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Abstract
In this survey we present some recent results concerning computer-assisted proofs in partial
differential equations, focusing in those coming from problems in incompressible fluids.
Particular emphasis is put on the techniques, as opposed to the results themselves.
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1 Computer-assisted proofs and interval arithmetics

In the last 50 years computing power has experienced an enormous development. According
to Moore’s Law [109], every two years the number of transistors has doubled since the
1970s. This phenomenon has resulted in the blooming of new techniques located in the verge
between pure mathematics and computational ones. However, even nowadays when we can
perform computations at the speeds of the order of Petaflops (a quatrillion floating point
operations per second) we can not avoid the following questions, still fundamental in the
rigorous analysis of the output of a computer program:

Q1: Is a computer result influenced by the way the individual operations are done?
Q2: Does the environment (operating system, computer architecture, compiler, rounding

modes, . . .) have any impact on the result?

Sadly, the answer to these questions is Yes, which can be easily illustrated by the following
C++ codes (see Listings 1 and 3). The first one computes the harmonic series up to a given
N in two ways: the first way adds the different numbers from the bigger ones to the smaller
and the second one does the sum in the opposite way. The results for N = 106 can be seen in
Listing 2. They are not the same and curiously, the real result is not any of the two of them.
The second program uses the MPFR library [69] to add two numbers given by the user in
two different ways: rounding down and rounding up the result. The output is done in binary.
We can see that the results differ (Listing 4).
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Listing 1 Computation of the truncated Harmonic Series in two different ways

int main(int argc, char* argv[]){
int N; cin >> N;
cout.setf(ios::fixed); cout.precision(15);
double res1, res2; res1 = res2 = 0.0;
for (int i=1; i<=N; i++){

res1 = res1 + 1.0/(double)i;
}
for (int i=N; i>=1; i--){

res2 = res2 + 1.0/(double)i;
}
cout << res1 << endl;
cout << res2 << endl;

}

Listing 2 Result of the previous computation.

14.3927267228647811
14.3927267228657563

Listing 3 Sum of two numbers with different rounding

int main (int argc, char **argv){
mpfr_t x, y, d, u;
mpfr_prec_t prec;
prec = atoi (argv[1]);
int pprec = prec - 1;
mpfr_inits2 (prec, x, y, d, u, (mpfr_ptr) 0);
mpfr_set_str (x, argv[2], 0, GMP_RNDN);
mpfr_printf ("x = %.*Rb\n", pprec, x);
mpfr_set_str (y, argv[3], 0, GMP_RNDN);
mpfr_printf ("y = %.*Rb\n", pprec, y);

mpfr_add (d, x, y, GMP_RNDD);
mpfr_printf ("d = %.*Rb\n", pprec, d);

mpfr_add (u, x, y, GMP_RNDU);
mpfr_printf ("u = %.*Rb\n", pprec, u);

return 0;
}

Listing 4 Program executed with arguments 10 0.1 1

x = 1.100110011p-4
y = 1.000000000p+0
d = 1.000110011p+0
u = 1.000110100p+0

This shows that even the simplest algorithms need a careful analysis: only two operations
suffice to give different results if executed in different order or with different rounding
methods.

1.1 What is a computer-assisted proof?

A computer-assisted proof may mean different things depending on the field. For simplicity,
we will focus in the context of PDE or ODEs. The starting point is typically an object, or in
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a broader sense, a behaviour. Most computer-assisted proofs are devoted to show an instance
of these objects or behaviours. This is usually done via two steps:

Step 1: Perform an analytical reduction of the problem into a (possibly big) set of (typically
open) conditions in away that if those conditions aremet, then the theorem is proved.
Sometimes the amount of conditions is too big or too complicated to be checked by
hand, even though a human could do it without computer-assistance given enough
time and space. Examples of tour de force human checked conditions can be found
in [47,48].

Step 2: Use the computer to rigorously validate the set of conditions from Step 1.

We now present more details of the technique in 3 flavours, outlining some of its possible
applications:

Example 1.1 Compute explicit, tight bounds of hard (singular) integrals and use them to track
short time behaviour of solutions of a PDE (see [24,42,79]).

Example 1.2 Bound the norm of a given operator, then use a fixed point theorem to show (by
contractivity) existence of solutions, even for ill-posed or singular problems (see [13,54,59]).

Example 1.3 Track the spectrumof a given operator, and use this information to say something
about the stability/instability, solve an eigenvalue problem, or quantify spectral gaps (see
[22]).

In this paper we will give instances of Examples 1.1 and 1.3, in Sect. 3 and 4 respectively.
A natural concern is whether the intermediate numerical calculations may be error-prone

or not, or depend on the implementation. To circumvent this problem, we will give up on cal-
culating the exact answer (since we are now interested in checking inequalities—as opposed
to equalities—) and factor in errors, etc.

The theory of interval analysis developed by Moore [110] is an example of a tool, which
albeit being impractical due to inefficient resources at the time of its conception, is now being
widely used. It belongs to the paradigm known as rigorous computing (in some contexts also
called validated computing), in which numerical computations are used to provide rigorous
mathematical statements about a result. The philosophy behind the theory of interval analysis
consists in working with and producing objects which are not numbers, but intervals in which
we are sure that the true result lies. Nevertheless, we should be precise enough since even
with plenty of resources, overestimation might lead to too big intervals which might not
guarantee the desired result.

In this setting, the main building blocks are intervals containing the answer and interme-
diate results. In Sect. 2 we explain how to develop an arithmetic for these objects and how
to work with it.

Nowadays, there are a few free libraries that implement interval arithmetics and applica-
tions such as CAPD (CAPD—Computer assisted proofs in dynamics, a package for rigorous
numerics), C-XSC [95], MPFR/MPFI [69,121] or Arb [97].

1.2 History

Lately, interval methods have become quite popular among mathematicians. Several highly
non-trivial results have been established by the use of interval arithmetics, see for example
[71,82,87,102,125] as a small sample.
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In analysis, the most celebrated result is the proof of the dynamics of the Lorenz attractor
(Smale’s 14th Problem) [131]. However, the study of the dynamics of a system has been
restricted until very recently almost always to (typically low-dimensional) ODEs. Some
examples involving ODEs but an infinite dimensional system are the computation of the
ground state energy of atoms or the relativistic stability of matter (see [61,64,128]).

