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The pair production rates for spin-0 and spin- 1
2
particles are calculated on spaces of the form M × R

1;1,

with M corresponding to R
2 (flat); T2 (flat, compactified); S2 (positive curvature); and H2 (negative

curvature), with and without a background magnetic field onM. The motivation is to elucidate the effects of
the curvature and background magnetic field. Contrasting effects for positive and negative curvature on the
two cases of spin are obtained. For positive curvature, we find enhancement for spin-0 and suppression for

spin- 1
2
, with the opposite effect for negative curvature.
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I. INTRODUCTION

The Schwinger process of pair production of charged
particles in a uniform electric field has long remained a
topic of research interest since the original calculation [1].
It has been analyzed by different techniques and extended,
at least to some extent, to the case of spacetime-dependent
fields [2], to the dual situation of the production of
magnetic monopole pairs in a magnetic field [3], etc.
Mathematically similar calculations also apply to the case
of spacetime curvature as the agent of particle production
[4]. A key feature of the Schwinger process is that, while
there is a nonzero probability for pair production for all
values of the electric field, there is a suppression effect due
to the mass m of the charged particles, of the form e−m

2π=E,
where E denotes the electric field. This is essentially due to
the fact that a pair needs a minimal energy of 2m to be
liberated as free particles from the vacuum. This, of course,
immediately brings up the question of whether or how the
process can be enhanced in a situation where the liberated
pair is not made up of free particles, but in a bound state, so
that the binding energy effectively reduces the suppression
due to the mass. Pair production where the created pair ends
up in bound states has not yet been investigated in detail

and this provides the general setting and motivation for the
present work.
Relevant to this issue is the fact that the electrostatic

potential energy will have opposite signs for the two
members of a charged pair and hence additional electric
fields do not necessarily provide a good example. One
needs a situation for which both members of the pair can be
in bound states. For example, a whole background of
protons and antiprotons, in addition to the constant back-
ground electric field, can provide binding centers for the
created electrons and positrons and could lead to a situation
of enhanced pair production. However, this problem is
practically intractable.
Gravitational fields can provide charge-symmetric bind-

ing for the created pair, so the analysis of the Schwinger
process in a background of nonzero curvature is one case
which should be interesting [5]. In a background magnetic
field, we get Landau levels (LL) for both types of charges,
so this is another case worth exploring in more detail [6].
The spin of the particle also affects pair production in a
nontrivial way. With an additional magnetic field, the
Zeeman coupling of the spin becomes important in deter-
mining the energy levels. For gravitational backgrounds as
well, there is a Zeeman-like coupling of spin to curvature
which can affect the process. Recall that Schwinger’s
original calculation involved the use of the spacetime
trajectories of particles. While spinless particles follow
geodesics in a gravitational background, spinning particles
follow the Mathisson-Papapetrou trajectories due to the
curvature-spin coupling. Thus even within Schwinger’s
calculational framework, we can see that there will be
interesting spin effects when there is an additional magnetic
field or spacetime curvature present.
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With this motivation and background, in this paper and
in the accompanying part 2, we consider the pair produc-
tion of particles of spins 0, 1

2
, and 1 in a background with

both electric and magnetic fields. For the geometric back-
ground, we will consider manifolds of the form M ×R

1;1,
whereMwill be taken to beR2 (so that the total space is flat
Minkowski spacetime), and T2, S2, and H2 in turn. The
uniform electric field is taken to be in the R1;1 components
(which have metrical signature þ;−), with a magnetic field
onR2, T2, S2, andH2. Here T2 is the two-dimensional torus,
S2 is the two-sphere, and H2 is the two-dimensional hyper-
boloid. These can be viewed as R2 modulo a square lattice,
SUð2Þ=Uð1Þ and SLð2;RÞ=Uð1Þ, respectively, so that a
group-theoretic analysis of the effective action is possible.
(There are also some features which make this analysis
interesting in its own right.)Wehave chosenT2,S2, andH2 to
exemplify the cases of flat but compact, positively curved,
and negatively curved spaces, respectively.
In this paper, we will consider spins 0 and 1

2
. The case of

spin 1 needs a more elaborate discussion. The only
consistent approach to spin-1 particles is to treat them as
part of a non-Abelian gauge field. The Yang-Mills action
will then determine the correct Zeeman coupling as well
as the spin-curvature coupling. For these fields, the correct
counting of the physical degrees of freedom is also
nontrivial and will require a Becchi-Rouet-Stora-Tyutin
(BRST) analysis. Finally, it is known that, in the non-
Abelian case, there is an instability even for background
fields of the purely magnetic type, even without an electric-
type field. This has to be accounted for in the formalism.
An interesting postscript to some of the older attempts to
understand confinement will also result from our analysis.
For all these reasons, we will discuss the spin-1 case in a
separate paper.
This paper is organized as follows. In Sec. II we discuss

flat space, pointing out additional enhancement and sup-
pression effects with a background magnetic field. This is
followed by sections discussing the torus, two-sphere, and
hyperboloid in sequence. The corresponding results are
compared to the case of flat Minkowski geometry. The
paper concludes with a discussion and an Appendix, which
is a short resumé of results on SLð2;RÞ relevant to our
analysis.

II. PAIR PRODUCTION WITH ELECTRIC

AND MAGNETIC FIELDS: FLAT SPACE

AND SPINS 0 AND 1
2

A. Scalar field, spin 0

As mentioned in the Introduction, our aim is to consider
the effect of Landau levels as well as curvature on pair
production for particles of different spins in a uniform
electric field. The simplest approach to calculating this is to
consider two orthogonal magnetic fields in Euclidean
space, for which we have an explicit solution in terms

of the Landau levels. It is then straightforward to calculate
the effective action and then continue to Minkowski space,
with one of the magnetic fields continuing to the electric
field.
This strategy is easily illustrated for the case of a scalar

charged field ϕ. The Euclidean action can be taken as

S ¼
Z

d4x½ðDμϕÞ�ðDμϕÞ þm2ϕ�ϕ�; ð2:1Þ

where Dμ denotes the covariant derivative as usual. The
corresponding effective action, upon integrating out the
field ϕ, is

Γ ¼ Tr logð−D2 þm2Þ: ð2:2Þ

We must evaluate this determinant for constant magnetic
fields, which will be taken to be F12 ¼ B1 in the (1,2)-plane
and F34¼B2 in the (3,4)-plane. Using Πμ ¼ −iDμ ¼
−i∂μ þ Aμ, we have ½Π1;Π2� ¼−ið∂1A2−∂2A1Þ¼−iB1,
½Π3;Π4� ¼ −ið∂3A4 − ∂4A3Þ ¼ −iB2. We thus have two
sets of canonically conjugate operators (Π2=

ffiffiffiffiffiffi

B1

p
;

Π1=
ffiffiffiffiffiffi

B1

p
), (Π4=

ffiffiffiffiffiffi

B2

p
;Π3=

ffiffiffiffiffiffi

B2

p
). Writing ΠμΠ

μ in terms
of these, we find the eigenstates and eigenvalues,

½ðΠ2

1
þ Π

2

2
Þ þ ðΠ2

3
þ Π

2

4
Þ�ψn1;n2;α

¼ ½ð2n1 þ 1ÞB1 þ ð2n2 þ 1ÞB2�ψn1;n2;α
ð2:3Þ

where n1, n2 are either zero or positive integers. The
subscript α on the wave functions denotes degeneracy.
Using this result we find the effective action

Γ¼−Tr

Z

∞

ϵ

ds

s
e−sð−D

2þm2Þ¼−

Z

d4x
ds

s
hxje−sð−D2þm2Þjxi

¼−

Z

∞

ϵ

ds

s

Z

d4x
X

n1;n2;α

ψ�
n1;n2;α

ðxÞψn1;n2;α

× ðxÞe−sð2n1þ1ÞB1−sð2n2þ1ÞB2−sm
2

¼−

Z

∞

ϵ

ds

s
d4x

B1B2

ð2πÞ2
X

n1;n2

e−sð2n1þ1ÞB1−sð2n2þ1ÞB2−sm
2

:

ð2:4Þ

Here ϵ is a small positive real number which can be
taken to be zero after renormalization. We have also used
the normalization condition

R

d4xψ�
n1;n2;α

ðxÞψn1;n2;α
ðxÞ ¼ 1

and the fact that the degeneracy of the Landau levels is
given by the factor ðB1=2πÞdx1dx2 × ðB2=2πÞdx3dx4 [7].
In the present case, we can actually carry out the summa-
tions in (2.4) to obtain a closed form formula,

Γ¼−
1

16π2

Z

∞

ϵ

ds

s3

Z

d4xe−sm
2

�

sB1

sinhsB1

��

sB2

sinhsB2

�

:

