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Abstract
Continuation marks enable dynamic binding and context
inspection in a language with proper handling of tail calls
and first-class, multi-prompt, delimited continuations. The
simplest and most direct use of continuation marks is to
implement dynamically scoped variables, such as the current
output stream or the current exception handler. Other uses
include stack inspection for debugging or security checks,
serialization of an in-progress computation, and run-time
elision of redundant checks. By exposing continuation marks
to users of a programming language, more kinds of language
extensions can be implemented as libraries without further
changes to the compiler. At the same time, the compiler and
runtime system must provide an efficient implementation
of continuation marks to ensure that library-implemented
language extensions are as effective as changing the compiler.
Our implementation of continuation marks for Chez Scheme
(in support of Racket) makes dynamic binding and lookup
constant-time and fast, preserves the performance of Chez
Scheme’s first-class continuations, and imposes negligible
overhead on program fragments that do not use first-class
continuations or marks.

CCS Concepts: • Software and its engineering → Com-
pilers; Runtime environments; Control structures.
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1 Binding and Control
Suppose that a program needs to call a function with out-
put redirected to a file instead of the current default output
stream. One way a language can support such redirection
is by having a global variable like stdout hold the default
output destination for functions like printf, and then a
program can temporarily change the value of stdout and
restore it when the function call returns:

FILE *orig_stdout = stdout;
stdout = f_output;
func();
stdout = orig_stdout;

This approach has several potential problems. If the host
language supports threads, then stdout must be a thread-
local variable so that redirecting output in one thread does
not interfere with other threads. If the host language sup-
ports exceptions, then a form analogous to try–finally is
needed to ensure that stdout is reset on an exception escape.
If the host language supports proper handling of tail calls,
then func no longer can be called in tail position (in contrast
to passing the output stream explicitly to func and having
it threaded throughout func’s computation), which might
limit the use of this kind of redirection. If the host language
supports first-class continuations, then in case a continua-
tion is captured during the call to func, stdout should be
set and restored using a mechanism like Scheme’s dynamic-
wind (which is a kind of generalization of try–finally),
but that adds a winding cost for jumping into or out of a
continuation.

All of these issues are related to using global state to track
an intent about a program’s dynamic extent. A language
implementation must already include some explicit repre-
sentation of dynamic extent as a continuation, whether or not
that continuation is exposed as a first-class value. The con-
tinuation may be implemented as a call stack, for example.
The language implementer must have taken care to select
a representation of the continuation that is efficient and ex-
pressive enough for the language’s control constructs. So,
instead of having users of a language track dynamic extent
through external state, the language should include built-in
constructs to reflect on continuations, provided that support-
ing these additional constructs does not unduly burden the
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implementation. Built-in operations enable a more expres-
sive and efficient implementation that takes advantage of
internal representations of continuations.

In Racket, the output-redirection example is written

(parameterize ([current-output-port f-output])
(func))

where current-output-port is defined to hold a dynami-
cally scoped binding, and that binding is used by functions
like printf. In this example, the output stream is set to f-
output during the call to func, which is called in tail position
with respect to the parameterize form and might capture
its continuation. If it does capture the continuation, the dy-
namic binding of current-output-port to f-output sticks
with the continuation without increasing the cost of captur-
ing or restoring the continuation. The parameterize form
is a library-implemented language extension (i.e., a macro),
but it relies on a lower-level form that is built into the core
language and compiler: continuation marks [7].

Like closures, tail calls, and first-class continuations, con-
tinuation marks enable useful language extensions without
further changes to the compiler’s core language. Continua-
tion marks in Racket have been used to implement dynamic
binding [17], debugging [8, 22], profiling [1], generators [16
§4.14.3, 26], serializable continuations in a web server [23],
security contracts [24], and space-efficient contracts [14].

To support a Racket implementation on Chez Scheme [15],
we add continuation attachments to the Chez Scheme com-
piler and runtime system. This even-simpler core construct
supports a layer that implements Racket’s rich language of
continuation marks and delimited continuations [17], which
in turn supports Racket’s ecosystem of library-implemented
languages and language extensions. The performance of con-
tinuation marks in Racket on Chez Scheme compares favor-
ably with the traditional implementation of Racket, which
sacrifices some performance on every non-tail call to provide
better performance for continuation marks.

Our implementation of continuation attachments for Chez
Scheme is nearly pay-as-you go, imposing a small cost on pro-
grams that use first-class continuations and dynamic-wind
and no cost on programs that do not use them (or continua-
tion marks). The implementation is modest, touching about
35 (of 18k) lines in Chez Scheme’s C-implemented kernel and
500 (of 94k) lines in the Scheme-implemented compiler and
run-time system. Compiler-supported continuation attach-
ments perform 3 to 20 times as fast as an implementation
without compiler support; for Racket on Chez Scheme, that
improvement makes continuation marks perform generally
better than in the original Racket implementation.

Relatively few languages currently offer first-class contin-
uations, much less the richness of Racket’s control constructs.
However, interest is growing around delimited continuations,
particularly in the form of algebraic effect handlers [25], and
the implementation strategies for effect handlers are the

same as for delimited continuations with tagged prompts.
Although all control and binding constructs (including con-
tinuation marks) can be encoded with effect handlers or
delimited continuations, recent work on effect handlers in-
cludes direct semantic support for specialized constructs,
partly on the grounds that they can be more efficient [9,
10] including for dynamic binding [5]. We are following a
similar path, but with a baseline implementation of contin-
uations that tends to be much faster already compared to
other existing implementations.

Contributions in this paper:
• We offer the first report on implementing direct com-
piler and runtime support for continuation marks.

• We demonstrate that the implementation of continu-
ation marks is compatible with a high-performance
implementation of first-class, delimited continuations.

• We demonstrate that compiler and runtime support
for continuation marks can improve the performance
of applications.

2 Using Continuations Marks
The core Racket constructs for continuation marks include
operations to set a mark on the current continuation and to
get marks of any continuation.

2.1 Setting Marks
The expression form
(with-continuation-mark key val body)

maps key to val in the current continuation and evaluates
body in tail position. Since body is in tail position, its value
is the result of the with-continuation-mark expression.

For example,
(with-continuation-mark 'team-color "red"
(player-desc))

produces the result of calling player-desc while the key
'team-color is mapped to the value "red" during the call.

If key is already mapped to a value in the current contin-
uation frame, then with-continuation-mark replaces the
old mapping in that frame. If key is instead set in a more
nested continuation frame, then the nested mapping for key
is left in place while a new mapping is added to the current
frame.

For example, in
(with-continuation-mark 'team-color "red"
(place-in-game
(player-desc)
(with-continuation-mark 'team-color "blue"
(all-teams-desc))))

then the call to player-desc sees 'team-color mapped
to "red", while the call to (all-teams-desc) sees 'team-
color immediately mapped to "blue" and also mapped
to "red" in a deeper continuation frame; overall, it sees
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(list "blue" "red") as a list of mappings for 'team-
color. Whether a list of mappings or only the newest map-
ping is relevant depends on how a key is used in a program.

