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The pair production rates for spin-0 and spin-% particles are calculated on spaces of the form M x R'!,

with M corresponding to R? (flat); T? (flat, compactified); S> (positive curvature); and H” (negative
curvature), with and without a background magnetic field on M. The motivation is to elucidate the effects of
the curvature and background magnetic field. Contrasting effects for positive and negative curvature on the
two cases of spin are obtained. For positive curvature, we find enhancement for spin-0 and suppression for

spin- %, with the opposite effect for negative curvature.
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I. INTRODUCTION

The Schwinger process of pair production of charged
particles in a uniform electric field has long remained a
topic of research interest since the original calculation [1].
It has been analyzed by different techniques and extended,
at least to some extent, to the case of spacetime-dependent
fields [2], to the dual situation of the production of
magnetic monopole pairs in a magnetic field [3], etc.
Mathematically similar calculations also apply to the case
of spacetime curvature as the agent of particle production
[4]. A key feature of the Schwinger process is that, while
there is a nonzero probability for pair production for all
values of the electric field, there is a suppression effect due
to the mass m of the charged particles, of the form e~m'n/E
where E denotes the electric field. This is essentially due to
the fact that a pair needs a minimal energy of 2m to be
liberated as free particles from the vacuum. This, of course,
immediately brings up the question of whether or how the
process can be enhanced in a situation where the liberated
pair is not made up of free particles, but in a bound state, so
that the binding energy effectively reduces the suppression
due to the mass. Pair production where the created pair ends
up in bound states has not yet been investigated in detail
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and this provides the general setting and motivation for the
present work.

Relevant to this issue is the fact that the electrostatic
potential energy will have opposite signs for the two
members of a charged pair and hence additional electric
fields do not necessarily provide a good example. One
needs a situation for which both members of the pair can be
in bound states. For example, a whole background of
protons and antiprotons, in addition to the constant back-
ground electric field, can provide binding centers for the
created electrons and positrons and could lead to a situation
of enhanced pair production. However, this problem is
practically intractable.

Gravitational fields can provide charge-symmetric bind-
ing for the created pair, so the analysis of the Schwinger
process in a background of nonzero curvature is one case
which should be interesting [5]. In a background magnetic
field, we get Landau levels (LL) for both types of charges,
so this is another case worth exploring in more detail [6].
The spin of the particle also affects pair production in a
nontrivial way. With an additional magnetic field, the
Zeeman coupling of the spin becomes important in deter-
mining the energy levels. For gravitational backgrounds as
well, there is a Zeeman-like coupling of spin to curvature
which can affect the process. Recall that Schwinger’s
original calculation involved the use of the spacetime
trajectories of particles. While spinless particles follow
geodesics in a gravitational background, spinning particles
follow the Mathisson-Papapetrou trajectories due to the
curvature-spin coupling. Thus even within Schwinger’s
calculational framework, we can see that there will be
interesting spin effects when there is an additional magnetic
field or spacetime curvature present.
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With this motivation and background, in this paper and
in the accompanying part 2, we consider the pair produc-
tion of particles of spins 0, % and 1 in a background with
both electric and magnetic fields. For the geometric back-
ground, we will consider manifolds of the form M x R,
where M will be taken to be R? (so that the total space is flat
Minkowski spacetime), and T2, S?, and H? in turn. The
uniform electric field is taken to be in the R"! components
(which have metrical signature 4, —), with a magnetic field
onR2, 72, 52, and H?. Here T? is the two-dimensional torus,
S? is the two-sphere, and H? is the two-dimensional hyper-
boloid. These can be viewed as R? modulo a square lattice,
SU(2)/U(1) and SL(2,R)/U(1), respectively, so that a
group-theoretic analysis of the effective action is possible.
(There are also some features which make this analysis
interesting in its own right.) We have chosen 72, $, and H? to
exemplify the cases of flat but compact, positively curved,
and negatively curved spaces, respectively.

In this paper, we will consider spins 0 and 1. The case of
spin 1 needs a more elaborate discussion. The only
consistent approach to spin-1 particles is to treat them as
part of a non-Abelian gauge field. The Yang-Mills action
will then determine the correct Zeeman coupling as well
as the spin-curvature coupling. For these fields, the correct
counting of the physical degrees of freedom is also
nontrivial and will require a Becchi-Rouet-Stora-Tyutin
(BRST) analysis. Finally, it is known that, in the non-
Abelian case, there is an instability even for background
fields of the purely magnetic type, even without an electric-
type field. This has to be accounted for in the formalism.
An interesting postscript to some of the older attempts to
understand confinement will also result from our analysis.
For all these reasons, we will discuss the spin-1 case in a
separate paper.

This paper is organized as follows. In Sec. II we discuss
flat space, pointing out additional enhancement and sup-
pression effects with a background magnetic field. This is
followed by sections discussing the torus, two-sphere, and
hyperboloid in sequence. The corresponding results are
compared to the case of flat Minkowski geometry. The
paper concludes with a discussion and an Appendix, which
is a short resumé of results on SL(2,R) relevant to our
analysis.

II. PAIR PRODUCTION WITH ELECTRIC
AND MAGNETIC FIELDS: FLAT SPACE
AND SPINS 0 AND %

A. Scalar field, spin 0

As mentioned in the Introduction, our aim is to consider
the effect of Landau levels as well as curvature on pair
production for particles of different spins in a uniform
electric field. The simplest approach to calculating this is to
consider two orthogonal magnetic fields in Euclidean
space, for which we have an explicit solution in terms

of the Landau levels. It is then straightforward to calculate
the effective action and then continue to Minkowski space,
with one of the magnetic fields continuing to the electric
field.

This strategy is easily illustrated for the case of a scalar
charged field ¢. The Euclidean action can be taken as

s= [ @lo,0r )+ mpgl. (20
where D, denotes the covariant derivative as usual. The

corresponding effective action, upon integrating out the
field ¢, is

[ = Tr log(—D? + m?). (2.2)

We must evaluate this determinant for constant magnetic
fields, which will be taken to be |, = B in the (1,2)-plane
and F33 =B, in the (3,4)-plane. Using II, = —iD, =
—id, +A,, we have [II;,IL,] = —i(0,A; — 0,A,) = —iBy,
I3, I1;] = —i(03A4 — 04A3) = —iB,. We thus have two
sets of canonically conjugate operators (I1,/+/By,
I1,/v/B)), (Il4/\/B,.115//B,). Writing IT,II* in terms
of these, we find the eigenstates and eigenvalues,

(T} 4 113) + (TG 4 T13) [, 1, 0

= [2n; +1)B + 2ny + 1)Bslwy, e (2.3)

where n;, n, are either zero or positive integers. The
subscript @ on the wave functions denotes degeneracy.
Using this result we find the effective action

F— Tt / S D) _ / 43S (efemst-07 ) )
€ S

N
o ds
- _/ 7/d4x Z l//jl,,nz,a(x)l//nl’nzya
€

ny,ny.a

% (x)e—x(Zn]Jrl)B, —s(2ny+1)By—sm?
__/ooéd“xBlBi
e S (27)

