This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

Reinforcement Learning Empowered MLaaS
Scheduling for Serving Intelligent Internet of Things

Heyang Qin, Student Member, IEEE, Syed Zawad, Student Member, IEEE, Yanqi Zhou, Member, IEEE,
Sanjay Padhi, Member, IEEE, Lei Yang, Senior Member, IEEE, Feng Yan, Member, IEEE,

Abstract—Machine learning (ML) has been embedded in many
IoT applications (e.g., smart home and autonomous driving). Yet
it is often infeasible to deploy ML models on IoT devices due
to resource limitation. Thus, deploying trained ML models in
cloud and providing inference services to IoT devices becomes
a plausible solution. To provide low latency ML serving to
massive IoT devices, a natural and promising approach is to use
parallelism in computation. However, existing ML systems (e.g.,
Tensorflow) and cloud ML serving platforms (e.g., SageMaker)
are Service-Level-Objective (SLO) agnostic and rely on users to
manually configure the parallelism at both request and operation
levels. To address this challenge, we propose a Region-based Rein-
forcement Learning (RRL) based scheduling framework for ML
serving in IoT applications that can efficiently identify optimal
configurations under dynamic workloads. A key observation is
that the system performance under similar configurations in a
region can be accurately estimated by using the system perfor-
mance under one of these configurations due to their correlation.
We theoretically show that the RRL approach can achieve fast
convergence speed at the cost of performance loss. To improve the
performance, we propose an adaptive RRL algorithm based on
Bayesian optimization to balance the convergence speed and the
optimality. The proposed framework is prototyped and evaluated
on the Tensorflow serving system. Extensive experimental results
show that the proposed approach can outperform state-of-the-art
approaches by finding near-optimal solutions over 8 times faster
while reducing inference latency up to 88.9% and reducing SLO
violation up to 91.6%.

Index Terms—Model inference, internet of things (IoT),
machine-learning-as-a-service (MLaaS), parallelism parameter
tuning, reinforcement learning, workload scheduling, service-
level-objective (SLO)

I. INTRODUCTION

Recent years have witnessed the proliferation of Internet of
Things (IoT) in every aspect of people’s life, work and enter-
tainment. Meanwhile, artificial intelligence (AI) has recently
shown a remarkable success in a wide range of fields, spanning
from computer vision [2], speech recognition [3], natural
language processing [4] to chess playing (e.g., AlphaGo [5])
and robotics. With the emergence of diverse IoT applica-
tions (e.g., smart home, smart city, industrial automation,
connected car), it is envisaged that Al could deal with these
heterogeneous IoT environments. However, limited by the IoT

Part of this work was presented at the International Conference for High
Performance Computing, Networking, Storage and Analysis [1].

H. Qin, S. Zawad, L. Yang and F. Yan are with the Department of Electrical
and Computer Engineering, University of Nevada, Reno, NV, 89557 USA
(e-mail: heyang_qin@nevada.unr.edu, szawad @nevada.unr.edu, leiy @unr.edu,
fyan@unr.edu).

Y. Zhou is with Google Brain, (email: yanqiz@google.com).

S. Padhi is with Amazon Web Services, (email: sanpadhi@amazon.com).

Cloud
Servers

Request parallelism Inter-op parallelism Intra-op parallelism

) Request Request Operation

O Operation

Request

Queue

Request

| |:| Request
1 ‘| loT Applications
@: '
\

Fig. 1: Flow graph of how requests from IoT applications are handled
in MLaaS.

e

A Thread

device capability, it is challenging to deploy machine learning
models on IoT devices, which prompts the development of
Machine-Learning-as-a-Service (MLaaS) [6] that provides ma-
chine model inference service in the cloud. Many major cloud
service providers including Google, Microsoft and Amazon
have offered MLaaS in their cloud environment. Differ from
local inference, IoT device will use machine learning as a
service and require a timely and highly available machine
learning service to function properly. MLaaS frees the IoT
device from the burden of providing storage and computation
for machine learning models and allows the manufacturer to
update the models without having to push the update to all
the IoT devices. At the same time, it becomes challenging
to provide low latency machine model inference service to
massive IoT devices in heterogeneous environments.

In this paper, we focus on providing low latency model
inference service (a.k.a. machine learning serving) for IoT
devices in heterogeneous environments. Unlike offline ma-
chine learning model training, which may take hours or even
days, one main requirement of machine learning serving is
to achieve consistently low latency to meet the need of
interactive and real-time IoT applications like smart home
and autonomous driving. However, the challenge lies in the
fact that productional machine learning models for many
complicated tasks often contain billions of neural connections,
and it may take seconds or even minutes to fulfill users’
requests [7]' if executed in a sequential manner, leading to
unacceptably long latency for IoT applications.

A natural and promising approach to meet the strict la-
tency Service Level Objective (SLO) is to use parallelism
in computation [9], [10]. Machine learning is an ideal appli-

I'The time for fulfilling users’ requests includes the processing time and the
queuing time.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

Intra-op=1,Service Parallelism=3

10000
8000
6000
4000

Latency(ms)

2000

1 5 10
Inter-op Parallelism

Fig. 2: Tensorflow serving performance under different parallelism
configurations for Inception V3 model running on CPU. Appropriate
parallelism improves system performance yet excessive parallelism
decreases it because of interference. This observation is consistent
with previous study [8]. Experimental setup is detailed in Section
VI-A.

)

w
o
o

250

200

150

100

50

Difference in performance(%

0O 2 4 6 8 10 12 14

Difference in configurations

Fig. 3: Difference in performance vs. difference in configuration. The
difference in configurations is calculated by their Euclidean distance.

cation of parallelization because most underlying operations
in these models are vector-matrix multiplications or matrix-
matrix multiplications [11]. Parallelization usually have two
levels [7] for modern machine learning systems on CPU based
infrastructure. Upon arriving at system, multiple requests can
be served in parallel, which is noted as request parallelism.
Each request can usually be decomposed into many opera-
tions. Further parallelization happens at the operation level,
including inter-op parallelism where multiple operations exe-
cuting simultaneously and intra-op parallelism where multiple
threads working on each operation. Fig. 1 illustrates these three
parallel implementations. Distinct parallelization mechanism
can be found on hardware accelerator based infrastructure.
For example, GPU has the built-in parallelism such as thread
blocks and scheduling partitions that are controlled by its own
hardware schedulers. These low-level parallelisms are difficult
to control directly through software-based approaches [12].
Fortunately, even for GPU infrastructure we can still indirectly
impact the parallelization by a few user defined parameters.
All of the parallel implementations and related configurations
become control knobs in machine learning serving system.
System performance is significantly determined by parallelism
configurations. As indicated in Fig. 2, system performance
can be boosted up to 10 times by a well-tuned parallelism
configuration compared to sequential execution (e.g., running
Inception V3 on CPU infrastructure).

To provide low latency machine learning serving, we pro-

pose a swift machine learning serving scheduling framework
for IoT applications. The proposed framework is driven by
a lightweight region-based reinforcement learning (RRL) [1]
approach that can efficiently identify optimal parallelisms con-
figurations under heterogeneous IoT environments. The key
insight is that the system performances under different similar
configurations in a region can be accurately estimated by using
the system performance under one of these configurations, due
to their similarity (see Fig. 3). This key finding motivates us to
develop RRL that can speed up the learning process by orders
of magnitude faster than state-of-the-art deep reinforcement
learning methods with very limited training data. Theoretical
analysis shows that the speedup increases with the size of the
region; however, our initial results [1] show a performance
gap between the RRL and the optimal solution due to the
estimation error. To reduce such performance gap, we propose
an adaptive algorithm namely RRL Plus to adaptively adjust
the region size to achieve fast learning speed as well as near-
optimal performance.

We prototype the proposed framework on top of the popular
Tensorflow Serving [13] machine learning serving system and
support both CPU and GPU based hardware infrastructure.
We release the source code for public access.” Extensive
experimental evaluations on both CPU and GPU clusters show
that by continuously learning the new traffic patterns and
updating the scheduling policies, RRL Plus can quickly adapt
to the ever-changing dynamics of IoT workloads and system
environments. Compared to state-of-the-art approaches (e.g.,
DeepRM [14] and CAPES [15]), RRL Plus can reduce the
average latency up to 88.9% on CPU-based infrastructure
and up to 71.5% on GPU-based infrastructure. In the SLO-
aware scenario, RRL Plus can offer SLO guarantee under
strict targets and provide up to 89.3% SLO violation reduction
compared to CAPES and up to 91.6% compared to DeepRM.
In addition, the proposed framework does not make assump-
tions on workload or machine learning applications and thus
is applicable to most modern IoT applications.

