑅𝑂𝐹𝐹𝐵]. 

(7) 

Since 𝑅2, 𝑅3, and 𝑅4 are greater than zero, and 𝑅𝑂𝐹𝐹 > 𝑅𝑂𝑁, 

then 



 𝑅𝑂𝑁𝐴 > 𝑅𝑂𝐹𝐹𝐵 (8) 

which can be rearranged into 

 𝐴

𝐵
>

𝑅𝑂𝐹𝐹

𝑅𝑂𝑁

. 
(9) 

This inequality is a good rule of thumb for choosing 𝐴 and 𝐵, 

but insufficient to ensure that the circuit wil produce perfect 

STDP. Thus, start by choosing 𝐴 and 𝐵 which satisfy (9). Next, 

𝑅4 is chosen. Re-examining the fringe cases, they can be 

expressed as 

 
𝑅𝑂𝐹𝐹 (

𝑉𝑃𝑅𝐸

𝑉𝑇𝐻
+ − 1) < 𝑅2 + 𝑅3 + 𝐴𝑅4 and 

(10) 

 
𝑅𝑂𝑁 (

𝑉𝑃𝑅𝐸

𝑉𝑇𝐻
+ − 1) ≥ 𝑅2 + 𝑅3 + 𝐵𝑅4. 

(11) 

It is clear that if 

 

𝑅4 =

𝑅𝑂𝐹𝐹 (
𝑉𝑃𝑅𝐸

𝑉𝑇𝐻
+ − 1)

𝐴
† 

(12) 

and the value of B is updated such that 

 

𝐵 ≤

𝑅𝑂𝑁 (
𝑉𝑃𝑅𝐸

𝑉𝑇𝐻
+ − 1) − (𝑅2 + 𝑅3)

𝑅4

  

(13) 

 

then (9), (10), and (11) can all be satisfied. The next step 

depends on whether symmetrical STDP is desired. If 

symmetrical STDP is desired, then let 𝑅2=𝑅3, 𝑅1=𝑅4, and 

choose 𝑅2. If asymmetrical STDP is desired, then connect 

ground to Terminal 1 and 𝑉𝑃𝑂𝑆𝑇  to Terminal 2. Assume that the 

R(t) element connected to Terminal 2 is fully activated, and 

therefore minimally resistive (𝑌=0). Thus (2) becomes 

 
𝑉𝑀 = 𝑉𝑃𝑂𝑆𝑇

𝑅𝑀

𝑋𝑅1 + 𝑅2 + 𝑅𝑀 + 𝑅3

. 
(14) 

Let 𝐶 denote the resistance of 𝑅1, above which 𝑉𝑀 < 𝑉𝑇𝐻, 

regardless of 𝑅𝑀, and let 𝐷 denote the resistance of 𝑅1, below 

which 𝑉𝑀 > 𝑉𝑇𝐻, regardless of 𝑅𝑀. 

 Choosing 𝐶 and 𝐷 is accomplished by examining the 

fringe cases where change is undesired with the memristor at its 

highest resistance value (𝑅𝑀 = 𝑅𝑂𝐹𝐹) and where change is 

desired with the memristor at its lowest resistance value (𝑅𝑀 =
𝑅𝑂𝑁), and then selecting from the allowed values. The fringe 

cases can be expressed as 

 
𝑉𝑇𝐻

− ≤ 𝑉𝑃𝑂𝑆𝑇

𝑅𝑂𝑁

𝐷𝑅1 + 𝑅2 + 𝑅𝑂𝑁 + 𝑅3

 
(15) 

 
𝑉𝑇𝐻

− > 𝑉𝑃𝑂𝑆𝑇

𝑅𝑂𝐹𝐹

𝐶𝑅1 + 𝑅2 + 𝑅𝑂𝐹𝐹 + 𝑅3

 
(16) 

which can be combined and rearranged to yield 

 (𝑅2 + 𝑅3)(𝑅𝑂𝐹𝐹 − 𝑅𝑂𝑁) 

                    < 𝑅1[𝑅𝑂𝑁𝐶 − 𝑅𝑂𝐹𝐹𝐷]. 
(17) 