Regarding PDE,most of the work has been carried out for dissipative systems (i.e. systems
in which the L2-norm of the function decreases with time). The most popular ones are the
Kuramoto–Sivashinsky equations or Navier–Stokes in low dimensions. The main feature of
these models is that one can study the first N modes of the Fourier expansion of the function
and see the rest as an “error”. Since the system is dissipative, if N is large enough, one can
get a control on the error throughout time.

Other techniques reduce the problem to compute the norm of an operator (as in Exam-
ple 1.2) and apply a fixed point theorem, or use topological methods (Conley index).
They have been successfully applied for instance in computing the following: Conley
index for Kuramoto–Sivashinsky [141], bifurcation diagram for stationary solutions of
Kuramoto–Sivashinsky [2], stationary solutions of viscous 1D Burgers with boundary con-
ditions [68], traveling wave solutions for 1D Burgers equation [67], periodic orbits of
Kuramoto–Sivashinsky [3,65,66,72,140], Conley index for the Swift–Hohenberg equation
[50], bifurcation diagram of the Ohta-Kawasaki equation [135], stability of periodic viscous
roll waves of the KdV–KS equation [5], existence of hexagons and rolls for a pattern forma-
tion model [133], self-similar solutions of a 1D model of 3D axisymmetric Euler [96], and
many others.

In the elliptic setting, similar techniques havebeendevelopedviafinite elements [112,139].
Very recently, there are papers also dealing with the hyperbolic PDE case [4].

We also point the reader to the expository article [134], to the excellent monographs
[110,123,132] and the survey [114].

2 Interval arithmetics

2.1 Basic arithmetic

Representing an abstract concept such as a real number by a finite number of zeros and ones
has the advantage that the calculations are finite and the framework is practical. The drawback
is naturally that the amount of numbers that can be written in this way is finite (although of
the same order of magnitude as the age of the universe in seconds) and inaccuracies might
arise while performing mathematical operations. We will now discuss the basics of interval
arithmetics.

Let F be the set of representable numbers by a computer. We will work with the set of
representable closed intervals IR = {[a, a]| a ≤ a, a, a ∈ F}. For every element [a] ∈ IR

we will refer to it by either [a] or by [a, a], whenever we want to stress the importance of
the endpoints of the interval. We can now define an arithmetic by the theoretic-set definition

[x]�[y] = {x�y| x ∈ [x], y ∈ [y]}, (2.1)

for any operation � ∈ {+,−,×,÷}. We can easily define them by the following equations:

[x] + [y] = [x + y, x + y]
[x] − [y] = [x − y, x − y]
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[x] × [y] = [min{x y, x y, x y, x y},max{x y, x y, x y, x y}]

[x] ÷ [y] = [x] ×
[
1

y
,
1

y

]
, whenever 0 /∈ [y].

Note that this interval-valued operators can be extended to other algebraic expressions
involving exponential, trigonometric, inverse trigonometric functions, etc. This derivation is
purely theoretical, andwe should keep inmind that, if carried out on a computer, the results of
an operation have to be rounded up or down according to whether we are calculating the left
or right endpoint so that the true result is enclosed in the produced interval. The main feature
of the arithmetic is that if x ∈ [x], y ∈ [y], then necessarily x�y ∈ [x]�[y] for any operator
�. This property is fundamental in order to ensure that the true result is always contained in
the interval we get from the computer.

We remark that this arithmetic is not distributive, but subdistributive, i.e:

[a] × ([b] + [c]) �= [a] × [b] + [a] × [c]
[a] × ([b] + [c]) ⊂ [a] × [b] + [a] × [c]

Example 2.1 If we set [a] = [3, 4], [b] = [1, 2], [c] = [−1, 1], then:
[a] × ([b] + [c]) = [3, 4] × [0, 3] = [0, 12]

[a] × [b] + [a] × [c] = [3, 4] × [1, 2] + [3, 4] × [−1, 1] = [3, 8] + [−4, 4] = [−1, 12]
This illustrates that the way in which operations are executed in the interval-based arithmetic
mattersmuchmore than in the real-based.As an example, consider the function f (x) = 1−x2

and a domain D = [−1, 1]. Over the reals, we can write f as any of the following functions:

f1(x) = 1 − x2

f2(x) = 1 − x · x
f3(x) = (1 + x) · (1 − x)

However, evaluating fi over D we get the enclosures:

f1(D) = [0, 1]
f2(D) = [0, 2]
f3(D) = [0, 4]

We observe that although f3 is completely factored, if we expand it we get an expression of
the form x − x which in the interval-based arithmetic is equal to an interval of a width twice
the width of the domain in which we are evaluating the expression: a price too high to pay
compared with the width of the interval [0, 0], another form to write the same expression
over the reals.

For readability purposes, insteadofwriting the intervals as, for instance, [123456, 123789],
we will sometimes instead refer to them as 123456789.

2.2 Automatic differentiation

One of the main tasks in which we will need the help of a computer is to calculate a massive
amount of function evaluations and their derivatives up to a given order at several points and
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intervals. In order to perform it, one could first think of trying to differentiate the expressions
symbolically. However, we don’t need the expression of the derivative, just its evaluation at
given points. This, together with the fact that the amount of terms of the derivative might
grow exponentially with the number of derivatives taken, makes the use of symbolic calculus
impractical. Instead of calculating the expression of every derivative, wewill use the so-called
automatic differentiationmethods. Suppose f (x) is a sufficiently regular function and let x0
be the point (or interval) of which we want to calculate its image by f . We define

( f )0 = f (x0)

( f )k = 1

k!
dk

dxk
f (x0), k = 1, 2, . . . , N ,

where N stands for the maximum number of derivatives of the function we want to evaluate.
We can think about ( f ) as being the coefficients of the Taylor series around x0 up to order
N . We now show how to compute the coefficients ( f ) for some of the functions that will
appear in our programs. The generalization of the missing functions is immediate. However,
it is possible to derive similar formulas for any solution of a differential equation (e.g. Bessel
functions).