II. CHALLENGES AND OBSERVATIONS

Machine learning in IoT applications is often interactive and
latency sensitive [16] in contrast to model training or other
cloud applications which are usually throughput-oriented (i.e.,
SLO-agnostic). Compared with traditional services (e.g., web
service), machine learning service usually involves hundreds
to thousands of operations together with complex correlation
among them [17], which makes it challenging to model or to
breakdown and fine-tune at operation level. How to optimally
control these knobs is an important yet challenging problem
as the overall performance depends on the performance re-
quirement, workload characteristic, and available computing
resources.

Many recent works focus on parallelism configuration tun-
ing [18], [19]. However, existing methods rely on domain
specific information and techniques to tune the parallelism
configuration (see the detailed discussion in Section VII),
which may not be applicable to many machine learning

Zhttps://github.com/SC-RRL/RRL

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

Arrival rate 1 - global view Arrival rate 1 - local zoom in view Worst

o

~

IS

Inter-op parallelism

Inter-op parallelism
[}

1 4 7 10 2 3 4

. Best
request parallelism

request parallelism

Fig. 4: Latency under the arrival rate of 14 requests per second
on CPU with different parallel configurations (intra-op parallelism is
set to 10) using Inception V3 deployed in Tensorflow Serving. The
lighter the color, the lower the latency. The left plot shows a global
performance view of configurations and the right plot is the zoomed
in view of the performance in a small region of configurations. The
coarse-grained plot shows the latency is quite versatile globally while
the zoomed-in fine-grained plot shows the latency is smooth locally
(i.e., the neighboring points in the heatmap).

Arrival rate 2 - global view Arrival rate 2 - local zoom in view Worst
50 0
_45 _39
240 238
=35 g3
o 0 36
® 30 D 35
£25 £
g
[} ® 32
<10 “ 31

5
123 4567 8 910 1 2 3 4 5 Best
batch thread batch thread

Fig. 5: Latency under the arrival rate of 61 requests per second
on GPU with different parallel configurations (batch size is set to
50) using Inception V3 model deployed in Tensorflow Serving. The
lighter the color, the lower the latency. Left plot shows a global
performance view of configurations and the right plot is the zoomed
in view of the performance in a small region of configurations.

applications. Notably, Feng et al. proposed SERF in [8],
[20] using an analytical queuing model to achieve optimal
parallelism configuration for machine learning serving, which
works on exponential arrival process and homogeneous request
size in certain image classification applications. Unfortunately,
the arrival process may not be exponential for many other
applications (such as video, speech, and natural language
processing) and their request sizes can be heterogeneous. In
addition, SERF supports only request level parallelism and
CPU-based hardware. Therefore, there is a pressing need for a
novel approach that can support two levels of parallelisms and
hardware accelerators like GPU to effectively and efficiently
tune parallelism configuration for machine learning applica-
tions with diverse arrival processes and heterogeneous request
sizes.

There are many challenges for tuning parallelism configu-
ration in modern machine learning serving systems. For CPU-
based infrastructure, the multi-level parallelism results in a
relatively large configuration space. Fig. 4 illustrates request
latency under only two parallelism configurations with fixed
intra-op parallelism on a machine with only 10 cores. The
number of configurations will be magnitude larger with more
parallelism parameters or complicated hardware environments,
making it challenging for algorithms to locate the ideal one.
Fig 5 shows the similar observation on GPU-based infrastruc-

ture. As the configuration parameters have wider range on
GPU, the search space is even larger (e.g., Batch Timeout
alone can have hundreds to thousands possible choices). In
addition, the indirect impact of configuration parameters in
the GPU case makes it even harder to model or predict the
behaviors. Even for the optimal parallelism configuration, it
is also very sensitive to the load. When load experiences
a slight change, the latency distribution which composes of
both service time and queuing waiting time under different
parallelism configurations becomes quite different. Such sen-
sitivity significantly increases the search space and prohibits
exhaustive search. Among parallel computations, there are also
complex interference behavior [8], [20] as a result of the high
computation and memory needs of machine learning models,
which leads to non-linear performance behavior of different
configurations. All these together brings significant challenges
for profiling and analytical modeling approaches [21].

Another challenge that could result in the state-of-the-
art modeling techniques [8], [20] ineffective is the tens of
thousands of operations with complex dependencies among
them in modern machine learning models. Moreover, the
workload and system environment in many IoT applications
are often highly dynamic [22], [23], [24], which requires the
scheduling policy with an agile adaptive ability, in order to
meet the sensitive latency SLO [25] of IoT applications. In
this case, traditional learning-based methods [21], requiring a
large training set and a long convergence time, can hardly be
applicable. Therefore, it is of paramount importance to provide
machine learning serving with swift deployment that can learn
the dynamics of the IoT workload and system environment and
optimize the performance in an online manner.

III. RRL-BASED SCHEDULING FRAMEWORK

In this section, we present the RRL-based scheduling frame-
work for machine learning service in IoT. The RRL-based
scheduling framework is designed to dynamically adjust the
parallelism configuration of machine learning serving systems
according to dynamic system load, in order to optimize
machine learning performance in IoT (e.g., response latency
and resource consumption). It is challenging to model the
relationship among the system performance, parallelism con-
figurations and system load in a closed form. As illustrated in
Fig. 4, system performance varies under different parallelism
configurations even for the same load. To tackle this challenge,
a learning approach is used in the proposed framework to
find the optimal parallelism configuration. Specifically, the
proposed framework consists of three main components: 1)
profiler, 2) scheduler, and 3) region-based reinforcement learn-
ing, as illustrated in Fig. 6. Various system characteristics are
collected by the profiler, including the current user traffic load
and the corresponding system performance under this load
and the present parallelism configuration. The scheduler then
adjusts the parallelism configuration for the measured load
level based on the current scheduling policy. Meanwhile, the
region-based reinforcement learning asynchronously updates
the scheduling policy to adapt to the system dynamics based
on the measured system load and corresponding performance.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

O— - % Training I:]—P Scheduling

RRL-based Scheduling Framework

Region-based

Reward Reinforcement Learning

;Update

]
:State
1

Rerformance

Load

Reward
Function

Scheduling
Policy

l

{ Configuration

Machine Learning [Request
Serving
Server

Profiler

Runtime Information

IoT
Devices

Respond

Fig. 6: Overview of RRL-based scheduling framework for IoT
applications.

Profiler: The profiler measures system performance in-
cluding the system load (i.e., request arrival rate) and the
latency (a.k.a. response time) of each request. The profiler also
collects hardware-related information (e.g., CPU core number,
CPU utilization, available GPUs, GPU utilization, and network
statistics). All the information can be used in reward functions
to optimize the system performance for various scheduling
objectives.

Scheduler: The scheduler takes into consideration the cur-
rent system load, scheduling policies and hardware infor-
mation such as the availability of resource, and adjusts the
parallelism configuration accordingly.

Region-based reinforcement learning: As the core of the
proposed framework, the region-based reinforcement learning
component aims to find the optimal scheduling policy and
quickly adjust the scheduling policy to adapt to the system
dynamics. Specifically, the system performance measured by
the profiler will be passed to the reward function in Fig. 6 to
calculate the value of the system objective function, and then
the learning component learns the scheduling policy based on
this observed reward. Traditionally, the scheduling policy is
incrementally improved in a point-by-point learning manner
that makes learning process significantly long. To address this
challenge, the proposed region-based reinforcement learning
can speedup this learning process by leveraging the key feature
of the system as illustrated in Fig. 3 that the system per-
formances under different similar configurations are similar.
Based on this feature, the system performance under one
configuration can be used to estimate the system performances
under other similar configurations, which would significantly
reduce the number of samples needed to learn the optimal
scheduling policy. For example, if we choose the radius of
the configuration region equal to 2, then we can use a single
observation to update all configurations in this region and
obtain a roughly 10 times faster convergence with limited
performance loss due to the estimation error. The detailed
design is presented in Section IV.