Since 𝑅1, 𝑅2, and 𝑅3 are greater than zero, and 𝑅𝑂𝐹𝐹 > 𝑅𝑂𝑁, 

then 

 𝑅𝑂𝑁𝐶 > 𝑅𝑂𝐹𝐹𝐷, (18) 

which can be rearranged into 

 𝐶

𝐷
>

𝑅𝑂𝐹𝐹

𝑅𝑂𝑁

. 
(19) 

 

† Any 𝑅4 such that 𝑅4 >

𝑅𝑂𝐹𝐹(
𝑉𝑃𝑅𝐸

𝑉𝑇𝐻
+ −1)

𝐴
− (𝑅2 + 𝑅3) will satisfy (10) 

This inequality is a good rule of thumb for choosing 𝐶 and 𝐷, 

but insufficient to ensure that the circuit will produce perfect 

STDP. Thus, start by choosing 𝐶 and 𝐷 which satisfy (19). 

 Next, 𝑅1 is chosen. Re-examining the fringe cases, they can 

be expressed as 

 
𝑅𝑂𝐹𝐹 (

𝑉𝑃𝑂𝑆𝑇

𝑉𝑇𝐻
− − 1) < 𝐶𝑅1 + 𝑅2 + 𝑅3 and 

(20) 

 𝑅𝑂𝑁 (
𝑉𝑃𝑂𝑆𝑇

𝑉𝑇𝐻
− − 1) ≥ 𝐷𝑅1 + 𝑅2 + 𝑅3. (21) 

It is clear that if 

 

𝑅1 =
𝑅𝑂𝐹𝐹 (

𝑉𝑃𝑂𝑆𝑇

𝑉𝑇𝐻
− − 1)

𝐶
‡ 

(22) 

and the value of 𝐷 is updated such that 

 

𝐷 ≤
𝑅𝑂𝑁 (

𝑉𝑃𝑂𝑆𝑇

𝑉𝑇𝐻
− − 1) − (𝑅2 + 𝑅3)

𝑅1

  

(23) 

then (19), (20), and (21) can all be satisfied. Finally, choose 𝑅2 

and 𝑅3. 

2) Choosing the RS values: R2 and R3 

The combination of 𝑅2 and 𝑅3 limit the maximum theoretical 

voltage that can be applied to the memristor and therefore limit 

the magnitude of change that the memristor can undergo due to 

the application of a spike. The individual values of 𝑅2 and 𝑅3 

will not affect the shape of the STDP curve, only their combined 

value. To ensure that the memristor will change as desired, 

choose 𝑅2 and 𝑅3 such that the quantity 𝑅2 + 𝑅3 obeys all of 

the following inequalities: 

 
𝑅2 + 𝑅3 ≤

𝑉𝑃𝑅𝐸

𝑉𝑇𝐻
+ 𝑅𝑂𝑁 − 𝑅𝑂𝑁 − 𝐵𝑅4 

(24) 

 
𝑅2 + 𝑅3 >

𝑉𝑃𝑅𝐸

𝑉𝑇𝐻
+ 𝑅𝑂𝐹𝐹 − 𝑅𝑂𝐹𝐹 − 𝐴𝑅4 

(25) 

 
𝑅2 + 𝑅3 ≤

𝑉𝑃𝑂𝑆𝑇

𝑉𝑇𝐻
− 𝑅𝑂𝑁 − 𝑅𝑂𝑁 − 𝐷𝑅1 

(26) 

 
𝑅2 + 𝑅3 >

𝑉𝑃𝑂𝑆𝑇

𝑉𝑇𝐻
− 𝑅𝑂𝐹𝐹 − 𝑅𝑂𝐹𝐹 − 𝐶𝑅1 

(27) 

III. R(T) ELEMENT IMPLEMENTATION EXAMPLES 

Previous work has demonstrated that synapses composed of 

single memristors driven by short-term memory transistors are 

capable of STDP. Specifically, thin-film transistors (TFTs) with 

layers of nanoparticles in the gate dielectric were used to drive 

memristive synapses. Close correspondence to biological 

measurements for spike pairs, triplets, and overall frequency 

measurements [54]–[56]. Simulations also indicated these 

networks are capable of performing STPR [24]. The 

nanoparticle TFTs effectively perform the function of an R(t) 

element, as will be discussed in Section III D.  

‡ Any 𝑅1 such that 𝑅1 >
𝑅𝑂𝐹𝐹(

𝑉𝑃𝑂𝑆𝑇
𝑉𝑇𝐻

− −1)

𝐶
− (𝑅2 + 𝑅3) will satisfy (20). 