Here ¢ is a small positive real number which can be
taken to be zero after renormalization. We have also used
the normalization condition [ d*xy}; ., (X)W, n, o(x) =1
and the fact that the degeneracy of the Landau levels is
given by the factor (B;/2x)dx dx, x (B,/2r)dx3dx, [7].
In the present case, we can actually carry out the summa-
tions in (2.4) to obtain a closed form formula,

1 o (s o[ SBi 5By
=-— - d4 —sm .
1672 [ 53 / e <sinh sBl> (sinh sB,

(2.5)

—s(2n,+1)B,—s(2ny+1)By—sm?
ny,ny

(2.4)
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There are divergences at s = € as € — 0; these correspond
to ultraviolet divergences and have to be subtracted out, for
which one can use the expansion

B, (sB)?
sinhsB 6

+O(sY). (2.6)

This subtraction procedure has to be carried out to obtain
the real part of the effective action. However, our focus here
is on the decay rate of the vacuum state due to particle
production. There are no ultraviolet divergences for this.
Also, for the case of the sphere and the hyperboloid,
explicit summation will not be possible. So, to calculate the
decay rate along the lines which generalize to the curved
manifold cases, we go back to (2.4) and carry out the
summation over n, to write

1 [ods sB 2
. =44 2 B —s(m*+(2m+1)By) |
2 /. x(sinhsB)[ ';e

872 ). §?

r=-—

(2.7)

We consider the continuation of this result to Minkowski
space by using x, — ixg, B, — —iE. Further, the continu-
ation of —TI" is to be identified as iSe, with (0]0) = eSer,
We are thus interested in the real part of iS.y. From (2.7),

id*x /

This expression has singularities at SE = nz, n = 1,2, ....
(There is no singularity at n =0, or s =0 since the
integration starts at s = e. To put it another way, the
s = 0 singularity is subtracted out via renormalization.)
The imaginary part of Sy (i.e., the real part of iSg)
arises from going around the singularities in doing the
s-integration. Near sE = nz, we write s= (nn/E)+z,
sinsE = sin(nz + Ez) ~ (—1)"Ez. We then get, for the
contribution from a small semicircle around these points,

/d“xz
0dz
X/T 7l:Blgl:e—(niz/E)(szr(anJrl)Bl):|
/d4x—
81
% |:BlZe—(niz/E)(m2+(2n]+l)B]):| .

If we carry out the summation over ; and then take the limit
B, — 0, this becomes

ds sE

—s(m>+(2n,+1)B))
52 smsE{ 1%36 ]

(2.8)

iSert =

Re(iSqq) = "(E/nz)

(2.9)

Re(iSerr) =

E2 oS (_1)n+1 )
_ 4 —m?*(nn/E)

E2
_ 44 ,
/ 1927
In the last line we have used the fact that > %, (—1)""1/
n* = 7?/12. This result (2.10) is in agreement with the
standard Schwinger calculation with just the electric field in

flat space. (For a collection of formulas for the Schwinger
effect for different spins, with earlier references, see [6].)

as m — 0. (2.10)

B. Dirac field, spin }

In the case of the Dirac field, the effective action is
given by

I'=—Trlog(iy-T1+m)

1
= —ETr log (iy -1 4+m)(—iy - 114+ m)

- —%Tr log [H2+m2 + G [mn]) G [I1,,,T1, ])] :
(2.11)

Our choice of Euclidean y-matrices in terms of the Pauli
matrices o; is
0
V4 =

_[ 0 ia,-]
" llis, 0] 1

This explicit representation of y, is not needed for most
calculations. The operator in (2.11) is the same as before,
except for the Zeeman term. With the background fields as
before, there are four distinct sets of eigenvalues (corre-

(1)]. (2.12)

sponding to the sign combinations ++, +—, —+, and ——)
given by
(2 Ym0
+ Eb/;u}’v] E{ o u]
= (2)’11 + 1)B] + (2]’12 + I)BQ :l: B] :l:BZ (213)

Unlike the spin-0 case, there is a mode with eigenvalue
equal to zero, where the Zeeman term cancels the zero-
point contribution from IT>. The degeneracy, as before, is
given by d*x(B, B,/4x?). Thus carrying out the summation
over n, as before, we find

le @dét BB,

2 s 472

X E —s m*+2n,B))

Continuing this expression to Minkowski space, we find
the real part of iS¢ as

coth sB,

+ e—s(m +(2n1+2)Bl)) (214)
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: 4 E
?{E(lseff) /d x871'2 —
—sm? —2sB;\ ,—2sn B
X [Ble g ;11(1+€ Je 1]

s:(mr/E)'
(2.15)

Taking the limit of this expression as B; — 0, after doing
the summation over n;, we get

N1
: _ 4, — _— ,—m*(nx/E
S{E(lseff) = /d x8]‘[ ;n2 e ( )
E2
:—/d4x4&[, asm—>0, (216)
using >, (1/n%) = #?/6 in the last line. Again, this is in

agreement with the standard Schwinger calculation [6].

The mass of the particle gives an exponential suppres-
sion of the pair creation rate, as is evident from (2.9) and
(2.15). To isolate and highlight the effect of the magnetic
field, it is useful to consider the massless case, i.e., the limit
m?> — 0. We can write the formulas for this as

. E? fo(Bi/E)
Re(iSesr) = _/d4x1927r x {4f1/2(B1/E)’

(2.17)

where f applies to the spin-0 case and f/, to the Dirac
spinor. These functions are given by

)n+l

24x . (_1 —nx(2n;+1)x
fo(x):7ZTZ€ @m+1)

n=1 n

24

Zlog + e~ (@mthmx) (2.18)

n;=0

e—mZ(nﬂ/E)Z(e—27mn1x + e—(n]+1)27mx>

n

6x = 1
f12(x) :%Z—

o

[®))

- [— log(1 — e=m*#/E)
n

—2> log(1 - e‘mz”/Ee_z””‘x)} (2.19)

ny=1

22 log(1

ny=1

%6” [ log(m?z/E) _2”"1)“)} (2.20)

The last line applies for (m*z/E) < 1.

The motivation for the factorization of the decay rate in
terms of these functions f((x), f}/2(x) is that they become
1 as x — 0, with (2.17) becoming identical to the standard
Schwinger result. These functions can thus be used to

characterize the deviation from the case when the back-
ground magnetic field is zero. In (2.19) and (2.20), we have
also separated off the contribution due to the zero mode for
f1/2(x), namely, for n; = 0, and also kept a nonzero value
for the mass for this part. This is because the zero mode
contribution diverges at finite B, if the mass is zero. This is
an infrared divergence. Physically speaking, it is not
sensible to consider a uniform magnetic field over all of
space. We must consider a finite volume, or, if we wish to
idealize a uniform magnetic field over a large volume
as a constant value over all of space, we should introduce
an infrared cutoff. This is what is done with the m?-
dependence term in (2.19).

If we consider these functions at a fixed value of E but
vary By, it is easy to see that f((x) is always less than 1.
Thus the effect of the magnetic field is to suppress the pair
production rate. This is straightforward to understand. The
electric field has to create pairs which go into various
Landau levels; the most favorable would be the lowest
Landau level with the zero-point energy B;. This energy
cost suppresses the pair production even if the mass is zero.
For the spin-1 case, there is a zero mode, so there is no
energy cost for producing pairs which occupy this mode.
Since the particles are fermions, there is a limit given by the
degeneracy proportional to the total area of the (xi, x,)-
subspace. So we get a divergent rate for pair production
unless we cut off the area via an infrared cutoff. Notice that,
as the value of B, increases, all terms in the summation in
f1/2(x) get exponential suppression factors, except for the
zero-mode part corresponding to [—(6/7) log(m*x/E))x.
This leads to a linear increase of f',, with B} showing that
there is enhancement of pair production. The linear
dependence in B; can be understood as due to the increase
of degeneracy as B, increases.

