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Abstract—Spike timing-dependent plasticity (STDP) is a
fundamental synaptic learning rule observed in biology that leads
to numerous behavioral and cognitive outcomes. Emulating STDP
in electronic spiking neural networks with high-density
memristive synapses is therefore of significant interest. While one
popular method involves pulse-shaping the spiking neuron output
voltages, an alternative approach is outlined in this paper. The
proposed STDP implementation uses time-varying dynamic
resistance (R(t)) elements to achieve local synaptic learning from
spike-pair STDP, spike triplet STDP, and firing rates. The R(t)
elements are connected to each neuron circuit thereby maintaining
synaptic density and leverage voltage-division as a means of
altering synaptic weight (memristor voltage). Example R(t)
elements with their corresponding behaviors are demonstrated
through simulation. A three-input-two-output network using
single-memristor synaptic connections and R(t) elements is also
simulated. Network-level effects such as non-specific synaptic
plasticity are discussed. Finally, spatiotemporal pattern
recognition (STPR) using R(t) elements is demonstrated in
simulation.

Index Terms—Memristor, spike-timing-dependent plasticity,
spiking neural network, synapse.

I. INTRODUCTION

Human brains are made up of billions of neurons which
generate voltage spikes called action potentials in response
to stimulus [1]. Those billions of neurons are interconnected
through trillions of synapses which effectively serve to scale the
magnitude of action potentials that pass through them [2]. The
amount of scaling that a synapse performs is referred to as its
synaptic efficacy, strength, or weight. The weight of a synapse
is not static, and changes over time based on learning rules that
depend on pre- and post-synaptic neuron activity. Timing
differences between two action potentials occurring in the
neurons that the synapse connects is one mechanism that can
alter the weight [3]-[5]. This is known as Spike-Timing-
Dependent Plasticity (STDP).

Many forms of STDP have been observed in different brain
regions across various species. It is known to be responsible for
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abilities including rapid response to threats and sound source
localization [4], [6]-[11]. However, it is also known that
biological synapses implement much more complex and diverse
learning rules than pair-based STDP [12]. In reality, synapses
integrate multiple action potentials asymmetrically and can
alter their weight over longer timescales containing multiple
pre- and post-synaptic spikes [12]—[17]. Broader consequences
of this observation are not well understood, but may enable
many advanced cognitive functions.

Electronic spiking neural networks comprised of STDP
synapses have been shown to perform complicated learning
tasks such as pattern recognition, classification, and feature
extraction [18]—[24]. Due to these demonstrated abilities, many
researchers have implemented STDP synapses using CMOS
circuits [25]-[31]. The circuits generally contain at least a
dozen devices and have relatively large footprints [28], [30]-
[32]. Both these traits are highly undesirable when the objective
is to maximize synaptic density and the overall number of
synapses. In other words, although local Hebbian learning rules
such as STDP are essential for constructing networks with an
extremely large number of elements, the synapse
implementations must also be compact.

Memristors are an ideal candidate for electronic synapses
because they have only two terminals and can change their
resistance based on previously applied bias. They can also be
non-volatile with very small cross-sectional area, and densely
fabricated in crossbar array structures [33]-[42]. Using single
memristors as synapses requires that the neurons somehow
control synaptic weight change. A dominant approach for
obtaining STDP with memristive synapses is to engineer the
shape of the neuron output voltage pulses to achieve the
desired weight update function [21], [37], [41], [43]-[50]. In
the pulse-shaping method, signals are directed toward both the
axonic and dendritic synapses whenever a neuron fires. The
potential across the memristor itself is given by the difference
between the post- and pre-synaptic voltages. The main
drawback of this approach is that it allows only nearest-
neighbor pairs of action potentials to contribute to synaptic
weight changes, and has no dependence on firing rate [51]—
[53]. This paper presents an approach that is similar and
complementary to pulse shaping and is compatible with

The authors are with the Department of Electrical and Computer
Engineering, Boise State University, Boise ID 83725 (e-mail:
robertivans@boisestate.edu and kurtiscantley@boisestate.edu).



single-memristor synapses contained in crossbar arrays. The
approach enables the realization of traditional pair-based
STDP as well as rules that depend on multiple spikes and
long-term firing rates. The key to facilitating these effects is
the addition of dynamic resistance, or R(t), elements to the
input and output of each hidden layer neuron circuit. In this
work, we define R(t) elements as circuits or devices which
possess time-varying resistance. This technique is similar to
pulse shaping in that a time-varying quantity is driving STDP.
However, the distinguishing characteristic of R(t)-based STDP
is that the path resistance between neurons changes as a
function of the pre- and post-synaptic neuron outputs. Table I
compares and contrasts the R(t) and shaped pulse methods of
facilitating STDP.

