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Abstract: We present a novel attack for detecting the
presence of an active TCP connection between a re-
mote Linux server and an arbitrary client machine. The
attack takes advantage of side-channels present in the
Linux kernel’s handling of the values used to populate
an IPv4 packet’s IPID field and applies to kernel ver-
sions of 4.0 and higher. We implement and test this
attack and evaluate its real world effectiveness and per-
formance when used on active connections to popular
web servers. Our evaluation shows that the attack is
capable of correctly detecting the IP-port 4-tuple repre-
senting an active TCP connection in 84% of our mock
attacks. We also demonstrate how the attack can be
used by the middle onion router in a Tor circuit to test
whether a given client is connected to the guard entry
node associated with a given circuit.

In addition we discuss the potential issues an attacker
would face when attempting to scale it to real world
attacks, as well as possible mitigations against the at-
tack. Our attack does not exhaust any global resource,
and therefore challenges the notion that there is a direct
one-to-one connection between shared, limited resources
and non-trivial network side-channels. This means that
simply enumerating global shared resources and consid-
ering the ways in which they can be exhausted will not
suffice for certifying a kernel TCP/IP network stack to
be free of privacy risk side-channels.
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1 Introduction

We describe a novel attack for detecting the presence
of an active TCP connection between an arbitrary

client and a remote Linux server using information side-
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channels present in the Linux kernel’s implementation

of global and per-connection IPv4 IPID values. The at-

tack’s requirements are as follows:

— A server that is a Linux machine running kernel
version 4.0 or newer.

—  Access to multiple IPv4 addresses to use as attacker
addresses.

The proposed attack makes use of the Linux behav-
ior of responding to “unsolicited” SYN/ACKs with a RST.
This is the default Linux kernel behavior and is also
described as the proper behavior for handling “unso-
licited” SYN/ACKs in RFC 793 [27]. An “unsolicited”
SYN/ACK is a SYN/ACK for which no SYN was sent and
so does not represent a potential connection. The num-
ber of IPv4 addresses required for the attack to be reli-
able is at least hundreds, with thousands increasing the
probability that the attack can be carried out. While
requiring this many may prove a hindrance to attack-
ers with a small amount of resources it is well within
the realm of possibility for large botnets or nation-state
attackers.

By detecting when the Linux kernels changes from
using one of its 2048 global IPID counters to using a per-
connection TCP IPID counter, the attack we describe
is able to infer the IP-port 4-tuple that corresponds to
an active TCP connection without being an on-path ob-
server. The IP-port 4-tuple representing an active TCP
connection is the source address, source port, destina-
tion address, and destination port used for TCP com-
munication.

Our major contributions are as follows:

—  We describe a method for using a side-channel
present in the Linux kernel’s implementation of
global and per-connection IPv4 packet IPIDs to in-
fer an active connection’s IP-port 4-tuple. Ours is
the first such attack to infer the existence of a con-
nection completely off-path without exhausting any
global resource.

We design and implement a proof-of-concept attack

for using these side-channels to detect the presence

of active connections between arbitrary Internet end
hosts.
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— We provide a detailed analysis and evaluation of the
attack, analyze possible sources of error, and discuss
possible mitigations.

A key novelty of the side-channel attack described in
this paper, compared to past work, is that it does not ex-
haust any global resource. To the best of our knowledge,
there are only two existing side-channel attacks in the
literature where the existence of a TCP/IP connection
could be inferred: Knockel and Crandall [21] where the
global fragment cache was filled and Cao et al. [7] where
a global challenge ACK rate limit was reached. Note
that we exclude attacks that require malicious code on
the victim machine or an attacker machine behind the
same NAT as the victim [10, 18-20, 29]. Our attack uses
a per-destination (i.e., not global) duplicate ACK limit
for one non-default corner case that we encountered,
but is otherwise based on inferring which resource is
being used rather than exhausting a specific resource.
This is a major conceptual difference that challenges
the notion that there is a direct one-to-one connection
between shared, limited resources and non-trivial net-
work side-channels. While past side-channels have had
the property of not exhausting global shared, limited
resources, such as Antirez’s idle scan [4] for detecting
open ports, to date such side-channels have been rel-
atively trivial and could not reveal information about
active connections. What the attack presented in this
paper demonstrates is that simply enumerating glob-
ally shared resources (rate limits, buffers, caches, etc.)
and then considering each in isolation is not sufficient
for enumerating all possible side-channels that can be
used to infer a connection.

The rest of the paper is structured as follows: Sec-
tion 2 discusses scenarios that motivate our work. Sec-
tion 3 reviews what an IPID value is, how the Linux
kernel generates IPIDs, what a challenge ACK is, and
how the Linux kernel handles challenge ACKs. Section 4
discusses the methods for using IPIDs and challenge
ACKs as side-channels to detect the presence of an active
TCP connection. Section 5 describes our experimental
methodology. Then, we discuss our results in testing the
attack in Section 6. In Section 7 we discuss the applica-
bility of the attack, the challenges it faces “in the wild”,
common sources of error, and possible mitigations. We
discuss related work in Section 8 and finish with our
conclusions in Section 9.
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2 Motivation

One common assumption made by many privacy tools
using the TCP protocol is that information about the
state of an existing connection does not leak outside of
the connection itself. This includes information about
whether or not a connection exists. Many privacy and
censorship circumvention tools rely on this to ensure
that this information could only be discovered by an
on-path attacker. If an attacker were able to detect the
existence of a connection between a client and a cir-
cumvention tool off-path it could allow the attacker the
possibility of deanonymizing a client, detecting a hidden
service, or other attack vectors.

One scenario where the ability to detect off-path
connections is useful is the case of a user accessing a
sensitive website via a Tor [12] bridge, which is a type
of relay that is supposed to be unknown to the censor.
The attacker may suspect that the user is connecting to
a bridge and could try to confirm this suspicion. While
there has been evidence of nation-states using active
probing to identify such hidden machines [15], obfus-
cation protocols such as obfs4 [3] can be used to im-
pede such probing. Using an attack that could detect
an off-path TCP connection an attacker could attempt
to detect a TCP connection between a suspected Tor
bridge and a Tor directory server after a user opens
a connection to the Tor bridge. Since this would de-
tect the connection it would not require active probing
that could be impeded by obfs4 or similar mitigations.
Note that once the connection is open the distinction be-
tween client and server is interchangeable for the attack
we present. Note also that six out of 10 Tor directory
servers are dual stack [31] allowing an attacker to use
both IPv4 and IPv6 address when attempting to find
IPID hash collisions. As multiple IPv6 addresses are of-
ten assigned to a single machine or network, compared
to IPv4 addresses, these additional IPv6 addresses pro-
vide attackers with a much large pool of addresses that
could be used to find IPID hash collision. While the
attack we present focuses on a simple IPv4 only imple-
mentation, there are many different variations on the
attack to make it practical for any given application.

Generally, the attack we describe in this paper pro-
vides the attacker with a primitive for inferring the ex-
istence of connections off-path, which violates assump-
tions often made by privacy tools. We focus our exper-
imental methodology on understanding the base accu-
racy and speed of the attack on one client/server pair in
isolation, whereas a real attacker may have additional
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flexibility in carrying out the attack and can use an im-
proved implementation and/or different tradeoffs. Thus,
while the attack as presented in this paper assumes
that the connection persists for roughly two minutes,
and sometimes fails, we establish that the basic attack
primitive exists. A real attacker may implement it differ-
ently. For example, for the aforementioned application
of detecting Tor bridges the attacker may look for col-
lisions with any of a large set of Tor directory servers
and guard nodes, all of which Tor bridges are likely to
make persistent connections to, if they are heavily used.
The attacker may repeat results for identified connec-
tions to avoid false positives, and may be able to tolerate
false negatives because even if a Tor user’s connection
is interrupted only half the time or only after some use
their quality of service is diminished and they are likely
to use other services that are more reliable (such as
government-sponsored VPNs). And, even if the attack
is mitigated after some time (e.g., by filtering out the
attack traffic) the damage may already be done in terms
of user trust in a given tool’s availability.