This section provides two additional examples of R(t) 

elements in the form of CMOS circuits (as opposed to devices). 

These basic circuits, are designed using the R(t) element model 

described in Section II, and are meant to emphasize the 

characteristics of simple and compound R(t) elements rather 

than perfectly encapsulate simple and compound R(t) element 

functionality. We demonstrate how to create STDP circuits with 

these circuits, and provide simulation results conducted using 

the industry-standard circuit design software Cadence Virtuoso, 

TSMC 0.18 micron technology MOSFET models, and the 

NCSU Cadence design kit [57]. 

The first example is a simple R(t) element circuit, defined to 

be an R(t) element that achieves its maximum resistance change 

from a single digital pulse. The second example is a compound 

R(t) element circuit, defined as an R(t) element that requires 

multiple digital pulses to achieve their maximum resistance 

change. Both examples were used in conjunction with an ideal 

memristor with the following characteristics: 𝛼=0.001, 𝑅𝑂𝑁=10 

kΩ, 𝑉𝑇𝐻
+ =200 mV, 𝑉𝑇𝐻

− =-200 mV, 𝛥𝑀 described by: 

𝑓(𝑀, 𝑉𝑀, 𝑉𝑇𝐻
+ , 𝑉𝑇𝐻

− )

= {
𝛼 exp(𝑉𝑀 − 𝑉𝑇𝐻

+ ) − 1 , 𝑉𝑀 > 𝑉𝑇𝐻
+  and 𝑀 < 𝑅𝑂𝐹𝐹

−𝛼 exp(|𝑉𝑀 − 𝑉𝑇𝐻
− |) − 1, 𝑉𝑀 < 𝑉𝑇𝐻

−  and 𝑀 > 𝑅𝑂𝑁

0, otherwise,

 

(28) 

and memristance, M, described by 

 𝑀 = 𝑅𝑂𝑁

𝑤

𝐷
+ 𝑅𝑂𝐹𝐹 (1 −

𝑤

𝐷
), (29) 

where 𝑤/𝐷 represents physical characteristics of the memristor 

which for the purposes of a memristor-based synapse can be 

thought of as the weight with values between zero and one [36], 

[58]–[60]. 

A. Simple R(t) Element Circuits 

 The first implementation of an R(t) element circuit that will 

be demonstrated is a simple R(t) element circuit. We define a 

simple R(t) element as an R(t) element that achieves its 

maximum resistive change from a single digital pulse. The 

values of 𝑅1 and 𝑅2 were chosen in accordance with the 

guidance described in the previous section. 𝐴 and 𝐵 were 

chosen to be 0.95 and 0.05 respectively, which resulted in 𝑅1 

and 𝑅2 + 𝑅3 being 842 kΩ and 38 kΩ respectively. Since 

symmetrical STDP was desired, and the memristor used had 

symmetrical characteristics, 𝑅4=𝑅1. Fig. 2 depicts a schematic 

of a simple R(t) element circuit and a plot of the response of the 

simple R(t) element to a 1.8 V digital pulse applied to Vin when 

𝑤/𝐷=0.5. 

 When a digital pulse arrives at Vin, capacitor C1. Is charged 

through diode connected MOSFET M1. For the duration of the 

pulse, VGM2 rises towards Vin-VDS, increasing the conduction 

of M2 and lowering the overall effective resistance of the R(t) 

element. When the simple digital pulse ends, charge leaks to 

ground out of C1 through M3, at a rate determined by Vleak. 

This causes VGM2 to lower over time and the effective resistance 

of the R(t) element to rise over time. This particular 

implementation of an R(t) element circuit used in an STDP 

Fig. 2. a) A schematic of a simple R(t) element circuit. b) The simple R(t) 

element circuit’s response to a 1 ms long 1.8 V digital (square) pulse with 
Vleak = 50 mv, R1=842 kΩ, R2=19 kΩ, C1 =1 pF, and W/L=10/2 for all 

MOSFETs. Effective resistance is calculated as the voltage difference between 

Vin and Vout over the current through R2. A small measuring bias voltage is 
applied to Vin, but not C1, in the absence of spiking stimulus. 