C. Pair creation on 72 x R!1

Before we start to examine the curvature effects, it is
instructive to study if and how the toroidal compactification
of directions transverse to the electric field influences the
pair production rates.

To compute the one-loop effective action on 7?2 x R?,
we follow the same strategy as in the previous sections
and consider uniform magnetic fields on 77 and R?
denoted by B, and B,, respectively. In the presence of
uniform magnetic field B; on T2, suitable boundary
conditions have to be imposed on wave functions.
A well-known choice is to implement periodic boundary
conditions under magnetic translations [8], to which we
confine our discussion in this subsection. A simple
consequence of this type of boundary condition is that
it leads to the Dirac quantization condition on the
magnetic fields; that is, we have B =5 - N with N € Z,
where a stands for the compactification radius in each
circular direction of 72.
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The spectrum of the Laplace operator on 72 x R? with and without the transverse magnetic field background is given as

Spec(=D?) = {

From the first line of (2.21), we see that, in the absence of
any magnetic flux penetrating 72, there is a single zero
mode specified by the quantum numbers (p, ¢) = (0,0).
Once the magnetic field on 72 is switched on though, the
spectrum is formally the same as that of the flat case, except
that B; is quantized as we have already noted. The
corresponding density of states, for each state labeled by
(p, g) when B; =0, is given by

1

s (2.22)

Prr =

For the case with N # 0, we have the density of states as
before,

B, N

re = T i NEO

(2.23)

Following the same steps as before, we find

2

. E
RE(lSeff) = —@/Tz i d4Xﬂ(C()), (224)

where, for B; = 0,

(] - 2 2.2
B, =0)(w):=—( log2 4§ log[1 + e~@(P*+ma)
B(B;=0)(w) ﬂ(og + og[l+e |

p=0
+4 Z log[1 +e""(”2+q2+’”2“2)]>,
(p.9)>(0.0)
(2.25)
and, for B, = %
f(w) = 2N log[l + e sWishna)] - (3.26)
T =

with @ = 5.
Let us examine the case with B; = 0O first. To probe the
effect of compactification we take the ratio of Bz —g) (@) to

. . 2 3,1 . .
the corresponding quantity {5 for the R>" case, which is

computed by the sum in (2.10). We have

£ PP+ )+ (2n+1)B,,
(2n1+1)%+(2n2+1)32, N#O, nl,n2€Z+.

B, =0, pgeZne”zZ,,

(2.21)
|
12
r(w): = ?ﬂ(BI:O) (w,m* = 0)
~ 2 (10g2 +4§:10 (14 e=P"]
e g — g
+4 Z log[1 + e‘“’(l’2+q2)]>. (2.27)
(p.4)>(0,0)

We get a good estimate of y(w), by performing the sum
over the discrete momenta (p, g) up t0 (P, q)mu =
(1000, 1000). This gives the profile presented in Fig. 1.
Notice that the result is essentially the same as the
Minkowski (R*!) result at small values of w. This is
understandable since small w, at fixed E, corresponds to
large a, and hence there should not be any significant effect
due to the compactification. As w increases, although 72 is
flat, the change of the spectrum of the Laplacian due to
compactification leads to an increase of the pair production
amplitude on 7% x R

We observe (2.26) with m? = 0 is the same as what is
found on R*! in (2.17) with fy(x) given in (2.18) and
B, = 27’;’7 Thus, there is essentially no change in the pair
production effect on 72 x R"! compared to R>! as long as
the transverse magnetic field is present, except that only
quantized values of the magnetic field are admissible in the
toroidally compactified setting.

In the absence of a magnetic field, the Dirac operator on
T? x R? squares to the Laplace operator on this space, since
neither Zeeman-type nor curvature contributions are
present in this case. Thus, the pair production effect is
given by (2.24) for the spin-up and spin-down components.
Finally, in the presence of the transverse magnetic field, the
square of the Dirac operator has the same spectrum as the

Yo(w)

12f
10
0.8 »
0.6 w
0.4 w
ool s : : t s t t ' w
05 10 15 20 25 30 35 40
FIG. 1. y(w) vs @ on T? x R,
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one obtained on R* in (2.13), except for the quantized
values of the magnetic field, i.e., B; =32 The pair
production effect is therefore given by (2.17) and (2.19).

III. PAIR CREATION ON §? x R
A. Scalar field, spin 0

For the manifold > x R"!, we start with considering
uniform magnetic fields on % and R?, which we label, as
before, by B and B,, respectively. On the sphere, the
uniform magnetic field B, is that of a magnetic monopole
and therefore given by By = 5 N with N € Z, due to the
Dirac quantization condition. The Landau problem can be
solved exactly using group theory, utilizing the fact that
§? = SU(2)/U(1). The wave functions are the representa-
tion matrices for SU(2) of the form (j, i|g|j,—4N), for
g€ SU(2), and j = k+ (N/2) [9]. The spectrum of the
gauged Laplacian, —D?, is then readily obtained as

1 N
Spec(=D?) = - (k(k +1)+ Nk + 5) + (2ny +1)B,,
(3.1)

where k, n, take integer values from zero to infinity. The
density of the states is given by 22 on R?; on S§? each
Landau level has degeneracy 2k 4 1+ N, which is the
dimension of the spin j = k + % irreducible representation.
Therefore for the density of states we have

B, _2k+ 14N

=_= = 3.2
PRr? o Ps? dnd? ( )

The one-loop effective action is given by

I=Tr 1og( -D* + m?
dS B2
= dxzd
16ﬂ2012 /52 Az B34 |7 Sinh sB,

% Z 2k+ 1 +N) —s[m>+(k (k+1)+Nk+%)/az]‘ (33)

k=0

As before, we continue from S$? x R? to Minkowski
signature for the R2-part using the Wick rotation B, —
—iE and x4 — ix,. The real part of iS s is then obtained as

) E S (_1)11
Re(iSe) = / dpudods +—— ;

H(nr/E),
(3.4)

where we have defined

= 3 2k + 1+ N)emstr kb anksy/a],
k=0

(3.5)

This can be rewritten as

ReliSar) = - [ duvaivs (o5 po(o) (30
Po(w) = wi@k +1+4+N)
k=0
x io: (_I)H] e~ nolm* @ +k(k+1)+Nk+(N/2)]
=
=w i(Zk +1+4+N)
% 1’;—;1 + e—w[m2a2+k(k+1)+Nk+(N/2)]]' (3.7)

We defined :=25
variable." We can compare our result with the flat space
result by considering the latter over an area 4za”. Writing
B, = N/2d, the flat space formula gives

as a convenient dimensionless

1
e—nw[NkJr(N/Z)]

o (@, m

|
e
=
NgE
=)
)
=
+
|
&
=
=
x
=
S

(3.8)