(u ± v)k = (u)k ± (v)k

(u · v)k =
k∑
j=0

(u) j (v)k− j

(u ÷ v)k = (1/v)

⎛
⎝(u)k −

k∑
j=1

(v) j (u ÷ v)k− j

⎞
⎠

(sin(u))k = 1

k

k−1∑
j=0

( j + 1)(cos(u))k−1− j (u) j+1

(cos(u))k = −1

k

k−1∑
j=0

( j + 1)(sin(u))k−1− j (u) j+1

Automatic differentiation has become a natural technique in the field of Dynamical Sys-
tems, since the cost for evaluating an expression up to order k is O(k2), making it a fast
and powerful tool to approximate accurately trajectories [130]. It has also been used for the
computation of invariant tori and their associated invariant manifolds [85,86] or the com-
putation of normal forms of KAM tori [83]. For more applications in Dynamical Systems
we refer the reader to the book [84]. Automatic Differentiation is also an important element
in the so-called Taylor models [98,106,115], in which functions are represented by couples
(P,�), being P a polynomial and � an interval bound on the absolute value of the differ-
ence between the function and P . Nowadays, there are several packages that implement it,
for example [6,99].

2.3 Integration

In this section we will discuss the basics of rigorous integration. A few examples where
rigorous integration has been used or developed are [9,101,103]. A more detailed version
concerning singular integrals can be found in the next subsection. We will only give the
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details of the one-dimensional case, omitting the multidimensional one, which can be done
extending the methods in a natural way.

The main problem we address here is to calculate bounds for a given integral

I =
∫ b

a
f (x)dx, −∞ < a < b < ∞.

Different strategies can be used for this purpose. For instance, we can extend the classical
integration schemes:

I =
N∑
i=1

∫ xi

xi−1

f (x)dx, a = x0 < x1 < · · · < xN = b.

In every interval, we approximate f (x) by a polynomial p(x) and an error term.We detail
some typical examples in Table 1.

It is now clear where the interval arithmetic takes place. In order to enclose the value of
the integral, we need to compute rigorous bounds for some derivative of the function at the
integration region.

Another approach consists of taking the Taylor series of the integrand up to order n as
the polynomial pi (x). Centering the Taylor series in the midpoint of the interval makes us
integrate only roughly over half of the terms (since the other half are equal to zero). We can
see that

∫ b

a
f (x)dx =

∫ b

a

(
f (a) + (x − a) f ′(a) + · · · + (x − a)n

n! f n(a) + (x − a)n+1

(n + 1)! f n+1(ξ(x))

)
dx

∈
∫ b

a

(
f (a) + (x − a) f ′(a) + · · · + (x − a)n

n! f n(a) + (x − a)n+1

(n + 1)! f n+1([a, b])
)
dx

= (b − a) f (a) + 1

2
(b − a)2 f ′(a) + · · · + (x − a)n+1

(n + 1)! f n(a)︸ ︷︷ ︸
Real number (thin interval)

+ (x − a)n+2

(n + 2)! f n+1([a, b])︸ ︷︷ ︸
Error (thick interval)

.

We now compare the two methods in the following examples, in which we integrate∫ 1
0 exdx .

Table 1 Different schemes for the rigorous integration

I ≈∑N
i=1 pi (x)dx

Midpoint rule Trapezoid rule Simpson’s rule

pi (x) f
(
xi+xi−1

2

) f (xi−1)

(
1 − x − xi−1

hi

)

+ f (xi )

(
x − xi−1

hi

)
f (xi−1)

(x − xi )(x − xi+xi−1
2 )

h2i /2

− f

(
xi + xi−1

2

)
(x − xi )(x − xi−1)

h2i /4

+ f (xi )
(x − xi−1)(x − xi+xi−1

2 )

h2i /2

Error b−a
24 h2 f 2([a, b]) − b−a

12 h2 f 2([a, b]) − b−a
2880 h

4 f 4([a, b])
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Example 2.2 If we take N = 4 and use a trapezoidal rule, we enclose the integral in

∫ 1

0
exdx = 1

2

(
e0 + 2e1/4 + 2e1/2 + 2e3/4 + e1

) 1
4

− 1

12

1

16
e[0,1]

∈ [1.72722, 1.72723] − [0.0050283, 0.014578] = [1.712642, 1.7222017]

Example 2.3 ∫ 1

0
exdx ∈

∫ 1

0
1 + x + x2

2
+ x3

6
e[0,1]dx

= x + x2

2
+ x3

6

∣∣∣∣
x=1

x=0
+ [1, e] x

4

24

∣∣∣∣
x=1

x=0

= 10

6
+ 1

24
[1, e]

= [1.70833, 1.77994]

The exact result is e − 1 ≈ 1.71828182846. We can see that there is a tradeoff between
function evaluations (efficiency of the scheme) and quality (precision) of the results, since
the first method is more exact but requires more evaluations of the integrand, while for the
second it is enough to compute the Taylor series of the integrand.

2.4 Singular integrals and integrals over unbounded domains

In this subsection we will discuss the computational details of the rigorous calculation of
some singular integrals. In particular we will focus on the Hilbert transform, but the methods
apply to any singular integral. Parts of the computation (the N and F parts) are slightly
related to the Taylor models with relative remainder presented in [98]. See also the paper
[17] regarding the rigorous inversion of operators involving singular integrals.

Let us suppose that we have a 2π -periodic function f , which for simplicity we will
assume it isCk (this requirement can be relaxed). We want to calculate rigorously the Hilbert
Transform of f , that is

H f (x) = PV

π

∫
T

f (x) − f (x − y)

2 tan
( y
2

) dy,

We can split our integral in

H f (x) = PV

π

∫
T

f (x) − f (x − y)

2 tan
( y
2

) dy

= PV

π

∫
|y|<ε1

f (x) − f (x − y)

2 tan
( y
2

) dy + PV

π

∫
ε1≤|y|<π−ε2

f (x) − f (x − y)

2 tan
( y
2

) dy

+ PV

π

∫
|y|≥π−ε2

f (x) − f (x − y)

2 tan
( y
2

) dy

≡ HN f (x) + HC f (x) + HF f (x).

The integration of HC f (x) is easy since the integrand is smooth, and the denominator is
bounded away from zero.
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We now move on the the term HN f (x). In this case, we perform a Taylor expansion in
both the denominator

2 tan
( y
2

)
= (y) + c(ε1)(y)

3, c(ε1) = (interval) constant

and the numerator

f (x) = f (x − y) + (y) f ′(x) + 1

2
(y)2 f ′′(x) + · · · 1

k! (y)
k f k(η),

around y = 0. Here η belongs to an intermediate point between x and x − y, and we can
enclose f k(η) in the whole interval f k([x − ε1, x + ε1]) ⊂ f k([−π, π]). Finally, we can
factor out (y) and divide both in the numerator and the denominator, getting

1

π

∫
|y|<ε1

f ′(x) + 1
2 (y) f

′′(x) + · · · 1
k! (y)

k−1 f k(η)

1 + cy2
dy,

which we could either bound or integrate explicitly since it is a smooth (interval) function
and f (x) is explicit.