In summary, this paper establishes a powerful at-
tack primitive that is flexible enough to be implemented
in a variety of attacker applications.

3 Background

The attack relies on side-channels in the Linux kernel’s
handling of IPv4 IPID values as a mix of global and

per-connection counters.

3.1 IPIDs

IPv4 packet headers contain a 16-bit identification field
known as the IP Identifier (IPID). During the course of
transmission it is possible that a given IPv4 packet may
be too large to transmit over a given link. In such cases
the packet can be broken in smaller packets known as
fragments, which all retain the original packet’s IPID.
Once these fragments reach their final destination, the
receiving machine uses the IPID value of each fragment
to determine how to correctly reassemble the fragments
to rebuild the initial IPv4 packet.

IPv6 packet headers do not contain an IPID field.
Instead, when they are fragmented an IPv6 extension
header is added containing a fragment ID value which
functions similarly to an IPv4 IPID value. Fragmenting
IPv6 packets is never performed by routers, with hosts
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relying on Path MTU (PMTU) Discovery to determine
the largest packet size and only send packets of that size
or smaller. IPv4 can also use PMTU discovery but this
is not always enabled. In this paper we will focus on
IPv4 as it is always guaranteed to have an IPID field
present.

3.2 Linux Kernel IPv4 IPID Values

Early network stack implementations often used a global
IPID counter that was incremented for each packet sent
by the machine. However, work on idle scans and sim-
ilar techniques [4, 16, 17] exploited information side-
channels in the global IPID field to make measure-
ments of off-path machines. This led to the Linux kernel
moving to the adoption of per-destination IPID coun-
ters [13]. However, this technique has since been re-
moved in favor of a mixed approach. This new approach
consists of a set of 2048 separate IPID counters. Each
connection is assigned a counter to use based on a hash
of the source and destination IP addresses, the protocol
number of the IPv4 packet (e.g., TCP, UDP, etc.), and
a random value generated on system boot.

Research by Knockel and Crandall [21] showed
that simple, incrementing, per-destination IPID coun-
ters made it possible to use the IPID field to count the
number of packets sent between two machines for UDP
and ICMP, and infer the existence of a TCP connection,
completely off-path. Per-destination IPID counters were
already being phased out in an experimental version of
the kernel because they were stored in a global resource
called the inet peer table that could be exhausted [13],
leading to performance and security problems (because
when peers were evicted they reverted back to a pre-
dictable IPID). The global resource that Knockel and
Crandall exhausted to infer IPIDs off-path was the IP
fragment cache. In response to Knockel and Crandall
the 2048 separate IPID counters strategy that had been
under testing was released early, with the addition of
random noise [14] and hashing of source address and
protocol number (in addition to destination address and
network secret). These changes were made after some
discussion about if the new IPID strategy were more re-
sistant to off-path attacks than the old. This discussion
was initiated because of Knockel and Crandall’s disclo-
sure, but was about side-channels in the 2048 separate
counters and not the original vulnerability that Knockel
and Crandall disclosed [23]. For Linux’s current IPID
implementation, every time a packet is sent the cho-
sen counter (among the 2048) is then incremented by a
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393 void ip_select_ident_segs(...) {

398 if ((iph->frag_off & htons(IP_DF)) &%
Iskb->ignore_df) {

404 if (sk && inet_sk(sk)->inet_daddr) {

405 iph->id = htons(inet_sk(sk)->inet_id);

406 inet_sk(sk)->net_id += segs;

407 } else {

408 iph->id = 0;

409 ¥

410 } else {

411 __ip_select_ident(net, iph, segs);

412 }

413 *

Fig. 1. Linux kernel IPID selection.

random value, chosen from a uniform distribution be-
tween 1 and the number of system ticks (typically mil-
liseconds) since the last packet transmission that used
the same counter. To summarize, three different side-
channels were discussed with respect to the 2014 patch
in response to Knockel and Crandall: two pre-patch and
one post-patch. Further improvements to the current
IPID generation strategy (e.g., a different distribution
for added noise) could help mitigate side-channels in this
data structure, but would not mitigate the side-channel
we present in this paper because we need only detect
that the resource is being used at all in our case.

3.3 IPv4 Do Not Fragment Behavior

While the above IPID behavior is used in most cases,
there exists a special case in the kernel’s handling
of TCP connections. As discussed previously in Sec-
tion 3.1, IPIDs are used to assist in reassembling frag-
mented IPv4 packets. However, if a machine is set to use
Path MTU Discovery, it will attempt to find the largest
packet size a given route can handle and attempt to
only send packets of this size or smaller. This is done to
try and avoid fragmenting packets during transmission.
PMTU Discovery changes how the Linux kernel chooses
IPIDs when sending TCP packets. When PMTU Dis-
covery is active the Linux kernel does not pick an IPID
from one of the 2048 counters, discussed in Section 3.2,
when using TCP and the Do Not Fragment flag is set.
Instead, the kernel picks from a per-socket IPID counter
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unique to each TCP socket. Further analysis of this code
shows that this code path is followed by all TCP packets
sent by the kernel except SYN/ACKs and RST packets that
are not part of an active connection. These packets are
assigned an IPID value from one of the 2048 counters
as described previously. Figure 1 shows the IPID se-
lection behavior for Linux kernel version 4.16 [32]. The
ip_select_ident_segs function is eventually called to
assign an IPv4 packet an IPID value. On line 398 the
kernel checks to see if the Do Not Fragment flag should
be set. If not, the IPID is chosen from one of the 2048
counters based on its hash value in line 411. Otherwise,
the kernel will ensure that the socket exists and has a
known destination address in line 404 before using the
IPID counter from the current socket (line 405). For a
full source listing see the Linux kernel source code [32].
The attack we describe handles both cases when the Do
Not Fragment flag is and is not set.

3.4 RFC 5961

RFC 5961 was introduced in August 2010 as a method

for improving the TCP protocol’s resistance to blind

TCP RST attacks. It does so by adding the following

behavior to the standard TCP resetting algorithm:

1. Incoming RST packets are checked to see if they
match a valid TCP connection by verifying that the
source address and source port match an established
TCP connection in the machine.

2. Next, the sequence number is compared to the next
expected TCP sequence number and the next TCP
window.

— If the TCP sequence number ezactly matches
the next expected TCP sequence number the
connection is reset as before.

— If the TCP sequence number does not exactly
match the next expected sequence number and
is not in the expected TCP window the RST is
ignored.

— If the sequence number does not exactly match
and is in the TCP expected window a challenge
ACK packet is sent to the other end host.

3. Then, the machine receiving the challenge ACK re-
sponds with a RST packet with a sequence num-
ber ezactly matching the acknowledgment number
of the challenge ACK per normal TCP behavior.

4. Finally, the connection is reset since a RST packet
was received using the exact expected sequence
number.
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The additions proposed by RFC 5961 appear to address
the vulnerability of a blind TCP RST attack. An off-
path attacker who could previously brute force a valid
sequence number and cause a reset must now correctly
respond to a challenge ACK that they can not see. While
such an attacker could theoretically guess the correct se-
quence number to use as a challenge ACK response they

would need to guess from all 232

possible sequence num-
bers, an unlikely event.