2.2 Extracting Marks
The function call
(continuation-marks continuation)

extracts the continuation marks of continuation as an
opaquemark set in amortized constant time. A separatemark-
set representation is useful (e.g., in an exception record) for
keeping just a continuation’s marks without its code, but it
is not fundamentally different from accessing marks directly
from a continuation.

A convenience function call
(current-continuation-marks)

captures the current continuation with call/cc and passes
it to continuation-marks to get its marks.
The most general way to inspect continuation marks is
(continuation-mark-set->iterator set (list key ...))

which produces an iterator for stepping through frames that
have values for at least one of the keys in the given list. The
iterator reports values in a way that indicates when multiple
keys have values within the same continuation frame, and it
provides access to mark values in time proportional to size
of the continuation prefix that must be explored to find the
values.

The convenience function call
(continuation-mark-set->list set key)

returns a list of values mapped by key for continuation
frames (in order from newest to oldest) in set. The time
required to get all keys can be proportional to the size of the
continuation.

The function call
(continuation-mark-set-first set key default)

extracts only the newest value for key in set, returning
default if there is no mapping for key. Although a sim-
ilar function could be implemented by accessing the first
value in a sequence produced by continuation-mark-set-
>iterator, the continuation-mark-set-first function
works in amortized constant time no matter how old the
newest continuation frame that contains a value for key. As
a convenience, #f is allowed in place of set as a shorthand
for (current-continuation-marks).

For example, if player-desc as used above calls current-
team-color defined as
(define (current-team-color)
(continuation-mark-set-first #f 'team-color "?"))

then (current-team-color) will return "red". If the all-
teams-desc function calls

(define (all-team-colors)
(continuation-mark-set->list (current-continuation-marks)

'team-color))

then the result is (list "blue" "red").
The function call
(call-with-immediate-continuation-mark key proc default)

is similar to continuation-mark-set-first, but instead
of getting the first continuation mark in general, it gets the
first mark only if the mark is on the current continuation
frame. Also, instead of returning the mark value, the value is
delivered to the given proc, which is called in tail position.
(A primitive that directly returns a mark value would not
be useful, because calling the function in a non-tail position
would create a new continuation frame.)

2.3 Implementing Exceptions
As a practical application of continuation marks, consider
the problem of implementing exceptions. A catch form and
throw function should cooperate so that
(catch (λ (v) (list v))

(+ 1 (throw 'none)))

produces (list 'none), because the throw in the body of
the catch form escapes from the + expression and calls the
handler procedure associated with catch.
Here’s an implementation of catch and throw using a

private handler-key:
(define handler-key (gensym))

(define (throw exn)
(define escape+handle

(continuation-mark-set-first #f handler-key #f))
(if escape+handle

(escape+handle exn)
(abort "unhandled exception")))

(define-syntax-rule (catch handler-proc body)
((call/cc

(λ (k)
(λ ()

(with-continuation-mark
handler-key (λ (exn)

(k (λ () (handler-proc exn))))
body))))))

The extra parentheses around (call/cc ...) allow a thunk
to be returned to the captured continuation, so a procedure
associated to handler-key can escape before it calls the
given handler-proc. To match that protocol, the function
returned by the argument to call/ccwraps the use of with-
continuation-mark and body in a thunk; that thunk goes
to the same current continuation and ensures that body is
in tail position with respect to the catch form.

Instead of always escaping, throw could give the handler
the option of recovering from the exception by returning a
value. But if a handler is called without first escaping, then
what if the handler reraises the exception or raises another
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exception to be handled by an outer handler? We can get
the full stack of handlers using continuation-mark-set-
>list and loop over the stack:
(define (throw exn)
(define escape+handles

(continuation-mark-set->list
(current-continuation-marks)
handler-key))

(throw-with-handler-stack exn escape+handles))

(define (throw-with-handler-stack exn escape+handles)
....)

While calling each handler, throw-with-handler-stack
can wrap the call with a new handler that escapes to continue
looping through the handler stack.
Although we could map handler-key to a list of han-

dlers to manage the stack ourselves, an advantage of using
continuation-mark-set->list is that delimited and com-
posable continuations will capture and splice subchains of ex-
ception handlers in a natural way. Also, using continuation-
mark-set->iteratorwould be better to access the sequence
of handlers, since that avoids a potentially large up-front
cost (proportional to the size of the continuation) to get the
first handler.
Having catch evaluate its body in tail position conflicts

somewhat with the idea of a stack of handlers, because a body
that that starts with another catch will replace the current
handler instead of chaining to it. We can have our cake and
eat it too by mapping handler-key to a list of handlers,
where the list is specific to the current continuation frame,
as opposed to keeping the full chain of handlers in a list:
(define-syntax-rule (catch handler-proc body)
(call-with-immediate-continuation-mark
handler-key
(λ (existing-handlers)

....
(with-continuation-mark

handler-key (cons (λ (exn) (handler-proc k exn))
existing-handlers)

....))
null))

With this change, throw must inspect a list of handler lists
instead of just a list of handlers, but that’s just a matter of
flattening the outer list or using a nested loop.
The body of a catch form is an unusual kind of tail posi-

tion where the continuation proper does not grow, but the
stack of exception handlers does grow. Whether this is a
good design is up to the creator of a sublanguage for excep-
tion handling. The point of continuation marks is to put that
decision in the hands of a library implementer instead of
have one answer built into the compiler.

3 A Model of Continuations and Marks
In a reduction-semantics model of a programming language,
the continuation of a currently evaluating expression e1 is

the surrounding expression that is waiting for e1’s value.
For example, to evaluate (v1 (((λ (x) x) v3) v2)), the
inner call ((λ (x) x) v3) is reduced to the value v3, which
is delivered to the enclosing expression (v1 ([] v2)) by
putting v3 in place of []. The value of the inner expression
(v3 v2), in turn, will be delivered to the enclosing (v1 []). If
we break up the context (v1 ([] v2)) into its two stages (v1
[]) and ([] v2), and if we draw them as a vertical sequence,
we end up with a picture that looks like an upward-growing
control stack. Completing an evaluation pops a stack frame
to return a value down the stack:

((λ (x) x) v3)

([] v2)

(v1 [])

(v3 v2)

(v1 [])

The chain of ovals in this picture is a continuation. The rec-
tangle at the top holds the current expression to evaluate.
Each individual oval or rectangle corresponds to a continua-
tion frame.
The call/cc function captures the current continuation

and passes it as an argument to a given function. In the
following picture, the first step of evaluation captures the
continuation and passes it as the argument k to the function
(λ (k) (k v3)), so the captured continuation replaces k in
the function body (k v3):

(call/cc (λ (k) (k v3)))

([] v2)

(v1 [])

( ([] v2)

(v1 []) v3)

([] v2)

(v1 [])

(v3 v2)

(v1 [])

When a continuation is applied like a function, as it is here
to the argument v3, then the next step discards the current
continuation and delivers the application argument to the ap-
plied continuation. So, in the second step above, the current
continuation is replaced by the captured one (although they
happen to be the same), and then the value v3 is delivered to
the continuation frame ([] v2), so the new expression to
evaluate is (v3 v2).