IV. REGION-BASED REINFORCEMENT LEARNING

In this section, we propose a region-based reinforcement
learning (RRL) approach, in order to speed up the learning
process of the scheduling policy to meet the requirements of
IoT applications. Specifically, we first formulate the machine
learning serving scheduling as a Markov Decision Process
(MDP), and then theoretically show that the RRL approach can
achieve a near optimal solution with fast convergence speed.

A. ML Serving Scheduling: A MDP View

The objectives of machine learning serving scheduling in
IoT are 1) to minimize response latency using a given amount
of resources [8] or 2) to minimize resource consumption while
meeting latency SLO [26]. Our scheduling framework supports
both objectives. We focus on the first objective of minimizing
response latency due to the space limitation.

Define system state as s € S where s denote the overall load
level and S denotes the set of possible load levels. System ac-
tion is defined as the parallelism configuration ¢ € C which is a
tuple of request parallelism ¢, inter-op parallelism ",
and intra-op parallelism ¢"?, ie., ¢ = (cservice cinter cintra)
where C denotes the set of possible parallelism configurations.
For machine learning serving in IoT, it is challenging to
characterize latency in a closed form as it can vary under
different loads (system states) for the same parallelism config-
uration [8]. Instead we use the average request latency (s, ¢)
under the system state s and the parallelism configuration c
as reward. In this paper, we assume that the scheduler does
not have a priori knowledge of system state transitions, except
the Markov property (i.e., the state transition depends on only
the previous state)’. Under this model, the machine learning
serving scheduling is cast as a Markov Decision Process, aim-
ing to minimize the expected cumulative discounted latency
E[Y 2 v re(se,)], where v € (0,1] is a discount factor
and 7¢(s¢, ;) denotes the latency observed at time ¢ under
system state s; and parallelism configuration c;.

At each time ¢, the scheduler chooses a parallelism con-
figuration based on a policy, defined as 7 : 7(s,c) — [0,1],
where 7(s,c) is the probability that configuration ¢ is used
in state s. The Q-learning method can be applied to find the
optimal policy yet its convergence is slow, especially when
the space of state-configuration pairs is large. One key reason
for this slow convergence is that it searches the space point
by point and incrementally improves the policy. To improve
the convergence speed, many approaches [28], [29] have been
proposed but they are still point-based learning essentially
and would not be applicable to our problem with large state-
configuration space as shown in our experiments in Section
VL

B. RRL: From Point-based to Region-based Learning

To speed up the learning process, we propose the RRL
approach. The key idea is that when observing the latency

3Markov models are often used to model the workload dynamics, e.g., [27]
verifies the Markov property for different applications. In our application,
the Markov property is also satisfied. The experiments in Section VI also
corroborate the correctness of the Markov model in our application.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

Point-based Perception Region-based Perception

@ Observed Latency @ Estimated Latency Unknown Latency

Fig. 7: Point-based vs. region-based learning. The RRL approach
can more efficiently learn the latency under different configurations.

r(s,c), we will estimate the latency in a region with configu-
rations close to c under this state s, and then use the estimated
latency in this region to learn the policy, as illustrated in
Fig. 7. Intuitively, the learning speed would be significantly
improved if this region-based learning approach uses a large
region. However, the potential estimation errors of the latency
associated with the region may make the converged policy
deviate from the optimal one. In other words, the larger the
region is, the larger the potential errors might be, which
indicates a trade-off between the learning speed and the
optimality of the policy depending on the size of the region and
the latency estimation scheme. When the region degenerates
to a single point, the RRL approach would degenerate to the
traditional reinforcement learning approaches. In this paper,
Euclidean distance is used to measure the distance between
two configurations since both CPU and GPU configurations
are numeric, see Fig. 8. Note that other similarity measures
can also be applied in RRL.

Specifically, the RRL approach consists of two main com-
ponents: 1) latency estimation based perception and 2) policy
update.

1) Latency estimation based perception: Let Q(s¢,ct)
denote the perception of the expected cumulative discounted
latency under state s; and configuration c;. Define the region
around ¢; as C(c;) = {c|||lc — ¢t]| < 8,Ve € C}, where § > 0
denotes the size of the region. Using the observed latency
r1(s¢,¢t), the latency under other configurations in C(c;) can
be estimated as

’ﬁt(shc) = f(C, rt(st,Ct))7VC € C(ct)7 (1)

where f : C x Rt — RT is the latency estimation function
and f(cg, (st ¢t)) = ri(sg, ¢). Based on (1), we update the
perception of the expected cumulative discounted latency in
the region by

Ve e Cler), Qry1(st,0) = (1 — ar)Qe(se,¢) + ar(Fe(se, €)
+v fcnelg Qt(st+1,0)),

2
where oy € [0, 1] is the learning rate. As is standard, the learn-
ing rate is assumed to satisfy > .o, oy =00 and >0, aF <
oo. The perceptions of other configurations (¢ ¢ C(c;)) will
remain the same, i.e., Q41(s¢,¢) = Qi(st,¢), Ve & C(ct).

2) Policy update: Based on the perceptions, we can use the
Boltzmann distribution [30] to update the policy for state s;

mi(se,¢) = BB s Ve e C, 3)

Euclidean Distance

IS

3 g

o

T 6

®

o

84

c

g 2

10
6
4
intra-op inter-op

Fig. 8: An example of Euclidean distance
between two configurations c1 and Co, ie.,

\/ (Cslervice _ ngervice)z + (cilnler _ Ci2mer)2 + (Cilmra _ ciinra)Q.

where 8 > 0 controls the exploration-exploitation trade-off.
When 3 is very small, the scheduler would explore the space
randomly; when /3 is large, the scheduler would tend to exploit
the configuration with the lowest perceived latency.

It is worth noting that the accuracy of the latency estimation
(1) directly impacts the performance of the RRL approach.
Due to the stochastic nature of the state and the latency, it
is challenging to characterize f in a closed form in practice.
To tackle this challenge, we use neural network to implement
this estimation function as discussed in Section V. The detailed
description of the RRL approach is given in Algorithm 1.

Algorithm 1 Region-based reinforcement learning

Initialization: Choose 3, ¢, and ~y. Set t = 0 and Qy(s,¢) =
1/|C|, YeeC,s € S.

For each time slot ¢

1) Choose a configuration based on the current policy ;.
2) Update the perception based on Eq. (2).

3) Update the policy for the current state s; using Eq. (3).

C. Performance Analysis of RRL

In this section, we will analyze the convergence rate and
optimality performance of the RRL approach. To facilitate the
analysis, we assume that the estimation error of the latency
estimation (1) is upper bounded by A > 0 for all state-
configuration pairs in the space, i.e.,

|7t (s¢,¢) — (8t 0)] < A, Ve € Cley), st €S,)

where r4(s¢,c) denotes the real latency that can be observed
if the configuration c¢ is chosen. In (4), A is intimately related
to the size of the region J. In general, A increases with ¢,
and A becomes zero when ¢ is zero.* The main results are
summarized in the following theorem.

Theorem 1. The RRL approach can asymptotically con-
verge to a near optimal solution with probability one as t
goes to infinity. The performance gap is upper bounded by

4Note that A also highly depends on the accuracy of the estimation func-
tion. In this paper, a neural network based estimation function is implemented,
and the error bound is shown to be small in our experiments.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

%. The asymptotic convergence rate is O(1/(nst)Z1=7)

if R(1 —~) < 1/2 and O(y/loglog(nst)/(nst)) otherwise,
where ns denotes the number of state-configuration pairs in
the region with size § and R denotes the ratio of the minimum
and maximum state-configuration selection probabilities.

Proof. Proof can be found in Reference [1].
O

Remarks: Theorem 1 confirms our intuition that the RRL
approach can accelerate the convergence speed of the rein-
forcement learning such that the larger n; (i.e., the larger 9),
the faster the RRL converges. However, the fast convergence
speed is at the cost of performance loss, i.e., there would be
a gap & between the RRL and the optimal solution. When
6 = 0, we have ng = 1 and A = 0, and the results of Theorem
1 degenerates to the results for the traditional point-based
reinforcement learning [31]. Thanks to the unique structure
of our problem (see Fig. 3), we use Bayesian Optimization to
choose a suitable size of the region with fast learning speed
as well as near-optimal performance (see Section IV-D).