The ratio of fy(w, m* = 0) to g1 (w, m> = 0) is a good
measure for the effect of curvature for a nonvanishing
magnetic field background and we define this ratio as

Y2 0(2k+ 14 N)log[l +
N % ,log[l +

w[k(k+ 1 )+Nk+(N/2)]]
[Nk’+(N/2)]] ’

vol@) =

N #0, (3.9)

while in the absence of the magnetic background, i.e., for
N = 0, we have

2 [oe]

> wz 2k +1 10g wk(k+l)}'
k=0

(3.10)

:;

In Figs. 2 and 3, we show the behavior of this ratio for
several values of N. Clearly, there is an enhancement effect
due to the curvature. This is basically due to the degeneracy
factor (2k + 1 + N) on the sphere. In terms of the magnetic
field this is (B,/2x) + (2k + 1)/4za>, compared to just
B, /2x for the flat case. As w becomes large, the k = 0 term

'As a check on this formula, notice that if we take the limit of
a’> - o, N — oo, keeping B; = N/2a” fixed in the summand,
and then carry out the summation, we find that fy(w) —
(72/12)fo(x) with fo(x) given in (2.18), say, for m* = 0. In
this way, we recover the flat space result with a magnetic field.
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Yo(w)
N=0
18
N=1
16
N=2
14 N=3
N=4
12 |
- 1 1 1 1 w
0.5 1.0 15 2.0

FIG. 2. yy(w) vs w.

dominates in both the numerator and denominator in (3.9),
clearly showing that the y,’s saturate to a value of NT“

B. Dirac field, spin }

We now turn to the case of the Dirac field on S? x R2.
Again, the S2-dependence of the wave functions can be
constructed in terms of the representation matrices
(j,m|glj,m") for SU(2). The derivatives act as right
translation operators on §. This has been used before for
the solution of the Landau problem for the scalars. For the

Dirac case, we have
1 [ds
_ — —T _3<
2/ . rfe

The square of the Dirac operator can be simplified as

I' = —Tr log(iy - D + m) =rD))],

(3.11)

2n2—|—2 Bz"‘

2”232 +

21’1232 +

2”2-’-2 Bz+

(
(=(r- D)% p) = <
<
(

2g+N B
(¢ o). T

((g+1)*+N(g+1)),

Yo(w)

3 N=5
120
115}

[ N=8

i N=10
110

N=15

1051 N=20

n 1 n n n n 1 n n n n 1 n n n n 1 n w
05 1.0 15 2.0

FIG. 3. yy(w) vs w.

03 0 )
0 —03

+% {(R%—i—R%) —R3<003 :3)] (3.12)

—<y-D>2=—D§—Dﬁ+Bz(

We have used the identification D, = iR,/a for a = 1, 2.
R;, which arises from the commutator of these operators,
carries the information about the background magnetic
field on S? as well as the spin-curvature coupling. The
eigenvalues for R; are thus —1 — (N/2) for the first and
third components of the spinor, and 3 — (N/2) for the
other two components. Correspondingly, the j-value of
the representation must be j=g¢g+ (N+1)/2 and
J=gq+ (N—1)/2, where g is a positive integer or zero.
The eigenvalues and the density of states are then the
following:

s ((g+ 1)+ N(g+1)),

4ra® 2=«

2(g+1)+N 32>

(3.13)

4ra®  2n

2(q+1)+Nﬁ>

s (q* + Nq), 3y %)

In the second and fourth of these equations, ¢ = 1, 2, etc., for N = 0, while ¢ = 0, 1, 2, etc., for N > 1. In the absence of a
magnetic field, there is no zero mode on S2. But for N # 0 there is a zero mode of degeneracy N for the second and fourth
components of the Dirac spinor [10]. The effective action is then obtained as

1 ds
I'= m/dﬂd?(3d)€4 /?Bz coth sBzz[(Zq + N)e—s[m2+(q2+Nq)/a2]
q

+ (2(g + 1) + N)e=slmw+{(gH1)+N(g+1)/a’]]

At large values of @ with fixed N,

(3.14)

it is possible to treat p = ¢g/a as a continuous variable and convert

the sum over ¢ to an integration. It is then easy to check that this expression agrees with what was obtained for flat
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space. We can extract the decay rate due to pair production as before by evaluating the contribution to the integral over s
from the poles from (sinsE)~! after continuation to Minkowksi space. The result is then

2

E—3ﬂ1/2(w)

—nwma N - —na(q>+N
) =Y e S 4 el )

g=1
N - . 24 Notm2a?
= —-w 10g<1_ewma —|—22q—|—N ]()g]_e o(q’+ q+ma))7
2 -

Re(iSesr) = —/dﬂdxodx3

(3.15)

where @ = (7/Ea*). In this expression for f;,(w), the first term —wlog(l — e=®m@’) is the contribution of
g = 0 in the first and last set of eigenvalues in (3.13); i.e., it is due to the zero mode of (y - D)? on S. Notice that
this term diverges if we take m> — 0, very similar to what we found for the case of flat space. For the second term with the
summation over g, we can set m> = 0 if we want to consider the massless case, without loss of convergence.

The limit of /3, ,(w) for flat space with a magnetic field, of flux N over area 4ra®, is given by

N o]
() = —o Elog(l — Ty NZlog(l — emo(WNatnta)y | (3.16)
=1
We can now define the ratio
Nlog(l — e~@m*a*) 42 > ,(2q 4 N)log(1 — e~ @@ +Ng+ma?))
N0 = (3.17)

We have already seen that there was an enhancement of pair
production due to the zero mode in flat space. y, (@) gives
a measure of the effect of curvature. We show the behavior
of this function for several values of N in Fig. 4. For these
graphs, we have taken m?a® =1 as the cutoff value. The
summations were carried out to (¢max» ¢max) = (100, 100).
The case of zero magnetic field is special since there are no
zero modes. Therefore, in order to assess the effect of
curvature, we can compare ﬂl ;2(0,N =0,m =0) with

18 (@.m = 0) = Y% | 1, = 2 and examine the profile of

Pij2(0,N =0)
(7*/6)

2 & ,
- log(1 — e=24").
ﬂzw;:lq og(l —e™7)

71p(@, N =0)=—

(3.18)

The result is also shown in Fig. 4. From these plots of
71/2(@), we can infer that
(1) In the absence of any transverse magnetic field, the
pair production effect is significantly diminished
compared to the flat case.
(ii) When the magnetic field is present, the pair pro-
duction effect still remains less than that on the flat
space at any given magnetic field.

Nlog(1 — e~@m’a) +2N 0% log(1—e”

o(Nqg' +n12a2))

These can be seen as a consequence of the curvature of S2.
For small values of @, the g*> dependence of the eigenvalues
(which is due to the curvature effects) ensures that the
numerator in (3.17) remains smaller than the denominator,
giving y;/,(w) < 1. We may further observe that, at any
fixed magnetic field, the effect tends to converge to the
flat space result with increasing w. This can be attributed to
the fact that the contribution from the zero modes domi-
nates as @ increases. At higher values of the magnetic

FIG. 4.