The picture above illustrates capture and application of a
non-delimited, non-composable continuation, but the same
ideas and pictures apply straightforwardly to delimited, com-
posable continuations [17].
A continuation mark is a key–value mapping that is at-

tached to a continuation frame. We draw marks as badges
attached to the lower right of a frame. A current-marks
function takes a key and returns a list of all values for the
key in badges of the current continuation frames:1

1The model’s current-marks function is continuation-mark-set->list
composed with with current-continuation-marks.
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(current-marks v7)
v7 v10

(first [])

(v2 [])
v7 v8

(v1 [])

(first (list v10 v8))

(v2 [])
v7 v8

(v1 [])

A with-mark form (short for with-continuation-mark)
adds a continuation mark given a key, value, and body ex-
pression. It evaluates the body in tail position while adding
a key–value mapping to the current frame. In the following
example, a with-mark form has another with-mark form in
non-tail position, so two continuation frames end up with
marks:

(with-mark
 

)

(v1 [])

v7 v8
(v0 

)

(with-mark
 
)e1

v7 v10

(v1 [])

v7 v8

(v0 

)

(with-mark
 
)e1

v7 v10

(v1 [])

v7 v8

(v0 [])

(with-mark

)e1
v7 v10

(v1 [])

v7 v8

(v0 [])

v7 v10

e1

In the following example, the body of the outer with-mark
form has another with-mark form in tail position, so both
marks end up on the same frame:

(with-mark
 

)

(v1 [])

(with-mark
 
)e1

v7 v8

v9 v6

(v1 [])

(with-mark
 
)e1

v7 v8

v9 v6

(v1 [])

e1 v7 v8
v9 v6

Both marks end up on the final frame because they use
different keys, v7 and v9. If they had used the same key,
then the second mark would replace the first part, leaving
just one mark on the frame.
If a captured continuation includes marks, then the cap-

tured marks are carried with the continuation, just as the
pictures would suggest. Also as the pictures suggest, cap-
turing a continuation does not need to retain the marks on
the current evaluation frame (i.e., the rectangular frame),
since there would be no way to inspect those marks when
the continuation is later applied to a value; application of
the continuation immediately turns the topmost oval of the
captured continuation into an evaluation rectangle.

4 Heap-Based Continuations and Marks
The pictures of the previous section are intended for under-
standing the semantics of continuation marks, but they also
suggest an implementation: allocate continuation frames as
a linked list in the heap, and similarly allocate and chain
sets of marks. Instead of having a frame directly reference
its own marks, however, we should pair any reference to a
frame with a reference to the frame’s marks. That way, a
continuation can be captured and/or applied without copy-
ing, since a frame is not mutated when its marks are updated
by further evaluation. For the current frame (the rectangular

one), use a separate global register for marks alongside the
one for the heap-allocated frame.
Applying these ideas to the continuation shown on the

left below, we arrive at a pointer structure on the right:

(current-marks v7)
v7 v10

(first [])

(v2 [])
v7 v8

(v1 [])

(current-marks v7)
v7 v10

(first [])

(v2 [])
v7 v8

(v1 [])

A naive implementation of this strategy would evaluate
a primitive arithmetic expression like (+ (+ 1 x) 3) by
creating a continuation frame for the intermediate (+ []
3) expression, which is unlikely to perform well. A practi-
cal implementation will instead create frames only around
subexpressions that are function calls.2 For the moment, as-
sume that only continuation frames for function calls have
marks. Marks for other (conceptual) continuation frames
will be easy to handle, because we can locally push and pop
mark records for those.

Another problem with the simple strategy is that it adds a
reference to every continuation frame, imposing a potentially
significant cost on parts of a program without continuation
marks. We can avoid this cost by introducing extra continu-
ation frames at only points where marks have changed:

(current-marks v7)
v7 v10

[]

(first [])

(v2 [])
v7 v8

[]

(v1 [])

These extra frames just pass through whatever value they
receive, but they also adjust the global register for the current
marks to a previously saved pointer. Other continuation
frames can return while leaving the mark register as-is. The
extra frame must be created by with-mark whenever the
current continuation does not already start with a mark-
restoring frame, so it must be able to recognize and create
this distinct kind of frame.
Capturing a continuation must still pair the current con-

tinuation pointer with the current marks pointer, which adds
2With the practical adaptation to create continuation frames only around
function calls, we could view a continuation frame as created by a function
call instead of by an expression surrounding a function call—as long as tail
calls within a function reuse the current call’s frame or discard it before
creating a new one.
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some overhead to program regions that use first-class contin-
uations but do not use continuation marks. In practice, those
regions are much rarer than ones that create new continua-
tion frames. Also, capturing a continuation tends to require
extra allocation, perhaps to package the continuation pointer
as a value that can be used like a function, so there would be
just one extra pointer move in each of a continuation capture
and application.

5 Stack-Based Continuations
A potential concern with our strategy so far is that it heap-
allocates continuation frames. Although an analysis by Ap-
pel and Shao [2] suggests that heap-allocated frames can
be nearly as efficient as stack-allocated frames, the analy-
sis makes two assumptions about the implementation of
stack-allocated frames that do not hold for Chez Scheme.3
Removing the costs associated with these assumptions from
their analysis results in a much lower cost for stack-allocated
frames than for heap-allocated frames. We thus consider the
implementation of continuation marks for a stack-based rep-
resentation of continuations that retains this advantage.