For HF f (x) we will do the same, expanding the cotangent function to avoid division by
∞:

1

2
cot
( y
2

)
= −1

4
(x − π) + c(ε2)(x − π)3, c(ε2) = (interval) constant

we obtain

1

π

∫
|y−π |<ε2

( f (x) − f (x − y))

(
−1

4
(y − π) + c(ε2)(y − π)3

)
dy,

which is smooth and therefore we can also integrate it as in the previous subsection.
The choice of εi is determined by the balance between accuracy and computation time.

Most of the times, the εi will be taken very small and HN f (x) and HF f (x)will be regarded
as error terms.

In the case where the integration domain is unbounded (for simplicity we may assume it
is R and the integrand decays fast enough), one can do two workarounds:

• Perform a change of variables thatmapsR onto a bounded domain, such as x = 2 tan
( y
2

)
.

This change of variables is useful because the problem is mapped onto [−π, π] and one
can work with Fourier series there. The integral in the new coordinates becomes∫ ∞

−∞
f (x)dx =

∫ π

−π

f
(
2 tan

( y
2

))
sec
( y
2

)2
dy,

which depending on f may potentially be singular, in which case we would apply the
techniques outlined in the beginning of this subsection.

• Choose a large enough number M and treat the contribution to the integral from |x | > M
as an error. Thus:

I =
∫ ∞

−∞
f (x)dx =

∫
|x |≤M

f (x)dx +
∫

|x |>M
f (x)dx = I1 + I2.

The term I1 will be integrated normally. For the term I2, assuming | f (x)| ≤ C
|x |k we

easily obtain |I2| ≤ 2C
k−1

1
Mk−1 . Making M large this term will go to zero.
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3 TheMuskat problem

The first problem that we will present is the so-called Muskat problem. This problem models
the evolution of the interface between two different incompressible fluids with the same
viscosity in a two-dimensional porous medium, and is used in the context of oil wells [111].

The setup consists of two incompressible fluids with different densities, ρ1 and ρ2, and
the same viscosity, evolving in a porous medium with permeability κ(x). The velocity is
given by Darcy’s law:

μ
v

κ
= −∇ p − g

(
0
ρ

)
, (3.1)

where μ is the viscosity, p is the pressure and g is the acceleration due to gravity, and the
incompressibility condition

∇ · v = 0. (3.2)

We take μ = g = 1. The fluids also satisfy the conservation of mass equation

∂tρ + v · ∇ρ = 0. (3.3)

We will work in different settings: the flat at infinity and horizontally periodic cases
(� = R

2 and � = T × R respectively) or the confined case (� = R × (−π
2 , π

2

)
). We

denote by �1 the region occupied by the fluid with density ρ1 (the “top” fluid) and by �2

the region occupied by the fluid with density ρ2 �= ρ1 (the “bottom” fluid). All quantities
with superindex 1 (resp. 2) will refer to �1 (resp. �2). The interface between the two fluids
at any time t is a planar curve denoted by z(·, t).

In the case � = R
2, one can rewrite the system (3.1)–(3.3) in terms of the curve z =

(z1, z2), obtaining

∂t z(α, t) = ρ2 − ρ1

2π
P.V .

∫
R

z1(α, t) − z1(β, t)

|z(α, t) − z(β, t)|2 (∂αz(α, t) − ∂β z(β, t))dβ. (3.4)

In the horizontally periodic case (� = T × R) with z(x + 2π, t) = z(x, t) + (2π, 0), the
evolution of the curve is given by the formula

∂t z(α, t) = ρ2 − ρ1

4π

∫
T

sin(z1(α, t) − z1(β, t))(∂αz(α, t) − ∂β z(β, t))

cosh(z2(α, t) − z2(β, t)) − cos(z1(α, t) − z1(β, t))
dβ. (3.5)

Finally, in the confined case:

∂t z(α, t) = ρ2 − ρ1

4π

∫
R

(∂αz(α, t) − ∂αz(α − β, t)) sinh(z1(α, t) − z1(α − β, t))

cosh(z1(α, t) − z1(α − β, t)) − cos(z2(α, t) − z2(α − β, t))
dβ

+ρ2 − ρ1

4π

∫
R

(∂αz1(α, t) − ∂αz1(α − β, t), ∂αz2(α, t) + ∂αz2(α − β, t)) sinh(z1(α, t) − z1(α − β, t))

cosh(z1(α, t) − z1(α − β, t)) + cos(z2(α, t) + z2(α − β, t))
dβ.

We define the Rayleigh–Taylor condition

RT (α, t) = −(∇ p2(z(α, t)) − ∇ p1(z(α, t))) · ∂⊥
α z(α, t),

which can be written in terms of the interface as

RT (α, t) = (ρ− − ρ+)∂αz
1(α, t).
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Linearizing around the steady state (α, 0), the evolution equation of a small perturbation
(0, ε fL(α, t)) satisfies at the linear level:

∂t fL(α, t) = −RT L(α, t)� fL (α, t), (3.6)

where RT L(α, t) is the linearized version of the Rayleigh–Taylor condition

RT L(α, t) = g(ρ2 − ρ1)

and � = (−�)
1
2 . Thus, the Eq. (3.6) is parabolic if RT L(α, t) > 0. At the nonlinear level,

similar estimates of the form

∂t∂
k
αz(α, t) = −RT (α, t)�∂kαz(α, t) + lower order terms

can be derived for large enough k. It is therefore easy to see that the sign of RT (α, t) is
crucial, since it will govern the stability of the equation (stable for positive RT , negative
otherwise). For a fixed t , if RT (α, t) > 0, ∀α ∈ R we will say that the curve is in the
Rayleigh–Taylor stable regime and if RT (α, t) < 0 for some α, we will say that the curve is
in the Rayleigh–Taylor unstable regime. In other words, we have the correspondence:

z(α, t) can be parametrized as a graph ⇔ z(α, t) is in the R-T stable regime

We will also say that if the curve z(α, t) changes from graph to non-graph or viceversa, it
undergoes a stability shift.