ð2:5Þ
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There are divergences at s ¼ ϵ as ϵ → 0; these correspond
to ultraviolet divergences and have to be subtracted out, for
which one can use the expansion

sB

sinh sB
≃ 1 −

ðsBÞ2
6

þOðs4Þ: ð2:6Þ

This subtraction procedure has to be carried out to obtain
the real part of the effective action. However, our focus here
is on the decay rate of the vacuum state due to particle
production. There are no ultraviolet divergences for this.
Also, for the case of the sphere and the hyperboloid,
explicit summation will not be possible. So, to calculate the
decay rate along the lines which generalize to the curved
manifold cases, we go back to (2.4) and carry out the
summation over n2 to write

Γ¼−
1

8π2

Z

∞

ϵ

ds

s2
d4x

�

sB2

sinhsB2

��

B1

X

n1

e−sðm
2þð2n1þ1ÞB1Þ

�

:

ð2:7Þ

We consider the continuation of this result to Minkowski
space by using x4 → ix0, B2 → −iE. Further, the continu-
ation of −Γ is to be identified as iSeff , with h0j0i ¼ eiSeff .
We are thus interested in the real part of iSeff . From (2.7),

iSeff ¼
1

8π2

Z

id4x

Z

∞

ϵ

ds

s2
sE

sinsE

�

B1

X

n1

e−sðm
2þð2n1þ1ÞB1Þ

�

:

ð2:8Þ

This expression has singularities at sE ¼ nπ, n ¼ 1; 2;….
(There is no singularity at n ¼ 0, or s ¼ 0 since the
integration starts at s ¼ ϵ. To put it another way, the
s ¼ 0 singularity is subtracted out via renormalization.)
The imaginary part of Seff (i.e., the real part of iSeff)
arises from going around the singularities in doing the
s-integration. Near sE ¼ nπ, we write s¼ðnπ=EÞþ z,
sin sE ¼ sinðnπ þ EzÞ ≃ ð−1ÞnEz. We then get, for the
contribution from a small semicircle around these points,

ReðiSeffÞ ¼
i

8π2

Z

d4x
X

∞

n¼1

ð−1ÞnðE=nπÞ

×

Z

0

π

dz

z

�

B1

X

n1

e−ðnπ=EÞðm
2þð2n1þ1ÞB1Þ

�

¼
Z

d4x
E

8π2

X

∞

n¼1

ð−1Þn
n

×

�

B1

X

n1

e−ðnπ=EÞðm
2þð2n1þ1ÞB1Þ

�

: ð2:9Þ

If we carry out the summation over n1 and then take the limit
B1 → 0, this becomes

ReðiSeffÞ ¼ −

Z

d4x
E2

16π3

X

∞

n¼1

ð−1Þnþ1

n2
e−m

2ðnπ=EÞ

¼ −

Z

d4x
E2

192π
; as m → 0: ð2:10Þ

In the last line we have used the fact that
P

∞
n¼1

ð−1Þnþ1=

n2 ¼ π2=12. This result (2.10) is in agreement with the
standard Schwinger calculation with just the electric field in
flat space. (For a collection of formulas for the Schwinger
effect for different spins, with earlier references, see [6].)

B. Dirac field, spin 1
2

In the case of the Dirac field, the effective action is
given by

Γ¼−Tr logðiγ ·ΠþmÞ

¼−
1

2
Tr logðiγ ·ΠþmÞð−iγ ·ΠþmÞ

¼−
1

2
Tr log

�

Π
2þm2þ

�

1

2
½γμ;γν�

��

1

2
½Πμ;Πν�

��

:

ð2:11Þ

Our choice of Euclidean γ-matrices in terms of the Pauli
matrices σi is

γi ¼
�

0 iσi

−iσi 0

�

; γ4 ¼
�

0 1

1 0

�

: ð2:12Þ

This explicit representation of γμ is not needed for most
calculations. The operator in (2.11) is the same as before,
except for the Zeeman term. With the background fields as
before, there are four distinct sets of eigenvalues (corre-
sponding to the sign combinations þþ, þ−, −þ, and −−)
given by

Π
2 þ

�

1

2
½γμ; γν�

��

1

2
½Πμ;Πν�

�

¼ ð2n1 þ 1ÞB1 þ ð2n2 þ 1ÞB2 � B1 � B2: ð2:13Þ

Unlike the spin-0 case, there is a mode with eigenvalue
equal to zero, where the Zeeman term cancels the zero-
point contribution from Π

2. The degeneracy, as before, is
given by d4xðB1B2=4π

2Þ. Thus carrying out the summation
over n2 as before, we find

Γ ¼ 1

2

Z

ds

s
d4x

B1B2

4π2
coth sB2

×
X

n1

ðe−sðm2þ2n1B1Þ þ e−sðm
2þð2n1þ2ÞB1ÞÞ: ð2:14Þ

Continuing this expression to Minkowski space, we find
the real part of iSeff as
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ReðiSeffÞ¼−

Z

d4x
E

8π2

X

∞

n¼1

1

n

×

�

B1e
−sm2

X

n1
ð1þe−2sB1Þe−2sn1B1

�

s¼ðnπ=EÞ
:

ð2:15Þ

Taking the limit of this expression as B1 → 0, after doing
the summation over n1, we get

ReðiSeffÞ ¼ −

Z

d4x
E2

8π3

X

∞

n¼1

1

n2
e−m

2ðnπ=EÞ

¼ −

Z

d4x
E2

48π
; as m → 0; ð2:16Þ

using
P

∞
n¼1

ð1=n2Þ ¼ π2=6 in the last line. Again, this is in
agreement with the standard Schwinger calculation [6].
The mass of the particle gives an exponential suppres-

sion of the pair creation rate, as is evident from (2.9) and
(2.15). To isolate and highlight the effect of the magnetic
field, it is useful to consider the massless case, i.e., the limit
m2

→ 0. We can write the formulas for this as

ReðiSeffÞ ¼ −

Z

d4x
E2

192π
×

�

f0ðB1=EÞ
4f1=2ðB1=EÞ

; ð2:17Þ

where f0 applies to the spin-0 case and f1=2 to the Dirac
spinor. These functions are given by

f0ðxÞ ¼
24x

π

X

∞

n¼1

ð−1Þnþ1

n

X

n1

e−nπð2n1þ1Þx

¼ 24x

π

X

∞

n1¼0

logð1þ e−ð2n1þ1ÞπxÞ ð2:18Þ

f1=2ðxÞ ¼
6x

π

X

∞

n¼1

1

n
e−m

2ðnπ=EÞ
X

n1

ðe−2πnn1x þ e−ðn1þ1Þ2πnxÞ

¼ 6x

π

�

− logð1 − e−m
2π=EÞ

− 2

X

n1¼1

logð1 − e−m
2π=Ee−2πn1xÞ

�

ð2:19Þ

≈
6x

π

�

− logðm2π=EÞ − 2

X

n1¼1

logð1 − e−2πn1xÞ
�

: ð2:20Þ

The last line applies for ðm2π=EÞ ≪ 1.
The motivation for the factorization of the decay rate in

terms of these functions f0ðxÞ, f1=2ðxÞ is that they become
1 as x → 0, with (2.17) becoming identical to the standard
Schwinger result. These functions can thus be used to

characterize the deviation from the case when the back-
ground magnetic field is zero. In (2.19) and (2.20), we have
also separated off the contribution due to the zero mode for
f1=2ðxÞ, namely, for n1 ¼ 0, and also kept a nonzero value
for the mass for this part. This is because the zero mode
contribution diverges at finite B1 if the mass is zero. This is
an infrared divergence. Physically speaking, it is not
sensible to consider a uniform magnetic field over all of
space. We must consider a finite volume, or, if we wish to
idealize a uniform magnetic field over a large volume
as a constant value over all of space, we should introduce
an infrared cutoff. This is what is done with the m2-
dependence term in (2.19).
If we consider these functions at a fixed value of E but

vary B1, it is easy to see that f0ðxÞ is always less than 1.
Thus the effect of the magnetic field is to suppress the pair
production rate. This is straightforward to understand. The
electric field has to create pairs which go into various
Landau levels; the most favorable would be the lowest
Landau level with the zero-point energy B1. This energy
cost suppresses the pair production even if the mass is zero.
For the spin- 1

2
case, there is a zero mode, so there is no

energy cost for producing pairs which occupy this mode.
Since the particles are fermions, there is a limit given by the
degeneracy proportional to the total area of the (x1; x2)-
subspace. So we get a divergent rate for pair production
unless we cut off the area via an infrared cutoff. Notice that,
as the value of B1 increases, all terms in the summation in
f1=2ðxÞ get exponential suppression factors, except for the
zero-mode part corresponding to ½−ð6=πÞ logðm2π=EÞ�x.
This leads to a linear increase of f1=2, with B1 showing that
there is enhancement of pair production. The linear
dependence in B1 can be understood as due to the increase
of degeneracy as B1 increases.