A simple digital pulse is used in the examples presented in
this work to activate the R(t) elements which creates the time-
varying resistance. This creates a network of time-dynamic
voltage dividers, and maximizes the simplicity of the synapses
while only slightly increasing the complexity of the neurons.
Simple digital pulses are used for mathematical convenience;
however, shaped pulses can also be used with R(t) elements
for even more complicated learning rules, but this is beyond
the scope of this introductory work.

The remainder of this paper is organized as follows: Section
II describes perfect STDP using R(t) elements and single
memristor synapses and explains the process involved in
component value selection. Section III presents examples and
simulations of R(t) implementations that result in pair-based
and triplet STDP behavior. Section IV contains simulations
demonstrating STDP in networks using R(t) elements and
single-memristor synapses, and discusses other characteristics
of the network. Conclusions are presented in Section V.

II. STDP WITH R(T) ELEMENTS

An R(t) element is a circuit or device which possess a time-
varying resistance. To design an R(t) element, one must design
a circuit or device such that a controlling quantity varies in time
to produce the desired R(t) response. One way to do this is to
design a circuit or device which implements an activation
function, @, to bridge the gap between R(t) and the controlling
quantity function, €. The relationship between the activation
function, the time-varying controlling quantity, and the
resulting effective resistance is depicted in Fig. 1a. To facilitate

TABLE I

COMPARING AND CONTRASTING THE R(T) AND SHAPED PULSE METHODS OF
FACILITATING STDP

R() Shaped Pulses
Frequency influenced Yes No
learning rules
Sensitive to component Yes® No
values
Only needs one Yes No
potential
Sneak paths Yes® Yes®
Frequency influenced Yes No
nonspecific synaptic
plasticity

*This depends on the desired behavior. The equations presented in this work
represent a rigid case where synaptic weight change is guaranteed not to occur
outside of the influence of related spikes. However, if merely facilitating
STDP is desired, then component value selection can be relaxed. "If the
network doesn’t use neurons which control the potential at their inputs, then
the network will have sneak paths.
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Fig. 1. An R(t) Element model and the four stages of R(t)-based STDP. a)
Illustration showing that R(t) is a composition of three functions. b) An R(t)
element model represented as a static resistance, R, and a variable resistance,
Ry, capable of sweeping between 0 and Ry in time. ¢) An STDP circuit,
consisting of two R(t) elements on either side of a memristor, is in its initial
state with pre- and post-synaptic R(t) elements at their maximum resistances.
d) A digital pre-synaptic pulse arrives, driving its associated R(t) element to its
minimum value. ¢) Some time passes, over which the resistance of the pre-
synaptic R(t) element rises. f) A post-synaptic pulse arrives, driving the post-
synaptic R(t) element to its minimum value, and placing a potential across the
memristor, Vy,, greater than its negative threshold Vyy, causing memristance to
decrease.

excitatory STDP behavior, the activation functions should be
implemented such that the R(t) element’s resistance decreases
sharply when exposed to stimulus and increases slowly once the
stimulus is removed. In this work we use the term activated to
describe a condition where the controlling quantity abruptly and
temporarily increases resulting in a temporary state of reduced
resistance for the R(t) element. R(t) elements have been
modeled using
R(®) = RyQ(C(t)) + Ry, O]

where Ry, is the variable portion of the R(t) element, Ry, is the
static portion of the R(t) element which represents its minimum
series resistance, @ is an activation function which converts a
controlling quantity into a real number in the range [0,1], and ¢
is the controlling quantity function which represents a
controlling quantity, such as potential or charge, at a particular
time.

From the model one can see that the R(t) element has a
minimum resistance of Rg and a maximum resistance of Rg +
Ry. Using two resistors instead of a single resistor is a
mathematical convenience to describe the R(t) element’s
resistance with a single activation factor between zero and one.
Fig. 1b depicts a two-resistor model of an R(t) element. The
angle of the arrow going from left to right in the figure is a
graphical approximation of the effective resistance of Ry, in the
range from zero to Ry, at a particular moment in time.

A. Synaptic Weight Change

Two R(t) elements combined with a memristor form a circuit
which can implement STDP through voltage division. In very
general terms, when only one R(t) element is activated, neural
spiking is insufficient to cause the voltage across the memristor,
Vu, to exceed the memristor’s threshold, V. However, when
both R(t) elements are sufficiently activated, the resistance of
the memristor, relative to the rest of the branch, is large enough
to cause neural spike voltage to exceed its threshold voltage.
More specifically, an increase in synaptic strength through an
STDP circuit using digital spiking neurons and R(t) elements
with single-memristor synapses can be explained in four stages,
as depicted graphically in Fig. 1 c-f. In the first stage, it is