D. Adaptive RRL

From the analysis of RRL, it is shown that excessive
region size can lead to large performance gap, whereas small
region size leads to low convergence rate. In order to find a
suitable region size, we propose a Bayesian based optimization
approach to automatically adjust region size to achieve fast
learning speed as well as near-optimal performance.

Specifically, we introduce an acquisition function to charac-
terize the expected latency improvement under a give region
size as our optimization target,

a(0) = E[(F(67) — r(8)) "], (5)

where 7(6*) is the best observed average latency and
0* is the corresponding region size. r(4) denotes the la-
tency random variable following Gaussian distribution G ~
N(m(6),0(8,46")) with mean m(d) and covariance o(d,0").
In each iteration, we choose the region size ¢ that maximizes
the acquisition function « and use this 6 for RRL perception.
Then, the observed average latency 7(9) will be added into the
sample set, and the mean m(d) and covariance o(d,0") of G
will be updated based on Bayesian optimization [32]. The idea
is to model the unknown function between the region size and
the latency as a multivariate Gaussian distribution, and then
use a computational cheap acquisition function to guide the
search for the optimal point. Thus, we can reduce the latency
by adaptively adjusting region size. The details are given in
Algorithm 2.

V. IMPLEMENTATION

In this section, we discuss the implementation of the pro-
posed approach. Specifically, we focus on the neural network
based estimation function design as the Tensorflow Serving
integration of the proposed framework has been described in
our previous work [1].

Algorithm 2 RRL Plus

Initialization: Initialize sample set D.

For each time slot ¢

1) Calculate the region size § by maximizing «, i.e., § =
argmazx «(9).

2) ljspdate the perception with region size § using Eq. (2).
3) Update the policy for the current state s; using Eq. (3).
4) Get the current average latency 7¢(d), and update the
sample set D = {D,(4,7:())} and the parameters m(d)
and o(9,¢") using D.

A. Neural Network based Estimation Function

It is challenging to characterize the estimation function
in a closed form as discussed in Section IV. Since Neural
network based approaches have shown great potentials in
many applications [33], we propose a neural network based
estimation function in this paper. To support swift machine
learning serving scheduling, one key challenge is how to find
a suitable neural network structure for the estimation function
(1). Simple network structure may not effectively capture the
structure of the underlying state-configuration space, which
may lead to high estimation error [34]; complicated network
structure may take a long training time, which is not suitable
for online serving systems.

As indicated in previous study [34], we need to strike
a balance between complexity and efficiency. Our network
design contains two hidden layers (one with 256 neurons
and the other with 64 neurons) using ReLu [35] as acti-
vation function and one output layer with linear activation,
after experimenting different network structures. Follow-the-
regularized-Leader (FTRL) [36] optimizer is used to optimize
network parameters instead of the Adam method or other
popular optimizers. This is because the number of training
samples in our problem is far less than the number of state-
configuration pairs in the space during online tuning, and thus
FTRL performs well here. Moreover, FTRL is insensitive to
model parameters. Our experiments in Tensorflow Serving
show that FTRL performs well even where there is limited
training data (see Section VI).

B. Tensorflow Serving Integration

The proposed scheduling framework is integrated into Ten-
sorflow Serving [13], a popular production-ready machine
learning serving system. While we do a case study with
Tensorflow Serving, we do not rely on any Tensorflow specific
features and nothing prevents the proposed work being inte-
grated into other machine learning serving systems. All the
implementation details can be found in [1].

VI. EXPERIMENTAL EVALUATION

In this section, we conduct extensive experimental evalu-
ation simulating heterogeneous IoT environments and work-
loads to corroborate the effectiveness and robustness of the
proposed RRL-based scheduling framework using a rich se-
lection of state-of-the-art machine learning applications on

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

both CPU and GPU based infrastructure. We first evaluate
the sensitivity of RRL in convergence speed by adjusting the
region size, and compare RRL Plus and RRL in terms of
convergence process. Then we compare RRL Plus with the
latest reinforcement learning approaches for the following four
key features in IoT applications: (i) minimizing latency for
image classification; (ii) minimizing latency for speech recog-
nition; (iii) satisfying strict SLO guarantee; (iv) effectiveness
of meeting SLO while minimizing resource usage.

A. Experimental Setup

Machine Learning Serving System: We prototype RRL
based scheduling framework and integrate it in Tensorflow
Serving, refer to [1] for more details.

Service Workloads: We use three machine learning models
commonly used in IoT applications for evaluation: image
classification models Inception V3 [37], Inception ResNet
V2 [38], and speech recognition model Deep Speech V2 [39].
They cover popular machine learning tasks in IoT applications
such as smart home, smart city and autonomous driving.
Arrival Process: We use two non-exponential arrival pro-
cesses simulating IoT workloads for evaluation:

e WiKi: an arrival process based on traces of user traffic
visiting Wikipedia website [40] with unpredictable load spikes
to simulate the request patterns in IoT applications.

e Dynamic: a synthetic dynamic arrival process composed
of periods of Poison process with randomly changing average,
which has pronounced changes from one period to the next.
Hardware: We use a cluster of 10 identical servers. Each of
them is equipped with dual-sockets Intel(R) Xeon(R) CPU ES-
2630 v4 @ 2.20GHz with hyper-threading disabled and four
NVIDIA GeForce GTX 1080 Ti GPUs, 64 GB of memory,
and connected through Infiniband.

Baseline Approaches: Since there is no alternative intelligent
scheduling framework for a direct comparison, we opt to im-
plement the state-of-the-art reinforcement learning approaches
for tuning parallelism configuration in our scheduling frame-
work: CAPES [15] and DeepRM [14], as they are the closest
approaches for online ML-serving scheduling. DeepRM is
a job scheduling algorithm designed to work under limited
resources and CAPES is a general-purpose parameter tuning
algorithm.

SLO Setting: As our testbed is not production-level, we set
relatively loose SLOs in our evaluation, i.e., a range between
400ms and 2500ms to emulate different latency requirements
for ML serving in production, which is consistent with previ-
ous studies [25], [8], [20].

B. Convergence Speed Analysis of RRL and RRL Plus

The key tuning parameter in RRL is the region size as it
controls the trade-off between convergence speed and opti-
mality. We validate the theoretical results in Theorem 1 by
sensitivity analysis of RRL using Inception, as illustrated in
Fig. 9. The results show the convergence time measured in
iteration (left y-axis) and distance from optimal Q-learning
function (right y-axis) as a function of the region size. It is
clear that convergence time drops very quickly when the region

Sensitive Analysis on Inception1 500Soensitive Analysis on DeepSpeec1h

S 6000

©

8 0.8 4000 08 »
=2 S
'3 4000 5
5 0.6 3000 062
Q.

@ 2
8 0.4 2000 04 2
£ 2000 B
2 0.2 1000 02 &
>

c

o

o

0 0
012345678910
Region Size

0 0
012345678910
Region Size

Fig. 9: Sensitivity analysis of RRL in terms of the convergence time
in iteration (left y-axis) and the prediction error (right y-axis) as a
function of region size using Inception and DeepSpeech.

0 Performance of RRL Plus and RRL

800
—RRL Plus
—RRL
6000
>
2
© 4000 |
@©
—
2000
0 h —a L
0 50 100

Time
Fig. 10: Performance comparisons of RRL Plus with adaptive region

size and RRL with fixed region size on Inception. RRL Plus has
shorter learning process and lower latency.

size increases while the prediction error increases in a much
slower speed. For example, when the region size is one, RRL
converges five times faster than Q-learning, which verifies the
potential of the region based methodology. When region size is
zero, RRL degenerates to point-based learning, which has the
same accuracy and the longest convergence time as Q learning.
We use RRL Plus to controls the balance of performance and
convergence time.

We evaluate the effectiveness of our adaptive algorithm RRL
Plus by comparing it to the RRL with fix region size. Fig. 10
shows the convergence process between RRL Plus and RRL. It
can be inferred that during the converging process, RRL Plus
performs better and has shorter learning process. On average,
RRL Plus has 17.54% less converge time and 15.31% less
latency.

C. Minimizing Serving Latency for Image Classification

In this section, we evaluate the famous image classification
model Inception on RRL Plus and the two baseline Deep Rein-
forcement Learning approaches: DeepRM[14] and CAPES[15]
to compare their effectiveness of minimizing serving latency
on both CPU and GPU based infrastructure under WiKi
and Dynamic arrival processes. This evaluation aims to test
the algorithms’ ability to keep low response latency under
perturbation which are common in IoT applications.