Fig. 3.  A schematic of a simple R(t) element-based STDP circuit. It is 
important to note that the R(t) elements are not part of the synapse, many 

memristive synapses can be fed by a neuron through a single R(t) element, 

rather they are an accessory to be added to a neuron. In this figure, the neurons 
have been substituted with piece-wise linear voltage sources to create simple 

digital pulses. 

Fig. 5.  a) A schematic of a compound R(t) element circuit. b) The compound 
R(t) element circuit’s response to simple 1 ms duration 5 V digital pulses with 

Vleak= 40mV, Vth=68 mV, R1=842 kΩ, R2=19 kΩ, C1=1 pF, and W/L=10/2 

and 20/2 for all NMOS and PMOS respectively. Effective resistance is 
calculated as the voltage difference between Vin and Vout over the current 

through R2 with a small measuring bias applied to Vin, but not C1, in the 

absence of spiking stimulus. 

Fig. 4.  a) The pair-based STDP plot created by an STDP circuit composed of 
two simple R(t) element circuits and a memristor. The memristor is initialized 

to 55 kΩ (𝑤/𝐷=0.5). Applied pre- and post-synaptic pulses are 1.8 V digital 

pulses with pulse widths of 1 ms and Vleak=40 mV. b) A simulation 

demonstrating the multiplicative behavior of the additive memristor due to the 
voltage dividing nature of the R(t) element-based STDP circuit. The same pre- 

and post-synaptic potentials are applied to two identical simple STDP circuits 

(Vleak=40 mV) except for the initial condition of the two memristors (0.100 in 

one and 0.500 in the other). The memristor with the lower initial 𝑤/𝐷, and thus 

a higher initial memristance, experiences a larger ∆𝑤/𝐷 because it drops a 

larger fraction of the applied potential. 



circuit as shown in Fig. 3, produces the STDP curve of Fig. 4a.  

Although the memristor described in (28) is additive, the 

memristor will change in a non-additive fashion due to the 

voltage dividing action of the STDP circuit. This property is 

portrayed in Fig. 4b. It is important to note that the R(t) 

elements in this single STDP circuit do not belong to the 

synapse memristor, but instead to the input and output neurons 

connected through it. In a network configuration, many single-

memristor synapses may be connected to a particular neuron’s 

R(t) element. This is explained in more detail in Section IV. 

B. Compound R(t) Element Circuits 

The second implementation of an R(t) element circuit that 

will be demonstrated is a compound R(t) element circuit. We 

define a compound R(t) element as an R(t) element that requires 

multiple digital pulses to achieve its maximum resistance 

change. The values of 𝑅1 and 𝑅2 from the previous example 

circuit are used. Fig. 5 shows a schematic of a compound R(t) 

element circuit and a plot of the response of the compound R(t) 

element to five 1.8 V digital pulses applied to Vin. 

When a simple digital pulse is applied at Vin to the 

compound R(t) element, current flows through the current-

mirror-like arrangement composed of M1, M2, and M3. This 

induces another current (Vth≠Vleak) in the structure composed 

of M4, M5, and M6. The induced current is divided between 

flowing to ground through M6 and charging C1. The charge in 

C1 raises VGM7 which increases the conductivity of M7 and 

lowers the effective resistance of the R(t) element. When the 

simple digital pulse at Vin ends the charge stored in C1 leaks to 

ground through M6 at a rate determined by Vleak. This 

particular implementation of a compound R(t) element used in 

an STDP circuit is shown in Fig. 6. 

 Since compound R(t) elements, by definition, cannot 

achieve their least resistive state by a single spike, the STDP 

curve changes for different combinations of spikes. The 

Fig. 8.  The STDP plot created by an STDP circuit composed of two compound 

R(t) element circuits and a memristor under the influence of two different kinds 

of stimulus—pairs of single spikes and spike triplets. The pairs of single spikes 
are typical pre-post pairs, whereas the spike triplets are pre-pre-post and post-

post-pre triplets where the first two spikes are separated by 5 ms. The memristor 

is initialized to 55 kΩ (𝑤/𝐷=0.5). Applied pre- and post-synaptic pulses are 

1.8 V digital pulses with widths of 1 ms. Vleak=40 mV and Vth=125 mV. 

Fig. 6.  A schematic of the compound R(t) element-based STDP circuit. It is 

important to note that the R(t) elements are not part of the synapse, many 
memristive synapses can be fed by a neuron through a single R(t) element, 

rather they are an accessory to be added to a neuron. In this figure, the neurons 

have been substituted with piece-wise linear voltage sources to create simple 
digital pulses. 