assumed that no spikes have occurred for a long enough time
period that both pre- and post-synaptic R(t) elements are in their
most resistive states. It is also assumed that the value of the
memristor is somewhere between its most resistive (Rppr) and
least resistive (Ryy) states. The second stage begins when a pre-
synaptic spike occurs. The resistance of the pre-synaptic R(t)
element is suddenly reduced, and the voltage across the
memristor is less than the memristor positive threshold voltage,
V7, meaning that its value will remain unchanged. In the third
stage the pre-synaptic R(t) element’s resistance has increased
with the passage of time, but is still not at its maximum value.
The fourth stage begins with the arrival of a post-synaptic spike.
The reduced resistances of the R(t) elements results in a
negative voltage, greater in magnitude than the absolute value
of the negative memristor threshold voltage, |V;y|, across the
memristor. This causes its memristance to decrease. As the
memristance is decreased, the total path resistance is reduced.
This results in a higher current for a given potential. So, more
charge is transferred to the post-synaptic neuron through the
synapse for a given spike—the synaptic connection has
strengthened. A decrease in synaptic resistance due to a post-
pre spike pair is achieved similarly. One final thing to note is
that if the memristors used in the simulation are additive in
nature, meaning that a change in their memristance is not
dependent on their instantaneous memristance value, R(t)
element-based STDP causes non-additive behavior to manifest
due to the state of the memristor affecting the voltage that it
drops in the resistive voltage divider.

B. Component Value Selection for Perfect STDP

In this work we define perfect STDP as a synaptic connection
where synaptic change is guaranteed not to occur outside of
related spikes. The rest of this section describes how to choose
component values that will result in perfect STDP. Before
choosing to design STDP circuits which implement perfect
STDP, circuit designers should bear in mind that perfect STDP
has very strict requirements, results in very small synaptic
changes, and as will be demonstrated in Section IV, is not
necessary to facilitate spatiotemporal pattern recognition
(STPR) with R(t) elements. This section is included to
demonstrate that perfect STDP is mathematically possible
rather than to be a design guide that one should rigidly follow.

To design a perfect STDP circuit with R(t) elements and a
memristor, one must determine the values of Rg and Ry, for each
R(t) element, decide on an activation function @, and
implement the design. Instead of defining a specific
implementation of Q, we will use particular values of Q,
denoted as X and Y, to determine values of R which will enable
STDP to occur, as implementing a particular activation function
is beyond the scope of this work. Our strategy is to focus on
selecting particular values of R, and Rg which will facilitate
STDP for all possible values that a particular memristor could
have. The shape of a particular STDP curve is due to the

composition of ReQo(=R (Q ((Il(t))), and so to attain a specific

desired STDP curve one must carefully design their circuits;
however, the point of this work is not to design any particular
STDP curve, but rather to show how STDP is possible in the
first place and to provide a model which, when properly

implemented, guarantees perfect STDP behavior.

With this in mind, to facilitate STDP the memristor voltage,
Vy, must be considered with respect to its threshold voltage for
two cases: where change is desired (|Vy| = V;y) and where
change is undesired (|Vy| < Vry). We assert that the activation
of an R(t) element occurs when a bias is applied to its input
terminal. In other words, when a voltage spike is applied to
Terminal 1 (Terminal 2) in Fig. 1, Ry(R,) is activated. Its
resistance suddenly decreases toward Rg and then slowly rises
over time toward R, + R;.

1) Choosing the Ry values: R; and Ry
Resistances R, and R, are the variable portions of the R(t)
elements. They control whether, or not, and by what amount the
memristor will be changed in response to spiking stimulus.
Consider the STDP circuit model depicted in Fig. 1b. If a
potential of Vpp; were applied to Terminal 1, and ground were
applied to Terminal 2, then the memristor voltage would be
Vv Ru ()
M= "PREXR, 4+ R, + Ry +Rs + YR,
where X and Y are real values between zero and one which
represent how resistive, at the moment when Vpy is applied,
R; and R, are, respectively. Assume that the R(t) element
connected to Terminal 1 is fully activated, and therefore
minimally resistive (X=0). Depending on the type of R(t)
element it may not be true that a single neural spike would fully
activate it. However, this is a safe assumption to make because,
for the purpose of determining component values, we are
assuming some activation of R, and applying a DC bias, and
not neural spikes, to Terminal 1. For the case when change is
desired, the component values must result in a situation where
Vi = Vry. Substituting into (7) and rearranging gives us

Ry, (‘:;’f"" - 1) >R, +R; + YR, &)

TH

This inequality describes all of the factors which determine

whether, or not, memristance will change: the current value of
Ry, the values chosen for Vpgg, R,, R, and R,, and the
resistance of R,, at the time Vpgg is applied.
A similar inequality can be derived for the case when change is
undesired (Vy; < Vry):

R (VPRE—1)<R +R;+ YR )