WiKi arrival process. We show latency results of Inception
running on CPU cluster in Fig. 11(b) using WiKi trace to

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

0 (a) Arrival Process (WiKi)

(c) Arrival Process

02 920
15 & 15
g :
ES £10
< o <
0 1000 2000 0 1000 2000
Time(min) Time(min)
(b) Latency (WiKi) (d) Latency (Dynamic)
. Inception (CPU) Inception (CPU)
7 X ﬂ ; 6! i it 7 W A [} i iy
£ 700 [l fbshiiin nipowe E b T i
\5 “:‘:““‘ i H, Wk bl ! \5700 g\ gﬂ ‘}’11 (“‘
§200 " i T 200 RIS A
3 ! 3 L ‘
0 1000 2000 0 1000 2000
Time(min) Time(min)
- CAPES DeepRM —— RRLPlus |

Fig. 11: Comparisons of RRL Plus with CAPES and DeepRM under
different arrival processes and service workloads. The first column
(a)(b) shows the first scheduling objective of minimizing latency
using WiKi as arrival process for Inception; the second column (c)(d)
also shows the scheduling objective of minimizing latency but under

(c) Arrival Process

20 (a) Arrival Process (WiKi)

2 20
& 15) 15
© 10 T
> >
£ 5 10
< <
0 1000 2000 0 1000 2000
Time(min) Time(min)
(b) Latency (WiKi) (d) Latency (Dynamic)
R DeepSpeech (CPU) . DeepSpeech (CPU)
2] T I R] W @ TR T N TR S s 2l
S TN O B HE L it £ ol s 5 AR
IS AT A R 1 T 52000 VSRR L R
€ 2000 |eMBARE R it S LR
% 700 i ‘ iR % 700 i; ¥ h Al
- - ' — 200
0 1000 2000 0 1000 2000
Time(min) Time(min)
- cAPES DeepRM —— RRLPlus |

Fig. 12: Comparisons of RRL Plus with CAPES and DeepRM under
different arrival processes and service workloads. The first column
(a)(b) shows the first scheduling objective of minimizing latency
using WiKi as arrival process for Inception on CPU; the second
column (c)(d) also shows the scheduling objective of minimizing
latency but under dynamic arrival process for Inception on CPU.

drive the arrival process, which is demonstrated in Fig. 11(a).
The results verify that RRL Plus converges much faster than
the baseline approaches, i.e., RRL Plus converges to a near
optimal performance in about 150 minutes, while DeepRM
roughly converges around 1400 minutes with variance and
CAPES could not converge even after 2000 minutes. The
results also show that RRL Plus is able to achieve better
latency performance compared to deep reinforcement learning
based approaches, thanks to the swift learning capabilities.
More specifically, the average latency of RRL Plus improves
from CAPES and DeepRM by 70.1% and 75.2% respectively
for Inception.

Dynamic arrival process. Workload can change dynamically
over time in practice. In this section, we evaluate the robust-
ness of the proposed scheduling framework in terms of the
ability to quickly adapt to the workload change. We use a
synthetic dynamic arrival process for evaluation, as shown in
Fig. 11(c), the arrival change is more pronounced than the
WiKi arrival process, which emulates the change of user traffic
patterns over time.

The latency results are shown in Fig. 11(d). The results
suggest that RRL Plus can adapt to the user traffic change
quickly with limited number of samples thanks to the region-
based learning approach, which leads to a much shorter
adapting time and more stable latency performance compared
to CAPES and DeepRM. In contrast, DeepRM takes a much
longer time to update scheduling polices and CAPES shows
significant variation due to its slow learning process. On
average, RRL Plus reduces the latency of Inception by 71.0%
and 59.9% compared to CAPES and DeepRM respectively.

D. Minimizing Serving Latency for Speech Recognition

One key feature of speech recognition application is that
its requests are heterogeneous since the user can say a long
sentence as well as just a few words, which is challenging to
scheduling system as the system has no a priori knowledge
of the computation cost of requests. Thus it requires the
scheduling system the ability to handle requests with various
lengths. The application we use is DeepSpeech V2, a reputable
speech recognition model.

Wiki arrival process. The latency results on CPU cluster for
DeepSpeech are shown in Fig. 12(b). Similar to previous eval-
uation, RRL Plus reaches a near optimal configuration within
shorter adapting time compared to CAPES and DeepRM.
RRL Plus has better performance than CAPES by 88.9% and
DeepRM by 80.7% on average.

Dynamic arrival process. As it shown in Fig. 12(d), even
under ever changing arrival process and heterogeneous request,
RRL Plus is still able to keep a stable and low response latency
whereas DeepRM has slower converge rate and CAPES shows
significant variation. On average, RRL Plus reduces the
latency of DeepSpeech by 86.0% and 63.3% compared to
CAPES and DeepRM respectively.

E. Minimizing Serving Latency on GPU Infrastructure

As explained in earlier sections, the parallelism on GPU
is controlled by the hardware scheduler and difficult to be
adjusted through software approaches. Here we control the
parallelism using an indirect approach by tuning the batching
parameters (parallel batch threads, batch size, and batch time-
out). Similar as CPU case, we use scaled WiKi workload and
CAPES and DeepRM as baselines and report the results in
Fig. 13. Compared with CPU results, the variance in latency
is higher on GPU which is caused by the indirect control
mechanism. In spite of the challenge of high variance, RRL
Plus still converges quickly and outperforms CAPES and
DeepRM in latency. Specifically, RRL Plus performs 56.5%
better than DeepRM and 68.1% than CAPES.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

(a) Arrival Process (WiKi) 560) Arrival Process (Dynamic)

20 o
& 50 e
T 40
240 2
<30 <30
0 1000 2000 0 1000 2000
Time(min) Time(min)
(b) Latency (WiKi) (d) Latency (Dynamic)
PU)

‘ Incpetion (G

0 1000 1000

2000 0 2000
Time(min) Time(min)
[~ capes DeepRM —— RRLPlus |

Fig. 13: Comparisons of RRL Plus with CAPES and DeepRM under
different arrival processes and service workloads. The first column
(a)(b) shows the first scheduling objective of minimizing latency
using WiKi as arrival process for Inception on GPU; the second
column (c)(d) also shows the scheduling objective of minimizing
latency but under dynamic arrival process for Inception on GPU.

Fig.13(d) shows the evaluation on GPU-based infrastructure
under dynamic workload. The indirectly controlled parallelism
on GPU leads to a slower adapt speed than CPU case.
However, even in this challenging scenario, RRL Plus still
consistently outperforms CAPES and DeepRM by 71.5% and
55.7% on average respectively.

F. Meeting SLO With Minimum Resources

We evaluate our approach under the scenario of meeting
strict SLO target, i.e., 95th percentile latency SLO of 235ms
for Inception and 1060ms for Deepspeech.’ Fig. 14 (note
that x-axis is logscale) demonstrates the CCDF of RRL Plus
latency on CPU cluster and GPU cluster compared with the
baselines. The tail comparison indicates that RRL Plus has
shorter tail latency and can provide strict SLO guarantee.
Compared with CAPES and DeepRM, RRL Plus achieves
up to 89.3% and 91.6% SLO violation reduction respectively,
thanks to its SLO-aware design.

Our scheduling framework also supports another common
scheduling objective in IoT applications which is meeting
relatively loose SLO while minimizing the resource usage
(e.g., cloud environment or shared cluster). The evaluations on
CPU and GPU infrastructure of this scheduling objective using
DeepSpeech, ResNet, and Inception under dynamic workload
are shown in Fig. 15.

CPU Cluster. Fig. 15(b) shows the latency of DeepSpeech
running on CPU cluster over the time using different schedul-
ing methods, where both CAPES and DeepRM perform poorly
on achieving the SLO target. DeepRM spent around 500
minutes before finding a scheduling policy that can achieve

51t is worth to emphasize again that the relative high latency is because our
testbed is not enterprise scale nor equipped with latest hardware, so both the
processing time and the queuing waiting time is relatively high.