3.1 Brief history of the problem

The Muskat problem has been studied in many works. A proof of local existence of classical
solutions in the Rayleigh–Taylor stable regime and a maximum principle for ‖∂x f (·, t)‖L∞
can be found in [39]. See also [1]. Ill-posedness in the unstable regime appears in [38].

Moreover, the authors in [38] showed that if ‖∂x f0‖L∞ < 1, then ‖∂x f (·, t)‖L∞
≤ ‖∂x f0‖L∞ for all t > 0. Further work has shown instant analyticity and existence of
finite time turning [18]: in other words, the curve ceases to be a graph in finite time and
the Rayleigh–Taylor condition changes sign to negative somewhere along the curve. The
gap between these two results (i.e., the question whether the constant 1 is sharp or not for
guaranteeing global existence) is still an open question, and there is numerical evidence of
data with ‖∂x f0‖L∞ = 50 which turns over [41].

Given the parabolic character of the equation, it is natural to expect global existence, at
least for small initial data. The first proof for small initial data was carried out in [129] in the
case where the fluids have different viscosities and the same densities (see [38] for the setting
of the present paper—different densities and the same viscosities—and also [27] for the
general case). The regularity requirement of the initial data has been subsequently lowered
down: see [7,12,28–30,44,56,108] for recent developments of global existence in different
spaces. A blow-up criterion was found in [30]. For large time estimates see [75,116]. In the
case where surface tension is taken into account, global existence was shown in [60,70].

Contrary to the previous intuition, there is also formation of singularities: there are initial
data which start smooth, but once the Rayleigh–Taylor condition is not satisfied (i.e. they
have ceased to be a graph), the smoothness of the curve may break down in finite time [15].
Another possibility is the appearance of a finite time self-intersection of the free boundary,
either at a point (“splash” singularity) or along an arc (“splat” singularity). In the stable
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density jump case these cannot happen [40,76]. However, in the one phase case there are
finite time splash singularities [16] but no splat singularities are possible [45].

More general models, which take into account finite depth or non-constant permeability,
and which also exhibit (single) stability shift were studied in [8,43,46,79,80,118].

For a bigger and more comprehensive list of references we refer the reader to the two
surveys [19] and [74].

3.2 Theorems

Wenowpresent a few theoremswhich canbeprovedbymeans of computer-assisted estimates,
following the abstract idea from Example 1.1. The intuition behind these results is driven by
numerical simulations.

The first result compares the confined and flat at infinity regimes [79]:

Theorem 3.1 There exists a family of analytic curves z0(α) = (z01(α), z02(α)), flat at infinity,
for which there exists a finite time T such that the solution to the confined Muskat problem
develops a stability shift before t = T and the non confined does not.

Specifically, we prove that the solution with initial data z0(α) can be parametrized as a
graph for all t < T in the flat at infinity setting and can not be in the confined one.

We now outline the reduction to a finite set of conditions.

Reduction of Theorem 3.1 We want to show that RT (0, t) ∼ At + O(t2) for small, positive
t , where A < 0 in the confined case and A > 0 in the flat at infinity, and this will ensure the
Theorem. After some calculations one obtains:

Acon f ined = 2∂αz2(0)
∫ ∞

0
∂αz1(η) sinh(z1(η)) sin(z2(η))

×
(

1

(cosh(z1(η)) − cos(z2(η)))2
+ 1

(cosh(z1(η)) + cos(z2(η)))2

)
dη.

With the same approach, for the unconfined case the expression is

A f lat = 8∂αz2(0)
∫ ∞

0

∂αz1(η)z1(η)z2(η)

(z1(η))2 + (z2(η))2)2
dη.

Thus, the theorem will be proved if we manage to validate the following open conditions:

Acon f ined < 0, A f lat > 0. (3.7)

��
We can rigorously validate them for the following data (see Fig. 1):

z1(α) = α − sin(α)e−Bα2
, B = 10−4

z2(α) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sin(3α)

3
if 0 ≤ α ≤ π

3
−α + π

3
if

π

3
≤ α ≤ π

2

α − 2π

3
if

π

2
≤ α ≤ 2π

3

0 if
2π

3
≤ α,
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z 2(α
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−0.04

−0.02

0

0.02

0.04

Fig. 1 The curve in Theorem 3.1. Inset: close caption around zero, solid: initial condition, dotted: normal
component of the velocity for the flat at infinity case, squared: normal component of the velocity for the
confined case

where z2 is extended such that it is an odd function. In Fig. 1 (inset), we plot the normal
velocity around the vertical tangent for the two scenarios (confined and flat at infinity),
both scaled by a factor 1/100. We can observe that the velocity denoted by squares, which
corresponds to the confined case, will make the curve develop a turning singularity, where
the dotted one (non-confined case) will force the curve to stay in the stable regime.

In fact, one can find more striking behaviours if the expansion of RT (α, t) is done at
higher order (at the price of higher complexity of the calculations). The following Theorem
was proved in [42]:

Theorem 3.2 There exist T > γ > 0 and a spatially analytic solution z to (3.5) on the time
interval [−T , T ] such that z(·, t) is a graph of a smooth function of α when |t | ∈ [T − γ, T ]
(i.e., z is in the stable regime near t = ±T ) but z(·, t) is not a graph of a function of x when
|t | ≤ γ (i.e., z is in the unstable regime near t = 0).

In other words, there exists solutions of (3.5) that make the transition stable → unstable
→ stable.

The intuition behind this result comes from the numerical experiments which were started
in [41], where it was proved that there were solutions that were exhibiting the unstable →
stable → unstable transition. These suggested existence of curves which are (barely) in the
unstable regime, and such that the evolution both forward and backwards in time transports
them into the stable regime. (We note that neither the velocity nor any other quantity was
observed to become degenerate in these experiments).We remark that this behaviour is purely
nonlinear and thus nonlinear effects may dominate the linear ones under certain conditions.

Reduction of Theorem 3.2 Let ε ≥ 0 and consider the initial family of curves zε(α, 0) =
(z1ε(α, 0), z2ε(α, 0)), with

z1ε(α, 0) = α − sin(α) − ε sin(α),

z2ε(α, 0) = A(ε) sin(2α).