M\ Vi, 2 3 4

Let A denote the resistance of R,, above which Vy < Vg,

regardless of Ry, and let B denote the resistance of R,, below
which Vy, > Vi, regardless of Ry. Choosing A and B is
accomplished by examining the fringe cases where change is
undesired with the memristor at its highest resistance value
(Ry = Rorr) and where change is desired with the memristor
at its lowest resistance value (Ry; = Ryy), and then selecting
from the allowed values. The fringe cases can be expressed as

R 5
Viy < Vere o and ®)
Rorr (6)

VE >V
TH = T PRE R + Ropr + Rs + AR,

which can be combined and rearranged to yield
(Ry + R3)(Rorr — Row) (7
< R4[RonA — RoprBl.
Since R,, R3, and R, are greater than zero, and Ropr > Roy,
then



RonA > RoprB (®)

which can be rearranged into

A > ROFF. )

B~ Ron
This inequality is a good rule of thumb for choosing A and B,
but insufficient to ensure that the circuit wil produce perfect
STDP. Thus, start by choosing A and B which satisfy (9). Next,
R, is chosen. Re-examining the fringe cases, they can be
expressed as

% 10
ROFF<$— 1) <R, + Rs + AR, and (19)
Vry
Ron (V”fE - 1) > R, + Rs + BR,. (1D
Vru
It is clear that if
V (12)
ot
R, = Vry +
‘T A
and the value of B is updated such that
(13)

4
Row (THEE = 1) = (R, + Ry)
TH

B <

R,

then (9), (10), and (11) can all be satisfied. The next step
depends on whether symmetrical STDP is desired. If
symmetrical STDP is desired, then let R,=R;, R;=R,, and
choose R,. If asymmetrical STDP is desired, then connect
ground to Terminal 1 and Vpy¢r to Terminal 2. Assume that the
R(t) element connected to Terminal 2 is fully activated, and
therefore minimally resistive (Y=0). Thus (2) becomes

Ru (14)
+R,+Ry +R;
Let C denote the resistance of R,, above which V), < Vg,
regardless of Ry, and let D denote the resistance of R,, below
which Vy, > Vi, regardless of Ry,.

Choosing C and D is accomplished by examining the
fringe cases where change is undesired with the memristor at its
highest resistance value (Ry = Rypp) and where change is
desired with the memristor at its lowest resistance value (Ry =
Ron), and then selecting from the allowed values. The fringe
cases can be expressed as

Vm = Vposr XR
1

_ Ron (15)
Ve < Vposr
- Rorr (16)
Vrr > Vpost
which can be combined and rearranged to yield
(RZ + R3)(ROFF - RON) (17)

< Ry[RonC — RoprD].
Since Rq, R,, and R; are greater than zero, and Ryrr > Roy,
then

RonC > RyprD, (18)
which can be rearranged into
5 - ROFF. (19)

v
ROFF< TE—l

)
 Any R, such that R, > % — (R, + R3) will satisfy (10)

This inequality is a good rule of thumb for choosing C and D,
but insufficient to ensure that the circuit will produce perfect
STDP. Thus, start by choosing C and D which satisfy (19).

Next, R, is chosen. Re-examining the fringe cases, they can
be expressed as

v
Rorr (ﬂ - 1) < CR,+R, + R;and (20)
Vrn
Ron (V";%— 1) 2 DR, + R, +R;. @n
It is clear that if
V 22
Rorr ( II/J-QST — 1) (22)
R, = T £
C
and the value of D is updated such that
R VPOST 1 R R (23)
ov | —1) = (Ra +R3)
D < TH
< R,
then (19), (20), and (21) can all be satisfied. Finally, choose R,

and R;.
2) Choosing the Rs values: R; and R

The combination of R, and R; limit the maximum theoretical
voltage that can be applied to the memristor and therefore limit
the magnitude of change that the memristor can undergo due to
the application of a spike. The individual values of R, and R
will not affect the shape of the STDP curve, only their combined
value. To ensure that the memristor will change as desired,
choose R, and R; such that the quantity R, + R obeys all of
the following inequalities:

Vpre (24)
—+ Rov — Roy — BR,
VTH

VprE 25)
Ry + R3 > V_+R0FF — Ropr — AR,

TH
Vposr

TH

Vposr
—_ROFF - ROFF - CR1

VTH

(26)

Rz + R3 S RON - RON - DR1

27

III. R(T) ELEMENT IMPLEMENTATION EXAMPLES

Previous work has demonstrated that synapses composed of
single memristors driven by short-term memory transistors are
capable of STDP. Specifically, thin-film transistors (TFTs) with
layers of nanoparticles in the gate dielectric were used to drive
memristive synapses. Close correspondence to biological
measurements for spike pairs, triplets, and overall frequency
measurements [54]-[56]. Simulations also indicated these
networks are capable of performing STPR [24]. The
nanoparticle TFTs effectively perform the function of an R(t)
element, as will be discussed in Section III D.