In our tests and code review of the Linux ker-
nel’s implementation of RFC 5961, we verified that
Linux sends challenge ACKs in response to unsolicited
SYN/ACKs, as had been discussed by Cao et al. [7]. This
is relevant to our attack because it means we do not
need to account for sequence numbers in the spoofed
SYN/ACKs we send (although doing so would simply be
a matter of sending four sets of SYN/ACKs to ensure one
set has sequence numbers in the expected window).

4 Implementation

The attack for detecting active TCP connections re-
lies on using the Linux kernel’s IPID counter behavior
and the difference between per-connection TCP coun-
ters and other non TCP counters to detect a connection.
As discussed in Section 3.2 the Linux kernel uses 2048
IPID counters that are assigned based on the hash of
the TP addresses and protocol for a given connection.

In order to detect off-path TCP connections the at-
tack we describe requires the following primitives: First,
a reliable method an off-path attacker can use to trigger
off-path traffic that increments different IPID counters
when there is a TCP connection present on a given port
and when there is not a TCP connection. Second, a
method for counting IPID changes caused by off-path
traffic. Finally, a method for determining which counter
off-path traffic used based on the counted IPID changes.
We will discuss our implementations for all three prim-
itives below and describe how they can be combined in
the attack we describe.

4.1 Triggering Off-Path Traffic

To trigger the desired off-path traffic an attacker would
need to send packets to the targeted machine that cause
an off-path response, sent over TCP, which will use dif-
ferent counters when a TCP connection is present on
a given IP-Port 4-tuple and when a TCP connection
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is not present. As described in Section 3.4, if a TCP
connection is present RST packets within the current se-
quence number window will trigger a challenge ACK from
the server. Out of sequence SYN/ACK packets also trigger
this behavior in the Linux kernel’s network stack. Our
implementation of the attack presented uses these out of
sequence, or “unsolicited”, SYN/ACK packets, using the
spoofed source IP address of the off-path client machine,
to cause the targeted server to generate off-path chal-
lenge ACK packets to be sent to the client machine. These
packets will use the TCP connection’s per-connection
IPID counter to populate the challenge ACK packet’s
IPID field. If there is no TCP connection present for
the IP-Port 4-tuple used by the “unsolicited” SYN/ACK,
the packet will trigger a RST packet in response. This RST
packet will populate the IPID field from one of the 2048
IPID counters, since there is no per-connection counter
to use because there is no TCP connection. By using
“unsolicited” SYN/ACKs in this way our implementation
has a method for triggering off-path TCP traffic that
will use different counters depending on the state of a
given IP-Port 4-tuple, i.e. whether or not a TCP con-
nection exists for a given 4-tuple.

4.2 Counting IPIDs

As discussed in Section 3.2 the Linux kernel uses a
mix of per-connection counters for established TCP
connections and 2048 TPID counters for TCP packets
sent outside established TCP connections. In order to
count packets our implementation of the attack relies
on counting packets sent outside an established TCP
connection. This can be accomplished via the use of
hash collisions in the hashing algorithm used to deter-
mine which of the 2048 IPID counters an outgoing TCP
packet uses when sent outside an established TCP con-
nection. Using this technique an off-path attacker can
ensure that the source IP address they are using pulls
from the same IPID counter that is used when send-
ing off-path traffic. This allows the attacker to count
the number of off-path packets sent by computing the
change in IPID between two probe packets, with the
difference being the number of packets sent.

4.2.1 Finding IPID Collisions

In order to find IPID collisions the attack uses a tech-
nique similar to that described by Zhang et al. [37],
though only applied to IPv4 addresses. As described in
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SYN-ACK >
‘EST: IPID = 100

SYN-ACK
SRC.IP = Clicnt’

[RST: IPID = 54321

SYN-ACK
SRC.IP = Client

[RST: TPID = 54322

SYN-ACK

ST: IPID = 101

(a) No IPID Collision

Fig. 2. Example of behavior with and without an IPID hash collision.

Section 3.2 the Linux kernel uses a hash of a connec-
tion’s source and destination addresses, network proto-
col, and a random value generated on startup. Given
this we define an IPID collision as: For a server with
a secret value S and IPv4 address T we say that an
attacker IPv4 address A collides with another IPv4 ad-
dress C if:

hash(A, T, PROTO_TCP,S)
points to the same IPID counter as
hash(C,T, PROTO_TCP,S)

Since the attack focuses on IPv4 TCP connections
and our implementation uses only IPv4 and TCP pack-
ets we can treat the destination address and network
protocol as constant. We assume that the server we are
using as the destination of the attack does not reboot
during our scan which allows us to treat the random
value used in the hash as constant. This means that in
order to find an IPID collision between an attacker IPv4
address and the client of an active TCP connection we
only need to find a IPv4 address that would result in the
same hash as our client machine’s IPv4 address. Note
that while our implementation only uses TCP packets
to try to find IPID collisions, for simplicity, it is pos-
sible to use other protocols to increase the probability
of finding a collision, though we did not explore this
possibility.

To detect such a collision we can probe the server
from a range of IPv4 addresses checking to see if re-
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SYN-ACK

‘SST: IPID = 100
SYN-ACK
| SRCIP ~ Clien,

RST: IPID = IOh
SYN-ACK
| SRCIP ~ Clieny,

RST: IPID = 10;

SYN-ACK

ST: IPID = 103

(b) IPID Collision

sponses to our TCP probes show the presence of off-
path traffic using the same global IPID counter. First,
we send a SYN/ACK packet to the server from an attacker
address. This SYN/ACK is not part of any active connec-
tion so the server will respond with a RST packet. Next,
we send a SYN/ACK packet that spoofs the source ad-
dress of the client machine. These spoofed packets are
sent to find IPID hash collisions, not active connections,
and due to this are sent using a source port unlikely to
be used in an active connection, such as a port outside
common ephemeral port ranges. Once again the server
will respond to this SYN/ACK with a RST, since it is not
part of an active connection. Finally, we probe from the
attacker address using a SYN/ACK and receiving a RST.
If the attacker’s IPv4 address and the client’s IPv4 ad-
dress generate the same hash then their IPIDs will come
from the same IPID counter. We can check if this is the
case by computing the difference between the IPID of
the responses to the two probe packets. Assuming that
all 3 packets were sent in under 10ms the random value
added to each IPID packet as described in Section 3.2
will never be larger than one. If the difference modulo
216 is 1 then a RST was not sent to the client machine
in between our probes using the counter the attacker’s
IPv4 address uses. If the difference is 2 then the RST sent
to the client used the same IPID counter as the probe
packets and we know that our IPv4 address collides with
the client’s IPv4 address. The process of sending a probe
SYN/ACK, spoofed SYN/ACK, and a probe SYN/ACK and
checking the difference between response packet IPIDs
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can be repeated to validate the accuracy of a potential
collision. Once we have found such a collision we can
then proceed with the attack. For our implementation
we chose the simplest method of sequentially scanning
for collisions between each possible client and attacker
IPv4 address pair.

As an example consider Figure 2a and Figure 2b.
In Figure 2a the attacker (M) and the client machine
(C) do not have hashes which collide and therefore they
do not use the same IPID counter. When the attacker
probes the server (S) the response has an IPID of 100.
Probes sent by the attacker, spoofing the IP address of
the client, use a different TPID counter and each probe
gives a different value than if a collision had occurred.
In Figure 2b we are using two IP addresses that will
cause a collision. In this case we can see the IPIDs use
the same counter and increase by one for each packet
sent to either the attacker or the client machine. The
attacker can tell the two cases apart by checking the
difference between its two probes. A difference of one
indicates that the attacker’s IP address does not collide
with the client’s and a difference of one plus the number
of spoofed SYN/ACKs sent indicates a collision. In both
cases the server is only responding with RST packets
which will always choose an IPID counter from one of
the 2048 counters as discussed in Section 3.2, avoiding
the per-socket counter described in Section 3.3.