The goal is to show that this family of solutions satisfies RT (0, t) ∼ −ε +Ct2 + O(t3).
See Fig. 2.
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x

Fig. 2 zε(α, 0) from Theorem 3.2 with A(ε) = 1.08050. Inset: closeup around x = 0. Thick curve: ε = 10−6,
thin curve: ε = 0. We remark that both curves are indistinguishable at the larger scale

This is done in two steps. The first one is to choose A(ε) accordingly: one can prove that
for any ε ∈ [0, 10−6], there exists A(ε) ∈ (1.08050, 1.08055) such that if zε solves (3.5)
with initial data zε(α, 0), then

∂t RT (0, 0) = 0.

The second one is to show that there exist T > 0,C ≥ 1, independent of ε, such that for
any ε ∈ [0, 10−6] and A(ε) chosen before, there is a unique analytic solution zε of (3.5) on
the time interval (−T , T ) with initial data zε(α, 0), and it satisfies

∂t t RT (0, 0) ≥ 30. (3.8)

The first step is accomplished calculating ∂t RT (0, 0) for A(ε) = 1.08050 and for A(ε) =
1.08055 and checking that one is negative and the other is positive, for each ε ∈ [0, 10−6].
The second step follows by taking A(ε) = [1.08050, 1.08055] (the full interval, since we
do not know A(ε) explicitly) and propagating this interval in the relevant computations. The
drawback of this method is that ∂t t RT (0, 0) consists of tens of terms of the type

B11(α) = −
∫
T

∫
T

sin(z1(α) − z1(α − y)))(z1α(α) − z1α(α − y))2

cosh(z2(α) − z2(α − y)) − cos(z1(α) − z1(α − y))

×
(

sin(z1(α) − z1(α − z))(z1α(α) − z1α(α − z))

cosh(z2(α) − z2(α − z)) − cos(z1(α) − z1(α − z))

− sin(z1(α − y) − z1(α − y − z))(z1α(α − y) − z1α(α − y − z))

cosh(z2(α − y) − z2(α − y − z)) − cos(z1(α − y) − z1(α − y − z))

)
dydz

which are 2-dimensional integrals which contain a singularity. In order to overcome this
issue, natural extensions (to 2D) of the schemes outlined in Sect. 2.4 in the 1D case need to
be done. ��
Corollary 3.3 Using the same techniques as in [41], we can construct solutions that change
stability 4 times according to the transition unstable → stable → unstable → stable →
unstable.

The last theorem we present applies to a model where we also take into account a perme-
ability jump. This problem is important in the context of geothermal reservoirs [25], where
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Fig. 3 Situation of the different fluids and permeabilities.We have 3 regions with parameters
(ρ1, κ1), (ρ2, κ1), (ρ2, κ2) separated by two boundaries z(α, t) and (α,−h2) in a confined medium. The
first one is a free boundary and the second is fixed

it could represent different types of rock layers (impermeable, permeable), below which a
heat source (magma) is located. See Fig. 3 for a depiction of the setting.

In that case, the evolution equation for the interface z(α, t) is more complicated and given
by:

∂t z(α) = ρ̄P.V.
∫
R

(∂αz(α) − ∂αz(β)) sinh(z1(α) − z1(β))

cosh(z1(α) − z1(β)) − cos(z2(α) − z2(β))
dβ

+ ρ̄P.V.
∫
R

(∂αz1(α) − ∂αz1(β), ∂αz2(α) + ∂αz2(β)) sinh(z1(α) − z1(β))

cosh(z1(α) − z1(β)) + cos(z2(α) + z2(β))
dβ

+ 1

4π
P.V.

∫
R

�2(β)BS(z1(α), z2(α), β,−h2)dβ

+ ∂αz(α)

4π
P.V.

∫
R

�2(β)
sin(z2(α) + h2)

cosh(z1(α) − β) − cos(z2(α) + h2)
dβ

+ ∂αz(α)

4π
P.V.

∫
R

�2(β)
sin(z2(α) − h2)

cosh(z1(α) − β) + cos(z2(α) − h2)
dβ. (3.9)

with

�2(α) = − 2KBR(�1, z)h(α) · (1, 0) + 2K2

2π
BR(�1, z)h(α) · (1, 0) ∗ Gh2,K

= 2Kρ̄

[
P.V.

∫
R

∂αz2(β)
sin(h2 + z2(β))

cosh(α − z1(β)) − cos(h2 + z2(β))
dβ

− P.V.
∫
R

∂αz2(β)
sin(−h2 + z2(β))

cosh(α − z1(β)) + cos(−h2 + z2(β))
dβ

− K
2π

Gh2,K ∗ P.V.
∫
R

∂αz2(β) sin(h2 + z2(β))

cosh(α − z1(β)) − cos(h2 + z2(β))
dβ

+ K
2π

Gh2,K ∗ P.V.
∫
R

∂αz2(β) sin(−h2 + z2(β))

cosh(α − z1(β)) + cos(−h2 + z2(β))
dβ

]
, (3.10)
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and

Gh2,K(ξ) =
∫
R

cos(yξ) sinh(2h2y)

sinh(π y) + K sinh(2h2y)
dy, K = κ1 − κ2

κ1 + κ2 , ρ̄ = κ1(ρ2 − ρ1)

4π
.

The goal is to illustrate the different behaviours that may arise by looking at the short-time
evolution of a family of initial data, depending on the height of the permeability jump and the
magnitude of the permeabilities. This is shown in the bifurcation diagram in Fig. 4, where
we plot whether for short time, the curve will shift stability or not.

Theorem 3.4 There exists a family of analytic initial data z(α, h2) = (z1(α, h2), z2(α, h2)),
dependingon theheight atwhich thepermeability jump is located, such that the corresponding
solution to the confined, inhomogeneous Muskat (3.9) and (3.10):

(a) 1. For all 0.25 < h2 < hntu2 = 0.648, the curve will not shift independently of K.
2. For all 0.676 < h2 < 0.686, the permeabilities help the shift.
3. For all 0.715 < h2 < 0.738, the permeabilities prevent the shift.
4. For all 0.77 = htu2 < h2 < 1.25, the curve will shift independently of K.

(b) There exists a C1 curve (h2,K(h2)), located in [0.648, 0.77] × (−1, 1), such that for
every h2 for which the curve is defined, for every K < K(h2) the curve does not turn
and for every K > K(h2) the curve turns.