In a language with first-class continuations, a stack-based
representation of continuations requires copying either on
capture or application of a continuation. Chez Scheme’s hy-
brid stack–heap representation of continuations [18] puts
copying on the continuation-application side.When call/cc
captures a continuation, the current stack ceases to be treated
as stack space and instead is treated as part of the heap,
while a new stack is started for the frame of the function
that call/cc calls, as shown in the first step below:

(call/cc
(λ (k) (k v3)))

([] v2)

(v1 [])

stack base

(  v3)
 

stack base

([] v2)

(v1 [])

(v3 v2)

(v1 [])

stack base

([] v2)

(v1 [])

In the second step above, applying the continuation copies
the frames that are (now) in the heap to the new stack. To
avoid unbounded copying, application may split large con-
tinuations so that only part of the continuation is copied,
and the rest is deferred until later [18].
If the expression in the example above had been just v3

instead of (k v3), the result would be the same: the second
step would copy the captured continuation (referenced by
the right-hand arrow) onto the new stack to return v3 to that

3These assumptions are (1) A stack-overflow check is required for each
non-tail call. Chez Scheme typically performs at most one stack-overflow
check no matter how many non-tail calls a caller makes. (2) Closures tend to
be large. This assumption held in SML/NJ, the heap-based implementation
upon which Appel and Shao based their analysis, because each closure
for a function included the values of each primitive and global variable
referenced by the function. Chez Scheme embeds pointers to (or inlines)
primitives and global-variable locations directly in the code stream.

continuation. The result is the same because the two arrows
in the middle figure both refer to the same continuation.
Still, the arrows in that figure must be different kinds of

arrows, because one of them is wrapped as a procedure that
jumps to the continuation, while the other must be used by
a normal function-call return. To see the difference, we can
zoom into the first two figures and refine the picture, starting
with the left figure:

framestack-base

(call/cc
(λ (k) (k v3)))

return to ([] v2)
([] v2)

return to (v1 [])
(v1 [])

return to underfow

next-stack

...

return to exit
frame

stack base
link

In this expanded view, we show that there’s a global stack-
base register that points to the stack base as well as a frame
register for the current frame. Each stack frame, outlined
with a bold rectangle, starts with a return address as shown
at the bottom of the frame. For example, the frame for the
call/cc call returns to the function that has ([] v2), and
so on. The first frame in a stack always has a return address
to a special underflow handler, which deals with returning
from this stack.

The underflow handler consults a global next-stack reg-
ister, which points to a record that has an actual return ad-
dress, plus pointers to a stack base to restore and a chain to
the next underflow record. In the example, the return address
is to process exit, which needs no stack.

After call/cc captures the continuation and passes it to
the function whose body is (k v3), the stack and registers
look like this:

framestack-base

(  v3)
 

return to underfow
([] v2)

return to (v1 [])
(v1 [])

return to underfow

next-stack
...

return to ([] v2)
frame
stack base
link

...

return to exit
frame

stack base
link

• The “new” stack is just the remainder of the old stack
after the captured part. The stack-base register has
changed to point to the new stack base.

• The stack frame that used to have a return to ([] v2)
now has a return to the underflow handler.

• The old return address to ([] v2) is in a new underflow
record, and the next-stack register points to the new
record. The new underflow record also saves the old
stack-base, frame, and next-stack values.

An underflow record starts with extra data that makes it
have the same shape as a procedure. In other words, a con-
tinuation procedure is represented directly as an underflow
record. Calling the underflow record as a procedure jumps
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to the underflow handler, which copies the stack as recorded
in the underflow record to the current stack-base, adjusts
frame to point to the newly copied frame, restores the next-
stack register to the one saved in the underflow record, and
jumps to the return address saved in the underflow record:

framestack-base

(v3 v2)

return to (v1 [])
(v1 [])

return to underfow
([] v2)

return to (v1 [])
(v1 [])

return to underfow

next-stack

...

return to ([] v2)
frame
stack base
link

...

return to exit
frame

stack base
link

At this point, the upper underflow record and lower stack
are garbage and can be reclaimed.

If the body of the function passed to call/cc were just v3
instead of (k v3), then a return of v3 would use the address
in the newest continuation frame. Since that address is the
underflow handler, the same changes take place, resulting in
the same ending picture.

6 Stack-Based Marks
Section 5 provides a recap of Chez Scheme’s stack-based
representation of continuations, and section 4 sketches how
to manage continuation marks alongside a heap-allocated
continuation. In this section, we bring those together to
represent marks with a stack-based continuation.
Our main idea is to reify the continuation whenever we

need to attach a mark to a continuation frame, doing so in the
same way as call/cc. We also make an underflow record
point to a mark chain for the rest of the continuation in the
same way that a continuation frame in the heap-based model
points to a mark chain. As a result, the model picture from
section 4,

(current-marks v7)
v7 v10

(first [])

(v2 [])
v7 v8

(v1 [])

corresponds to the following stack, underflow, and marks
picture:

framestack-base

(current-marks v7)

return to underfow

(first [])

return to (v2 [])

(v2 [])

return to underfow

(v1 [])

return to underfow

next-stack

...

return to (first [])
marks

frame
stack base
link

...

return to (v1 [])
marks

frame
stack base
link

...

return to exit
marks
frame

stack base
link

marks

v7 v10

v7 v8

In the small, mark-intensive example, the underflow chain
appears more elaborate than the stack-based continuation
frames that they track. When continuation marks turn out
to be dense, the implementation ends up similar to heap-
allocated continuation frames. More commonly, continua-
tion marks are sparse relative to continuation frames.

The cost of continuation-mark management is minimized
for code that does not use continuation marks. As in the
case of heap-allocated frames, the only difference is one
pointer slot and a pointer move when creating an underflow
record or when handling an underflow, which corresponds to
explicit continuation capture or implicit overflow handling
for deep recursion.4

Furthermore, a continuation frame must be reified to man-
age marks only when the frame corresponds to a function-
call frame—that is, when with-continuation-mark is used
in tail position of a function body or another another func-
tion call. As we discuss in section 7, continuation marks in
other positions can be implemented by just pushing and
popping the marks linked list.
The cost of reifying a continuation for a mark can be

further mitigated because the reified continuations are one-
shot [6]. That is, they are not truly first-class continuations
but instead used only to return. Chez Scheme already sup-
ports one-shot continuations, but they do not pay off here.
Our implementation of continuation marks takes advantage
of a new opportunistic one-shot variant.
The underflow handler can detect when it is returning

to a one-shot continuation where the end of the resumed
stack frame matches the former stack base. In that case, it
can revert the stack split that was performed when the con-
tinuation was reified. Fusing the current stack back with
the continuation’s stack, which is just a matter of updating
the stack-length register, means that no copying is neces-
sary; computation can continue with the saved stack base
and restored stack length as the new stack. This handling
is opportunistic in the sense that a garbage collection may
4A winder record for dynamic-windmust also have an extra field for marks
in the dynamic-wind call’s continuation. Those marks are restored while
running one of the winder thunks.
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move the captured stack and current stack so that they’re no
longer contiguous and available to fuse. The garbage collec-
tor promotes each opportunistic one-shot continuation to a
full continuation, so the underflow handler will not attempt
to fuse stacks when they have been separated.

When call/cc captures a continuation, it must also pro-
mote any one-shot continuations in the tail of the continu-
ation to full continuations—whether the one-shot continu-
ation was opportunistic or not. This promotion is already
implemented for Chez Scheme’s existing one-shot support,
and opportunistic one-shot continuations get promoted by
the same mechanism.