}/1/2 VS .
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charge, there are more zero modes and the restoring effect
of the zero modes becomes stronger, narrowing the interval
of w in which y; ,(w) < 1. While there is suppression due
to the positive curvature, it is worth noting that the overall
rate with a nonzero background magnetic field is still
higher than that for zero magnetic field. This is clear from
the limit of y,/,(w) approaching the flat space value for
large w.

Sy b)+
Spec(=D?) = -

)

The spectrum of the gauged Laplacian on H? is composed
of a discrete and a continuous part. This problem is worked
out in detail in the literature [11,12], and we provide a brief
review in the Appendix in order to keep the paper self-
contained. The continuous part of the spectrum is labeled
by the spectral parameter A, while the discrete spectrum is
labeled by the index k, which we will call the Landau level
(LL) index on H?. Contrary to the flat case, the LL index
on H? does not extend to inﬁnity, but is truncated by the
largest integer less than b — 1, i.e., by [b — 1]. Thus discrete
states exist only if b > 1. In (4. 1), a stands for the radius of
curvature of H.

The density of states of the continuous as well as the
discrete part of the spectrum of the gauged Laplacian on H?
can be determined from the representation theory of the
group SL(2,R), which is the universal covering group of
the isometry group SO(2,1) ~SU(1,1) of H?, as dis-
cussed in the Appendix. These are given as

1 Asinh 274

1
) = b4 Z4-. (42

Po(A) 27ra? cosh 274 + cos 2zh 7 +2 (4.2)
)= (b=k=2), b>t 0<k<|b-r|. (43)

Po\) = a2 2) 77 2 ™

In the b — 0 limit, the spectrum of the Laplacian on H? is
1 (/12 +1) and the density of states becomes po (1) =
(A tanh z1)/2za*. is the
Plancherel measure for the harmonlc functlons over H?,
while p, (1) may be understood as the Plancherel measure
for the sections of the U(1)-bundle on H? with curvature b.
Unlike the case of S§?, there is no Dirac quantization
condition for the values of the background magnetic
field b; generally, b € R.

We are now in a position to take up the calculation of the
one-loop effective action. This is given by

” (2”"’1)32,
L(-(b—k-3)*+1+0")+

IV. PAIR CREATION ON H? x R!!
A. Scalar field, spin 0

On the Euclidean space H? x R?, again we label the
directions on H? as 1,2 and directions on R? as 3.4, without
reference to any particular coordinate system. With a
magnetic field |B;| =% on H? and a magnetic field B,

on R?, the spectrum of the gauged Laplacian, —D?, is

0<l<o i1
(2n+1)B;, 0<k<[p—4 and keZ. 4.1
|
2 2 ds —s(—D2+m2)
I'=Trlog(-D*+m*) =-Tr [ —e . (4.4)

Given the spectrum of —D? and the density of states, this
can be worked out as

2

ds esm
= d dxsd
87r2a2 Az ,u/ B ]S Sinh sB,
ﬂ Slnh 277:/1 a‘\'z(/12+z+b2)

cosh 274 + cos 2zb

XM

[b=1/2] 1 s 121,52
R (T ]

k=0

(4.5)

where du stands for the volume form on H?. We can write I’
by introducing the shorthand notations K(s) and Kp(s)
for the integral and the sum in the square-bracketed

expression in (4.5) as
/ / dX3dX4
HZ
2

8722
BT (Ke(s) + Kpls)).  (46)
s sinh sB, = € 4 DAS))- '
Continuing H> xR?> to H?>xRM by the Wick

rotation B, —» —iE and x; — ix,, we may write the
effective action as

IS = _F|Bz—> iE x4 —ix,

= / d,u / dedX3
HZ

" (Ke(s) + Kp(s))

s sinsE

— (renormalization corrections). (4.7)

As in other cases, the imaginary part of the contribution to
the integral over s can be obtained from the residues at the
poles of sinsE. This leads to the result
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Re(iSerr) = 872 2[12 dy /[R” dxodx3z ) + Kp(rz/E)]. (4.8)
Carrying out the summation over r € Z, this expression can be simplified to
. E oo Asinh 274 (Pl b2y m2a?)
Re(iSer) = ———— | dudxyd. dA log|[1 R
e(iSerr) 2a2/ HAX0Exs {A cosh 274 + cos 2zb gll e ]
[b=1/2] 1 x 12 1y 20 02 2
+ ) <b —k— 5) log[1 4 ¢zt "7kt mta )]] . (4.9)
k=0
As before, we introduce the dimensionless variable w := %> and write Re(iSesr) as
Re (lSeff 16 /1:[2 du/ d)C()dX3ﬂ0 (410)
where fy(w) = fc(w) + fp(w) with
o0 Asinh 271 2,1 320 2,2
=2 di 1 —o(XP+5+b>+m*a”)
be(@) a)A cosh 2zl + cos 2zb ogll +e ! }
[b-1/2]
) =2 Z (b k——) log[1 + e~@(-(b=k=3+k+b>ma)] (4.11)
k=

The flat limit of H?> - R? with a*> - oo, and keeping a
nonzero uniform perpendicular magnetic field B, on R?, is
achieved by taking b — oo such that a—bz — |Bj]. In this limit
Pc(w) gives no contribution at all as there is no continuous
spectrum of energies in this limit, while the number of
discrete states extends to infinity. Thus retaining only the
b-dependent terms in the energy spectrum and extending
the sum over k to infinity, we can write

kmax_)oo
Al (w,m?> =0) =2wb Z

k=0

log[1 4 e~@bk+b)] - (4.12)

where we have also set m> = 0. Notice that (4.12) has
the same form as (3.8), where N is replaced with 2b.

Yo(w)

10}
09l
08l
07l
06
. . . —w
05 1.0 15 2.0
FIG. 5. yy(w) vs @

[

Proceeding in the same manner as in the previous section,
we take the ratio of these quantities and introduce

Po(w. m* = 0)

Yo(®) :W. (4.13)

Profiles yo(w) at several different values of the mag-
netic field b can be obtained by evaluating the integral
over A numerically. These are presented in Figs. 5
and 6.

It is useful to consider the corresponding quantities for
b = 0 separately. Since, in this case, the Laplacian has only
the continuous spectrum, we have

Yo(w)

0.98

0.96

0.94

0.92

0.90

0.1 0.2 0.3 0.4 0.5

FIG. 6. yy(w) vs w.
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Bolw.b=0) =20 / ” daatanh mAlog[l + e~ i)
0

(4.14)

while from Eq. (2.18) or (3.8), we have already

2
B (@)|,20 = 5. Therefore, curvature effects can be
probed using

_ Polo. m? — 0)

~ pflat

5b:O : ’
7’0(0) ) f (w’ mz N 0)

(4.15)

24 o 2 2.2
=S / diA(tanh 72)log[l 4 e~ @@ Hitm’a)]  (4.16)

7‘[2 0
The profile of this function is also included in Fig. 5.