Vpost
Rorr(“F25T-1)

 Any R, such that R, > -

— (R, + R3) will satisfy (20).
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Fig. 2. a) A schematic of a simple R(t) element circuit. b) The simple R(t)
element circuit’s response to a 1 ms long 1.8 V digital (square) pulse with
Vleak = 50 mv, R1=842 kQ, R2=19 kQ, C, =1 pF, and W/L=10/2 for all
MOSFETs. Effective resistance is calculated as the voltage difference between
Vin and Vout over the current through R2. A small measuring bias voltage is
applied to Vin, but not C1, in the absence of spiking stimulus.

This section provides two additional examples of R(t)
elements in the form of CMOS circuits (as opposed to devices).
These basic circuits, are designed using the R(t) element model
described in Section II, and are meant to emphasize the
characteristics of simple and compound R(t) elements rather
than perfectly encapsulate simple and compound R(t) element
functionality. We demonstrate how to create STDP circuits with
these circuits, and provide simulation results conducted using
the industry-standard circuit design software Cadence Virtuoso,
TSMC 0.18 micron technology MOSFET models, and the
NCSU Cadence design kit [57].

The first example is a simple R(t) element circuit, defined to
be an R(t) element that achieves its maximum resistance change
from a single digital pulse. The second example is a compound
R(t) element circuit, defined as an R(t) element that requires
multiple digital pulses to achieve their maximum resistance
change. Both examples were used in conjunction with an ideal
memristor with the following characteristics: @=0.001, Ryy=10
kQ, V4;=200 mV, V;,=-200 mV, AM described by:

fM, Vo, Viiy, Vi) (28)
aexp(Vy — Vi) — 1,V > Vi and M < Rypr
=9—aexp(|[Vy —Viyl) =1, Vyy < Vpyand M > Rpy
0, otherwise,
and memristance, M, described by
M = Rop z + Rorr (1 - K), (29)
D D

where w/D represents physical characteristics of the memristor
which for the purposes of a memristor-based synapse can be
thought of as the weight with values between zero and one [36],
[58]-[60].

A. Simple R(t) Element Circuits

The first implementation of an R(t) element circuit that will

be demonstrated is a simple R(t) element circuit. We define a
R1 R4
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Fig. 3. A schematic of a simple R(t) element-based STDP circuit. It is
important to note that the R(t) elements are not part of the synapse, many
memristive synapses can be fed by a neuron through a single R(t) element,
rather they are an accessory to be added to a neuron. In this figure, the neurons
have been substituted with piece-wise linear voltage sources to create simple
digital pulses.
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Fig. 4. a) The pair-based STDP plot created by an STDP circuit composed of
two simple R(t) element circuits and a memristor. The memristor is initialized
to 55 kQ (w/D=0.5). Applied pre- and post-synaptic pulses are 1.8 V digital
pulses with pulse widths of 1 ms and Vleak=40 mV. b) A simulation
demonstrating the multiplicative behavior of the additive memristor due to the
voltage dividing nature of the R(t) element-based STDP circuit. The same pre-
and post-synaptic potentials are applied to two identical simple STDP circuits
(Vleak=40 mV) except for the initial condition of the two memristors (0.100 in
one and 0.500 in the other). The memristor with the lower initial w/D, and thus
a higher initial memristance, experiences a larger Aw/D because it drops a
larger fraction of the applied potential.

simple R(t) element as an R(t) element that achieves its
maximum resistive change from a single digital pulse. The
values of R; and R, were chosen in accordance with the
guidance described in the previous section. A and B were
chosen to be 0.95 and 0.05 respectively, which resulted in R,
and R, + R; being 842 kQ and 38 kQ respectively. Since
symmetrical STDP was desired, and the memristor used had
symmetrical characteristics, R,=R;. Fig. 2 depicts a schematic
of a simple R(t) element circuit and a plot of the response of the
simple R(t) element to a 1.8 V digital pulse applied to Vin when
w/D=0.5.

When a digital pulse arrives at Vin, capacitor C;. Is charged
through diode connected MOSFET M1. For the duration of the
pulse, Vame rises towards Vin-Vps, increasing the conduction
of M2 and lowering the overall effective resistance of the R(t)
element. When the simple digital pulse ends, charge leaks to
ground out of C; through M3, at a rate determined by Vleak.
This causes Veme to lower over time and the effective resistance
of the R(t) element to rise over time. This particular
implementation of an R(t) element circuit used in an STDP
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Fig. 5. a) A schematic of a compound R(t) element circuit. b) The compound
R(t) element circuit’s response to simple 1 ms duration 5 V digital pulses with
Vleak= 40mV, Vth=68 mV, R1=842 kQ, R2=19 kQ, C1=1 pF, and W/L=10/2
and 20/2 for all NMOS and PMOS respectively. Effective resistance is
calculated as the voltage difference between Vin and Vout over the current
through R2 with a small measuring bias applied to Vin, but not C1, in the
absence of spiking stimulus.
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Fig. 6. A schematic of the compound R(t) element-based STDP circuit. It is
important to note that the R(t) elements are not part of the synapse, many
memristive synapses can be fed by a neuron through a single R(t) element,
rather they are an accessory to be added to a neuron. In this figure, the neurons
have been substituted with piece-wise linear voltage sources to create simple
digital pulses.