Fig. 7.  Three separate spike trains are applied to the same compound R(t) 

element-based STDP circuit with the same settings (Vleak=40 mV, Vth=125 

mV, memristor initialized to 𝑤/𝐷=0.500). The pre- and post-synaptic R(t) 

element’s effective resistances are depicted with thin solid and dotted lines 

respectively. The memristor’s 𝑤/𝐷 is depicted with a thick line. The times of 
pre- and post-synaptic spikes are represented with ○ and + respectively. Notice 

how the magnitude of change varies as the inter-spike-interval and time 

between triplets varies. a) Three spike triplets are applied to the compound 
STDP circuit with an inter-spike-interval of 6 ms and 15 ms between triplets. 

b) Three spike triplets are applied to the compound STDP circuit with an inter-

spike-interval of 3 ms and 15 ms between triplets. c) Three spike triplets are 
applied to the compound STDP circuit with an inter-spike-interval of 6 ms and 

10 ms between triplets. Applied pre- and post-synaptic pulses are 1.8 V digital 

pulses with pulse widths of 1 ms. 

a) 

b) 

c) 

Fig. 9.  The STDP plot created by using two simple R(t) elements and a 

memristor based on the Yakopcic model. 



memristance changes resulting from pre-post pairs and pre-pre-

post triplets produce different STDP curves because the 

effective resistance of compound R(t) elements is dependent on 

the cumulative effect of spike combinations. Thus, 

combinations of spikes will produce different effects than pairs 

of single spikes. These higher-order effects, which lead to 

STDP asymmetry, are examined in Fig. 7. Here, evenly spaced 

spike-triplets, which would otherwise leave the memristor 

unchanged, cause a net change in 𝑤/𝐷. Two things to note are 

how the second pair of spikes in the triplet are dominant. A pre-

post-pre triplet acts more like a post-pre pair than a pre-post 

pair. In addition, the repetition frequency clearly affects the 

change in 𝑤/𝐷, as each successive repetition of the triplet 

causes the magnitude of the change in 𝑤/𝐷 to increase. 

Further, the circuit produces the STDP curves depicted in 

Fig. 8 when exposed to spike-pair stimulus and spike-triplet 

stimulus. The triplets are composed of sequences of 1.8 V pre-

pre-post (∆t < 0) and post-post-pre (∆t > 0) synaptic spikes of 1 

ms in duration with 6 ms between the leading edges of the first 

two spikes in the sequence, and ∆t is taken to be the time 

between the leading edges of the second and third spikes in the 

sequence. It is important to note that the R(t) elements in this 

single STDP circuit do not belong to the synapse memristor, but 

instead to the input and output neurons connected through it. In 

a network configuration, many single-memristor synapses may 

be connected to a particular neuron’s R(t) element. This is 

explained in more detail in Section IV. 

C. Demonstration with a More Realistic Memristor Model 

To demonstrate how R(t) elements can facilitate STDP with 

a less ideal, and more realistic memristor, an STDP circuit was 

constructed using two simple R(t) elements and a memristor 

based on the Yakopcic model [61], [62]. The memristor 

parameters are as follows: 𝑎1=𝑎2=0.135, 𝑏=0.025, 𝑉𝑝=𝑉𝑛=0.2, 

𝐴𝑝=𝐴𝑛=4000, 𝑥𝑝=𝑥𝑛=0.3, 𝛼𝑝=𝛼𝑛=1, 𝑥0=0.5, and 𝜂=1. The 

R(t) element parameters are 𝑅1=𝑅2=𝑅3=𝑅4=1.5 kΩ. The 

resulting STDP plot is depicted in Fig. 9. 

D. Discussion and Comparison to Other Methods 

The use of charge-trapping TFTs mentioned previously is 

functionally similar to an R(t) approach in that the 

characteristics of the synaptic path are modified by an 

accessory element, independent of the neurons, to induce 

specific synaptic changes. Simulation, fabrication, and 

experimental validation of these devices have been 

demonstrated previously and has been shown to enable 

complex synaptic learning [56], [59], [63]. At first, the 

simplicity of using a single device as an R(t) element seems 

elegant and extremely advantageous. However, a great deal of 

design effort is required to realize device functionality in 

accordance with the requirements presented in Section II. 