From the profile of yo(w)’s, we see that the rate of pair
production on H? x R"! is always less than what it is in
Minkowski space R*!. This result is in contrast to the
enhancement effect on §> x R!"! and, generally speaking,
may be attributed to the constant negative curvature of H>.
Profiles of yo(w)’s for H> x R'! show that the rate of
decrease of yo(w)’s from the starting value of 1 becomes
less with the increasing value of the b(> §)-field; i.e., the
pair production becomes relatively larger with the increas-
ing b-field. This is in contrast to what we observe on
5% x RI! and, seemingly, counterintuitive to our general
expectation of less pair production with increasing mag-
netic field, based on the fact that it is energetically costlier
for particles to occupy LLs. (Recall that even the lowest LL
has energy ~b/a’.) Nevertheless, there is a simple way to
see the underlying reason for this behavior of yy(w)’s. At
low values of the b-field (> %) on H?, there are very few
LLs and almost all available states are continuous energy
levels similar to the case of the flat space with no magnetic
field. The degeneracy of the continuous states
[~dAAtanh(z1)] is less than what is obtained for continuous
states in flat space (~dkk); also the eigenvalues start at
nonzero values (> ‘—1‘). These two factors together lead to a
decrease in the pair production effect. With increasing
b-field, however, there are more and more LLs on HZ.
Although it is still energetically costly for the particles to
fill them, the Landau levels have less energy compared to
the flat case [ (—k(k+ 1)+ 2bk +b) <2|B;|k + |B]]
and, in addition, it is less costly than filling the continuum
energy levels, whose zero-point energy is (b +1)/a’.
Thus, produced particles tend to fill these states, alleviating
to an extent the sharper decrease in the pair production that
happens in the absence of the transverse b-field. The effect
remains diminished compared to the flat case, but the
deviation becomes less at larger values of b.

Yo(w)
4~

0 [ " " " " 1 " " " " 1 " " " " 1 " " " " 1 " " " " J w
0 1 2 3 4 5

FIG. 7. Comparison of y, at zero magnetic field for the torus,
sphere, and hyperboloid.

The situation for b < % is special because the advantage
of discrete states does not come in until » exceeds % There
are no discrete energy states for b < % and it becomes
harder for particles to fill in the continuous states due to the
increasing energy cost, which causes a further decrease in
the effect. This accounts for the lower rates for nonzero
b < % compared to b = 0, as can be seen from the plot of
the case with b = 1.

Finally we give a comparison of y,(w) for the three cases
of torus, sphere, and the hyperboloid for the case of zero
magnetic field in Fig. 7.

B. Dirac field, spin 1

The computation of the pair production amplitude for
spin-1 particles on H* x R""! can be done, starting once

again, with the Euclidean space H> x R2. The square of the
gauged Dirac operator now reads

o 0
—(7-D)z=—D§—D3+Bz( ’ )
0 —03

+% {(R% LR +R3<003 0(:)] (4.17)

The spectrum of the square of this operator can be written in
two parts. The continuous part is given by

21’[Bz,

1
Specc(—P?) = 2 (22 4+ %) + { (2n+2)B,"

for 0 < 1 < co. (4.18)

The discrete part of the spectrum is given as
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L(=(k+1=b)*+b*) + (2n+2)B,, for0<k<[b—1]
L (=(k — b)> + b*) + 2nB for0<k<|[b
Specp(=P?) w (=) : : % : (4.19)
L(=(k+1=b)*+b?) + 2nB,, for0<k<[b—1]
1 (=(k=b)? + b?) + (2n + 2)B,, for 0 < k < [b]

The corresponding densities of states (for the H? part of the
spectrum) are given by

1 Asinh 274
27a* cosh 2zl — cos2 b’

D (k) = (27;2 (b—k—1), Tlcﬂ (b - k)). (4.20)

py" () =

The first entry for p(bl/ 2)(k) applies for the first and third
component of the spinor and the second entry for the
second and fourth components. When the magnetic field b
on H? is switched off, it should be clear that the discrete
part of the spectrum of the Dirac operator on H? goes
away and only the continuous part remains, whose eigen-
values are simply given as i—z and the density of states

becomes p(!/?)(1) = (Acoth 1)/2za’. The effective ac-
tion is given as

F:—%Tr log(—pP*+m?) :—Tr/ =) (4.21)

 4rn%a
Once again, we continue (I') from H? x R? to H? x
iSeff

— (renormalization corrections).

B ds _., 1/2 1/2 1/2
22[12 dyAz dx3dx4/Te sm* coth sBz(K<C/ )(s)—l-K(()/ )(s)—l-KE)/ )(s)).

|
Substituting from (4.18), (4.19), and (4.20), this takes the
form

47r2a2 L . du / dxsdxy / —coth sBye™ —sm?

y d/{ Asinh 27 e )
0 cosh27A — cos 2zb

+= b+Zb k)e 2=k “bz)].

(4.22)

In this expression, we have explicitly separated out the
contribution coming from the zero modes of the Dirac
operator on H?, which are given by the k = 0 terms in the
second and fourth lines of (4.19).

Introducing the shorthand notations, K » w 2>( )s Kél/ 2)(s),

and K E) )( ) for the continuous part with the integral over
A, the zero-mode contribution and the discrete sum,
respectively, in the square-bracketed expression in (4.22),
we can express I as

(4.23)

R"! by the Wick rotation B, — —iE and x, — ix, and obtain

smi? 2) 2) 2)
42242 / dxodx3/—e cot sE(KY/ ()+K1/ (s) + K9/ (s5))

Evaluating the contribution from the residues of the poles of cotsE, we find the real part of iS.y to be

, E
Re(iSer) == 5 / dudxodx3z

Using the expressions for the K’s from (4.22), we can carry out the summation over r. This leads to

E o0
Re(iS.i) = — | dudxyd da
e(iSefr) A / HAXoGX3 [ A cosh 2z — cos 2zh

[b]
: 1z — (= (k= m-a
+5blogll — e 2] + Y (b k) log[l — ¢ m "k
k=1

2

Using o = 77,

(4.24)

KYP(rn/E) + K\ (rn/E) + K52 (r2/ E)). (4.25)
lsinh 277:}, log[l _ e_$(12+h2+m2a2)]

(4.26)

we can express this in a form similar to what we had for the scalar case as
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. E?
Re(iSesr) = 35 dﬂ/ dxodxsfy (@), (4.27)
7 J2 M2
where S35 (@) = f12.c(@) + Brj20(@) + Bi1j2.0(@) with
00 Asinh 27/ 2320 2,2
= =2 d 1 — e~ @#+b*+m?a?)
'BI/Z‘C(CU) a)/o Acosh 274 — cos 2xb ogl —e ]
Pi/20(@) = —wblog[l — e~
3 —a(—(k=b)*+b>+m?a?)
Brpp(w) ==2w ) (b—k)log[l —e ] (4.28)
k=1

Following the same steps as in the previous section, we can easily see that we can compare /3, , (@) with the flat space limit

15 (@) = —wb log(1 — emom'ay _ @b Z

Taking the ratio of these quantities, we define

}’1/2(60) = flat (@) . (4.30)

If the transverse magnetic field is absent, then, as in the
case of the scalar field, there are no discrete energy states
and we have

12 o0
]/1/2(60,b:0) ——;COA\ dﬂ.)«(coth ml)log[l—e_mz].
(4.31)

The integrals over A can be done numerically to graph
out the profiles of /(@) for different values of the
magnetic field b. These are shown in Figs. 8 and 9. The
graphs make it clear that at zero magnetic field, there is
an increase in the pair production rate over and above
what is obtained in the flat case. The underlying reason

y;_(w)

0.5 1.0 1.5 2.0

FIG. 8. 7/, vs .

kmax —00

(2bk+mza2)] )

log[l —e™ (4.29)

k=1

|
for this result is the fixed nonzero value of the density of
states at small values of A, since Acoth 74 — (dA/x) as
A — 0 compared to dkk for flat space. This allows for
comparatively more particles to be accommodated at
energies 12/a’ ~ 0, i.e., almost without any energy cost.
Once the b-field is switched on, there is always a zero-
energy discrete state in the spectrum with density Tbaz’
which essentially leads to the same enhancement effect as
in the flat case. We note that the function y,/,(®) contains
the contribution of this zero mode term both in the
numerator and the denominator; therefore it becomes rather
insensitive to it at large @. Thus y,/,(@) is basically
controlled by the curvature. With increasing magnetic field,
we see that y; (@) tends back to 1 at large w, meaning that
the larger magnetic fields act to diminish the effect of
curvature.