C. Pair creation on T2 ×R
1;1

Before we start to examine the curvature effects, it is
instructive to study if and how the toroidal compactification
of directions transverse to the electric field influences the
pair production rates.
To compute the one-loop effective action on T2 ×R

2,
we follow the same strategy as in the previous sections
and consider uniform magnetic fields on T2 and R

2

denoted by B1 and B2, respectively. In the presence of
uniform magnetic field B1 on T2, suitable boundary
conditions have to be imposed on wave functions.
A well-known choice is to implement periodic boundary
conditions under magnetic translations [8], to which we
confine our discussion in this subsection. A simple
consequence of this type of boundary condition is that
it leads to the Dirac quantization condition on the
magnetic fields; that is, we have B1 ¼ N

2πa2
with N ∈ Z,

where a stands for the compactification radius in each
circular direction of T2.
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The spectrum of the Laplace operator on T2 ×R
2 with and without the transverse magnetic field background is given as

Specð−D2Þ ¼
� 1

a2
ðp2 þ q2Þ þ ð2nþ 1ÞB2; B1 ¼ 0; p; q ∈ Z; n ∈ Zþ;

ð2n1 þ 1Þ N
2πa2

þ ð2n2 þ 1ÞB2; N ≠ 0; n1; n2 ∈ Zþ:
ð2:21Þ

From the first line of (2.21), we see that, in the absence of
any magnetic flux penetrating T2, there is a single zero
mode specified by the quantum numbers ðp; qÞ ¼ ð0; 0Þ.
Once the magnetic field on T2 is switched on though, the
spectrum is formally the same as that of the flat case, except
that B1 is quantized as we have already noted. The
corresponding density of states, for each state labeled by
(p, q) when B1 ¼ 0, is given by

ρT2 ¼ 1

4π2a2
: ð2:22Þ

For the case with N ≠ 0, we have the density of states as
before,

ρT2 ¼ B1

2π
¼ N

4π2a2
; N ≠ 0: ð2:23Þ

Following the same steps as before, we find

ReðiSeffÞ ¼ −
E2

16π3

Z

T2×R1;1

d4xβðωÞ; ð2:24Þ

where, for B1 ¼ 0,

βðB1¼ 0ÞðωÞ≔ω

π

�

log2þ4

X

∞

p¼0

log½1þe−ωðp
2þm2a2Þ�

þ4

X

∞

ðp;qÞ>ð0;0Þ
log½1þe−ωðp

2þq2þm2a2Þ�
�

;

ð2:25Þ

and, for B1 ¼ N
2πa2

,

βðωÞ ≔ ω

π
N
X

∞

k¼0

log½1þ e−
ω
π
ðNðkþ1

2
Þþm2a2Þ�; ð2:26Þ

with ω ≔ π
Ea2

.
Let us examine the case with B1 ¼ 0 first. To probe the

effect of compactification we take the ratio of βðB1¼0ÞðωÞ to
the corresponding quantity π2

12
for the R

3;1 case, which is
computed by the sum in (2.10). We have

γðωÞ∶ ¼ 12

π2
βðB1¼0Þðω; m2 ¼ 0Þ

¼ 12

π3
ω

�

log 2þ 4

X

∞

p¼0

log½1þ e−ωp
2 �

þ 4

X

∞

ðp;qÞ>ð0;0Þ
log½1þ e−ωðp

2þq2Þ�
�

: ð2:27Þ

We get a good estimate of γðωÞ, by performing the sum
over the discrete momenta (p, q) up to ðp; qÞmax ¼
ð1000; 1000Þ. This gives the profile presented in Fig. 1.
Notice that the result is essentially the same as the
Minkowski (R3;1) result at small values of ω. This is
understandable since small ω, at fixed E, corresponds to
large a, and hence there should not be any significant effect
due to the compactification. As ω increases, although T2 is
flat, the change of the spectrum of the Laplacian due to
compactification leads to an increase of the pair production
amplitude on T2 ×R

1;1.
We observe (2.26) with m2 ¼ 0 is the same as what is

found on R
3;1 in (2.17) with f0ðxÞ given in (2.18) and

B1 ¼ N
2πa2

. Thus, there is essentially no change in the pair

production effect on T2 ×R
1;1 compared to R

3;1 as long as
the transverse magnetic field is present, except that only
quantized values of the magnetic field are admissible in the
toroidally compactified setting.
In the absence of a magnetic field, the Dirac operator on

T2 ×R
2 squares to the Laplace operator on this space, since

neither Zeeman-type nor curvature contributions are
present in this case. Thus, the pair production effect is
given by (2.24) for the spin-up and spin-down components.
Finally, in the presence of the transverse magnetic field, the
square of the Dirac operator has the same spectrum as the

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

0( )

FIG. 1. γðωÞ vs ω on T2 × R
1;1.
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one obtained on R
4 in (2.13), except for the quantized

values of the magnetic field, i.e., B1 ¼ N
2πa2

. The pair
production effect is therefore given by (2.17) and (2.19).

III. PAIR CREATION ON S2 ×R
1;1

A. Scalar field, spin 0

For the manifold S2 ×R
1;1, we start with considering

uniform magnetic fields on S2 and R
2, which we label, as

before, by B1 and B2, respectively. On the sphere, the
uniform magnetic field B1 is that of a magnetic monopole
and therefore given by B1 ¼ N

2a2
, with N ∈ Z, due to the

Dirac quantization condition. The Landau problem can be
solved exactly using group theory, utilizing the fact that
S2 ¼ SUð2Þ=Uð1Þ. The wave functions are the representa-
tion matrices for SUð2Þ of the form hj; ijĝjj;− 1

2
Ni, for

ĝ ∈ SUð2Þ, and j ¼ kþ ðN=2Þ [9]. The spectrum of the
gauged Laplacian, −D2, is then readily obtained as

Specð−D2Þ ¼ 1

a2

�

kðkþ 1Þ þ Nkþ N

2

�

þ ð2n2 þ 1ÞB2;

ð3:1Þ

where k; n2 take integer values from zero to infinity. The
density of the states is given by B2

2π
on R

2; on S2 each
Landau level has degeneracy 2kþ 1þ N, which is the
dimension of the spin j ¼ kþ N

2
irreducible representation.

Therefore for the density of states we have

ρ
R

2 ¼ B2

2π
; ρS2 ¼

2kþ 1þ N

4πa2
: ð3:2Þ

The one-loop effective action is given by

Γ ¼ Tr logð−D2 þm2Þ

¼ −
1

16π2a2

Z

S2
dμ

Z

R
2

dx3dx4

Z

ds

s

B2

sinh sB2

×
X

∞

k¼0

ð2kþ 1þ NÞe−s½m2þðkðkþ1ÞþNkþN
2
Þ=a2�: ð3:3Þ

As before, we continue from S2 ×R
2 to Minkowski

signature for the R
2-part using the Wick rotation B2 →

−iE and x4 → ix0. The real part of iSeff is then obtained as

ReðiSeffÞ ¼
Z

dμdx0dx3
E

16π2a2

X

∞

n¼1

ð−1Þn
n

Hðnπ=EÞ;

ð3:4Þ

where we have defined

HðsÞ ¼
X

∞

k¼0

ð2kþ 1þ NÞe−s½m2þðkðkþ1ÞþNkþN
2
Þ=a2�: ð3:5Þ

This can be rewritten as

ReðiSeffÞ ¼ −

Z

dμdx0dx3
E2

16π3
β0ðωÞ ð3:6Þ

β0ðωÞ ¼ ω
X

∞

k¼0

ð2kþ 1þ NÞ

×
X

∞

n¼1

ð−1Þnþ1

n
e−nω½m

2a2þkðkþ1ÞþNkþðN=2Þ�

¼ ω
X

∞

k¼0

ð2kþ 1þ NÞ

× log½1þ e−ω½m
2a2þkðkþ1ÞþNkþðN=2Þ��: ð3:7Þ

We defined ω ≔ π
Ea2

as a convenient dimensionless
variable.1 We can compare our result with the flat space
result by considering the latter over an area 4πa2. Writing
B1 ¼ N=2a2, the flat space formula gives

βflat
0
ðω; m2 ¼ 0Þ ¼ ωN

X

∞

k¼0

X

∞

n¼1

ð−1Þnþ1

n
e−nω½NkþðN=2Þ�

¼ ωN
X

∞

k¼0

log½1þ e−ω½NkþðN=2Þ��: ð3:8Þ

The ratio of β0ðω; m2 ¼ 0Þ to βflat
0
ðω; m2 ¼ 0Þ is a good

measure for the effect of curvature for a nonvanishing
magnetic field background and we define this ratio as