circuit as shown in Fig. 3, produces the STDP curve of Fig. 4a.
Although the memristor described in (28) is additive, the
memristor will change in a non-additive fashion due to the
voltage dividing action of the STDP circuit. This property is
portrayed in Fig. 4b. It is important to note that the R(t)
elements in this single STDP circuit do not belong to the
synapse memristor, but instead to the input and output neurons
connected through it. In a network configuration, many single-
memristor synapses may be connected to a particular neuron’s
R(t) element. This is explained in more detail in Section IV.

B. Compound R(t) Element Circuits

The second implementation of an R(t) element circuit that
will be demonstrated is a compound R(t) element circuit. We
define a compound R(t) element as an R(t) element that requires
multiple digital pulses to achieve its maximum resistance
change. The values of R; and R, from the previous example
circuit are used. Fig. 5 shows a schematic of a compound R(t)

a)

b)

¢)

Fig. 7. Three separate spike trains are applied to the same compound R(t)
element-based STDP circuit with the same settings (Vleak=40 mV, Vth=125
mV, memristor initialized to w/D=0.500). The pre- and post-synaptic R(t)
element’s effective resistances are depicted with thin solid and dotted lines
respectively. The memristor’s w/D is depicted with a thick line. The times of
pre- and post-synaptic spikes are represented with © and + respectively. Notice
how the magnitude of change varies as the inter-spike-interval and time
between triplets varies. a) Three spike triplets are applied to the compound
STDP circuit with an inter-spike-interval of 6 ms and 15 ms between triplets.
b) Three spike triplets are applied to the compound STDP circuit with an inter-
spike-interval of 3 ms and 15 ms between triplets. c) Three spike triplets are
applied to the compound STDP circuit with an inter-spike-interval of 6 ms and
10 ms between triplets. Applied pre- and post-synaptic pulses are 1.8 V digital
pulses with pulse widths of 1 ms.
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Fig. 8. The STDP plot created by an STDP circuit composed of two compound
R(t) element circuits and a memristor under the influence of two different kinds
of stimulus—pairs of single spikes and spike triplets. The pairs of single spikes
are typical pre-post pairs, whereas the spike triplets are pre-pre-post and post-
post-pre triplets where the first two spikes are separated by 5 ms. The memristor
is initialized to 55 kQ (w/D=0.5). Applied pre- and post-synaptic pulses are
1.8 V digital pulses with widths of 1 ms. Vleak=40 mV and Vth=125 mV.

element circuit and a plot of the response of the compound R(t)
element to five 1.8 V digital pulses applied to Vin.

When a simple digital pulse is applied at Vin to the
compound R(t) element, current flows through the current-
mirror-like arrangement composed of M1, M2, and M3. This
induces another current (Vth#Vleak) in the structure composed
of M4, M5, and M6. The induced current is divided between
flowing to ground through M6 and charging C1. The charge in
Cl1 raises Vgmy which increases the conductivity of M7 and
lowers the effective resistance of the R(t) element. When the
simple digital pulse at Vin ends the charge stored in C1 leaks to
ground through M6 at a rate determined by Vleak. This
particular implementation of a compound R(t) element used in
an STDP circuit is shown in Fig. 6.

Since compound R(t) elements, by definition, cannot
achieve their least resistive state by a single spike, the STDP

curve changes for different combinations of spikes. The
0.1 T
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Fig. 9. The STDP plot created by using two simple R(t) elements and a
memristor based on the Yakopcic model.



memristance changes resulting from pre-post pairs and pre-pre-
post triplets produce different STDP curves because the
effective resistance of compound R(t) elements is dependent on
the cumulative effect of spike combinations. Thus,
combinations of spikes will produce different effects than pairs
of single spikes. These higher-order effects, which lead to
STDP asymmetry, are examined in Fig. 7. Here, evenly spaced
spike-triplets, which would otherwise leave the memristor
unchanged, cause a net change in w/D. Two things to note are
how the second pair of spikes in the triplet are dominant. A pre-
post-pre triplet acts more like a post-pre pair than a pre-post
pair. In addition, the repetition frequency clearly affects the
change in w/D, as each successive repetition of the triplet
causes the magnitude of the change in w/D to increase.