7 Compiler Support
The run-time representation of continuations and marks is
only half of the story. The other half is compiler support
to take care of conceptual continuation frames that do not
correspond to function calls, to avoid some closure creations,
and to avoid some indirect function calls.

Without compiler support, the form
(with-continuation-mark key val body)

could expand to a call of a primitive call/cm function
(call/cm key val (λ () body))

where call/cm manipulates the global stack-base, under-
flows, and marks registers. An advantage of this approach
is uniformity: conceptual continuation frames that may have
attached marks will always correspond to actual function
calls with continuation frames that can be reified. A draw-
back of this expansion starts with the allocation of a closure
for the thunk to wrap body, even though the closure is al-
ways immediately applied. If body is simple enough, the cost
of just allocating the closure could dominate the cost of the
expression, not to mention the cost of reifying the continua-
tion to pop the continuation mark when body returns.

The alternative is to build with-continuation-mark into
the core language or have the compiler recognize calls to
call/cm with an immediate lambda argument. We take the
latter approach for Chez Scheme, except that the primi-
tive functions that are recognized by the compiler handle
plain attachment values, instead of key–value dictionaries. In
other words, arbitrary values take the place of the key–value
badges that we have so far shown in pictures. The creation
and update of key–value dictionaries, meanwhile, are imple-
mented in the expansion of with-continuation-mark.

7.1 Continuation Attachment Primitives
Our modified version of Chez Scheme recognizes four new
primitives to handle continuation attachments:5

(call-setting-continuation-attachment val (λ () body))

5The compiler specifically recognizes uses of the primitives with an imme-
diate lambda form. Other uses are treated as regular function references.

Installs val as the attachment of the current continuation
frame, replacing any value that is currently attached to the
frame, then evaluates body in tail position.
(call-getting-continuation-attachment dflt (λ (id) body))

Evaluates body in tail position, binding id to the value at-
tached to the current continuation frame, or dflt if no at-
tachment is present on the immediate frame.
(call-consuming-continuation-attachment dflt (λ (id) body))

Like call-getting-continuation-attachment but also re-
moves the value (if any) attached to the current continuation
frame.
(current-continuation-attachments)

Simply returns the content of the marks register, since the
linked list for “marks” is implemented as a Scheme list.

Using these functions, the expansion of
(with-continuation-mark key val body)

is
(let ([k key] [v val])
(call-consuming-continuation-attachment
empty-dictionary
(λ (d)
(call-setting-continuation-attachment
(dictionary-update d k v)
(λ () body)))))

7.2 Attachment Low-Level Optimizations
A compiler pass that recognizes the new primitives runs af-
ter high-level optimizations such as inlining, constant prop-
agation, and type specialization. Uses of primitive opera-
tions, such as arithmetic, have not yet been inlined, but the
attachment-optimization pass can recognize uses of primi-
tives and take advantage of the way that they will be inlined
later. Consequently, in an expression like
(+ 1 (call-setting-continuation-attachment v

(λ ()
(+ 2 (f)))))

the compiler can infer that no attachment already exists on
the continuation of (+ 2 (f)), and it also knows that + does
not tail-call any function that might inspect or manipulate
continuation attachments,

so the expression can be simplified to
(+ 1 (begin (set! marks (cons v marks))

(let ([r (+ 2 (f))])
(set! marks (cdr marks))
r)))

In contrast, a function body
(call-setting-continuation-attachment v

(λ () (f)))

is compiled as
(begin (reify-continuation!)

(set! marks (cons v (underflow-marks underflows)))
(f))
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because the function may have been called in a continuation
that already has an attachment, and because underflow must
be used to pop the new attachment when f returns. The in-
ternal reify-continuation! intrinsic checks whether the
current frame’s return address is the underflow handler, and
if not, it allocates a new underflow record and updates un-
derflows. The internal underflow-marks function accesses
the marks field of an underflow record.
More generally, the compiler categorizes each use of a

call-...-continuation-attachment as one of three cases:
In tail position within the enclosing function. Ex-

pressions that set an attachment in this position must reify
the current continuation so that the attachment is removed
on return from the function (via underflow), and then a new
value can be pushed onto the marks list. Expressions that
retrieve an attachment must similarly check for a reified
continuation; the current frame has an attachment only if
the continuation is reified and the current marks list in the
marks register differs from the marks list in the current next-
stack underflow record, in which case the attachment is the
first element of the current marks list.

Not in tail position, but with a tail call in the argu-
ment body. Expressions that set an attachment in this posi-
tion change the way that each tail call within body is imple-
mented. Just after the new frame for the call is set up, a new
continuation is reified, and (rest marks) is installed in the
underflow record. Setting the underflow record’s marks field
to be (rest marks) instead of marks communicates to the
called function that an attachment is present, and it causes
the attachment to be popped when the function returns.

Not in tail position, no tail call in body. Expressions in
this category can be changed to direct operations on marks,
because the conceptual continuation frame does not corre-
spond to a function-call frame. Furthermore, the compiler
will be able to tell statically whether an attachment is present
to be replaced or retrieved.
Besides the transformations implied by the categories,

the compiler can detect when attachment calls are nested
for the same continuation within the function. For exam-
ple, a “set” operation following a “consume” operation can
safely push to marks without a reification check. The com-
piler specifically detects the “consume”–“set” sequence that
with-continuation-mark uses to avoid redundant work
and make the “set” step as efficient as possible.

7.3 Continuation Mark High-Level Optimizations
High-level optimizations can reduce the cost of continuation
marks or even remove them from programs where they turn
out to be irrelevant. For example, in
(let ([x 5])
(with-continuation-marks 'key 'val x))

evaluating the reference to the variable x cannot inspect con-
tinuation marks, so there’s no reason to actually push a mark

for 'key. Racket compiles this expression to the constant 5,
as expected.

Currently, these high-level optimizations are implemented
in the schemify pass of Racket on Chez Scheme [15], so
the Chez Scheme compiler itself has only minimal support.
Adding new optimizations to Chez Scheme’s cp0 pass could
benefit Scheme programs (as opposed to Racket programs
that are run through the schemify pass). Additions to cp0
could also benefit Racket programs if cp0 finds simplifica-
tions that schemify missed and that expose continuation-
attachment operations, but we have not yet explored that
possibility.

7.4 Constraints on Other Optimizations
Continuation marks and their applications require a small
refinement to the semantics of Scheme beyond the addition
of new operations. In the same way that proper handling
of tail calls obliges a compiler and runtime system to avoid
extending the continuation in some cases, the semantics of
continuation marks oblige a compiler and runtime to extend
the continuation in some cases. For example, the expression
(let ([x (work)])

x)

is not equivalent to just (work), because the right-hand size
of a let form is not in tail position with respect to the let
form.