4.2.2 Probability of Finding a Collision

To find a collision an IPv4 address is needed that collides
with the client’s IPv4 address on the server. Given that
the Linux kernel uses 2048 different IPID counters based
on a hash of connection parameters, any single IPv4
address has a probability of 1/2048 of its hash colliding
with the client’s. If the attacker instead uses a pool of
available TPv4 addresses then the probability of finding
a collision within this pool of addresses increases as the
size of pool does. The probability of finding an IPID
hash collision between a given client IPv4 address and k
attacker IPv4 addresses can be calculated as one minus
the probability that no collision is found:

Pr(X=k)=1-(1-p" (1)

where k is the number of IPv4 addresses used and p
is the probability of any single IPv4 address colliding,
1/2048.

Table 1 shows the probability of finding a collision
when using common CIDR network sizes.
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Number of Addresses (k) Probability (p)

1 0.00048828

2 0.00097632

4 0.00195169

8 0.00389958

16 0.00778395

32 0.01550732

64 0.03077416
128 0.06060128
256 0.11753004
512 0.22124677
1024 0.39354340
2048 0.63221039
4096 0.86473080
8192 0.98170224
16384 0.99966519
32768 0.99999989

Table 1. Probability of a collision amongst k£ addresses

4.2.3 Example

As an example consider what happens when we check
a 4-tuple that represents an active TCP connection.
First, the attacker queries the current IPID value of
IPID counter used by the client machine, via an IPID
hash collision discovered previously. Then, when the at-
tacker sends “unsolicited”, spoofed SYN/ACK packets to
the server it will respond with a challenge ACK, sent to
the client. The challenge ACK sent will use the IPID value
from its per-socket counter as shown in Figure 3b. Since
this is a separate counter from the IPID counter used
for the RST packets sent in response to the attacker’s
probe SYN/ACKs it does not increase the IPID counter
used and the difference in TPID between the two RST
packets is one. As discussed previously if there is no ac-
tive connection on a given 4-tuple each spoofed SYN/ACK
packet will cause a RST to be sent to the client. Since
no connection exists each of these RST packets will use
the hash based IPID counter and each RST will incre-
ment this counter by one, as seen in Figure 3a. This
will cause the difference in IPID between the RST pack-
ets sent in response to the attacker’s probe packets to
be the number of spoofed packets sent plus one.

4.3 The Attack

The attack for detecting active TCP connections uses
the side-channel for using IPIDs to count the number of
packets sent to differentiate between active and inactive
TCP connection 4-tuples.
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SYN-ACK >
‘EST: IPID = 100

SYN
SYN-ACK
ACK
SYN-ACK
| SRC.IP = Clien
SYN-ACK RST: IPID = 10
| SRC.IP = Clien
SYN-ACK RST: IPID = 10:
| SRCIP = Clicny)
RST: IPID = 103
SYN-ACK
ST: IPID = 104

(a) No Connection

Fig. 3. Checking for a connection.

First, the attacker finds an IPv4 address that col-
lides with the client IPv4 address in our potential TCP
connection 4-tuple as described previously. Next, as-
suming a colliding IPv4 address was found, the attacker
scans a chosen range of potential ports to try to detect
a TCP connection. While the simplest method would
be to scan each potential port one at a time this runs
the risk of taking too long to find a connection before it
closes, in the case of short lived connections. This is be-
cause the port field is a 16-bit value giving 2'6 possible
ports. Scanning each of these 65,536 possible ports that
a machine could be using sequentially would likely take
more time than the time a short lived TCP connection
exists. To address this problem an attacker would need
to modify the above attack to check multiple potential
ports at once. However this would cause any parallel
scans to interfere with each other since each one would
be probing the same IPID counter.

We address these problems by dividing the range of
standard ephemeral ports into a series of buckets where
each bucket contains N connection 4-tuples where the
client’s source port is chosen from the ephemeral ports
assigned to the bucket. For each bucket we send M
SYN/ACK probes to each 4-tuple in the bucket. We only
query the IPID value before and after we send all the
probes from a given bucket. Based on the challenge ACK
behavior described in Section 3 a SYN/ACK probe using a
4-tuple that does not represent a connection will trigger
a RST packet response which increases the IPID counter
by one. A 4-tuple that represents a valid connection will
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trigger a challenge ACK using the per-connection counter.

Using this information we know that if a bucket does not

contain a 4-tuple that represents a connection the dif-

ference in IPID value of the two queries should be equal

to M - N since we send M probes for each of the N 4-

tuples in a bucket. If the bucket does contain a 4-tuple

that is an active connection the IPID difference will be

N - (M —1) as the packets sent via the active connection

use the per-connection IPID counter. By only querying

the IPID value before and after scanning each bucket
instead of after each 4-tuple we can simply send all our

M - N 4-tuple probes as fast as possible since we do not

have to check for changes after each one. If we detect a

bucket that contains a valid 4-tuple we then scan each of

the N 4-tuples in the bucket until we find a 4-tuple that
represents an active connection. Using this technique to
speed up the attack, our implementation is as follows:

— Divide the ephemeral port range into buckets con-
taining N ports.

— Scan each bucket as described in above.

— If a bucket containing a valid 4-tuple is found, scan
each port in the bucket individually as described
below:

— Send a SYN/ACK from the attacker’s IP address
to the server.

— Send 2 or more SYN/ACKs using spoofed packets
using the client’s IP address and the target port.

— Send another SYN/ACK from the attacker’s IP
address to the server.
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For our specific implementation we chose to send eight
SYN/ACK packets for each individual port. We chose eight
packets as it provides a large enough number to account
for a small amount of noise caused by other packets us-
ing the same IPID counter while still being small enough
to send quickly to avoid the kernel adding its own noise
to the counter. The attack will work for a larger number
of packets, though the more packets that are sent the
longer the attack will take.

For each individual port scanned, we measure the
IPID difference before and after sending all eight
SYN/ACK packets. If the difference is less than the num-
ber of SYN/ACK probes sent to the potential 4-tuple mi-
nus one then we consider the port to be a potential
TCP connection. We chose this threshold to allow for a
small amount of noise from outside traffic to impact the
IPID without greatly impacting our implementation. If
the difference is greater than or equal to the number
of SYN/ACK probes sent to the potential 4-tuple, minus
one, we conclude that the 4-tuple does not represent a
valid TCP connection and move to scan the next pos-
sible 4-tuple. A difference of 1 indicates that some sort
of error or packet loss occurred.

5 Experimental Methodology

In testing the effectiveness of the attack we wanted to

answer three main questions:

1. How effective was the attack “in the wild”?

2. Was the attack robust to noise that might be present
“in the wild”?

3. How fast was the attack and is this fast enough to
be practically usable?

In order to answer these three questions we opened TCP

connections with popular web servers, that met the at-

tack’s required criteria, and attempted to use our attack

to detect these connections from a third “attacker” ma-

chine. The attack requires:

— A target server that is a Linux machine running
kernel version 4.0 or newer.

—  Access to multiple IPv4 addresses to use as attacker
addresses.

Our experiment proceeded as follows:

1. Using the top 250 sites from the Alexa Top Global
Sites [1] we made a DNS A lookup for each and
recorded all IPv4 addresses returned by the lookup.
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2. Each IPv4 address was then scanned to check if it
met the criteria for the attack.