γ0ðωÞ ≔
P

∞
k¼0

ð2kþ 1þ NÞ log½1þ e−ω½kðkþ1ÞþNkþðN=2Þ��
N
P

∞
k0¼0

log½1þ e−ω½Nk0þðN=2Þ��
;

N ≠ 0; ð3:9Þ

while in the absence of the magnetic background, i.e., for
N ¼ 0, we have

γ0ðωÞ ≔
12

π2
ω
X

∞

k¼0

ð2kþ 1Þ log½1þ e−ωkðkþ1Þ�: ð3:10Þ

In Figs. 2 and 3, we show the behavior of this ratio for
several values of N. Clearly, there is an enhancement effect
due to the curvature. This is basically due to the degeneracy
factor (2kþ 1þ N) on the sphere. In terms of the magnetic
field this is ðB1=2πÞ þ ð2kþ 1Þ=4πa2, compared to just
B1=2π for the flat case. As ω becomes large, the k ¼ 0 term

1As a check on this formula, notice that if we take the limit of
a2 → ∞, N → ∞, keeping B1 ¼ N=2a2 fixed in the summand,
and then carry out the summation, we find that β0ðωÞ →
ðπ2=12Þf0ðxÞ with f0ðxÞ given in (2.18), say, for m2 ¼ 0. In
this way, we recover the flat space result with a magnetic field.
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dominates in both the numerator and denominator in (3.9),
clearly showing that the γ0’s saturate to a value of Nþ1

N
.

B. Dirac field, spin 1
2

We now turn to the case of the Dirac field on S2 ×R
2.

Again, the S2-dependence of the wave functions can be
constructed in terms of the representation matrices
hj; mjĝjj; m0i for SUð2Þ. The derivatives act as right
translation operators on ĝ. This has been used before for
the solution of the Landau problem for the scalars. For the
Dirac case, we have

Γ ¼ −Tr logðiγ ·DþmÞ ¼ 1

2

Z

ds

s
Tr½e−sðm2−ðγ·DÞ2Þ�:

ð3:11Þ
The square of the Dirac operator can be simplified as

−ðγ ·DÞ2 ¼ −D2

3
−D2

4
þ B2

�

σ3 0

0 −σ3

�

þ 1

a2

�

ðR2

1
þ R2

2
Þ − R3

�

σ3 0

0 σ3

��

: ð3:12Þ

We have used the identification Da ¼ iRa=a for a ¼ 1, 2.
R3, which arises from the commutator of these operators,
carries the information about the background magnetic
field on S2 as well as the spin-curvature coupling. The
eigenvalues for R3 are thus − 1

2
− ðN=2Þ for the first and

third components of the spinor, and 1

2
− ðN=2Þ for the

other two components. Correspondingly, the j-value of
the representation must be j ¼ qþ ðN þ 1Þ=2 and
j ¼ qþ ðN − 1Þ=2, where q is a positive integer or zero.
The eigenvalues and the density of states are then the
following:

ð−ðγ ·DÞ2; ρÞ ¼

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

�

ð2n2 þ 2ÞB2 þ 1

a2
ððqþ 1Þ2 þ Nðqþ 1ÞÞ; 2ðqþ1ÞþN

4πa2
B2

2π

�

�

2n2B2 þ 1

a2
ðq2 þ NqÞ; 2qþN

4πa2
B2

2π

�

�

2n2B2 þ 1

a2
ððqþ 1Þ2 þ Nðqþ 1ÞÞ; 2ðqþ1ÞþN

4πa2
B2

2π

�

�

ð2n2 þ 2ÞB2 þ 1

a2
ðq2 þ NqÞ; 2qþN

4πa2
B2

2π

�

:

ð3:13Þ

In the second and fourth of these equations, q ¼ 1, 2, etc., for N ¼ 0, while q ¼ 0, 1, 2, etc., for N ≥ 1. In the absence of a
magnetic field, there is no zero mode on S2. But for N ≠ 0 there is a zero mode of degeneracy N for the second and fourth
components of the Dirac spinor [10]. The effective action is then obtained as

Γ ¼ 1

16π2a2

Z

dμdx3dx4

Z

ds

s
B2 coth sB2

X

q

½ð2qþ NÞe−s½m2þðq2þNqÞ=a2�

þ ð2ðqþ 1Þ þ NÞe−s½m2þððqþ1Þ2þNðqþ1ÞÞ=a2��: ð3:14Þ
At large values of a2 with fixed N, it is possible to treat p ¼ q=a as a continuous variable and convert
the sum over q to an integration. It is then easy to check that this expression agrees with what was obtained for flat
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FIG. 2. γ0ðωÞ vs ω.
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FIG. 3. γ0ðωÞ vs ω.
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space. We can extract the decay rate due to pair production as before by evaluating the contribution to the integral over s
from the poles from ðsin sEÞ−1 after continuation to Minkowksi space. The result is then

ReðiSeffÞ ¼ −

Z

dμdx0dx3
E2

8π3
β1=2ðωÞ

β1=2ðωÞ ¼ ω
X

∞

n¼1

1

n
e−nωðm

2a2Þ
�

N

2
þ
X

∞

q¼1

ð2qþ NÞe−nωðq2þNqÞ
�

¼ −ω

�

N

2
logð1 − e−ωm

2a2Þ þ
X

∞

q¼1

ð2qþ NÞ logð1 − e−ωðq
2þNqþm2a2ÞÞ

�

; ð3:15Þ

where ω ¼ ðπ=Ea2Þ. In this expression for β1=2ðωÞ, the first term −ω logð1 − e−ωm
2a2Þ is the contribution of

q ¼ 0 in the first and last set of eigenvalues in (3.13); i.e., it is due to the zero mode of ðγ ·DÞ2 on S2. Notice that
this term diverges if we take m2

→ 0, very similar to what we found for the case of flat space. For the second term with the
summation over q, we can set m2 ¼ 0 if we want to consider the massless case, without loss of convergence.
The limit of β1=2ðωÞ for flat space with a magnetic field, of flux N over area 4πa2, is given by

βflat
1=2ðωÞ ¼ −ω

�

N

2
logð1 − e−ωm

2a2Þ þ N
X

∞

q¼1

logð1 − e−ωðNqþm2a2ÞÞ
�

: ð3:16Þ

We can now define the ratio

γ1=2ðωÞ ¼
N logð1 − e−ωm

2a2Þ þ 2
P

∞
q¼1

ð2qþ NÞ logð1 − e−ωðq
2þNqþm2a2ÞÞ

N logð1 − e−ωm
2a2Þ þ 2N

P

∞
q0¼1

logð1 − e−ωðNq0þm2a2ÞÞ
: ð3:17Þ

We have already seen that there was an enhancement of pair
production due to the zero mode in flat space. γ1=2ðωÞ gives
a measure of the effect of curvature. We show the behavior
of this function for several values of N in Fig. 4. For these
graphs, we have taken m2a2 ¼ 1

2
as the cutoff value. The

summations were carried out to ðqmax; q
0
maxÞ ¼ ð100; 100Þ.

The case of zero magnetic field is special since there are no
zero modes. Therefore, in order to assess the effect of
curvature, we can compare β1=2ðω; N ¼ 0; m ¼ 0Þ with

βflat
1=2ðω; m ¼ 0Þ ¼

P

∞
n¼1

1

n2
¼ π2

6
and examine the profile of

γ1=2ðω; N ¼ 0Þ ¼ −
β1=2ðω; N ¼ 0Þ

ðπ2=6Þ

¼ −
12

π2
ω
X

∞

q¼1

q logð1 − e−ωq
2Þ: ð3:18Þ

The result is also shown in Fig. 4. From these plots of
γ1=2ðωÞ, we can infer that

(i) In the absence of any transverse magnetic field, the
pair production effect is significantly diminished
compared to the flat case.

(ii) When the magnetic field is present, the pair pro-
duction effect still remains less than that on the flat
space at any given magnetic field.

These can be seen as a consequence of the curvature of S2.
For small values of ω, the q2 dependence of the eigenvalues
(which is due to the curvature effects) ensures that the
numerator in (3.17) remains smaller than the denominator,
giving γ1=2ðωÞ < 1. We may further observe that, at any
fixed magnetic field, the effect tends to converge to the
flat space result with increasing ω. This can be attributed to
the fact that the contribution from the zero modes domi-
nates as ω increases. At higher values of the magnetic
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N=4
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FIG. 4. γ1=2 vs ω.
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charge, there are more zero modes and the restoring effect
of the zero modes becomes stronger, narrowing the interval
of ω in which γ1=2ðωÞ < 1. While there is suppression due
to the positive curvature, it is worth noting that the overall
rate with a nonzero background magnetic field is still
higher than that for zero magnetic field. This is clear from
the limit of γ1=2ðωÞ approaching the flat space value for
large ω.