Further, the circuit produces the STDP curves depicted in
Fig. 8 when exposed to spike-pair stimulus and spike-triplet
stimulus. The triplets are composed of sequences of 1.8 V pre-
pre-post (At < 0) and post-post-pre (At > 0) synaptic spikes of 1
ms in duration with 6 ms between the leading edges of the first
two spikes in the sequence, and At is taken to be the time
between the leading edges of the second and third spikes in the
sequence. It is important to note that the R(t) elements in this
single STDP circuit do not belong to the synapse memristor, but
instead to the input and output neurons connected through it. In
a network configuration, many single-memristor synapses may
be connected to a particular neuron’s R(t) element. This is
explained in more detail in Section IV.

C. Demonstration with a More Realistic Memristor Model

To demonstrate how R(t) elements can facilitate STDP with
a less ideal, and more realistic memristor, an STDP circuit was
constructed using two simple R(t) elements and a memristor
based on the Yakopcic model [61], [62]. The memristor
parameters are as follows: a,;=a,=0.135, b=0.025, V,,=1;,=0.2,
Ap=A,=4000, x,=x,=0.3, a,=a,=1, x,=0.5, and n=1. The
R(t) element parameters are R;=R,=R;=R,=1.5 kQ. The
resulting STDP plot is depicted in Fig. 9.

D. Discussion and Comparison to Other Methods

The use of charge-trapping TFTs mentioned previously is
functionally similar to an R(t) approach in that the
characteristics of the synaptic path are modified by an
accessory element, independent of the neurons, to induce
specific synaptic changes. Simulation, fabrication, and
experimental validation of these devices have been
demonstrated previously and has been shown to enable
complex synaptic learning [56], [59], [63]. At first, the
simplicity of using a single device as an R(t) element seems
elegant and extremely advantageous. However, a great deal of
design effort is required to realize device functionality in
accordance with the requirements presented in Section II.
Threshold voltage must be set to the proper value, and the
subthreshold swing must offer the appropriate amount of
conductance modulation for the operating voltages. Most
importantly, thicknesses of the gate tunneling dielectrics and
the charge trapping mechanism (nanoparticles or otherwise)
must be precise to achieve the desired time constants. Once
the circuit is fabricated, these response parameters cannot be

Fig. 10. a) The connections of an R(t) element-based STDP neural network
consisting of three input neurons, two output neurons, six single-memristor
synapses, and five R(t) elements. The connections to the pre-synaptic neurons
are labeled N1-N3 and the connections to the post-synaptic neurons are labeled
as N4 and N5. The synapses are labeled according to the neurons they connect
using a post-pre naming convention. For example, Synapse 52 connects
Neurons 5 and 2. These connections between the R(t) elements give rise to two
types of non-specific synaptic plasticity. The first is heterogeneous non-specific
plasticity, where the change in weight is due to a low resistance path which
begins and ends on different layers. The second is homogeneous non-specific
synaptic plasticity, where the change in weight is due to a low resistance path
which starts and ends on the same layer. b) This figure depicts an example of
the specific and non-specific synaptic paths that arise due to a pre-post pair.
The specific path that results from N3 firing followed by N5 firing is illustrated
with solid black lines. The non-specific paths, which could result in
heterogeneous non-specific synapse weight increase of Synapses 51 and 52 and
weight decreases of 41, 42, and 43, are illustrated with dashed black lines. c)
This figure depicts an example of the non-specific path that arises due to a pre-
pre pair. The non-specific path that results from N3 firing followed by N2 could
result in the homogeneous non-specific synaptic weight decrease of Synapse
52 and increase of Synapse 53.

tuned as in the CMOS implementations, dramatically reducing
the flexibility of the design.

Comparison of power consumption between these two
approaches is also important. In the simple and compound R(t)
elements presented, the minimum effective resistance of the
current path (when the element is activated) is on the order of
R2 plus the channel resistance of M2 or M7, resulting in
approximately 20 kQ. This value is on the same order as the
lowest possible on-state channel resistance achievable in TFT
devices with high-k dielectrics such as HfO,. Assuming that
both the TFT and CMOS implementations would need to
exhibit similar changes in resistance between the input and
output terminal across similar voltage ranges, the power
consumption should be similar in both cases.

One of the biggest drawbacks is that TFTs degrade
significantly over time, resulting in an undesirable loss of the
expected R(t) properties. It is also far more difficult to integrate
these special devices into a typical CMOS fabrication process.
Future R(t) element designs could be much more power- and
area-efficient than either of the approaches discussed here.
However, they would still need to follow similar behavioral
rules to achieve the same learning characteristics for any given
memristor technology.