Threshold voltage must be set to the proper value, and the 

subthreshold swing must offer the appropriate amount of 

conductance modulation for the operating voltages. Most 

importantly, thicknesses of the gate tunneling dielectrics and 

the charge trapping mechanism (nanoparticles or otherwise) 

must be precise to achieve the desired time constants. Once 

the circuit is fabricated, these response parameters cannot be 

tuned as in the CMOS implementations, dramatically reducing 

the flexibility of the design. 

Comparison of power consumption between these two 

approaches is also important. In the simple and compound R(t) 

elements presented, the minimum effective resistance of the 

current path (when the element is activated) is on the order of 

R2 plus the channel resistance of M2 or M7, resulting in 

approximately 20 kΩ. This value is on the same order as the 

lowest possible on-state channel resistance achievable in TFT 

devices with high-k dielectrics such as HfO2. Assuming that 

both the TFT and CMOS implementations would need to 

exhibit similar changes in resistance between the input and 

output terminal across similar voltage ranges, the power 

consumption should be similar in both cases. 

One of the biggest drawbacks is that TFTs degrade 

significantly over time, resulting in an undesirable loss of the 

expected R(t) properties. It is also far more difficult to integrate 

these special devices into a typical CMOS fabrication process. 

Future R(t) element designs could be much more power- and 

area-efficient than either of the approaches discussed here. 

However, they would still need to follow similar behavioral 

rules to achieve the same learning characteristics for any given 

memristor technology.  

IV. NETWORK EXAMPLES 

Neural networks are typically composed of multiple neurons, 

each of which connects to other neurons via synapses. The 

maximum number of R(t) elements, ₳, required in a layered 

neural network with R(t) element-based STDP can be 

determined using 

 

₳ = 𝐼 + 𝑂 + 2 ∑ 𝐻𝑖

ℎ

𝑖=1

, 
(30) 

Fig. 10.  a) The connections of an R(t) element-based STDP neural network 

consisting of three input neurons, two output neurons, six single-memristor 

synapses, and five R(t) elements. The connections to the pre-synaptic neurons 
are labeled N1-N3 and the connections to the post-synaptic neurons are labeled 

as N4 and N5. The synapses are labeled according to the neurons they connect 

using a post-pre naming convention. For example, Synapse 52 connects 
Neurons 5 and 2. These connections between the R(t) elements give rise to two 

types of non-specific synaptic plasticity. The first is heterogeneous non-specific 

plasticity, where the change in weight is due to a low resistance path which 
begins and ends on different layers. The second is homogeneous non-specific 

synaptic plasticity, where the change in weight is due to a low resistance path 

which starts and ends on the same layer. b) This figure depicts an example of 
the specific and non-specific synaptic paths that arise due to a pre-post pair. 

The specific path that results from N3 firing followed by N5 firing is illustrated 
with solid black lines. The non-specific paths, which could result in 

heterogeneous non-specific synapse weight increase of Synapses 51 and 52 and 

weight decreases of 41, 42, and 43, are illustrated with dashed black lines. c) 
This figure depicts an example of the non-specific path that arises due to a pre-

pre pair. The non-specific path that results from N3 firing followed by N2 could 

result in the homogeneous non-specific synaptic weight decrease of Synapse 
52 and increase of Synapse 53. 

 



where 𝐼 is the number of input neurons, 𝑂 is the number of 

output neurons, 𝐻𝑖  is the number of neurons in the 𝑖𝑡ℎ hidden 

layer, and ℎ is the number of hidden layers. In most useful cases 

(𝐼 > 𝑂 ≥ 2) this is fewer than the maximum number of 

synapses, 𝑆, in a layered neural network given by 

 

𝑆 = ∑ 𝑁𝑖𝑁𝑖+1

𝑛−1

𝑖=1

, 
(31) 

where 𝑁𝑖 is the number of neurons in the 𝑖𝑡ℎ layer and 𝑛 is the 

number of layers. 

A. Small Network Example 

Fig. 10 depicts the connections of a network consisting of 

three input neurons, two output neurons, six synapses, and five 

R(t) elements. In Fig. 10, the R(t) elements are symbolically 

represented as variable resistors and the neurons have been 

abstracted as voltage signals applied to the connectome. 