IV. PAIR CREATION ON H2 ×R
1;1

A. Scalar field, spin 0

On the Euclidean space H2 × R
2, again we label the

directions onH2 as 1,2 and directions onR2 as 3,4, without
reference to any particular coordinate system. With a
magnetic field jB1j ¼ b

a2
on H2 and a magnetic field B2

on R
2, the spectrum of the gauged Laplacian, −D2, is

Specð−D2Þ ¼

8

<

:

1

a2
ðλ2 þ 1

4
þ b2Þ þ ð2nþ 1ÞB2; 0 ≤ λ < ∞

1

a2
ð−ðb − k − 1

2
Þ2 þ 1

4
þ b2Þ þ ð2nþ 1ÞB2; 0 ≤ k ≤ ½b − 1

2
� and k ∈ Z:

ð4:1Þ

The spectrum of the gauged Laplacian on H2 is composed
of a discrete and a continuous part. This problem is worked
out in detail in the literature [11,12], and we provide a brief
review in the Appendix in order to keep the paper self-
contained. The continuous part of the spectrum is labeled
by the spectral parameter λ, while the discrete spectrum is
labeled by the index k, which we will call the Landau level
(LL) index on H2. Contrary to the flat case, the LL index
on H2 does not extend to infinity, but is truncated by the
largest integer less than b − 1

2
, i.e., by ½b − 1

2
�. Thus discrete

states exist only if b > 1

2
. In (4.1), a stands for the radius of

curvature of H2.
The density of states of the continuous as well as the

discrete part of the spectrum of the gauged Laplacian onH2

can be determined from the representation theory of the
group SLð2;RÞ, which is the universal covering group of
the isometry group SOð2; 1Þ ≃ SUð1; 1Þ of H2, as dis-
cussed in the Appendix. These are given as

ρbðλÞ ¼
1

2πa2
λ sinh 2πλ

cosh 2πλþ cos 2πb
; b ≠ Zþ 1

2
; ð4:2Þ

ρbðkÞ¼
1

2πa2

�

b−k−
1

2

�

; b>
1

2
; 0≤k≤

�

b−
1

2

�

: ð4:3Þ

In the b → 0 limit, the spectrum of the Laplacian on H2 is
1

a2
ðλ2 þ 1

4
Þ and the density of states becomes ρ0ðλÞ ¼

ðλ tanh πλÞ=2πa2. Apart from the 1

2πa2
factor, this is the

Plancherel measure for the harmonic functions over H2,
while ρbðλÞ may be understood as the Plancherel measure
for the sections of the Uð1Þ-bundle onH2 with curvature b.
Unlike the case of S2, there is no Dirac quantization
condition for the values of the background magnetic
field b; generally, b ∈ R.
We are now in a position to take up the calculation of the

one-loop effective action. This is given by

Γ ¼ Tr logð−D2 þm2Þ ¼ −Tr

Z

ds

s
e−sð−D

2þm2Þ: ð4:4Þ

Given the spectrum of −D2 and the density of states, this
can be worked out as

Γ ¼ −
B2

8π2a2

Z

H2

dμ

Z

R2

dx3dx4

Z

ds

s

e−sm
2

sinh sB2

×

�
Z

∞

0

dλ
λ sinh 2πλ

cosh 2πλþ cos 2πb
e
− s

a2
ðλ2þ1

4
þb2Þ

þ
X

½b−1=2�

k¼0

�

b − k −
1

2

�

e
− s

a2
ð−ðb−k−1

2
Þ2þ1

4
þb2Þ

�

; ð4:5Þ

where dμ stands for the volume form onH2. We can write Γ
by introducing the shorthand notations KCðsÞ and KDðsÞ
for the integral and the sum in the square-bracketed
expression in (4.5) as

Γ ¼ −
B2

8π2a2

Z

H2

dμ

Z

R2

dx3dx4

×

Z

ds

s

e−sm
2

sinh sB2

ðKCðsÞ þ KDðsÞÞ: ð4:6Þ

Continuing H2 × R
2 to H2 ×R

1;1 by the Wick
rotation B2 → −iE and x4 → ix0, we may write the
effective action as

iSeff ¼ −ΓjB2→−iE;x4→ix0

¼ iE

8π2a2

Z

H2

dμ

Z

M2

dx0dx3

×

Z

ds

s

e−sm
2

sin sE
ðKCðsÞ þ KDðsÞÞ

− ðrenormalization correctionsÞ: ð4:7Þ

As in other cases, the imaginary part of the contribution to
the integral over s can be obtained from the residues at the
poles of sin sE. This leads to the result
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ReðiSeffÞ ¼
E

8π2a2

Z

H2

dμ

Z

R
1;1

dx0dx3
X

∞

r¼1

ð−1Þr
r

½KCðrπ=EÞ þ KDðrπ=EÞ�: ð4:8Þ

Carrying out the summation over r ∈ Zþ this expression can be simplified to

ReðiSeffÞ ¼ −
E

8π2a2

Z

dμdx0dx3

�
Z

∞

0

dλ
λ sinh 2πλ

cosh 2πλþ cos 2πb
log½1þ e

− π

Ea2
ðλ2þ1

4
þb2þm2a2Þ�

þ
X

½b−1=2�

k¼0

�

b − k −
1

2

�

log½1þ e
− π

Ea2
ð−ðb−k−1

2
Þ2þ1

4
þb2þm2a2Þ�

�

: ð4:9Þ

As before, we introduce the dimensionless variable ω ≔ π
Ea2

and write ReðiSeffÞ as

ReðiSeffÞ ¼ −
E2

16π3

Z

H2

dμ

Z

M2

dx0dx3β0ðωÞ; ð4:10Þ

where β0ðωÞ ≔ βCðωÞ þ βDðωÞ with

βCðωÞ ¼ 2ω

Z

∞

0

dλ
λ sinh 2πλ

cosh 2πλþ cos 2πb
log½1þ e−ωðλ

2þ1

4
þb2þm2a2Þ�

βDðωÞ ¼ 2ω
X

½b−1=2�

k¼0

�

b − k −
1

2

�

log½1þ e−ωð−ðb−k−
1

2
Þ2þ1

4
þb2þm2a2Þ�: ð4:11Þ

The flat limit of H2
→ R

2 with a2 → ∞, and keeping a
nonzero uniform perpendicular magnetic field B1 on R

2, is
achieved by taking b → ∞ such that b

a2
→ jB1j. In this limit

βCðωÞ gives no contribution at all as there is no continuous
spectrum of energies in this limit, while the number of
discrete states extends to infinity. Thus retaining only the
b-dependent terms in the energy spectrum and extending
the sum over k to infinity, we can write

βflat
0
ðω;m2¼ 0Þ¼ 2ωb

X

kmax→∞

k¼0

log½1þe−ωð2bkþbÞ�; ð4:12Þ

where we have also set m2 ¼ 0. Notice that (4.12) has
the same form as (3.8), where N is replaced with 2b.

Proceeding in the same manner as in the previous section,
we take the ratio of these quantities and introduce

γ0ðωÞ ¼
β0ðω; m2 ¼ 0Þ
βflat
0
ðω; m2 ¼ 0Þ : ð4:13Þ

Profiles γ0ðωÞ at several different values of the mag-
netic field b can be obtained by evaluating the integral
over λ numerically. These are presented in Figs. 5
and 6.
It is useful to consider the corresponding quantities for

b ¼ 0 separately. Since, in this case, the Laplacian has only
the continuous spectrum, we have
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FIG. 5. γ0ðωÞ vs ω.
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FIG. 6. γ0ðωÞ vs ω.
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β0ðω;b¼ 0Þ¼ 2ω

Z

∞

0

dλλ tanh πλ log½1þe−ωðλ
2þ1

4
þm2a2Þ�;

ð4:14Þ

while from Eq. (2.18) or (3.8), we have already

βflat
0
ðωÞjm2

→0 ¼ π2

12
. Therefore, curvature effects can be

probed using

γ0ðω; b ¼ 0Þ ≔ β0ðω; m2
→ 0Þ

βflat
0
ðω; m2

→ 0Þ ; ð4:15Þ

¼ 24

π2
ω

Z

∞

0

dλλðtanh πλÞ log½1þ e−ωðλ
2þ1

4
þm2a2Þ�: ð4:16Þ

The profile of this function is also included in Fig. 5.
From the profile of γ0ðωÞ’s, we see that the rate of pair

production on H2 ×R
1;1 is always less than what it is in

Minkowski space R
3;1. This result is in contrast to the

enhancement effect on S2 × R
1;1 and, generally speaking,

may be attributed to the constant negative curvature of H2.
Profiles of γ0ðωÞ’s for H2 ×R

1;1 show that the rate of
decrease of γ0ðωÞ’s from the starting value of 1 becomes
less with the increasing value of the bð> 1

2
Þ-field; i.e., the

pair production becomes relatively larger with the increas-
ing b-field. This is in contrast to what we observe on
S2 ×R

1;1 and, seemingly, counterintuitive to our general
expectation of less pair production with increasing mag-
netic field, based on the fact that it is energetically costlier
for particles to occupy LLs. (Recall that even the lowest LL
has energy ∼b=a2.) Nevertheless, there is a simple way to
see the underlying reason for this behavior of γ0ðωÞ’s. At
low values of the b-field (> 1

2
) on H2, there are very few

LLs and almost all available states are continuous energy
levels similar to the case of the flat space with no magnetic
field. The degeneracy of the continuous states
[∼dλλ tanhðπλÞ] is less than what is obtained for continuous
states in flat space (∼dkk); also the eigenvalues start at
nonzero values (≥ 1

4
). These two factors together lead to a

decrease in the pair production effect. With increasing
b-field, however, there are more and more LLs on H2.
Although it is still energetically costly for the particles to
fill them, the Landau levels have less energy compared to
the flat case [ 1

a2
ð−kðkþ 1Þ þ 2bkþ bÞ ≤ 2jB1jkþ jB1j]

and, in addition, it is less costly than filling the continuum
energy levels, whose zero-point energy is ðb2 þ 1

4
Þ=a2.