Prior to our addition of continuation attachments to Chez
Scheme, its cp0 pass would simplify the above expression to
just (work), possibly making a program use less memory or
even turning a space-consuming recursion into a constant-
space loop. Our modified version of Chez Scheme disables
that simplification if it could possibly be observed through
continuation-attachment operations. The simplification is
still possible in many cases, such as in
(+ 1 (let ([x (work)])

x))

where there is no way using attachments to distinguish be-
tween a single continuation frame created for the second
argument to + and that frame plus another one for the right-
hand side of let. Performance measurements (reported in
section 8.2) suggest that the more restricted simplification
rarely affects Scheme programs or their performance.

7.5 Representing and Accessing Marks
At the Chez Scheme level, the only operation to retrieve con-
tinuation marks is current-continuation-attachments,
which returns a list of all attachments. To make key-based
mark lookup efficient, Racket CS implements a form of path
compression by having each attachment in the list poten-
tially hold a key–value dictionary and a cache. When a re-
quest for a specific key is satisfied by searching the first
N items of the attachment list, the result is stored at po-
sition N/2 in the attachment list. When a second request
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finds the result at N/2, then it caches the answer again at
N/4, and so on, until the depth for caching becomes too
small to be worthwhile. This caching strategy ensures that
continuation-mark-set-first works in amortized con-
stant time. A specific attachment uses a representation that
makes common cases inexpensive and evolves to support
more complex cases: no marks, one mark, multiple marks (us-
ing a persistent hash table), and caching (using an additional
hash table for the cache).

8 Performance Evaluation
Our performance evaluation for compiler-supported continu-
ation marks has five parts: (1) establishing that continuations
in unmodified Chez Scheme perform well; (2) demonstrating
that our changes to Chez Scheme have only a small effect on
programs that do not use continuationmarks; (3) demonstrat-
ing that compiler and runtime support provides a significant
improvement for continuation-mark operations; (4) demon-
strating that compiler support in Chez Scheme helps Racket
CS and makes its implementation of continuation marks
competitive with the original Racket implementation; and
(5) demonstrating that some specific optimizations have a
measurable effect on performance.

Benchmark sources are provided as supplementary mate-
rial, and the sources indicate the exact versions of software
used (all latest as of writing). Measurements are performed
on five runs with average run times and standard deviations
reported. The measurement platform was a 2018 MacBook
Pro 2.7 GHz Intel Core i7 running macOS 10.14.6.

8.1 Performance of Continuations
The following table shows results for the traditional ctak
Scheme benchmark on several implementations:

average stdev
Pycket 74 ms ±8 ms

Chez Scheme 156 ms ±3 ms
Racket CS 439 ms ±14 ms
CHICKEN 747 ms ±4 ms

Gambit 1646 ms ±9 ms
Racket 19112 ms ±461 ms

These results illustrate that Chez Scheme’s continuations
perform well compared to other established Scheme imple-
mentations. Pycket [4] employs heap-allocated stack frames,
which is ideal (only) for continuation-intensive benchmarks
like ctak, so we count performance on the order of Pycket’s
performance as good. “Racket CS” is Racket on Chez Scheme,
as opposed to the original variant of Racket. Racket CS
wraps Chez Scheme’s call/cc to support delimited contin-
uations, threads, asynchronous break exceptions, and more;
creation of a wrapper and the indirection for calling a wrap-
per accounts for the performance difference relative to Chez

average stdev
Pycket native 155 ms ±10 ms

Chez Scheme [K] 202 ms ±5 ms
GHC [DPJS] 273 ms ±6 ms

GHC [K] 325 ms ±12 ms
Multicore OCaml native 410 ms ±2 ms

Chez Scheme [DPJS] 467 ms ±3 ms
Racket CS [K] 569 ms ±6 ms

Racket CS native 600 ms ±14 ms
Racket CS [DPJS] 1113 ms ±11 ms

CHICKEN [K] 1270 ms ±53 ms
Pycket [K] 1547 ms ±71 ms
Gambit [K] 1577 ms ±15 ms

Pycket [DPJS] 5377 ms ±53 ms
Racket [DPJS] 14932 ms ±557 ms

Racket [K] 16374 ms ±234 ms
Koka on Node.js native 17687 ms ±202 ms

Racket native 18526 ms ±436 ms

Figure 1: Run times for the triple delimited-
continuation benchmark. “Native” means the
language’s built-in constructs for delimited con-
trol, “[DPJS]” uses the implementation provided
by Dybvig et al. [13] for Scheme using call/cc
and Haskell using monads, and “[K]” uses related
implementations by Kisylyov [20].

Scheme. The non-CS variant of Racket’s has very slow con-
tinuations, which is among the reasons that Racket CS will
replace it.

To provide a rough comparison of Chez Scheme’s perfor-
mance to other language implementations, we show results
for the triple delimited-continuation benchmark in figure 1.
This benchmark finds the 3,234 combinations of three inte-
gers between 0 and 200 that add up to 200; it searches the
space of possibilities using delimited continuations and two
kinds of prompts for two different kinds of choices. All of the
implementations explore the space in the same deterministic
order. With such different implementations, the results are
useful only as an order-of-magnitude suggestion of relative
performance, and at that level, the results confirm that Chez
Scheme continuations perform well.

8.2 Performance of Modified Chez Scheme
To check how much continuation-attachment support af-
fects Chez Scheme’s performance, we re-run the triple
benchmarks with unmodified and modified Chez Scheme.
The “attach” variant in the table below includes continuation-
attachment support and constraints on cp0 to preserve non-
tail positions. For completeness, we also check a variant mod-
ified in additional ways to support Racket CS [15], which
is the “all mods” variant in the table. The table shows run
times with the triple search space increased to 400:



Compiler and Runtime Support for Continuation Marks PLDI ’20, June 15–20, 2020, London, UK

unmod attach all mods max
benchmark time time time relstdev
collatz-q 1730 ms ×0.99 ×0.99 1%

cpstak 1066 ms ×1.03 ×1.02 3%
dderiv 1317 ms ×1.01 ×1.03 4%

destruct 936 ms ×0.94 ×1.01 3%
earley 805 ms ×0.97 ×1.04 1%

fft 1692 ms ×1.02 ×1.04 2%
lattice 935 ms ×1.01 ×0.92 0%

maze 796 ms ×1.01 ×1.03 1%
maze2 2118 ms ×1.01 ×1.03 1%

nboyer 597 ms ×0.97 ×0.96 2%
nqueens 1352 ms ×1.00 ×0.96 0%
nucleic2 3790 ms ×1.05 ×1.06 5%

peval 1102 ms ×1.02 ×0.96 1%
sboyer 941 ms ×1.00 ×0.86 0%

scheme-c 694 ms ×1.01 ×1.06 1%
sort1 2011 ms ×1.03 ×1.01 2%

Not shown: 22 more with attach within 1 stddev

Figure 2: Run times for variants of Chez Scheme on a
suite of traditional Scheme benchmarks.