To demonstrate R(t) element-based STDP in this network, 

1.8 V digital spikes of 1 ms duration were applied to the 

network inputs and outputs in a 100 ms transient simulation. 

Results of the applied stimulus are shown in Fig. 11. Note the 

rise in 𝑤/𝐷 that occurs at 4ms in synapse 41. This corresponds 

with the pre- and post-synaptic spikes at 1 and 4 ms, 

respectively. Also, the 𝑤/𝐷 increase at 30 ms in Synapse 52 is 

not as large. This is due to the increased amount of time 

between the pre- and post-synaptic spikes, at 20 and 30 ms, 

resulting in a larger post-synaptic R(t) element resistance at the 

time of the post-synaptic spike, and thus a smaller voltage 

across the memristor resulting in a smaller memristance change. 

The decreases in 𝑤/𝐷 that occur at 53 and 80 ms in synapses 

43 and 51 respectively can be explained similarly. 

 At 20 ms into the simulation Synapse 52 decreases in 

strength, despite the fact that Neuron 5 had not fired yet. This 

non-specific synaptic plasticity is due to alternative paths 

through the multiple memristors between the pre- and post-

synaptic firing neurons as depicted in Fig. 10. Unlike other 

methods that induce non-specific synaptic plasticity, which 

depend on the availability of alternative paths, often referred to 

as sneak paths, the induced synaptic change was facilitated by 

activated R(t) elements—meaning that the time between the 

non-specific spikes altered the resistances of the available paths 

making some paths temporarily more susceptible to the 

influence of non-specific synaptic plasticity than others. In 

simulation non-specific synaptic plasticity has been shown to 

improve the recognition of sparse patterns under certain 

conditions [64]. A final set of spikes was added at 80 and 95 ms 

to demonstrate that, although the memristor is behaving non-

additively, the expression of the modified behavior may be very 

subtle. 

 Fig. 11.  The results of the small network simulation. The times of pre- and 
post-synaptic spikes are represented at the top with ○ and + respectively. The 

weights of the memristive synapses are shown in the middle and change via 

specific and non-specific plasticity over the course of the simulation. The 
effective resistances of the R(t) elements are shown at the bottom. 

Fig 12.  The results of the STPR network simulation. The network consists of 

25 afferent spiking neurons (N1 through N25), 26 R(t) elements, 25 

memristors, and 1 output neuron (Nout). The network was trained using an 
unsupervised method consisting of the afferent neurons producing random 

spiking signals with a spike pattern embedded in them at random times. Notice 

that the spikes produced by the output neuron, Nout, occur after the presentation 
of the patterns (highlighted with grey bars)—this is STPR. A false positive 

occurs at 33.624 s and is highlighted with a grey circle. 



B. STPR Example 

 A network consisting of 25 afferent neurons, 25 memristors, 

26 R(t) element circuits, and one output neuron was also 

simulated to demonstrate STPR using R(t) elements. To 

demonstrate R(t) element-based STPR, 1.8 V digital spikes of 

1 ms duration were simulated from the afferent neurons. 

Training was performed using an unsupervised method wherein 

the afferent neurons produced random spiking signals mixed 

with 1666 instances of a 10 ms spatiotemporal pattern over 30 

seconds. Fig. 12 depicts a sample of the simulation after 

training. The STPR performed by this network are the spikes 

from the output neuron, Nout, which occur after the network is 

exposed to spatiotemporal patterns in the afferent neurons. The 

spatiotemporal patterns in Fig. 12 are highlighted with grey 

bars. A false positive occurs at 33.624 s in the simulation and is 

highlighted with a grey circle. 

V. CONCLUSIONS 

A model was described for designing dynamic resistance, or 

R(t) elements that achieve various forms of STDP in memristor-

based neural networks. Two examples of R(t) element circuits, 

a simple R(t) element and a compound R(t) element, were 

presented. Behavior of these circuits was simulated in a 

commercially available software package using models 

provided by the foundry. Simulation results of a three-input, 

two-output, fully-connected spiking neural network using R(t) 

element-based STDP, and of STPR in a twenty-five-input, one-

output SNN using R(t) circuit elements, were presented. Future 

work includes examining non-specific synaptic plasticity more 

closely, and confirming simulation results through circuit 

implementation and extensive electrical testing. 
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