Thus, produced particles tend to fill these states, alleviating
to an extent the sharper decrease in the pair production that
happens in the absence of the transverse b-field. The effect
remains diminished compared to the flat case, but the
deviation becomes less at larger values of b.

The situation for b < 1

2
is special because the advantage

of discrete states does not come in until b exceeds 1

2
. There

are no discrete energy states for b < 1

2
, and it becomes

harder for particles to fill in the continuous states due to the
increasing energy cost, which causes a further decrease in
the effect. This accounts for the lower rates for nonzero
b < 1

2
, compared to b ¼ 0, as can be seen from the plot of

the case with b ¼ 1

4
.

Finally we give a comparison of γ0ðωÞ for the three cases
of torus, sphere, and the hyperboloid for the case of zero
magnetic field in Fig. 7.

B. Dirac field, spin 1
2

The computation of the pair production amplitude for
spin- 1

2
particles on H2 × R

1;1 can be done, starting once
again, with the Euclidean spaceH2 ×R

2. The square of the
gauged Dirac operator now reads

−ðγ ·DÞ2 ¼ −D2

3
−D2

4
þ B2

�

σ3 0

0 −σ3

�

þ 1

a2

�

ðR2

1
þ R2

2
Þ þ R3

�

σ3 0

0 σ3

��

: ð4:17Þ

The spectrum of the square of this operator can be written in
two parts. The continuous part is given by

SpecCð−=D2Þ ¼ 1

a2
ðλ2 þ b2Þ þ

�

2nB2;

ð2nþ 2ÞB2

;

for 0 ≤ λ < ∞: ð4:18Þ

The discrete part of the spectrum is given as

S
2

R
1, 1

T
2

R
1, 1

H
2

R
1, 1

0 1 2 3 4 5
0

1

2

3

4
0( )

FIG. 7. Comparison of γ0 at zero magnetic field for the torus,
sphere, and hyperboloid.
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SpecDð−=D2Þ ¼

8

>

>

>

>

>

<

>

>

>

>

>

:

1

a2
ð−ðkþ 1 − bÞ2 þ b2Þ þ ð2nþ 2ÞB2; for 0 ≤ k ≤ ½b − 1�

1

a2
ð−ðk − bÞ2 þ b2Þ þ 2nB2 for 0 ≤ k ≤ ½b�

1

a2
ð−ðkþ 1 − bÞ2 þ b2Þ þ 2nB2; for 0 ≤ k ≤ ½b − 1�

1

a2
ð−ðk − bÞ2 þ b2Þ þ ð2nþ 2ÞB2; for 0 ≤ k ≤ ½b�

: ð4:19Þ

The corresponding densities of states (for theH2 part of the
spectrum) are given by

ρ
ð1=2Þ
b ðλÞ ¼ 1

2πa2
λ sinh 2πλ

cosh 2πλ − cos 2 πb
;

ρ
ð1=2Þ
b ðkÞ≡

�

1

2πa2
ðb − k − 1Þ; 1

2πa2
ðb − kÞ

�

: ð4:20Þ

The first entry for ρð1=2Þb ðkÞ applies for the first and third
component of the spinor and the second entry for the
second and fourth components. When the magnetic field b

on H2 is switched off, it should be clear that the discrete
part of the spectrum of the Dirac operator on H2 goes
away and only the continuous part remains, whose eigen-

values are simply given as λ2

a2
and the density of states

becomes ρð1=2ÞðλÞ ¼ ðλ coth πλÞ=2πa2. The effective ac-
tion is given as

Γ¼−
1

2
Tr logð−=D2þm2Þ¼ 1

2
Tr

Z

ds

s
e−sð=D

2þm2Þ: ð4:21Þ

Substituting from (4.18), (4.19), and (4.20), this takes the
form

Γ ¼ B2

4π2a2

Z

H2

dμ

Z

R
2

dx3dx4

Z

ds

s
coth sB2e

−sm2

×

�
Z

∞

0

dλ
λ sinh 2πλ

cosh 2πλ − cos 2πb
e
− s

a2
ðλ2þb2Þ

þ 1

2
bþ

X

½b�

k¼1

ðb − kÞe−
s

a2
ð−ðk−bÞ2þb2Þ

�

: ð4:22Þ

In this expression, we have explicitly separated out the
contribution coming from the zero modes of the Dirac
operator on H2, which are given by the k ¼ 0 terms in the
second and fourth lines of (4.19).
Introducing the shorthand notations,Kð1=2Þ

C ðsÞ, Kð1=2Þ
0

ðsÞ,
and K

ð1=2Þ
D ðsÞ for the continuous part with the integral over

λ, the zero-mode contribution and the discrete sum,
respectively, in the square-bracketed expression in (4.22),
we can express Γ as

Γ ¼ B2

4π2a2

Z

H2

dμ

Z

R2

dx3dx4

Z

ds

s
e−sm

2

coth sB2ðKð1=2Þ
C ðsÞ þ K

ð1=2Þ
0

ðsÞ þ K
ð1=2Þ
D ðsÞÞ: ð4:23Þ

Once again, we continue (Γ) from H2 ×R
2 to H2 ×R

1;1 by the Wick rotation B2 → −iE and x4 → ix0 and obtain

iSeff ¼ −
iE

4π2a2

Z

H2

dμ

Z

R
1;1

dx0dx3

Z

ds

s
e−sm

2

cot sEðKð1=2Þ
C ðsÞ þ K

ð1=2Þ
0

ðsÞ þ K
ð1=2Þ
D ðsÞÞ

− ðrenormalization correctionsÞ: ð4:24Þ

Evaluating the contribution from the residues of the poles of cot sE, we find the real part of iSeff to be

ReðiSeffÞ ¼ −
E

4π2a2

Z

dμdx0dx3
X

∞

r¼1

1

r
½Kð1=2Þ

C ðrπ=EÞ þ K
ð1=2Þ
0

ðrπ=EÞ þ K
ð1=2Þ
D ðrπ=EÞ�: ð4:25Þ

Using the expressions for the K’s from (4.22), we can carry out the summation over r. This leads to

ReðiSeffÞ ¼
E

4π2a2

Z

dμdx0dx3

�
Z

∞

0

dλ
λ sinh 2πλ

cosh 2πλ − cos 2πb
log½1 − e

− π

Ea2
ðλ2þb2þm2a2Þ�

þ 1

2
b log½1 − e

− π

Ea2 � þ
X

½b�

k¼1

ðb − kÞ log½1 − e
− π

Ea2
ð−ðk−bÞ2þb2þm2a2Þ�

�

: ð4:26Þ

Using ω ¼ π
Ea2

, we can express this in a form similar to what we had for the scalar case as
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ReðiSeffÞ ¼ −
E2

8π3

Z

H2

dμ

Z

M2

dx0dx3β1=2ðωÞ; ð4:27Þ

where β1=2ðωÞ ≔ β1=2;CðωÞ þ β1=2;0ðωÞ þ β1=2;DðωÞ with

β1=2;CðωÞ ≔ −2ω

Z

∞

0

dλ
λ sinh 2πλ

cosh 2πλ − cos 2πb
log½1 − e−ωðλ

2þb2þm2a2Þ�

β1=2;0ðωÞ ≔ −ωb log½1 − e−ωm
2a2 �

β1=2;DðωÞ ≔ −2ω
X

½b�

k¼1

ðb − kÞ log½1 − e−ωð−ðk−bÞ
2þb2þm2a2Þ�: ð4:28Þ

Following the same steps as in the previous section, we can easily see that we can compare β1=2ðωÞwith the flat space limit