3. For each IPv4 address that met the criteria for the
attack we generated all unique pairs of IPv4 ad-
dresses from a set of 242 IPv4 addresses on our
research network. These pairs were then used as
client and attacker IPv4 addresses along with a valid
server address to use when trying to find IPID col-
lisions in the next step.

4. Once we had generated all client and attacker IPv4
address pairs we scanned each server IPv4 address
that met our criteria to try and find IPID collisions
on the server between a given client and attacker
pair. Each pair that collides was then cached as a
collision pair to be used in the full attack.

5. We then carry out the attack both before and after
opening a TCP connection with each server IPv4
address. No data is sent to the server during the
attack except TCP keep-alive packets to ensure the
connection remains active during the course of the
attack.

6. Once the attack has finished we close the TCP con-
nection and log our results.

We chose to use the sites from the Alexa Top 250 as
these represent some of the most popular and highly
trafficked websites. Due to this these machines can be
viewed as a plausible worst case scenario for the attack.
This is because such large amounts of traffic increases
the likelihood that another connection’s IPID hash col-
lides with the client and the attacker’s IPID hash. This
traffic can be TCP traffic, such as RST packets, that use
one of the 2048 global counters to populate the IPID
field or non-TCP traffic (e.g., ICMP or UDP). In these
cases any such collisions will add additional noise to
the IPID counter, making precise changes more difficult
to detect. Such noise makes these sites an excellent set
to test the attack’s robustness when dealing with noisy
machines.

5.1 Determining TCP Ports to Target

When choosing ephemeral ports to use as client source
ports we wanted to choose a range that covered com-
mon operating system default values. TCP ports are
represented as 16-bit integers, with the first 1024 usu-
ally reserved for common services. This leaves 64,512
potential ephemeral ports that could possibly be used
as a client’s source port. However, many operating sys-
tems do not use this full range of ports by default. Linux



Detecting TCP/IP Connections via IPID Hash Collisions

uses the range [32,768, 61,000] as available ephemeral
TCP ports. The Internet Assigned Numbers Authority
(IANA) recommends that ephemeral ports be chosen
from the range [49,152, 65,535] [11]. Since Windows
Vista, Microsoft operating systems have used the IANA
range of ephemeral ports. An attacker would likely pick
one of these two ranges to try and maximize the num-
ber of client machine’s whose connections could be at-
tacked while also avoiding attempting to scan all pos-
sible ephemeral ports. For our experiments we chose
to use a hybrid range of [32,768, 65,535] as possible
ephemeral ports to cover both the TANA range and the
Linux range.

All client and measurement IPv4 addresses used
were unbound addresses chosen from a set of 242 IPv4
addresses on our measurement network. The measure-
ment machine we used responded to all packets sent
to these addresses. The measurement machine was an
Ubuntu Linux machine running Ubuntu 16.04 LTS with
Linux kernel version 4.4. In a real attack, the packet de-
lays, packet loss, and other characteristics of the Inter-
net between the measurement machine and the server
would have an effect on the attack, but for the client
the Internet characteristics between the client machine
and the server are not relevant to the attack, since the
client IP is simply kept as state on the server for an
open TCP connection from the attacker’s perspective.
Therefore our experimental setup is identical to a real
attack in terms of Internet traffic considerations.

5.2 Testing Against Persistent
Connections

In addition to testing the attack “in the wild” against
popular web servers, we also set out to test it against
privacy tools such as Tor which create persistent, long
lasting connections. Whereas tools such as VPNs that
use TCP create connections that persist for as long as
the user uses the VPN, Tor creates a new circuit every
10 minutes (MaxCircuitDirtiness defaults to this value).
For our mock targeted attack we assume that we are
the middle router chosen in a Tor circuit, and when-
ever a new circuit is created through us we carry out
the side-channel attack to see if a given target IP ad-
dress currently has a connection to the entry guard of
the circuit. Part of Tor’s security model is the assump-
tion that the middle onion router knows the entry guard
and exit node, but cannot gain information about either
endpoint of the socket connection tunneled through Tor.
This includes the client that connects to the entry guard
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and the server they are connecting to, for demonstration

purposes we focus on the former though the latter can

also be inferred.

In order to avoid testing against circuits in the ac-
tual Tor network and potentially interfering with legit-
imate Tor traffic, we tested against Tor clients within
a small, virtual network. We also implemented some of
the possible improvements discussed in Section 7.2 to
see if they improve the attack’s accuracy.

This virtual network is constructed as follows:

— Four machines used to create a Tor network.

— A machine serving as a Tor directory server.

— A machine serving as a Tor guard node and the

entry node of the Tor circuit.

— A machine serving as an internal Tor relay node

and the attacker machine.

— A machine serving as the Tor exit node.

—  One server machine which client machines connect
to through a created Tor circuit.

— Two client machines. In each round, a random client
connects to the server via Tor, while the second
client machine does not.

— One internal IP router node to route traffic be-
tween the various machines and simulate Internet-
like packet loss, variable delay, and reordering.

Each machine is assigned an IP address on a separate
/24 subnet, except our “attacker” machine which is as-
signed an IP address on a /18 subnet to ensure the at-
tacker can spoof a large enough number of IP addresses
to find an IPID hash collision on both client machines.
We add a latency of 70-75ms across the entire network
to simulate “real world” network delays and packet re-
ordering, as well as a randomized 5% packet loss.

In each round the attacker node will attempt to de-
termine whether or not a connection between a given
client machine and the guard node exists, starting when
it detects that a circuit has been created and via com-
munication with the guard node itself. The client ma-
chine using Tor initiates an SSH connection to the
server, through Tor. This SSH connection is closed
shortly after but the client maintains the Tor connection
to the circuit via the entry guard for 10 minutes (default
Tor behavior) before attempting to create a new Tor cir-
cuit.
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Number of Scans Connection

No connection

True Positive False Negative

False Positive  True Negative False Positive

# % # %

# % # % # %

2593 2194 84.61% 282 10.88%

117 451% 2452 94.56% 141 5.44%

Table 2. Overall accuracy of the attack.

6 Results

In this section we describe the results of our experiment
and discuss potential factors that could impact the at-
tack’s effectiveness. As described in Section 5 we chose
web sites from the Alexa Top 250 as the servers to de-
tect connections to. After performing DNS A lookups
for each host we obtained 464 unique IPv4 addresses to
use as server machines. Of these 464 IPv4 addresses we
found 182 (39.22%) that met our required behavior cri-
teria: a machine running a Linux kernel version 4.0 or
newer, that responded to “unsolicited” SYN/ACK pack-
ets with RST packets. Of these 182 IPv4 addresses we
were able to find valid IPID collisions between a pair of
our 242 measurement IPv4 addresses and 136 (74.73%)
server addresses. We carried out 2,593 total mock at-
tacks, over the course of 7 days, on active TCP connec-
tions between an IPv4 address from the Alexa Top 250
and a client IP address on our own network. Each scan
attempted to detect the presence of a TCP connection
before and during an active TCP connection.

6.1 Analysis of the Attack’s Accuracy

When describing our results we separate attacks where
no TCP connection existed from those where a TCP
connection does exist. Overall there are four possible
outcomes, depending on whether or not a connection
existed:

— True Positive: A connection exists and the attack
found the 4-tuple corresponding to the connection
correctly.

—  True Negative: No connection exists and the attack
found no connection.

— False Positive: No connection exists and the attack
found a connection or a connection exists and the
attack found an incorrect 4-tuple for the connection.

— False Negative: A connection exists and the attack
failed to find the connection.