(a) Latency (Dynamic)
Inception (CPU)

(b) Latency (Dynamic)
DeepSpeech (CPU)
T

100 100 (<o
\ AN [
N |
70 -\ =g
S e N
w I i .
[=) | ~e=
o
o |
I
|
5l __
300 750 2000 500 1000 2000
Latency (ms) Latency (ms)
o CAPES DeepRM —— RRL Plus

Fig. 14: Comparisons of RRL Plus with CAPES and DeepRM
under strict SLO (95th percentile latency of 235ms for Inception and
1060ms for Deepspeech).

the SLO but at the expense of high CPU utilization whereas
CAPES violates the SLO when the workload increases. RRL
Plus in contrast always guarantees the SLO, even during
abrupt workload changes. Another comparison is on resource
utilization, which is critical for consolidating resources and
achieve cost efficient serving. We report the CPU utilization
at Fig. 15(c), where RRL Plus consistently consumes much
less CPU resource than both CAPES and DeepRM, which is
especially important for commercial IoT applications with a
rather large number of requests from all end devices. Similar
observations hold for the ResNet results in Figs. 15(e)(f),
where all three methods achieve SLO in a short time, but
RRL Plus uses only one third CPU resources compared to
the deep reinforcement learning based methods. On average,
compare with CAPES and DeepRM, RRL Plus uses 32.0%
and 35.0% less CPU resources respectively for DeepSpeech.
For ResNet, the resource saving is even more significant: RRL
Plus on average saved 61.8% compared to CAPES and 68.9%
compared to DeepRM.

GPU Cluster. We show the GPU results in Figs. 15(h)(i),
where RRL Plus keeps a stable latency right under SLO and
only uses half GPU resources compared with DeepRM. On
average, RRL Plus saved 43.7% GPU resources compared with
DeepRM. Compared with CAPES, RRL Plus uses same level
of GPU resources and achieves 38.8% latency reduction and
98.6% SLO violation reduction.

G. Discussion

Evaluation results show that RRL Plus outperforms RRL
and other standard deep reinforcement learning methods in
both speed and accuracy. RRL Plus uses the unique character-
istics of ML-serving to accelerate the learning process: when
parallelism changes, the latency is quite versatile globally
while smooth locally. Other methods do not have such insights.
Compared with RRL, PPL Plus automatically sets the region
size during optimization, which leads to less convergence time.
When environment/workload changes, RRL Plus may have
already converged to a near optimal solution, whereas other
methods may be still far away. Therefore, in online systems,
RRL Plus outperforms the standard deep reinforcement learn-
ing methods in both speed and accuracy.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

10
20 (a) Arrival Process (Dynamic) 5 (d) Arrival Process (Dynamic) 50 (g) Arrival Process (Dynamic)
2 g L
% 15 & 15 s
g g g4
£ 10 £ 10 z
< < <
5 5 30
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Time(min) Time(min) Time(min)
(b) Latency (Dynamic) (e) Latency (Dynamic) (h) Latency (Dynamic)
DeepSpeech (CPU) ResNet (CPU) 2000 Incpetion (GPU)
%‘/ 2000 :’; 2000 %‘/
5 S 500 3
8 500 3 S
0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Time(min) Time(min) Time(min)
(c) CPU util. (Dynamic) (f) CPU util. (Dynamic) (i) GPU util. (Dynamic)
DeepSpeech (CPU) ResNet (CPU) Incpetion (GPU)

c je e

S S 06 S

I¥ 8 So2

= 504 =

S = =]

-] -]

[z 02 T

& O 9 O o

0 500 1000 1500 2000 0 500 1000 1500 2000 0 500 1000 1500 2000
Time(min) Time(min) Time(min)
|_ ______ CAPES DeepRM —— RRL Plus

Fig. 15: Comparisons of RRL Plus with CAPES and DeepRM when achieving SLO while optimizing resource usage (i.e., CPU and GPU
utilization) under dynamic arrival processes and service workloads. (a)-(f) shows the scheduling objective of minimizing CPU utilization
with respect to given SLOs for model DeepSpeech and ResNet under dynamic workloads. (g)(h)(i) shows the second scheduling objective
of achieving SLO while minimizing GPU usage with Inception under dynamic arrival process. The SLOs for DeepSpeech, ResNet and

Inception are 2000ms, 2500ms, and 400ms, respectively.

VII. RELATED WORK
A. Machine Learning in loT Applications

IoT applications have brought the number of end devices
and the information they collected to a magnitude higher [41],
[42]. To manage, process and utilize such large amount of data,
machine learning has been applied to many IoT scenarios.

Mohammadi et al. [43] apply a semisupervised reinforce-
ment learning algorithm to smart city scenario that improves
the accuracy of indoor localization. Cao et al. [44] combines
SVM with belief network to optimize wireless network capac-
ity. Chen et al. [45] use extreme learning machine to recognize
human activity from data collected by smart health sensors.
Liang et al. [46] detects soil moisture by applying neural
network to sensor data.

However, a key challenge of combining machine learning
with IoT applications is that IoT devices are usually low-
energy and embedded whereas machine learning models need
considerable memory and computational power to run. Reagen
et al. [47] propose a design of hardware accelerator to accom-
modate DNN in IoT devices. Dhurandhar et al. [48] develop
a method to compress RNN models to reduce resource usage.
Even with the aid of these approaches, it is often infeasible to

deploy machine learning to end devices, thus using machine
learning as cloud service is a popular choice for many IoT
applications.

B. Machine Learning Serving

How to efficiently deploy trained machine learning models
in serving (or sometimes called inference) mode to provide low
latency services has drawn great attention in both academia
and industry [49], [8], [20] . Several machine learning serving
systems have been open-sourced recently [13], [49], [50].
Hardware acceleration [51] has been used to accelerate the
computation in machine learning serving. Software techniques
using model compression and simplification [52], compiler
techniques [53] and acceleration library [54] have also suc-
cessfully reduced model computation time.

Another promising technique for reducing the latency of
machine learning serving is parallelism [11]. Request par-
allelism, inter-op parallelism, and intra-op parallelism are
the typical ways to parallel computation on CPU in today’s
machine learning serving systems. On GPU, computation is
parallelized through SMs and scheduling partitions which can
be indirectly adjusted through batching parameters such as

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

batch size, batch threads, and batch timeout. As discussed in
the introduction, existing methods [19], [18], [8], [20] either
require domain specific information to tune the parallelism
configuration or are applicable for special arrival process with
homogeneous request size in certain applications. To achieve
a more general solution, we design a scheduling framework
that can work with general user traffic patterns and system
environments on both CPUs and GPUs based infrastructure.

C. Parameter Tuning using Reinforcement Learning

During 1940s, reinforcement learning [55] was first pro-
posed and has been widely used in different applications.
Here we focus on the works that apply reinforcement learning
to system parameter tuning. Mao et al. propose reinforce-
ment learning based resource management method for multi-
resource cluster scheduling problem [14]. Li et al. develop
a reinforcement learning based parameter tuning system for
storage systems [15]. Both works use traditional point-based
reinforcement learning and suffer from slow convergence and
adaptivity. Mirhoseini et al. propose to optimize Tensorflow
operation placement between CPU and GPU using long short-
term memory (LSTM), which is applicable for only CPU-
GPU co-design architecture [56]. In our previous work [1],
we present initial results of performance tuning using the
RRL approach. However, the region size is hand-tuned and
fixed throughout the optimization process, which leads to a
performance gap between the RRL solution and the optimal
one. In this paper, we develop an enhanced region-based
reinforcement learning based framework using Bayesian Op-
timization to dynamically update the region size, in order to
improve the convergence speed and the agility in dynamic
environment.

VIII. CONCLUSION

In this paper, we proposed a RRL-based scheduling frame-
work for machine learning serving in IoT applications that
can efficiently identify optimal configurations under dynamic
workloads. A key observation is that the system performance
under similar configurations in a region can be accurately
estimated by using the system performance under one of
these configurations due to their correlation. We theoretically
showed that the RRL approach can achieve fast convergence
speed at the cost of performance loss. To reduce the perfor-
mance loss, we proposed an adaptive RRL algorithm, namely
RRL Plus, to balance the convergence speed and the optimal-
ity. The proposed framework was prototyped and evaluated
on Tensorflow Serving system. Convergence analysis indicates
that RRL Plus can shorten the average convergence time by
17.54% and reduce the average latency by 15.31%, compared
to RRL. Extensive experimental evaluation on both CPU clus-
ter and GPU cluster show that the RRL Plus can quickly adapt
to the dynamics of workloads and system environments. The
proposed scheduling framework can reduce the average latency
by up to 88.9% on CPU cluster and 71.5% on GPU cluster,
compared to the state-of-the-art Deep Reinforcement Learning
based methods (DeepRM and CAPES). In the SLO-aware
scenario, the RRL Plus can reduce up to 91.6% SLO violation

11

under strict SLO requirements, while reducing the resource
usage by up to 68.9% on CPU and 43.7% on GPU under loose
SLO requirements. In addition, the proposed solution does not
have assumptions on workload or underlying systems and thus
can be used for most modern machine learning systems and
applications.