We close this section by giving a comparison of y /, ()
for the three cases of the torus, sphere, and hyperboloid
for the case of zero magnetic field in Fig. 10.

yi(w)
2
1.04:

1.03F =3/4

FIG. 9.

}/1/2 VS .
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yi(w)
2
250
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ool o e v L s
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FIG. 10. Comparison of y, /, at zero magnetic field for the torus,
sphere, and hyperboloid.

V. DISCUSSION

We have analyzed the pair production rates for spin-0
and spin-4 particles on spaces of the form M x R'! for
M = R?,T? 8>, H>. We have also considered having a
uniform background magnetic field on M. These cases
allow us to compare the effects of curvature and magnetic
fields on the pair production rates. The analysis can be
carried out using the representation theory for the appro-
priate isometry groups. Our approach, while somewhat
involved (particularly for H?, where the principal series
play a significant role), does lead to explicit analytical
formulas. These results correspond to the evaluation of the
relevant determinants in integrating out the charged matter
fields or, equivalently, to one loop in matter fields.

There is a clear distinction which emerges for spin 0
versus spin % On flat Minkowski space, a background
magnetic field suppresses pair production for the case of
zero spin, since the produced pairs have to go into a Landau
level and there is a nonzero energy cost for this. For spin %,
the Dirac operator has a zero mode due to the magnetic
moment coupling and hence there is an enhancement effect,
with an infrared divergence when the mass of the particle
goes to zero. This is very different from the situation with
no magnetic field. Recall that the Schwinger result (for rate
per unit volume) does not have a divergence even when the
mass of the fermion is zero.

Comparing S? and H?, we find that there is a contrast,
with one leading to enhancement and the other to sup-
pression. Interestingly, the spins are also affected differ-
ently. Thus we get enhancement for spin 0 and suppression
for spin % for the case of positive curvature (S?), while there
is suppression for spin 0 and enhancement for spin % for
negative curvature (H?). The interplay between the zero
modes and the degeneracy factors plays a crucial role in the
difference between these cases. Clearly the spin-curvature
coupling and statistics have a profound effect.

As mentioned in the Introduction, part of the motivation
for our analysis was also to see the impact of such

considerations for vector particles and possible implica-
tions for a non-Abelian gauge theory. This will be taken up
in part 2 [13].

ACKNOWLEDGMENTS

S. K. acknowledges the financial support of the Turkish
Fulbright Commission under the visiting scholar program.
The work of V.P.N. was supported in part by the U.S.
National Science Foundation Grant No. PHY-1820721.
D.K. and V.P.N. acknowledge the support of the
PSC-CUNY awards.

APPENDIX: SPECTRUM OF LAPLACE AND
DIRAC OPERATORS ON H?

The spectrum of the Laplace and the Dirac operators on
H? with a uniform background magnetic field first
appeared a long time ago in an article by Comtet and
Houston [11] and it was worked out in detail by Comtet in a
subsequent paper [12]. They are encountered in the modern
literature rather infrequently, so it is useful to have a brief
account of this to make the present paper self-contained.

Since H? can be viewed as the coset space

SU(1,1)

H="""~

o0 (A1)

it is possible to employ the representation theory of
SU(1,1) or, equivalently, SL(2, R), to obtain the spectrum
of the Laplace and Dirac operators without reference to
any particular coordinate system to describe H* and we
will do so shortly. Nevertheless, it is useful to consider
specific coordinate descriptions of the uniform magnetic
field. Following [11], a convenient choice is to use the
Poincaré coordinates, with which H? can be visualized
as the upper half complex plane with the coordinates z =
x+ iy, y >0, and the metric

2
dszza—2
y

(dx* + dy?), (A2)

with the constant negative curvature —%.

The gauge potential and the corresponding field strength
on H? can be given as the one-form A = A;dx' = A dx +
Aydy and the two-form F = dA, respectively. Constant
field strength on H? amounts to having F proportional to
the volume form on H2, that is,

2

F:a%MWJ% (A3)

a being the constant of proportionality. In the Landau
gauge, (A,,A,) = (2,0); this takes the form

b
F = dxady, (A4)
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which gives the constant of proportionality in (A3) as
a= a—bz, and b can be used as a dimensionless parameter
characterizing the strength of the uniform magnetic field
on H?. Contrary to the case of the compact manifold S?,
there is no Dirac quantization condition on the magnetic
field; therefore b can be any real number. Another useful
coordinate system is to map H” to the unit disc in the
complex plane, with the metric and volume form

dzdz
(1-z22)*"

dz N dz

ds® = T
g =2l — 22

(AS)

Again F proportional to du would qualify as a uniform
magnetic field. There is also another set of coordinates
where we map to |z] > 1.

It is certainly possible to express the Laplace and Dirac
operators with this uniform background magnetic field in
the coordinates given above. Nevertheless group theoretical
techniques are much more practical in obtaining the spec-
trum of these operators. The generators R;, (i = 1, 2, 3) of
SL(2,R), with the complex combinations R, = R| & iR,,
satisfy the commutation relations

[Rs, Ri] = £Ry, [R+’R—] = —2R;. (A6)
The quadratic Casimir operator for this group can be
written as R?:= R? + R} — R? and in complete analogy
to the spherical case, the Laplace operator in the uniform
magnetic field background can be expressed as

1
~D%,:=-——(R,R_+R.R,) =

5 (R>+ R3).

1
o (A7)
We note the minus sign on the rhs of the second commu-
tator in (A6), compared to the SU(2) commutation rela-
tions. This is reflected as the change of the sign before R in
the Casimir and subsequently in the Laplace operators. In
order to compute the spectrum of this operator, we need to
use the properties of the unitary irreducible representations
(UIRs) of SL(2,R). The latter essentially splits in two
parts, namely, the discrete series representations, which are
semi-infinite dimensional, since they are bounded either
from above or below, and the principal continuous series.’