In cases where a connection did exist the attack was
able to detect the TCP connection 84.61% of the time
with a false positive rate of 4.51% and a false negative
rate of 10.88%. When no connection was present the
attack was able to correctly detect this 94.56% of the
time with a false positive rate of 5.44%. Table 2 shows
our overall results.

6.2 Analysis of the Attack’s Runtime
Performance

In addition to analyzing the accuracy of the attack we
also analyzed the performance of the attack when scan-
ning the standard Linux kernel’s ephemeral port range
for active TCP connections. If this scanning takes too
long to complete then it is possible that an attacker
would miss the existence of a short lived connection.

Using the same set of server IPv4 addresses and
IPID collisions used in the accuracy analysis detailed
in Section 6.1 we measured the time the attack took to
either find an active TCP connection or scan the cho-
sen ephemeral port range. On average the attack takes
75.81 seconds to find an active TCP connection. When
there is no connection the attack takes 135.59 seconds
on average to scan our ephemeral port range and con-
firm there is no connection. How fast the attack needs to
be depends on a lot of context that will vary across dif-
ferent potential types of attacks (e.g., Is the connection
repeated so that multiple attempts can be made? What
are the keepalive settings of the server and browser? Is
it an application that has persistent connections, such
as Tor?).

6.3 Accuracy Against Persistent
Connections

As discussed in Section 5.2 we also tested our attack
against the persistent connections created by Tor for
each circuit. These long lasting (10 minutes by default),
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persistent connections provide a longer window of time
and allow an attacker to implement strategies such as
those discussed in Section 7.2 to improve the attack’s
accuracy. For our tests we chose to implement the sim-
plest of these strategies, re-checking possible connection
4-tuples multiple times to verify potential positive re-
sults. We chose to check each potentially valid 4-tuple 8
times in total and accepted it as a 4-tuple representing
a connection if over half these tests returned a positive
result (i.e 5 or more of the 8 checks returned the same
4-tuple). Each of these re-checks does not scan the full
ephemeral port range but instead only scans those ports
for which a potential connection was detected. Since
these re-checks only check a handful of ports the added
time taken is typically quite small and can allow an at-
tacker to try and verify if a persistent connection exists
or not.

We find that re-checking potential, positive 4-tuples
combined with the increased connection life of long last-
ing, persistent Tor connections allows an attacker to im-
prove the attack’s accuracy in a simulated network. For
cases where a connection between a client machine and
the Tor entry node exists our tests show the attack has
an accuracy of 96% with a false negative rate of 4% and
no false positives. In cases where there is no connection
our simulated testing has a true negative rate of 100%
and no false positives. False negatives could be toler-
ated in a real attack of this kind because there is some
chance that any given circuit created by the victim will
not go through an attacker-controlled relay in the first
place, so the attack is already probabilistic.

Tor and VPNs are not the only contexts where TCP
connections may persist for a significant amount of time.
An increasingly common practice among web clients and
servers is to use TCP or HTTP keep-alives to main-
tain persistence of idle connections, to avoid the over-
head of starting new TCP connections for subsequent
requests. As one example, the Firefox browser maintains
idle connections for up to 115 seconds after completing
an HTTP request. These persistent connections increase
the number of situations where our attack could be used.
Our attack is general to TCP and can be applied beyond
plain web browsing traffic. Some applications such as
IRC create connections that persist for days. Our test-
ing shows that these persistent connections provide an
attacker with sufficient time to implement strategies to
better handle sources of error and improve the attack’s
accuracy.

— 322

7 Discussion

In this section we discuss the potential applicability of
the attack, factors that we noticed during our experi-
ments that affect the applicability of the attack, possi-
ble mitigations that could be taken against the attack,
and ethical considerations we made in designing our ex-
periments.

7.1 Applicability

As discussed previously this attack requires the use of
multiple attacker IPv4 addresses to increase the proba-
bility of an attacker finding a valid IPID hash collision
so that IPID values of attacker packets and client pack-
ets use the same IPID counter. In order to have a 50%
probability of finding a collision an attacker would need
to use approximately 1400 IPv4 addresses. To have a
90% or greater probability an attacker would need ap-
proximately 4700 IPv4 addresses. While access to this
many available IPv4 addresses is likely beyond the ca-
pabilities of a simple attacker it is within the realm of
availability for a large botnet or nation-state attacker.
Previous work studying the Great Cannon [24] and the
Great Firewall of China’s attempts to actively probe
Tor bridges [15] shows that some nation-states likely
already possess the ability to spoof thousands of IPv4
addresses, 13,183 and 16,083 respectively, most of which
came from the same /16 subnet. If similar numbers of
IPv4 addresses were used to implement the attack we
describe in this paper, an attacker would have a greater
than 99% probability of finding a valid collision that
could be used to detect an active TCP connection with
a chosen, vulnerable Linux machine.

We assume that the attacker has some reason to
suspect that the victim machine is making a connection
to a given server, and that this is likely the case. The
base rate fallacy [5] would apply if the likelihood that
the connection actually exists is relatively low. This de-
pends on the overall goals of the attacker and context
of the attack, which may also mitigate the effects of the
base rate fallacy. For example, if an attacker’s goal is
to know if a given client is connected to the guard node
associated with a Tor circuit, a higher false positive rate
may be tolerable because this is simply another lead to
follow in a broader and more thorough investigation.
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7.2 Sources of Error

During the course of our experiments we noticed three
main causes of errors that impacted the effectiveness
of the attack. The first cause was noise causing larger
than expected IPID increases. The most likely cause of
this behavior is additional machines connecting to the
server whose IPv4 addresses hash to use the same IPID
counter as an attacker [IPv4 address. Each packet these
additional connections send increases the IPID counter
in addition to the increases caused by the attack. This
additional increase can cause the IPID counter an at-
tacker is using to increase beyond the number of probe
packets expected making it appear that no challenge ACK
was sent when scanning a given 4-tuple as described in
Section 4. One method for accounting for this would be
to try to account for the added noise in the IPID counter
by modeling the noise. Ensafi et al. [15, 16] used ARMA
modeling to account for noise affecting the global IPID
counters. Pearce et al. [26] accounted for noisy IPID
counters by using Sequential Hypothesis Testing, while
ONIS [37] modeled noise and accounted for it by using
the Akaike information criterion. The attack we have
described does not attempt to handle detected cases of
noise; instead we leave this possibility for future work.

The second cause of errors we noticed is that some
IPv4 addresses we used as servers would change the
IPID counter being used after successfully finding an
IPID hash collision. Since we cached all located TPID
collisions as described in Section 4 this caused any sub-
sequent attempts using the cached collision to fail. An
attacker using a similar system of caching known colli-
sions would be forced to try to find another valid col-
lision before continuing their attack. We noticed these
changes occurring on the order of hours and not min-
utes meaning that single attacks or those not using a
similar system of caching collisions are unlikely to be
affected. Performing an additional test to ensure the
chosen collision is still valid before launching the full
attack mitigates this source of error.

There are two likely explanations for this changing
collision behavior. The first is that the target machine
was restarted. As discussed previously in Section 3 a
random value is included as part of the IPID hash to
prevent the possibility of precalculated collisions. This
value is chosen when a machine boots and remains un-
changed while the machine is still running. Any pre-
computed collisions that use a server that restarts will
become invalid whenever that server restarts. The sec-
ond possibility is that these IPv4 addresses represent
multiple machines assigned the same IPv4 address via
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some type of load balancing or address translation pro-
tocol. If this is the case when an attacker first finds a
collision it is valid for one of the set of machines assigned
a given IPv4 address. However, if the attacker later at-
tempts to reuse the same collision the load balancing
or address translation system could send the attacker’s
traffic and the client’s traffic to different machines. This
would result in the collision no longer being valid and
all subsequent attacks would fail. Popular web sites are
likely to use some type of load balancing technique to
improve overall performance and an attacker would need
to detect whenever this case has occurred and appropri-
ately handle when it has. We leave the development of
such a technique to future work, and note that prior
TCP/IP side channel attacks (e.g., Cao et al. [7] and
Knockel and Crandall [21]) are also affected by layer 4
load balancing, making it an interesting open problem
in general.