ACKNOWLEDGMENT

This work is supported in part by the following grants:
National Science Foundation CCF-1756013, 11S-1838024 (us-
ing resources provided by Amazon Web Services as part of
the NSF BIGDATA program), EEC-1801727, and Amazon
Web Services Cloud Credits for Research Award. We also
acknowledge the support of Research & Innovation and the
Office of Information Technology at the University of Nevada,
Reno for computing time on the Pronghorn High-Performance
Computing Cluster.

REFERENCES

[1] H. Qin, S. Zawad et al, “Swift machine learning model serving
scheduling: a region based reinforcement learning approach,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis, SC 2019, Denver,
Colorado, USA, November 17-19, 2019, M. Taufer, P. Balaji, and A. J.
Pena, Eds. ACM, 2019, pp. 13:1-13:23.

[2] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Commun. ACM, vol. 60,
no. 6, pp. 84-90, 2017.

[3] D. Amodei, S. Ananthanarayanan et al., “Deep speech 2 : End-to-end
speech recognition in english and mandarin,” in Proceedings of the
33nd International Conference on Machine Learning, ICML 2016,
New York City, NY, USA, June 19-24, 2016, ser. IMLR Workshop
and Conference Proceedings, M. Balcan and K. Q. Weinberger, Eds.,
vol. 48. JMLR.org, 2016, pp. 173-182.

[4] J. Andreas, M. Rohrbach er al., “Learning to compose neural networks
for question answering,” in NAACL HLT 2016, The 2016 Conference
of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, San Diego California,
USA, June 12-17, 2016, K. Knight, A. Nenkova, and O. Rambow, Eds.
The Association for Computational Linguistics, 2016, pp. 1545-1554.

[5] D. Silver, A. Huang et al., “Mastering the game of go with deep neural
networks and tree search,” Nature, vol. 529, no. 7587, pp. 484489,
2016.

[6] M. Ribeiro, K. Grolinger, and M. A. Capretz, “Mlaas: Machine learning
as a service,” in 2015 IEEE 14th International Conference on Machine
Learning and Applications (ICMLA). 1EEE, 2015, pp. 896-902.

[71 M. Zhang, S. Rajbhandari et al., “Accelerating large scale deep learning
inference through deepcpu at microsoft,” in 2019 USENIX Conference
on Operational Machine Learning, OpML 2019, Santa Clara, CA,
USA, May 20, 2019., B. Ramsundar and N. Talagala, Eds. USENIX
Association, 2019, pp. 5-7.

[81 F. Yan, Y. He et al., “SERF: efficient scheduling for fast deep
neural network serving via judicious parallelism,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, SC 2016, Salt Lake City, UT, USA,
November 13-18, 2016, J. West and C. M. Pancake, Eds. IEEE
Computer Society, 2016, pp. 300-311.

[9] J. Dean, G. Corrado et al., “Large scale distributed deep networks.” in

NIPS, 2012.

T. Chilimbi, J. Apacible et al., “Project adam: Building an efficient and

scalable deep learning training system,” in OSDI, 2014.

L. Bottou, “Large-scale machine learning with stochastic gradient de-

scent,” in COMPSTAT, 2010.

I. Tanasic, I. Gelado et al., “Enabling preemptive multiprogramming

on gpus,” in ACM/IEEE 41st International Symposium on Computer

Architecture, ISCA 2014, Minneapolis, MN, USA, June 14-18, 2014.

IEEE Computer Society, 2014, pp. 193-204.

[10]
(11]

[12]

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]
[29]
(30]

(31]

[32]

[33]

[34]

[35]

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Things Journal

C. Olston, N. Fiedel et al., “Tensorflow-serving: Flexible, high-
performance ml serving,” arXiv preprint arXiv:1712.06139, 2017.

H. Mao, M. Alizadeh et al., “Resource management with deep rein-
forcement learning,” in Proceedings of the 15th ACM Workshop on Hot
Topics in Networks. ACM, 2016, pp. 50-56.

Y. Li, K. Chang et al, “Capes: unsupervised storage performance
tuning using neural network-based deep reinforcement learning,” in
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. ACM, 2017, p. 42.

C. Chen, A. Seff et al, “Deepdriving: Learning affordance for
direct perception in autonomous driving,” in 2015 IEEE International
Conference on Computer Vision, ICCV 2015, Santiago, Chile, December
7-13, 2015. IEEE Computer Society, 2015, pp. 2722-2730.

M. Abadi, A. Agarwal et al., “Tensorflow: Large-scale machine learning
on heterogeneous distributed systems,” CoRR, vol. abs/1603.04467,
2016.

O. Alipourfard, H. H. Liu et al., “Cherrypick: Adaptively unearthing the
best cloud configurations for big data analytics.” in NSDI, vol. 2, 2017,
pp. 4-2.

M. Jeon, Y. He et al., “Adaptive parallelism for web search,” in EuroSys,
2013.

F. Yan, Y. He et al., “Efficient deep neural network serving: Fast and
furious,” IEEE Trans. Network and Service Management, vol. 15, no. 1,
pp. 112-126, 2018.

M. Li, L. Zeng et al., “Mronline: Mapreduce online performance
tuning,” in Proceedings of the 23rd international symposium on High-
performance parallel and distributed computing. ACM, 2014, pp. 165—
176.

T. Wang, H. Luo e? al., “Crowdsourcing mechanism for trust evaluation
in cpcs based on intelligent mobile edge computing,” ACM Trans.
Intell. Syst. Technol., vol. 10, no. 6, pp. 62:1-62:19, Oct. 2019.

T. Wang, P. Wang et al., “A unified trustworthy environment establish-
ment based on edge computing in industrial iot,” IEEE Transactions on
Industrial Informatics, pp. 1-1, 2019.

C. Zhang, H. Tian et al., “Stay fresh: Speculative synchronization for
fast distributed machine learning,” in The 38th IEEE International Con-
ference on Distributed Computing Systems (ICDCS), Vienna, Austria,
July, 2018, 2018.

C. Zhang, M. Yu et al., “Mark: Exploiting cloud services for cost-
effective, slo-aware machine learning inference serving,” in 20719
{USENIX} Annual Technical Conference ({USENIX}{ATC} 19), 2019.
Z. Zhang, L. Cherkasova, and B. T. Loo, “Optimizing cost and perfor-
mance trade-offs for mapreduce job processing in the cloud,” in NOMS,
2014.

J. Oly and D. A. Reed, “Markov model prediction of I/O requests
for scientific applications,” in Proceedings of the 16th international
conference on Supercomputing, ICS 2002, New York City, NY, USA, June
22-26, 2002, K. Ebcioglu, K. Pingali, and A. Nicolau, Eds. ACM, 2002,
pp. 147-155.

M. G. Azar, R. Munos et al., “Speedy q-learning,” in Advances in neural
information processing systems, 2011.

A. M. Devraj and S. P. Meyn, “Fastest convergence for g-learning,”
arXiv preprint arXiv:1707.03770, 2017.

E. Aarts and J. Korst, “Simulated annealing and boltzmann machines,”
1988.

C. Szepesvdri, “The asymptotic convergence-rate of g-learning,” in
Advances in Neural Information Processing Systems, 1998, pp. 1064—
1070.

J. Snoek, H. Larochelle, and R. P. Adams, “Practical bayesian
optimization of machine learning algorithms,” in Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural
Information Processing Systems 2012. Proceedings of a meeting held
December 3-6, 2012, Lake Tahoe, Nevada, United States., P. L. Bartlett,
F. C. N. Pereira et al., Eds., 2012, pp. 2960-2968.

D. Silver, A. Huang et al., “Mastering the game of go with deep neural
networks and tree search,” nature, vol. 529, no. 7587, p. 484, 2016.