Reduction of Theorem 3.4(a)
We proceed now to calculate ∂t RT (0, 0). Then, the appropriate expression is

∂t RT (0, 0) = C(I1 + I2),

for some C > 0, where

I1 = 2∂αz2(0)
∫ ∞

0

∂αz1(β) sinh(z1(β)) sin(z2(β))

(cosh(z1(β)) − cos(z2(β)))2
+ ∂αz1(β) sinh(z1(β)) sin(z2(β))

(cosh(z1(β)) + cos(z2(β)))2
dβ,

and

I2 = 4∂αz2(0)K
∫ ∞

0

∫ ∞

0

∂αz2(γ ) cos(z1(γ )y)

(sinh(π y) + K sinh(2h2y)) cosh
(
y π
2

)
×
(
2y cosh

( yπ
2

− yh2
)
cosh

( yπ
2

)
− 2 sinh (yh2)

tan(h2)

)

× cosh (yz2(γ )) cosh
(
y
(π

2
− h2

))
dγ dy.

��
The initial condition family we used for the bifurcation diagram was

z1(α) = α − sin(α)e−Bα2
, B = 10−4

z2(α) = h2
3

π

(
sin(3α)

3
− sin(α)

2.5

(
e−(α+2)2 + e−(α−2)2

))
1{|α|≤π}. (3.11)

We computed the bifurcation diagram depicted in Fig. 4. We could give an answer regard-
ing the question of short time stability shifting to 97.14% of the parameter space. 53.23% of
the space turned (red) and 43.91% did not turn (yellow). The remaining 2.86% is painted in
white.

We proceeded as follows: for each region in parameter space, we computed an enclosure
of ∂t RT (0, 0) for all values in that region. If we could establish a sign we painted the region
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K

Fig. 4 Bifurcation diagram corresponding to the phenomenon of stability shift for the initial condition given by
the family of curves (3.11). Yellow (lighter color): no shift, red (darker color): shift. The boundary separating
the two colors is smooth and can be parametrized as (h2,K(h2))

of the corresponding color. If not, we subdivided the region and recomputed up to a certain
maximum number of subdivisions. We remark that due to the actual answer being very close
to zero or zero, the enclosures were not conclusive in some regions and more precision is
required for those.

Reduction of Theorem 3.4(b) We want to invoke the Implicit Function Theorem. Thus, we
have to check that

d

dK∂t RT (0, 0) �= 0 for points (h2,K) such that ∂t RT (0, 0) = 0.

In particular, we have to check the previous condition in an open set containing the white
region in Fig. 4. We compute

DI2 ≡ d

dK∂t RT (0, 0) = 4∂αz2(0)
∫ ∞

0

∫ ∞

0

sinh(π y)∂αz2(γ ) cos(z1(γ )y)

(sinh(π y) + K sinh(2h2y))2 cosh
(
y π
2

)
×
(
2y cosh

( yπ
2

− yh2
)
cosh

( yπ
2

)
− 2 sinh (yh2)

tan(h2)

)

× cosh (yz2(γ )) cosh
(
y
(π

2
− h2

))
dγ dy.

and show it is always non-zero. ��

4 The surface quasi-geostrophic equation

The Surface Quasi-Geostrophic equation (SQG) is the following active scalar equation

(∂t + u · ∇) θ = 0 (4.1)
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where the relation between the incompressible velocity u and θ is given by

u = ∇⊥ψ, θ = −(−�)
1
2 ψ.

The scalar θ(x, t) represents the temperature andψ(x, t) is the stream function. The non-local
operator �γ = (−�)

γ
2 is defined through the Fourier transform by �̂γ f (ξ) = |ξ |γ f̂ (ξ).

This equation has applications to meteorology and oceanography, since it comes from
models of atmospheric and ocean fluids [117] and is a special case of the more general 3D
quasi-geostrophic equation. There was a high scientific interest to understand the behavior
of the SQG equation, initially because it is a plausible model to explain the formation of
fronts of hot and cold air [117], and more recently [32] this system was proposed as a 2D
model for the 3D vorticity intensification and a geometric and analytic analogy with the 3D
incompressible Euler equations was shown.

One can also see a strong analogy with the 2D Euler equation in vorticity form:

(∂t + u · ∇) ω = 0

u = ∇⊥ψ, ω = −(−�)1ψ, (4.2)

the only difference being a stronger singular character of the velocity in the SQG case.
The problem ofwhether the SQG system presents finite time singularities or there is global

existence is open for the smooth case.

4.1 Brief history of the problem

Local existence has been proved in various functional settings [26,32,104,137,138]. Starting
from initial data with infinite energy, a gradient blowup may occur [14]. For finite energy
initial data, solutions may start arbitrarily small and grow arbitrarily big in finite time [100].

The numerical simulations in [32] proposed a blowup scenario in the form of a closing
hyperbolic saddle. This was ruled out in [34,35]. More modern numerical simulations were
able to resolve past the initially predicted singular time and found no singularities [31]. A
new scenario was proposed in in [126], starting from elliptical configurations, that develops
filamentation and after a few cascades, blowup of ∇θ .

Global existence of weak solutions in L2 was shown in [120], and extended to the class
of initial data belonging to L p with p > 4/3 in [107]. Non-uniqueness of weak solutions
has been proved in [10]. See also [113].

Through a different motivation, [36,62,63] the existence of a special type of solutions
that are known as “almost sharp fronts” was studied. These solutions can be thought of as a
regularization of a front, with a small strip around the front in which the solution changes
(reasonably) from one value of the front to the other. See [81] for a construction of traveling
waves.

4.2 Main Theorem

The main Theorem is the following [22]:

Theorem 4.1 There is a nontrivial global smooth solution for the SQG equations that has
finite energy, is compactly supported and is 3-fold.
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Fig. 5 The patch setting: the
scalar θ is an indicator function
of a domain �. This setting is
preserved in time: θ will be an
indicator function of a moving
domain �(t) for all t

It is well known that radial functions are stationary solutions of (4.1) due to the structure
of the nonlinear term. The solutions that will be constructed are a smooth perturbation in a
suitable direction of a specific radial function. The smooth profile we will perturb satisfies
(in polar coordinates)

θ(r) ≡
⎧⎨
⎩
1 for 0 ≤ r ≤ 1 − a
smooth and decreasing for 1 − a < r < 1
0 for 1 ≤ r < ∞

,

where a is a small number. In addition the dynamics of these solutions consist of global
rotating level sets with constant angular velocity. These level sets are a perturbation of the
circle. The motivation comes from the so-called “patch” problem: namely when θ is a step
function (see Fig. 5). In this setting, the uniformly rotating solutions are known as V-states.