The third source of error we noticed was the largest
cause of false positives in our data. These errors were
caused by packets arriving out of order and the server
responding to the attacker’s second probe packet before
all the spoofed packets. Recall the attack as described
in Section 4. At two points during the attack we send
N spoofed packets using a given spoofed 4-tuple while
sending probe packets from the attacker IPv4 address
before and after sending the spoofed packets. Our imple-
mentation assumes that responses to all N packets are
sent before the response to the second attacker probe.
In the event that these packets arrive out of order the
second attacker probe will have an IPID value that is
somewhere in the middle of the TPID values given to
packets sent in response to the N probes. This results in
a given probe appearing to cause less packets to be sent
making it seem like the probe triggered the packets that
used the per-connection IPID counter. This causes the
attack to either detect a connection where none existed
or to detect a connection on an incorrect port. Given
our low false positive rate of less than 5% this does not
occur frequently and could be mitigated by rerunning
the attack multiple times. We leave the development of
techniques to detect and better handle packet reorder-
ing to future work.

7.3 Mitigations

There are a number of possible mitigations the Linux
kernel could use to try and prevent this attack. The
immediate place to consider mitigations is the Linux
kernel’s IPID behavior.
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The kernel could change the IPID counter behav-
ior it uses to try to remove any information flows that
could be used as a side-channel. However there is no
obvious choice for the behavior that should be chosen.
If the kernel were to use per-destination IPID counters,
as it did previously, then the kernel would again be vul-
nerable to side-channel attacks such as those discussed
by Knockel and Crandall [21]. Moving to any type of
global IPID counter is also a poor choice as it would re-
move the need for an attacker to have hundreds of IPv4
addresses available to find IPID hash collisions, though
it would increase the amount of noise present for active
machines.

One possibility is that the Linux kernel could use
an IPID of zero for RST packets that are not part of an
active TCP connection. RST packets should not contain
any data and as a result should never be fragmented.
Using an IPID of zero for such packets would make it
impossible for the attack we have described to determine
if off-path packets have been transmitted, removing the
attack’s ability to tell whether the traffic used a per-
connection counter or one of the 2048 global counters.
This solution would mitigate the attack we have de-
scribed, though it does still allow an off-path attacker
to count non-TCP packets via IPID hash counter colli-
sions.

Another possibility is to use random IPID values
for each outgoing packet. This is the approach taken by
some versions of BSD-based operating systems, includ-
ing Mac OSX. Using this approach, for each packet that
is sent a random value is generated and used as the IPID
field. This removes any ability for an off-path attacker
to count IPID differences, assuming the random num-
ber generation scheme is sufficiently difficult to predict.
However, this approach adds additional overhead com-
puting random values to each outgoing packet, which
may not be desirable.

7.4 Ethical Considerations

In order to avoid potentially exhausting resources on the
server machines we used in our experiment we strove to
follow best practices. We only initiated one TCP con-
nection at a time with a given server and all TCP con-
nections were completed to avoid taking up resources
with “half-open” TCP connections. Once we had fin-
ished a given scan we closed and reset each connection
immediately, to avoid using up server resources. All of
our probe packets are SYN/ACK packets, which are im-
mediately reset by the server. At no point do we test
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the attack described on any TCP connection other than
those we have initiated ourselves. Via reverse DNS our
client and measurement machine IPs pointed to a web-
site that explained the nature of our study and gave
contact information for network administrators to opt
out of our probes, and we have arranged for all abuse
complaints for our research network to be forwarded di-
rectly to us. We received no opt-out requests or abuse
complaints at any time during this study.

7.4.1 Disclosure

We disclosed the side-channels used in the attack to the
Linux kernel developers on August 22, 2018. After dis-
cussing the attack and possible mitigations, the Linux
developers released a patch that mitigated the attack
on September 11, 2018. The chosen mitigation strategy
was to have the Linux kernel use an IPID of zero for all
TCP RST packets sent outside an established TCP con-
nection. As we discussed previously this removes the
side-channel which allows an off-path attacker to deter-
mine whether off-path TCP traffic was using one of the
2048 global IPID counters or a per-connection counter
and detect the presence of a TCP connection. As result,
Linux kernel versions 4.18 and newer are no longer vul-
nerable to the attack we have described. However, the
underlying side channel still remains for other protocols
and could be used to attack user privacy in applications
that are, e.g., UDP-based (such as DNS).

8 Related Works

One of the first uses of network side-channels as a
measurement technique was the original Idle Scan pro-
posed by Antirez [4] to scan for open ports on a tar-
get machine. Morbitzer [25] proposed a technique for
an IPv6 Idle Scan. Ensafi et al. [17] proposed another
side-channel using the SYN-backlog for the same pur-
pose. Subsequent work by Ensafi at al. [16] combined
the two side-channels to provide a technique for mea-
suring intentional blocking of ports by firewalls. Alexan-
der and Crandall [2] use the SYN-backlog side-channel
for off-path network measurements of packet round-trip
time while Zhang et al. [35] improved on their technique.
Zhang et al. also used side-channels to detect machines
hidden behind firewalls [36] and describe ONIS [37] for
port scanning. Chen et al. [9] showed how the IPID field
could be used as a side-channel to measure a multitude
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of information about a server including amount of inter-
nal traffic generated and the number of machines used
for load-balancing. Bellovin describes a technique for
counting the number of hosts behind a NAT [6] and
Kohno et al. [22] made use of IPIDs to fingerprint re-
mote devices. None of these works can be used to infer
the existence of a TCP/IP connection off-path.

Detecting the presence of an active TCP/IP con-
nection is often the first step in TCP reset attacks or
connection hijacking, such as those described by Wat-
son [34]. Knockel and Crandall [21] discuss a technique
for inferring the presence of active IPv4 connections on
Linux machines using the IPID field and IP fragmenta-
tion reassembly behavior. Qian et al. [28, 29] use fire-
wall based network side-channels to infer TCP sequence
numbers and perform off-path TCP/IP connection hi-
jacking. Cao et al. [7, 8] use the Linux kernel’s initial,
unpatched challenge ACK behavior to implement an off-
path TCP reset attack and a connection hijacking at-
tack. Quach et al. [30] later scanned the Internet to dis-
cover how quickly popular web servers patched the vul-
nerability discovered by Cao et al. Chen and Qian [10]
describe a side-channel present in the IEEE 802.11 pro-
tocol that allows for off-path TCP injection attacks. Of
all of these side-channel attacks, only two (Knockel and
Crandall [21] and Cao et al. [7, 8]) do not require non-
privileged malicious code running on the victim client.
As discussed previously, both of these works exhaust a
global resource.