IV. NETWORK EXAMPLES

Neural networks are typically composed of multiple neurons,
each of which connects to other neurons via synapses. The
maximum number of R(t) elements, A, required in a layered
neural network with R(t) element-based STDP can be
determined using

L (30)
A=1+0+2 Z H;,
i=1
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Fig. 11. The results of the small network simulation. The times of pre- and
post-synaptic spikes are represented at the top with o and + respectively. The
weights of the memristive synapses are shown in the middle and change via
specific and non-specific plasticity over the course of the simulation. The
effective resistances of the R(t) elements are shown at the bottom.

where [ is the number of input neurons, O is the number of
output neurons, H; is the number of neurons in the i;; hidden
layer, and h is the number of hidden layers. In most useful cases
(I >0 =2) this is fewer than the maximum number of

synapses, S, in a layered neural network given by

n—-1
=) Nl
i=1

where N; is the number of neurons in the i;;, layer and n is the
number of layers.

€20

A. Small Network Example

Fig. 10 depicts the connections of a network consisting of
three input neurons, two output neurons, six synapses, and five
R(t) elements. In Fig. 10, the R(t) elements are symbolically
represented as variable resistors and the neurons have been
abstracted as voltage signals applied to the connectome.

To demonstrate R(t) element-based STDP in this network,
1.8 V digital spikes of 1 ms duration were applied to the
network inputs and outputs in a 100 ms transient simulation.
Results of the applied stimulus are shown in Fig. 11. Note the

rise in w/D that occurs at 4ms in synapse 41. This corresponds
with the pre- and post-synaptic spikes at 1 and 4 ms,
respectively. Also, the w/D increase at 30 ms in Synapse 52 is
not as large. This is due to the increased amount of time
between the pre- and post-synaptic spikes, at 20 and 30 ms,
resulting in a larger post-synaptic R(t) element resistance at the
time of the post-synaptic spike, and thus a smaller voltage
across the memristor resulting in a smaller memristance change.
The decreases in w/D that occur at 53 and 80 ms in synapses
43 and 51 respectively can be explained similarly.

At 20 ms into the simulation Synapse 52 decreases in
strength, despite the fact that Neuron 5 had not fired yet. This
non-specific synaptic plasticity is due to alternative paths
through the multiple memristors between the pre- and post-
synaptic firing neurons as depicted in Fig. 10. Unlike other
methods that induce non-specific synaptic plasticity, which
depend on the availability of alternative paths, often referred to
as sneak paths, the induced synaptic change was facilitated by
activated R(t) elements—meaning that the time between the
non-specific spikes altered the resistances of the available paths
making some paths temporarily more susceptible to the
influence of non-specific synaptic plasticity than others. In
simulation non-specific synaptic plasticity has been shown to
improve the recognition of sparse patterns under certain
conditions [64]. A final set of spikes was added at 80 and 95 ms
to demonstrate that, although the memristor is behaving non-
additively, the expression of the modified behavior may be very
subtle.
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Fig 12. The results of the STPR network simulation. The network consists of
25 afferent spiking neurons (N1 through N25), 26 R(t) elements, 25
memristors, and 1 output neuron (Nout). The network was trained using an
unsupervised method consisting of the afferent neurons producing random
spiking signals with a spike pattern embedded in them at random times. Notice
that the spikes produced by the output neuron, Nout, occur after the presentation
of the patterns (highlighted with grey bars)—this is STPR. A false positive
occurs at 33.624 s and is highlighted with a grey circle.



B. STPR Example

A network consisting of 25 afferent neurons, 25 memristors,
26 R(t) element circuits, and one output neuron was also
simulated to demonstrate STPR using R(t) elements. To
demonstrate R(t) element-based STPR, 1.8 V digital spikes of
1 ms duration were simulated from the afferent neurons.
Training was performed using an unsupervised method wherein
the afferent neurons produced random spiking signals mixed
with 1666 instances of a 10 ms spatiotemporal pattern over 30
seconds. Fig. 12 depicts a sample of the simulation after
training. The STPR performed by this network are the spikes
from the output neuron, Nout, which occur after the network is
exposed to spatiotemporal patterns in the afferent neurons. The
spatiotemporal patterns in Fig. 12 are highlighted with grey
bars. A false positive occurs at 33.624 s in the simulation and is
highlighted with a grey circle.

V. CONCLUSIONS

A model was described for designing dynamic resistance, or
R(t) elements that achieve various forms of STDP in memristor-
based neural networks. Two examples of R(t) element circuits,
a simple R(t) element and a compound R(t) element, were
presented. Behavior of these circuits was simulated in a
commercially available software package using models
provided by the foundry. Simulation results of a three-input,
two-output, fully-connected spiking neural network using R(t)
element-based STDP, and of STPR in a twenty-five-input, one-
output SNN using R(t) circuit elements, were presented. Future
work includes examining non-specific synaptic plasticity more
closely, and confirming simulation results through circuit
implementation and extensive electrical testing.
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