βflat
1=2ðωÞ ¼ −ωb logð1 − e−ωm

2a2Þ − 2ωb
X

kmax→∞

k¼1

log½1 − e−ωð2bkþm2a2Þ�: ð4:29Þ

Taking the ratio of these quantities, we define

γ1=2ðωÞ ¼
β1=2ðωÞ
βflat
1=2ðωÞ

: ð4:30Þ

If the transverse magnetic field is absent, then, as in the
case of the scalar field, there are no discrete energy states
and we have

γ1=2ðω;b¼ 0Þ¼−
12

π2
ω

Z

∞

0

dλλðcoth πλÞ log½1−e−ωλ
2 �:

ð4:31Þ

The integrals over λ can be done numerically to graph
out the profiles of γ1=2ðωÞ for different values of the
magnetic field b. These are shown in Figs. 8 and 9. The
graphs make it clear that at zero magnetic field, there is
an increase in the pair production rate over and above
what is obtained in the flat case. The underlying reason

for this result is the fixed nonzero value of the density of
states at small values of λ, since λ coth πλ → ðdλ=πÞ as
λ → 0 compared to dkk for flat space. This allows for
comparatively more particles to be accommodated at
energies λ2=a2 ≈ 0, i.e., almost without any energy cost.
Once the b-field is switched on, there is always a zero-
energy discrete state in the spectrum with density b

2πa2
,

which essentially leads to the same enhancement effect as
in the flat case. We note that the function γ1=2ðωÞ contains
the contribution of this zero mode term both in the
numerator and the denominator; therefore it becomes rather
insensitive to it at large ω. Thus γ1=2ðωÞ is basically
controlled by the curvature. With increasing magnetic field,
we see that γ1=2ðωÞ tends back to 1 at large ω, meaning that
the larger magnetic fields act to diminish the effect of
curvature.
We close this section by giving a comparison of γ1=2ðωÞ

for the three cases of the torus, sphere, and hyperboloid
for the case of zero magnetic field in Fig. 10.
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FIG. 8. γ1=2 vs ω.
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FIG. 9. γ1=2 vs ω.
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V. DISCUSSION

We have analyzed the pair production rates for spin-0
and spin- 1

2
particles on spaces of the form M ×R

1;1 for
M ¼ R

2; T2; S2; H2. We have also considered having a
uniform background magnetic field on M. These cases
allow us to compare the effects of curvature and magnetic
fields on the pair production rates. The analysis can be
carried out using the representation theory for the appro-
priate isometry groups. Our approach, while somewhat
involved (particularly for H2, where the principal series
play a significant role), does lead to explicit analytical
formulas. These results correspond to the evaluation of the
relevant determinants in integrating out the charged matter
fields or, equivalently, to one loop in matter fields.
There is a clear distinction which emerges for spin 0

versus spin 1

2
. On flat Minkowski space, a background

magnetic field suppresses pair production for the case of
zero spin, since the produced pairs have to go into a Landau
level and there is a nonzero energy cost for this. For spin 1

2
,

the Dirac operator has a zero mode due to the magnetic
moment coupling and hence there is an enhancement effect,
with an infrared divergence when the mass of the particle
goes to zero. This is very different from the situation with
no magnetic field. Recall that the Schwinger result (for rate
per unit volume) does not have a divergence even when the
mass of the fermion is zero.
Comparing S2 and H2, we find that there is a contrast,

with one leading to enhancement and the other to sup-
pression. Interestingly, the spins are also affected differ-
ently. Thus we get enhancement for spin 0 and suppression
for spin 1

2
for the case of positive curvature (S2), while there

is suppression for spin 0 and enhancement for spin 1

2
for

negative curvature (H2). The interplay between the zero
modes and the degeneracy factors plays a crucial role in the
difference between these cases. Clearly the spin-curvature
coupling and statistics have a profound effect.
As mentioned in the Introduction, part of the motivation

for our analysis was also to see the impact of such

considerations for vector particles and possible implica-
tions for a non-Abelian gauge theory. This will be taken up
in part 2 [13].

ACKNOWLEDGMENTS

S. K. acknowledges the financial support of the Turkish
Fulbright Commission under the visiting scholar program.
The work of V. P. N. was supported in part by the U.S.
National Science Foundation Grant No. PHY-1820721.
D. K. and V. P. N. acknowledge the support of the
PSC-CUNY awards.

APPENDIX: SPECTRUM OF LAPLACE AND

DIRAC OPERATORS ON H2

The spectrum of the Laplace and the Dirac operators on
H2 with a uniform background magnetic field first
appeared a long time ago in an article by Comtet and
Houston [11] and it was worked out in detail by Comtet in a
subsequent paper [12]. They are encountered in the modern
literature rather infrequently, so it is useful to have a brief
account of this to make the present paper self-contained.
Since H2 can be viewed as the coset space

H2 ≡
SUð1; 1Þ
Uð1Þ ; ðA1Þ

it is possible to employ the representation theory of
SUð1; 1Þ or, equivalently, SLð2;RÞ, to obtain the spectrum
of the Laplace and Dirac operators without reference to
any particular coordinate system to describe H2 and we
will do so shortly. Nevertheless, it is useful to consider
specific coordinate descriptions of the uniform magnetic
field. Following [11], a convenient choice is to use the
Poincaré coordinates, with which H2 can be visualized
as the upper half complex plane with the coordinates z≡
xþ iy, y ≥ 0, and the metric

ds2 ¼ a2

y2
ðdx2 þ dy2Þ; ðA2Þ

with the constant negative curvature − 2

a2
.

The gauge potential and the corresponding field strength
on H2 can be given as the one-form A ¼ Aidx

i ¼ Axdxþ
Aydy and the two-form F ¼ dA, respectively. Constant
field strength on H2 amounts to having F proportional to
the volume form on H2, that is,

F ¼ α
a2

y2
dx ∧ dy; ðA3Þ

α being the constant of proportionality. In the Landau
gauge, ðAx; AyÞ ¼ ðb

y
; 0Þ; this takes the form

F ¼ b

y2
dx ∧ dy; ðA4Þ
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FIG. 10. Comparison of γ1=2 at zero magnetic field for the torus,
sphere, and hyperboloid.
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which gives the constant of proportionality in (A3) as
α ¼ b

a2
, and b can be used as a dimensionless parameter

characterizing the strength of the uniform magnetic field
on H2. Contrary to the case of the compact manifold S2,
there is no Dirac quantization condition on the magnetic
field; therefore b can be any real number. Another useful
coordinate system is to map H2 to the unit disc in the
complex plane, with the metric and volume form

ds2 ¼ dz̄dz

ð1 − z̄zÞ2 ; dμ ¼ dz̄ ∧ dz

2ið1 − z̄zÞ2 : ðA5Þ

Again F proportional to dμ would qualify as a uniform
magnetic field. There is also another set of coordinates
where we map to jzj > 1.
It is certainly possible to express the Laplace and Dirac

operators with this uniform background magnetic field in
the coordinates given above. Nevertheless group theoretical
techniques are much more practical in obtaining the spec-
trum of these operators. The generators Ri, (i ¼ 1, 2, 3) of
SLð2;RÞ, with the complex combinations R� ¼ R1 � iR2,
satisfy the commutation relations

½R3; R�� ¼ �R�; ½Rþ; R−� ¼ −2R3: ðA6Þ

The quadratic Casimir operator for this group can be
written as R2 ≔ R2

1
þ R2

2
− R2

3
and in complete analogy

to the spherical case, the Laplace operator in the uniform
magnetic field background can be expressed as

−D2

H2 ≔
1

2a2
ðRþR− þ R−RþÞ ¼

1

a2
ðR2 þ R2

3
Þ: ðA7Þ

We note the minus sign on the rhs of the second commu-
tator in (A6), compared to the SUð2Þ commutation rela-
tions. This is reflected as the change of the sign before R2

3
in

the Casimir and subsequently in the Laplace operators. In
order to compute the spectrum of this operator, we need to
use the properties of the unitary irreducible representations
(UIRs) of SLð2;RÞ. The latter essentially splits in two
parts, namely, the discrete series representations, which are
semi-infinite dimensional, since they are bounded either
from above or below, and the principal continuous series.2

The discrete series UIRs of SLð2;RÞ are characterized
by a real number Λ ≥ 1

2
, which is usually called the

extremal weight of the UIR and in terms of this number,
the eigenvalues of the Casimir operator are given as
R2 ≡ −ΛðΛ − 1Þ. There are two equivalent representations
corresponding to the same extremal weight, which are the
discrete series bounded from above and below. Labeling

the states in a UIR with the extremal weight Λ and the
eigenvalues Λþm, m ¼ 0; 1; 2;… of the generator R3, we
may explicitly express these representations as

R2jΛ; mi ¼ −ΛðΛ − 1ÞjΛ; mi;
R3jΛ; mi ¼ �ðΛþmÞjΛ; mi; ðA8Þ

where the representation with the upper sign for the R3

eigenvalue has the lowest weight state and the one with
the lower sign has the highest weight state and is
therefore bounded below and above, respectively. The
inner product for states in the representations bounded
below is of the form

hfjgi ¼ 2Λ − 1

π

Z

dz̄ ∧ dz

2ið1 − z̄zÞ2 f̄g; jzj < 1: ðA9Þ

The inner product for the states bounded above has a
similar form,

hfjgi ¼ 2Λ − 1

π

Z

dz̄ ∧ dz

2iðz̄z − 1Þ2 f̄g; jzj > 1: ðA10Þ

Once we have chosen a parametrization ofH2 and a volume
form, only one of the two sets of representations will have a
finite norm. Thus we can restrict to one of the two discrete
sets of representations. We will use those bounded below,
so that, for us, Λ > 1

2
.