average stdev
unmodified [K] 1389 ms ±26 ms

attach [K] 1448 ms ±20 ms
all modifications [K] 1509 ms ±58 ms
unmodified [DPJS] 3283 ms ±46 ms

attach [DPJS] 3322 ms ±13 ms
all modifications [DPJS] 3374 ms ±46 ms

The difference in the first two lines of the table shows the
cost, for a program that does almost nothing but capture
and call continuations, of adding an attachments field to
a continuation. The additional constraints imposed on cp0
have no effect on these benchmarks; the output of cp0 is the
same for the “unmodified” and “attach” variants. The output
of cp0 for “CS” is different due to a type-reconstruction pass
that replaces some checked operations with unchecked ones,
and the small additional slowdown appears to be due to
secondary effects of a larger compiler footprint.
To check the effect of modifying Chez Scheme for pro-

grams other than continuation-intensive examples, we run
the Chez Scheme variants on traditional Scheme benchmarks.
The results are shown in figure 2, but only for benchmarks
where the difference was greater than a standard deviation;
that is, we omit most of the 38 benchmarks because the
difference is clearly not significant. Even so, the difference
between “unmodified” and “attach” is in the noise. (Type
reconstruction in “CS” sometimes pays off.)

8.3 Performance of Continuation Attachments
To measure the benefit of compiler and runtime support for
continuation attachments, we compare to an implementation

(define ks '(#f)) ; stack of frames with attachments
(define atts '()) ; stack of attachments

(define (call-setting-continuation-attachment v thunk)
(call/cc
(lambda (k)

(cond
[(eq? k (car ks))
(set! atts (cons v (cdr atts)))
(thunk)]
[else
(let ([r (call/cc

(lambda (nested-k)
(set! ks (cons nested-k ks))
(set! atts (cons v atts))
(thunk)))])

(set! ks (cdr ks))
(set! atts (cdr atts))
r)]))))

Figure 3: Imitation of built-in attachment support.

of continuation attachments illustrated in figure 3. This im-
plementation uses eq? on continuation values to detect when
an attachment should replace an existing attachment. It may
also insert extra continuation frames: the call-setting-
continuation-attachment argument is not always called
in tail position, because a pop of the attachments stack must
be added before returning from the thunk. However, the
thunk is called in tail position if an attachment already ex-
ists for the current frame, which means that the number of
frames for a program is at most doubled, and a program can-
not detect the extra frame using continuation attachments.

Figure 4 summarizes the performance improvements from
built-in compiler and runtime support on benchmarks. The
initial rows with names starting “base” do not use continua-
tion attachments and provide a baseline for other loops of
1000M iterations and nested calls 1M deep repeated 10 times,
with and without continuation capture. The next “loop” rows
involve a get, set, consume, or combination of those opera-
tions wrapping the recursive call. The next non-“loop” rows
perform deep recursion where each frame gets an attach-
ment in varying tail and non-tail positions. The final “loop”
rows use a set operation around the argument of the recur-
sive call, sometimes a primitive and sometimes a call to a
non-inlined function.
The results show substantial improvements across the

board for compiler and runtime support. The benefits derive
from avoiding an extra continuation frame, avoiding clo-
sure allocations, and avoiding reification of the continuation
around primitive operations.

8.4 Performance of Continuation Marks
Finally, we compare the overall performance of continuation
marks in Racket CS to the performance of the old Racket
implementation. Although the performance of first-class
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builtin imitate speedup
benchmark time time range
base-loop 918 ms ×1.0 ×1.0– ×1.0

base-callcc-loop 3603 ms ×1.1 ×1.0– ×1.2
base-deep 20 ms ×0.9 ×0.8– ×1.1

base-callcc-deep 648 ms ×1.0 ×0.8– ×1.2
set-loop 2353 ms ×4.6 ×4.4– ×4.8
get-loop 1582 ms ×4.5 ×4.5– ×4.6

get-has-loop 2068 ms ×3.8 ×3.7– ×3.8
get-set-loop 2819 ms ×5.7 ×5.3– ×6.1

consume-set-loop 2798 ms ×7.0 ×6.1– ×8.2
set-nontail-notail 175 ms ×22.3 ×21.0–×23.7

set-tail-notail 916 ms ×4.2 ×3.8– ×4.7
set-nontail-tail 888 ms ×4.3 ×3.9– ×4.7

loop-arg-call 7023 ms ×6.1 ×6.0– ×6.1
loop-arg-prim 3422 ms ×12.5 ×12.3–×12.7

Figure 4: Performance of built-in support for continu-
ation marks and speedups of average runs compared
to the imitation strategy of figure 3. The “speedup
range” column is derived from standard deviations:
the low end is the ratio of built-in plus standard devi-
ation to imitation minus standard deviation, and the
high end is the ratio of minus to plus.

Racket CS Racket speedup
benchmark time time range
base-loop 929 ms ×1.4 ×1.3– ×1.5
base-deep 738 ms ×5.8 ×4.4– ×7.4

base-arg-call-loop 2326 ms ×2.3 ×2.3– ×2.4
set-loop 6349 ms ×0.6 ×0.6– ×0.7

set-nontail-prim 509 ms ×5.7 ×4.9– ×6.7
set-tail-notail 1503 ms ×1.3 ×1.2– ×1.5
set-nontail-tail 1461 ms ×1.3 ×1.2– ×1.5
set-arg-call-loop 8658 ms ×0.9 ×0.9– ×1.0
set-arg-prim-loop 5360 ms ×1.0 ×0.9– ×1.1
first-none-loop 1710 ms ×1.1 ×1.1– ×1.1
first-some-loop 1009 ms ×0.6 ×0.6– ×0.6
first-deep-loop 5067 ms ×1.1 ×1.0– ×1.1
immed-none-loop 5515 ms ×1.1 ×1.1– ×1.2
immed-some-loop 5723 ms ×1.2 ×1.2– ×1.2

Figure 5: Performance on continuation-mark bench-
marks for Racket CS versus the old implementation
of Racket. Speedup ranges are based on standard devi-
ations as in figure 4.

continuations in old Racket is poor (see figure 1), the perfor-
mance of setting and getting continuation marks is relatively
good (as can be inferred from figure 5).