J. Fu, A. Kumar et al., “Diagnosing bottlenecks in deep g-learning
algorithms,” in Proceedings of the 36th International Conference
on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, ser. Proceedings of Machine Learning Research,
K. Chaudhuri and R. Salakhutdinov, Eds., vol. 97. PMLR, 2019, pp.
2021-2030.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted boltz-
mann machines,” in Proceedings of the 27th international conference on
machine learning (ICML-10), 2010, pp. 807-814.

(36]

(371

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]
[51]
[52]
(53]
[54]

[55]

[56]

[57]

12

J. D. Abernethy, E. Hazan, and A. Rakhlin, “Competing in the dark:
An efficient algorithm for bandit linear optimization,” in 21st Annual
Conference on Learning Theory - COLT 2008, Helsinki, Finland, July
9-12, 2008, R. A. Servedio and T. Zhang, Eds. Omnipress, 2008, pp.
263-274.

C. Szegedy, V. Vanhoucke et al., “Rethinking the inception architec-
ture for computer vision,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 2818-2826.

C. Szegedy, S. Ioffe et al., “Inception-v4, inception-resnet and the impact
of residual connections on learning.” in AAAZ vol. 4, 2017, p. 12.

D. Amodei, R. Anubhai et al., “Deep speech 2 : End-to-end speech
recognition in english and mandarin,” in Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New
York City, NY, USA, June 19-24, 2016, ser. JMLR Workshop and
Conference Proceedings, M. Balcan and K. Q. Weinberger, Eds.,
vol. 48. JMLR.org, 2016, pp. 173-182.

G. Urdaneta, G. Pierre, and M. van Steen, “Wikipedia workload analysis
for decentralized hosting,” Elsevier Computer Networks, vol. 53, no. 11,
pp. 1830-1845, July 2009.

J. A. Stankovic, “Research directions for the internet of things,” IEEE
Internet of Things Journal, vol. 1, no. 1, pp. 3-9, 2014.

T. Wang, Y. Mei et al., “Edge-based differential privacy computing
for sensor-cloud systems,” J. Parallel Distrib. Comput., vol. 136, pp.
75-85, 2020.

M. Mohammadi, A. I. Al-Fugaha et al, “Semisupervised deep
reinforcement learning in support of iot and smart city services,” IEEE
Internet of Things Journal, vol. 5, no. 2, pp. 624635, 2018.

X. Cao, R. Ma et al., “A machine learning-based algorithm for joint
scheduling and power control in wireless networks,” IEEE Internet of
Things Journal, vol. 5, no. 6, pp. 4308-4318, 2018.

M. Chen, Y. Li et al., “A novel human activity recognition scheme
for smart health using multilayer extreme learning machine,” IEEE
Internet of Things Journal, vol. 6, no. 2, pp. 1410-1418, 2019.

J. Liang, X. Liu, and K. Liao, “Soil moisture retrieval using UWB
echoes via fuzzy logic and machine learning,” IEEE Internet of Things
Journal, vol. 5, no. 5, pp. 3344-3352, 2018.

B. Reagen, P. N. Whatmough et al., “Minerva: Enabling low-power,
highly-accurate deep neural network accelerators,” in 43rd ACM/IEEE
Annual International Symposium on Computer Architecture, ISCA 2016,
Seoul, South Korea, June 18-22, 2016. 1EEE Computer Society, 2016,
pp. 267-278.

A. Dhurandhar, K. Shanmugam et al., “Improving simple models with
confidence profiles,” in Advances in Neural Information Processing
Systems 31: Annual Conference on Neural Information Processing
Systems 2018, NeurIPS 2018, 3-8 December 2018, Montréal, Canada.,
S. Bengio, H. M. Wallach et al., Eds., 2018, pp. 10317-10327.

D. Crankshaw, X. Wang et al., “Clipper: A low-latency online prediction
serving system,” in I4th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 2017, Boston, MA, USA, March
27-29, 2017, A. Akella and J. Howell, Eds. USENIX Association,
2017, pp. 613-627.
AWSLABS., “Mxnet model
mxnet-model-server, 2019.

T. Chen, Z. Du et al., “Diannao: A small-footprint high-throughput
accelerator for ubiquitous machine-learning,” in ASPLOS, 2014.

F. N. Iandola, S. Han er al, “Squeezenet: Alexnet-level accuracy
with 50x fewer parameters andj 0.5 mb model size,” arXiv preprint
arXiv:1602.07360, 2016.

“Tensorflow xla.” 2019.

“Intel(r) math kernel library for deep neural networks (intel(r)
mkl-dnn),” 2019.

S. P. Singh, T. Jaakkola, and M. I. Jordan, “Reinforcement learning with
soft state aggregation,” in Advances in neural information processing
systems, 1995, pp. 361-368.

A. Mirhoseini, H. Pham et al., “Device placement optimization with
reinforcement learning,” arXiv preprint arXiv:1706.04972, 2017.

M. Balcan and K. Q. Weinberger, Eds., Proceedings of the 33nd
International Conference on Machine Learning, ICML 2016, New York
City, NY, USA, June 19-24, 2016, ser. IMLR Workshop and Conference
Proceedings, vol. 48. JMLR.org, 2016.

server,”

https://github.com/awslabs/

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/JI0T.2020.2965103, IEEE Internet of

Things Journal

Heyang Qin is a PhD student in the Department of
Computer Science and Engineering at University of
Nevada, Reno, where he works as a teaching assis-
tant and research assistant. He conducts research in
areas of Deep Learning and Reinforcement Learning
under the supervision of Dr. Feng Yan and Dr. Lei
Yang. He got his bachelor’s degree in University
of Electronic Science and Technology of China in
2017.

13

Lei Yang (M’13, SM’19) received the B.S. and
M.S. degrees in electrical engineering from South-
east University, Nanjing, China, in 2005 and 2008,
respectively, and the Ph.D. degree from the School
of Electrical Computer and Energy Engineering,
Arizona State University, Tempe, AZ, USA, in
2012. He was a Postdoctoral Scholar with Princeton
University, Princeton, NJ, USA, and an Assistant
Research Professor with the School of Electrical
Computer and Energy Engineering, Arizona State
University. He is currently an Assistant Professor

with the Department of Computer Science and Engineering, University of
Nevada, Reno, NV, USA. His research interests include big data analytics,
edge computing and its applications in IoT and 5G, stochastic optimization and
modeling in smart cities and cyber-physical systems, data privacy and security
in crowdsensing, and optimization and control in mobile social networks. He
was a recipient of the Best Paper Award Runner-up at the IEEE INFOCOM
2014. He is currently associate editor for IEEE Access.

Syed Zawad is a PhD student in the Department of
Computer Science and Engineering at the University
of Nevada, Reno. His research area of interest is
in High Performance Computing, Deep Learning,
Federated Learning, and Neural Architecture Search.
He completed his B.Sc in Computer Science and
Engineering from BRAC University (Bangladesh)
and has interned as a researcher in Baidu USA. He
also has 3 years of work experience as a Software
Engineer for Web applications.

Yangqi Zhou is a research scientist at Google Brain.
Her research interest lies in computer systems and
machine learning. She obtained her Ph.D. degree
from Princeton University and her bachelor degree
from the University of Michigan, Ann Arbor.

Sanjay Padhi leads Research Initiatives at Amazon
Web Services. He is also an Adjunct Professor of
Physics at Brown University. Before AWS, Dr. Padhi
worked as a physicist for about 15 years and had vast
experience in predictive analytics, machine learn-
ing, algorithm developments including analytics with
streaming data. He led various groups with hundreds
of members at CERN in Physics, Simulations as
well as Distributed Computing. Created and operated
worldwide late-binding based resource management
systems, currently used by the CMS Collaboration
for all its computing activities across 140 institutions worldwide. Dr. Padhi’s
obtained his Ph.D from McGill University in High Energy Physics.

2327-4662 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Feng Yan is an Assistant Professor in the Depart-
ment of Computer Science and Engineering at the
University of Nevada, Reno. He has a broad interest
in big data and system areas. His current research fo-
cus includes machine learning, cloud/edge/fog com-
puting, high performance computing, storage, and
cross-disciplinary topics among them and others.
He obtained both M.S. (2011) degree and Ph.D.
(2016) degree in Computer Science from the College
of William and Mary, and worked at Microsoft
Research (2014-2015) and HP Labs (2013-2014).

Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on June 07,2020 at 01:56:46 UTC from IEEE Xplore. Restrictions apply.