In this setting, local existence of patch solutions has been obtained in [73,122] and unique-
ness in [33]. There are two scenarios suggesting finite time singularities: the first one [37],
starting from two patches, suggests an asymptotically self-similar collapse between the two
patches, and at the same time a blowup of the curvature at the touching point; the second one
[127] evolves a thin elliptical patch and indicates a self-similar filamentation cascade ending
at a singularity with a blowup of the curvature.

The first computations of V-states for the 2D Euler equation are numerical [55] and since
then there have been many works in different settings [58,105,124,136]. However, the first
proof dates to [11] proving their existence and later [92] their regularity. See also [52,53,
89,90,93,94] for other studies in different directions (regularity of the boundary, different
topologies, etc.).

For the SQG equation, in [20,21] existence and analyticity of the boundary was shown.
In [78] nontrivial stationary solutions are constructed. The existence of doubly-connected
V-states with analytic boundary was done in [119]. For more results concerning V-States of
other active scalar equations see [51,57,88,91].

We have also managed to prove a similar result as Theorem 4.1 for other active scalar
equations such as the 2D Euler equations [23] (see also [77]).

Reduction of Theorem 4.1
We start writing down the scalar θ in terms of the level sets: θ(z(α, ρ, t), t) = f (ρ) and write
down the level sets in polar coordinates as z(α, ρ, t) = R(λt)r(α, ρ)(cos(α), sin(α))with R
being a rotationmatrix. Then after a few algebraic manipulations one can show that a solution
of the SQG equation that rotates with angular velocity λ has to satisfy F(r(α, ρ), λ) = 0,
where F(r(α, ρ), λ) is an integrodifferential equation, and r(α, ρ) is the radial component
of the solution. In this formulation, the coordinate ρ is related to the level of the level sets,
and α is an angular coordinate. The strategy is to apply an abstract Crandall–Rabinowitz
theorem [49] bifurcating from r = ρ, which corresponds to a radial function (and therefore
a solution for every λ). We bifurcate from a smooth “annular” profile which is 1 inside the

123



J. Gómez-Serrano

disk of radius 0.95, 0 outside the disk of radius 1 and C4 in between. The main steps to be
shown are the following:

1. F is well defined and is C1.
2. Ker(F) is one-dimensional, whereF is the linearized operator around r = ρ at λ = λ3,

where λ3 has to be determined.
3. Y /Range(F) is one-dimensional and Frλ(r , λ3)(r3) /∈Range(F), whereKer(F) = 〈r3〉.

The hardest step is step 2. We look for solutions with 3-fold symmetry. To do so, we decom-
pose the space and project onto the 3-rd Fourier mode in α. We try to find a function B3(ρ) in
such a way that the kernel ofF is generated by ρB3(ρ) cos(3α). After rewriting the equations
we end up having to solve an equation of the type

λ3B3(ρ) = I (ρ)B3(ρ) +
∫

T 3(ρ, ρ′)B3(ρ
′)dρ′,

where both I and T 3 are

I (ρ) = − 1

2π

∫ 1

0
fρ(ρ′)

⎛
⎜⎜⎝
∫ π

−π

cos(x)√
1 +

(
ρ
ρ′
)2 − 2

(
ρ
ρ′
)
cos(x)

dx

⎞
⎟⎟⎠ dρ′

T 3(ρ, ρ′) = 1

2π
fρ(ρ′)ρ

′

ρ

∫ π

−π

cos(mx)√
1 +

(
ρ
ρ′
)2 − 2

(
ρ
ρ′
)
cos(x)

dxdρ′.

Note that these functions can also be written in terms of elliptic integrals. We regard the
equation as an eigenvalue problem, having to find an eigenpair (λ3, B3). In fact, we will
look for the smallest eigenvalue λ3. The first drawback is that the integral operator is not
symmetric: only close to symmetric so a priori it is not clear whether there is a (real) solution
or not. Moreover, the appearance of the multiplication operator I has the effect that the RHS
is not compact, making this step more challenging. Nonetheless, we can prove the existence
of λ3 and B3.

The strategy is to consider this problem as a perturbation of a symmetric one. The hope is
that if the antisymmetric part is small enough (compared to the gap between the eigenvalues),
then there will be a real eigenpair. See Fig. 6 for a sketch of the situation: since there is only
one eigenvalue inside the grey ball—which is sufficiently small—, it has to be real (otherwise
there would be two). We can recast it into explicit, quantitative conditions involving the gap
between the first eigenvalues and the norm of the antisymmetric part.

We now focus on the symmetric part of the RHS. Getting a lower bound of the first
eigenvalue is easy via Rayleigh–Ritz bounds. The hard part is to get a lower bound of the
second eigenvalue of a symmetric operator.

We can get advantage of the compact part. If it were finite dimensional, then the problem
reduces to finding an eigenvalue of a matrix. The crucial observation is that since the operator
is compact, it will be well approximated by a finite rank operator modulo a small error, which
can be made arbitrarily small increasing the dimension of the finite rank operator. The error
can be written as an explicit (singular) integral which can be bounded as the ones in Sect.
2.4. To deal with the singularity, we need to perform Taylor approximations of the elliptic
functions with explicit error estimates. The philosophy can be summarized by the following:
if we have an approximate guess of the eigenpair, then there is a true eigenpair nearby. This
way we can get tight, explicit bounds of the spectrum which lead to the proof of Step 2.
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(a) Spectrum of the symmetric part of the RHS.λ∗ is the first eigenvalue, c∗ is
the second. The rest of the spectrum is to the right of c∗.

(b) Spectrum of the RHS (perturbation of the symmetric part). There is an
eigenvalue inside the grey ball and the rest of the spectrum lies inside the white
ball or further right.

Fig. 6 Sketch of the spectrum of the symmetric part of the RHS and the RHS

Step 1 is standard and technical, and step 3 follows from a similar analysis of the adjoint
problem. ��
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140. Zgliczyński, P.: Rigorous numerics for dissipative partial differential equations. II. Periodic orbit for the
Kuramoto–Sivashinsky PDE—a computer-assisted proof. Found. Comput. Math. 4(2), 157–185 (2004)
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