IPIDs and IP fragmentation have been used as side-
channels in many of the techniques described by Gilad
and Herzberg. They explored the use of global IPID
counters, fake congestion events, and packet processing
delays as side-channels to infer the presence of traffic be-
tween hosts on the Tor network [18]. They also explored
the use of IP fragmentation to perform off-path intercep-
tion and denial-of-service attacks on machines behind a
NAT or network tunnel [20]. A part of their attack in-
volves inferring the Linux per-destination IPID counter.
This technique requires the use of an agent running on
either the client machine or another machine behind
the NAT or tunnel running attacker code. The attack
we describe does not require the use of an agent and
can be done remotely and completely off-path. Gilad
and Herzberg additionally discussed attacks which com-
bined agents and TCP/IP side-channels to attack the
Same Origin Policy and carry out TCP injections [19].
All of the work by Gilad and Herzberg requires the use
of an agent or attacker machine behind the same NAT
as the victim.
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To the best of our knowledge, our work is the first
purely off-path TCP/IP side channel attack that can
infer the existence of a connection without exhausting
a global resource. This informs efforts to protect ker-
nel network stacks against unknown side-channels in
two ways. First, enumerating shared, global resources
(such as rate limits, buffers, and caches) and then eval-
uating each in isolation will not reveal all TCP/IP
side-channels. Rather, efforts to reason about potential
undiscovered side-channels for the existence of a con-
nection should consider all code paths that differ when
a connection exists. And second, the fact that Linux’s
IPID behavior for unsolicited packets had to be changed
in response to the vulnerability presented in this pa-
per is significant in that this route was chosen because
strategies to randomize resource usage (such as the ran-
domized global challenge ACK rate limit in response
to Cao et al., or the uniformly distributed noise added
to IPIDs combined with the removal of per-destination
IPID counters in response to Knockel and Crandall) are
not effective for attacks that do not exhaust any global
resource. The Linux kernel’s response to our vulnerabil-
ity disclosure, which was to set IPIDs to zero for RST
packets, amounted to not using the resource in question
(IPID counters) at all. What if a TCP/IP side-channel
is discovered that, like the one presented in this paper,
does not exhaust any global resource, but where simply
not using a resource is not an option as it was in this
case?

9 Conclusion

We have presented a novel off-path attack that can de-
tect the presence of an active TCP connection between
a remote Linux server and an arbitrary client using
side-channels present in the Linux kernel. The attack
leverages side-channels in the kernel’s implementation
of shared and per-connection counters. This attack is a
purely off-path attack that does not require access to
any packets sent between the client and the server. All
that is required to reliably use the attack is access to
multiple IPv4 addresses for the measurement, that the
server machine be running a Linux kernel of version 4.0
or higher, and that the server responds to unsolicited
SYN/ACK packets with RST packets.

We have provided an evaluation of the attack “in the
wild” and discussed its effectiveness and performance.
We have shown that the attack is accurate and can be
run quickly enough to detect active connections that
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persist for an average of 76 seconds or longer. In ad-
dition we have discussed the potential applicability of
the attack, sources of error that would affect its ap-
plicability, and possible mitigations against the attack.
Finally, we have discussed what this attack can tell us
about yet undiscovered TCP/IP side channels that past
attacks could not.
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A Finding an IPID collision

One of the first steps in the attack is to find an IPv4
addresses whose IPID counter hash collides with the
client’s IPID counter hash on the server. Our imple-
mentation uses a technique similar to that used by
ONIS [37]. This is the most time intensive portion of
the attack. In cases where a collision was found our
implementation took on average 1,669.65 seconds, i.e.
27 minutes and 49 seconds, to find the collision. The
fastest that our implementation found a collision was
1.73 seconds and the longest time to find a collision was
8,453.34 seconds, i.e. 2 hours, 20 minutes, and 53 sec-
onds. Since each attempt to find a collision requires one
round trip time per attacker IPID probe these results
are heavily influenced by the round trip time between
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3394 static void tcp_send_challenge_ack(...) {

3404 if (__tcp_oow_rate_limited(net,
LINUX_MIB_TCPACKSKIPPEDCHALLENGE,
&tp->last_oow_ack_time))

3405 return;

3419 count = READ_ONCE(challenge_count);

3420 if (count > 0) {

3421 WRITE_ONCE(challenge_count, count - 1);

3422 NET_INC_STATS (net,

LINUX_MIB_TCPCHALLENGEACK) ;

3423 tcp_send_ack(sk);

3424 +

3425 )

Fig. 4. Linux kernel challenge ACK behavior

the attacker and the server. As a result collisions with
shorter round trip times between the attacker and the
server required less time than those with longer round
trip times. As discussed previously our implementation
scans for collisions and caches any that are found before
checking for TCP connections and reuses these cached
collisions to avoid having to rediscover collisions every
time the attack is run. In addition our implementation
uses a naive, sequential scan of all possible IP pairs that
could result in a hash collision. A more advanced, paral-
lel scan or other less naive implementations could speed
up the process of finding collisions and decrease the time
needed.

B The attack when the Do Not
Fragment Flag is not set

Starting with version 4.0, the Linux kernel began rate
limiting duplicate ACK packets to reduce resource con-
sumption in cases where many duplicate ACK packets
could be caused by a remote host. The attack takes ad-
vantage of this rate limit when applied to challenge ACKs
when the Do Not Fragment flag for an outgoing IPv4
packet is not set. When the Linux kernel needs to send
a challenge ACK packet it first checks to see if it was al-
ready reached its duplicate ACK rate limit as seen in line
3404 of Figure 4. The default value for this rate limit is
one duplicate challenge ACK packet sent every one half
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(a) No connection

Fig. 5. Checking for a connection without the DF flag set

of a second. If a given challenge ACK causes the kernel to
exceed this rate limit, the function simply returns and
no challenge ACK is sent. If the packet does not exceed
the rate limit, the kernel instead checks the global chal-
lenge ACK rate limit in line 3420. If this limit has not
been reached, the challenge ACK is sent, line 3423, oth-
erwise no challenge ACK is sent. A full source code listing
for the Linux kernel’s challenge ACK implementation can
be seen at [33].

Each spoofed SYN/ACK causes the server to send a
RST which increments the IPID counter by one as shown
in Figure 5a. If the 4-tuple does represent an active TCP
connection and the server is not using the Do Not Frag-
ment flag on outgoing packets the server will send a
challenge ACK for the first SYN/ACK but not for subse-
quent packets. This is because the first challenge ACK
will trigger the duplicate ACK rate limit causing each
subsequent challenge ACK to be rate limited and not
sent. The challenge ACK that is sent will use one of the
2048 TPID counters based on its connection informa-
tion hash and not the per-connection IPID counter, as
described in Section 3.2. Due to this the IPID of this
counter increases by one causing the difference between
the first and second RST packets sent in response to the
attacker’s probe packets to be two. This case is shown
in Figure 5b.
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(b) Active connection without DF flag set

B.1 Using the Duplicate ACK Rate Limit
as a Side-Channel

When an “unsolicited” SYN/ACK is received by the Linux
kernel on a port where no active connection exists the
kernel will send a RST packet. For ports where an active
connection does exist the kernel instead sends a chal-
lenge ACK, assuming that the given connection has not
hit its duplicate ACK rate limit. If a connection has hit
its duplicate ACK rate limit then no packet is sent in
response to the SYN/ACK.

If we send multiple SYN/ACKs to a given connection
4-tuple that does not represent an active TCP connec-
tion each SYN/ACK will cause the kernel to respond with
a RST. However, if a given 4-tuple does represent an ac-
tive TCP connection then each SYN/ACK will cause the
kernel to respond with a challenge ACK. Assuming all
SYN/ACK packets arrive in under one half of a second the
first challenge ACK response will cause the connection to
reach its duplicate ACK rate limit which causes the kernel
to not send all subsequent challenge ACK packets. This
difference in the number of packets sent in each of the
cases can be used as a side-channel to detect if a given
4-tuple represents an active TCP connection or not.
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