The discrete series UIRs of SL(2,R) are characterized
by a real number A > %, which is usually called the
extremal weight of the UIR and in terms of this number,
the eigenvalues of the Casimir operator are given as
R? = —A(A — 1). There are two equivalent representations
corresponding to the same extremal weight, which are the
discrete series bounded from above and below. Labeling

*There is also the supplementary series UIR of SL(2, R), but
this does not arise in the computation of the spectrum of —Dfiz;
therefore we do not discuss it here.

the states in a UIR with the extremal weight A and the
eigenvalues A + m, m = 0, 1,2, ... of the generator R5, we
may explicitly express these representations as

R2A.m) = —A(A = 1)|A, m),

R3|A,m) = £(A + m)|A, m), (A8)
where the representation with the upper sign for the R;
eigenvalue has the lowest weight state and the one with
the lower sign has the highest weight state and is
therefore bounded below and above, respectively. The
inner product for states in the representations bounded
below is of the form

== [

T

dz N dz 7
2i(1 —z22' ¥

lz| < 1. (A9)

The inner product for the states bounded above has a
similar form,

o == [

T

dz A dz
2i(zz - 1)

sfg, |zl >1.  (Al0)
Once we have chosen a parametrization of H> and a volume
form, only one of the two sets of representations will have a
finite norm. Thus we can restrict to one of the two discrete
sets of representations. We will use those bounded below,
so that, for us, A > 1.

The principal continuous series representations of
SL(2,R) are specified by the Casimir eigenvalue A% + 1,
and the eigenvalue of R;, which can be any real number,
and therefore this representation is not bounded either from
above or below.” In particular, the harmonic functions on
H? carry this representation. These features of H? are
discussed at varying levels of detail and sophistication in
the literature [15,16], but we will not dwell upon them as
they are not necessary for our purposes in this article.

For the dynamics of charged particles on M = R?, §%, T2
subject to a uniform perpendicular magnetic field, semi-
classical arguments indicate that the particles move in
circular orbits with cyclotron frequency proportional to the
applied magnetic field (for a review, see for example [8])
and there are an infinite number of discrete energy levels
(the Landau levels) with no continuous spectrum. However,
this picture no longer provides the complete description of
the dynamics if the underlying space has negative curva-
ture, which is the case for the present problem on HZ.
For a given magnetic field on H 2 there are, in fact, only a
finite number of discrete energy states, i.e., Landau levels,
corresponding to the closed cyclotron orbits in the semi-
classical description, essentially because the constant

The extra 41‘1 means that the eigenvalues never go down to zero.
This is essentially the Breitenlohner-Freedman bound [14].
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negative curvature of H? acts against the formation of
closed orbits. Therefore, the rest of the energy eigenstates
are not quantized, but form a continuous spectrum [12,17].

Without reference to the Poincaré coordinates or any
other coordinate system for H?, we may express the
covariant derivatives on H> as D, = iR, /a. The commu-
tator of the covariant derivatives is [D,,D_] =2F =24
as usual and from the commutation relations of R, we
infer that for the uniform magnetic field background we
have to fix the eigenvalue of R; to be equal to b. Since there
is no physical restriction over b to be an integer, this means
that b labels are not the UIRs of U(1) in the coset
description of H?, but rather the UIRs of the universal
cover R of U(1).

The generic representation of SL(2, R) whose branching
under the U(1) subgroup (defined by R;3) containing the
UIR of the latter labeled by b has the extremal weight A =
b —k with k€ Z,. Therefore, the discrete part of the
spectrum of the Laplacian is

—D?

o (—A(A - 1) + R%)

1
= (b= Rb—k=1)+ 1)
:iz(—k(k+1)+2bk+b), (AL1)

IS}

where k =0,1,2,... labels the LLs. The ground state,
b,0), is specified by taking k = 0 and has the energy a%.

From the representation theory, the condition A = b — k >
1 has to be fulfilled and this gives k < [b — 4]. This means
that, for a given value of b, there are only as many LLs
as allowed by this inequality and they are labeled by the
integers k. In particular, there are no LLs at all for
0<b<i

Let us also remark that we have used the UIR in (AS)
with the upper sign, i.e., the one bounded from below; this
fact can be concretely expressed as the lowering operator
R_ annihilating the lowest weight state: R_|b,0) = 0.

Proceeding in the same manner, we see that the con-
tinuous part of the spectrum has the eigenvalues given by

1 1
—D2, = — (22 4+-+p? Al2
e a2<ﬂ +4+b>, (A12)

and it is readily observed from (A11) and (A12) that at any
given value of b, the continuous part of the spectrum has
larger eigenvalues than the discrete part as one would also
expect from the preceding remarks on the semiclassical
treatment of the problem. Detailed discussion of these
features may be found in [12].

The density of the quantum states in the discrete and the
principal continuous series representations are computed
in the literature. Since the derivations of these results are
a bit long, we simply state these formulas and direct the
reader to the original references in the literature, which are
[11,12], while for a recent extensive account based on
the UIR theory of SL(2,R), [16] can be consulted. For the
discrete series representations, SU(1,1) ~SL(2,R), we
can use the coherent state basis [15] to obtain the
normalization of the energy eigenstates and this leads
to the result

Using the orthogonality property of the Wigner D-functions
for SL(2,R), normalization of the energy eigenstates for
the continuous part of the spectrum can be determined and
this leads to the density of states given as

(0)(/1) 1 Asinh 27 b;éZ—i—l.

= , Al4
2ra?cosh 2zl + cos 2zb 2 (Al4)

As A — 0, the density p,(4) — 0, when half-integral values
of b are excluded and at half-integral values of b, the 4 — 0
limitof p, (4) is ﬁ although values of b arbitrarily close to
half-integers are allowed. (A14) can be conceived as the
Plancherel measure for the sections of the U(1)-bundle over
SL(2,R) and for b = 0 it takes the form [15,16]

1
,Db:()(ﬂ) = —2/1tanh zA. (AIS)
2ra

The square of the Dirac operator on H? can be
expressed as

P =~ D) = (R} + K3) + oR]

:%[1@ + R + o3R3), (A16)
where the sign in front of the Zeeman-type term is flipped
compared to the spherical case (3.12), as a reflection of
the sign of the R,, R_ commutator in (A6). The discrete
part of the spectrum for the spin-up component (indicated
by a subscript + below) follows from writing

| |
A=boo—k,  A>-.
72

5 (A17)

1
Ry=b——,
3 2

which yields
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Speco(—Ph) =5 [-ANN= 1)+ R+ Ry
T

+(b—%)2+ (b—%ﬂ

1
=—[-k*—2k+2bk+2b—-1], k<[b—1],

Q

a
(A18)
while for the spin-down component, we have
A—b—l—1 k A>1 R—b—l—1 (A19)
— 2 ) 2 5 3 2 3

and this yields

Specp(—p2) :%[—A(A— 1)+ R =Ry
:% [—(bJr%—k) (b+%—k— 1)

4 (b+%)2— <b+%ﬂ
:%[—k%—zbk],

k < [b]. (A20)

For the continuous part of the spectrum, using the principal
series UIR, we find the same spectrum for both the spin-up
and the spin-down components:

Spec (—102)—_—1 ,12+1+ bil 2:F bil

pecc\=Fa) = 2 4 2 2
1

_a2Mz bZ].

(A21)
Similar considerations using the normalization for the
coherent states and Wigner D-functions for the spinor case
lead to the densities

(1/2) 1
k) = b—-k), k<Ib
o0 = S b-n. k<
(1/2) 1 Asinh 274 b 1
= 7+ —.
Py~ () 27a® cosh 2zl — cos2 b’ F L 2
(A22)

In particular, for b = 0 this takes the form

1
1/2
P22 = 5 Acoth 7.

— (A23)
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