Figure 5 shows results of running benchmarks on Racket
CS and speedups compared to the old version of Racket.
Loop runs use 1000M iterations while non-loop runs use 1M
recursions repeated 10 times. The base-loop result shows

that Racket CS and Racket start with similar performance for
plain loops, but base-deep and base-arg-call-loop and
show the improved baseline performance of non-tail calls in
Racket CS (derived from Chez Scheme’s better performance).
The old Racket implementation outperforms Racket CS in
some specific cases, because it uses a stack representation
for the mark stack instead of a heap-allocated linked list,
but that choice creates complexity and costs when capturing
continuations.
End-to-end performance for most Racket programs is af-

fected by continuation-mark performance, but the difference
between built-in and imitated continuation attachments is
often only 1%. Racket’s contract library is significantly af-
fected, so applications that rely heavily on contract checking
also depend more heavily on continuation-attachment per-
formance. The following table shows the performance of
calling an imported, non-inlined identity function 20M times
with and without checking a (-> integer? integer?)
contract:

buitin imitate max
contract mode time time relstdev

unchecked 42 ms ×1.00 2%
checked 428 ms ×3.42 1%

Improvements to contact checking and dynamic binding af-
fect some Racket applications measurably. The following
table shows the end-to-end performance of useful Racket
programs on realistic inputs, where an significant depen-
dence on contract checking or dynamic binding (usually for
configuration) show the benefit of faster continuation marks:

builtin imitate max
application time time relstdev

ActivityLog import 7189 ms ×1.11 2%
Xsmith cish 5128 ms ×1.09 3%

Megaparsack JSON 2287 ms ×1.24 1%
Markdown Reference 4777 ms ×1.16 2%

OL1V3R gauss.175.smt2 1816 ms ×1.10 2%

8.5 Effect of Optimizations
Figure 6 shows the results of the continuation mark, contract,
and application benchmarks using variants of Racket CSwith
different optimizations disabled:

• The no 1cc variant disables optimistic one-shot contin-
uations and instead always uses multi-shot continua-
tions. Optimistic one-shot continuations affect the set-
arg-call-loop microbenchmark with a speedup of
about ×1.5. That benchmark reflects a common behav-
ior of contracts, and optimistic one-shots also speed
up the contract-checking benchmark by about ×1.4.

• The no opt variant disables the compiler’s recogni-
tion and specialization of continuation-attachment
operations. Compiler optimizations affect many mi-
crobenchmarks with improvements of ×1.2 to ×3.5.
The unaffected benchmarks are mostly the ones about
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Racket no no no max
benchmark CS time 1cc opt prim stdev
base-deep 738 ms ×1.04 ×0.97 ×1.00 4%
set-loop 6349 ms ×1.02 ×1.97 ×0.89 4%

set-nontail-prim 509 ms ×1.02 ×3.51 ×1.10 6%
set-tail-notail 1503 ms ×0.94 ×1.09 ×0.98 7%

set-nontail-tail 1461 ms ×0.92 ×1.06 ×1.00 9%
set-arg-call-loop 8658 ms ×1.48 ×1.30 ×1.00 3%
set-arg-prim-loop 5360 ms ×1.04 ×2.03 ×1.60 9%

first-none-loop 1710 ms ×1.05 ×1.02 ×0.98 0%
first-some-loop 1009 ms ×1.05 ×1.01 ×1.04 1%
first-deep-loop 5067 ms ×1.04 ×1.00 ×0.96 2%
immed-none-loop 5515 ms ×1.10 ×1.45 ×0.95 6%
immed-some-loop 5723 ms ×1.10 ×1.22 ×0.98 2%

Racket no no no max
contract mode CS time 1cc opt prim stdev

unchecked 42 ms ×0.98 ×1.05 ×1.02 4%
checked 428 ms ×1.38 ×1.98 ×1.41 0%

Racket no no no max
application CS time 1cc opt prim stdev

ActivityLog 7189 ms ×1.07 ×1.04 ×1.03 2%
Xsmith 5128 ms ×1.04 ×1.01 ×0.99 2%

Megaparsack 2287 ms ×1.05 ×1.07 ×1.04 2%
Markdown 4777 ms ×1.05 ×1.03 ×1.01 3%

OL1V3R 1816 ms ×1.04 ×1.04 ×1.00 3%

Figure 6: Effect of optimizations on benchmark suites.

continuation mark access (such as first-none-loop),
as they should be. Optimizations speed up the contract-
checking benchmark by about ×2.

• The no prim variant disables only the part of the com-
piler’s optimization to recognize primitives that will
never affect the current continuation’s attachments.
Just the compiler optimizations for non-tail primitive
applications affects microbenchmarks to a lesser de-
gree, but still sometimes×1.6. This optimization speeds
up the contract-checking benchmark by ×1.4.

The effect of individual optimizations on the example ap-
plications is small, but still sometimes large enough to be
measurable at around ×1.05.

9 Related Work
Continuation marks have been a part of Racket from its early
days [8], but delimited control was added later [17]. Kiselyov
et al. [19] provided a semantics of dynamic binding with
delimited control earlier. They offer some implementation
strategies, but they do not discuss potential compiler support
or investigate performance in depth.
The implementation of dynamic scope was of particular

interest for early dialects of Lisp. The attachments list in
our implementation is reminiscent of the “deep” strategy
for dynamic binding, but without explicitly threading an

environment through all function calls. An explicit thread-
ing approach was also part of an early attempt to support
a dynamic-binding mechanism that does not grow the con-
trol stack [11], but that solution simply shifted stack growth
from the main control stack to a separate dynamic-binding
stack, so that tail recursion involving dynamic binding still
caused unbounded memory growth. In contrast, such mem-
ory growth in our mechanism is limited by the number of
dynamically bound variables; i.e., it is proportional to the
number of unique keys attached a frame.
The “shallow” strategy for dynamic scope [3] is some-

times implemented by setting and restoring the value of
a global or thread-local variable and using constructs like
dynamic-wind to cooperate with escapes and continuation
capture—including in Chez Scheme [12 §1.3]. That strategy
puts the body of each dynamic binding in non-tail position
and imposes a cost on continuation jumps. On the other hand,
references to dynamic variables implemented via shallow
binding are less expensive; the best choice of dynamic bind-
ing strategy depends on the relative expected frequencies of
binding operations, control operations, and references.
Implicit parameters [21] solve a problem similar to dy-

namic scope. By leveraging the type system, they automate
the addition of optional arguments through layers of calls,
making those parameters easier to provide and propagate.
The Reader monad serves a similar purpose. Continuation
marks communicate through layers more pervasively and
without threading an argument or dictionary through a com-
putation. At the same time, continuations make sense only
with eager evaluation, where evaluation has a well-defined
notion of dynamic extent that is reflected in the continuation.

10 Conclusion
The Racket ecosystem of languages depends on an efficient
implementation of the core constructs that enable language
construction. Continuation marks have proven to be an im-
portant component of Racket’s language-construction tool-
box, where they serve as a universal building block that
permits library-level implementation of extent-sensitive fea-
tures: dynamic binding, exceptions, profiling, and more. We
have shown how continuation marks can be implemented as
part of an efficient, stack-based implementation of continua-
tions. Compiler and runtime support for continuation marks
provide a significant reduction in end-to-end run times (10-
25%) for practical Racket applications.
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