The principal continuous series representations of
SLð2;RÞ are specified by the Casimir eigenvalue λ2 þ 1

4
,

and the eigenvalue of R3, which can be any real number,
and therefore this representation is not bounded either from
above or below.3 In particular, the harmonic functions on
H2 carry this representation. These features of H2 are
discussed at varying levels of detail and sophistication in
the literature [15,16], but we will not dwell upon them as
they are not necessary for our purposes in this article.
For the dynamics of charged particles onM ¼ R

2; S2; T2

subject to a uniform perpendicular magnetic field, semi-
classical arguments indicate that the particles move in
circular orbits with cyclotron frequency proportional to the
applied magnetic field (for a review, see for example [8])
and there are an infinite number of discrete energy levels
(the Landau levels) with no continuous spectrum. However,
this picture no longer provides the complete description of
the dynamics if the underlying space has negative curva-
ture, which is the case for the present problem on H2.
For a given magnetic field on H2, there are, in fact, only a
finite number of discrete energy states, i.e., Landau levels,
corresponding to the closed cyclotron orbits in the semi-
classical description, essentially because the constant

2There is also the supplementary series UIR of SLð2;RÞ, but
this does not arise in the computation of the spectrum of −D2

H2 ;
therefore we do not discuss it here.

3The extra 1

4
means that the eigenvalues never go down to zero.

This is essentially the Breitenlohner-Freedman bound [14].
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negative curvature of H2 acts against the formation of
closed orbits. Therefore, the rest of the energy eigenstates
are not quantized, but form a continuous spectrum [12,17].
Without reference to the Poincaré coordinates or any

other coordinate system for H2, we may express the
covariant derivatives on H2 as D� ¼ iR�=a. The commu-
tator of the covariant derivatives is ½Dþ; D−� ¼ 2F ¼ 2

b
a2

as usual and from the commutation relations of R�, we
infer that for the uniform magnetic field background we
have to fix the eigenvalue of R3 to be equal to b. Since there
is no physical restriction over b to be an integer, this means
that b labels are not the UIRs of Uð1Þ in the coset
description of H2, but rather the UIRs of the universal
cover R of Uð1Þ.
The generic representation of SLð2;RÞ whose branching

under the Uð1Þ subgroup (defined by R3) containing the
UIR of the latter labeled by b has the extremal weight Λ ¼
b − k with k ∈ Zþ. Therefore, the discrete part of the
spectrum of the Laplacian is

−D2

H2 ¼
1

a2
ð−ΛðΛ − 1Þ þ R2

3
Þ

¼ 1

a2
ð−ðb − kÞðb − k − 1Þ þ b2Þ

¼ 1

a2
ð−kðkþ 1Þ þ 2bkþ bÞ; ðA11Þ

where k ¼ 0; 1; 2;… labels the LLs. The ground state,
jb; 0i, is specified by taking k ¼ 0 and has the energy b

a2
.

From the representation theory, the condition Λ ¼ b − k ≥
1

2
has to be fulfilled and this gives k ≤ ½b − 1

2
�. This means

that, for a given value of b, there are only as many LLs
as allowed by this inequality and they are labeled by the
integers k. In particular, there are no LLs at all for
0 ≤ b < 1

2
.

Let us also remark that we have used the UIR in (A8)
with the upper sign, i.e., the one bounded from below; this
fact can be concretely expressed as the lowering operator
R− annihilating the lowest weight state: R−jb; 0i ¼ 0.
Proceeding in the same manner, we see that the con-

tinuous part of the spectrum has the eigenvalues given by

−D2

H2 ¼
1

a2

�

λ2 þ 1

4
þ b2

�

; ðA12Þ

and it is readily observed from (A11) and (A12) that at any
given value of b, the continuous part of the spectrum has
larger eigenvalues than the discrete part as one would also
expect from the preceding remarks on the semiclassical
treatment of the problem. Detailed discussion of these
features may be found in [12].

The density of the quantum states in the discrete and the
principal continuous series representations are computed
in the literature. Since the derivations of these results are
a bit long, we simply state these formulas and direct the
reader to the original references in the literature, which are
[11,12], while for a recent extensive account based on
the UIR theory of SLð2;RÞ, [16] can be consulted. For the
discrete series representations, SUð1; 1Þ ≃ SLð2;RÞ, we
can use the coherent state basis [15] to obtain the
normalization of the energy eigenstates and this leads
to the result

ρ
ð0Þ
b ðkÞ ¼ 1

2πa2

�

b − k −
1

2

�

; b >
1

2
: ðA13Þ

Using the orthogonality property of theWignerD-functions
for SLð2;RÞ, normalization of the energy eigenstates for
the continuous part of the spectrum can be determined and
this leads to the density of states given as

ρ
ð0Þ
b ðλÞ¼ 1

2πa2
λsinh 2πλ

cosh 2πλþ cos 2πb
; b≠Zþ1

2
: ðA14Þ

As λ → 0, the density ρbðλÞ → 0, when half-integral values
of b are excluded and at half-integral values of b, the λ → 0

limit of ρbðλÞ is 1

2π2a2
, although values ofb arbitrarily close to

half-integers are allowed. (A14) can be conceived as the
Plancherel measure for the sections of theUð1Þ-bundle over
SLð2;RÞ and for b ¼ 0 it takes the form [15,16]

ρb¼0ðλÞ ¼
1

2πa2
λ tanh πλ: ðA15Þ

The square of the Dirac operator on H2 can be
expressed as

−=D2 ¼ −ðγ ·DÞ2 ¼ 1

a2
½ðR2

1
þ R2

2
Þ þ σ3R3�

¼ 1

a2
½R2 þ R2

3
þ σ3R3�; ðA16Þ

where the sign in front of the Zeeman-type term is flipped
compared to the spherical case (3.12), as a reflection of
the sign of the Rþ, R− commutator in (A6). The discrete
part of the spectrum for the spin-up component (indicated
by a subscript þ below) follows from writing

Λ ¼ b −
1

2
− k; Λ >

1

2
; R3 ¼ b −

1

2
; ðA17Þ

which yields
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SpecDð−=D2
þÞ¼

1

a2
½−ΛðΛ−1ÞþR2

3
þR3�

¼ 1

a2

�

−

�

b−
1

2
−k

��

b−
1

2
−k−1

�

þðb−1

2
Þ2þ

�

b−
1

2

��

¼ 1

a2
½−k2−2kþ2bkþ2b−1�; k≤ ½b−1�;

ðA18Þ

while for the spin-down component, we have

Λ ¼ bþ 1

2
− k; Λ >

1

2
; R3 ¼ bþ 1

2
; ðA19Þ

and this yields

SpecDð−=D2
−Þ ¼

1

a2
½−ΛðΛ − 1Þ þ R2

3
− R3�

¼ 1

a2

�

−

�

bþ 1

2
− k

��

bþ 1

2
− k − 1

�

þ
�

bþ 1

2

�

2

−

�

bþ 1

2

��

¼ 1

a2
½−k2 þ 2bk�; k ≤ ½b�: ðA20Þ

For the continuous part of the spectrum, using the principal
series UIR, we find the same spectrum for both the spin-up
and the spin-down components:

SpecCð−=D2

�Þ ¼
1

a2

�

λ2 þ 1

4
þ
�

b� 1

2

�

2

∓

�

b� 1

2

��

¼ 1

a2
½λ2 þ b2�: ðA21Þ

Similar considerations using the normalization for the
coherent states and Wigner D-functions for the spinor case
lead to the densities

ρ
ð1=2Þ
b ðkÞ ¼ 1

2πa2
ðb − kÞ; k ≤ ½b�

ρ
ð1=2Þ
b ðλÞ ¼ 1

2πa2
λ sinh 2πλ

cosh 2πλ − cos 2 πb
; b ≠ Zþ 1

2
:

ðA22Þ

In particular, for b ¼ 0 this takes the form

ρ
ð1=2Þ
b¼0

ðλÞ ¼ 1

2πa2
λ coth πλ: ðA23Þ
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