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Magnetic field and curvature effects on pair production. II.
Vectors and implications for chromodynamics
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We calculate the pair production rates for spin-1 or vector particles on spaces of the form M x R"!, with

M corresponding to R? (flat), S? (positive curvature), and H> (negative curvature), with and without a
background (chromo)magnetic field on M. Beyond highlighting the effects of curvature and background
magnetic field, this is particularly interesting since vector particles are known to suffer from the Nielsen-
Olesen instability, which can dramatically increase pair production rates. The form of this instability for S>
and H? is obtained. We also give a brief discussion of how our results relate to ideas about confinement in

non-Abelian theories.
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I. INTRODUCTION

In part 1 [1], we analyzed the Schwinger pair production
process on spacetimes with nonzero curvature and with a
background magnetic field, in addition to the uniform
electric field [1]. The general motivation for this was to
elucidate the impact of spin-curvature and spin-magnetic
field couplings on threshold effects and hence on pair
production rates. We considered cases of the spacetime
manifolds which would provide explicit solvable examples.
The analysis in [1] was for spin-O0 and spin—% particles.
Specifically, in addition to flat Minkowski space R>!, we
considered the manifolds M x R, with M = S%, H%, T2,
where S? is the two-sphere, H 2 the two-dimensional
hyperbolic plane, and 72 the flat two-torus. In the present
paper, we will consider similar analyses for the spin-1
particles. The Schwinger process has a long history. For the
proper placement of our work and for some of the relevant
literature, we refer the reader to references cited in [1].

There are many issues which make the discussion of
spin-1 particles more involved compared to the scalar and
spinor cases and there are some interesting and new facets
as well. There are well-known no-go theorems which point
to difficulties in constructing a field theory of charged
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spin-1 particles [2]. The only consistent formulation is to
consider the spin-1 charged fields as part of a non-Abelian
gauge field, minimally an SU(2) gauge theory. One of the
non-Abelian fields, say the A; field for the SU(2) example,
can be considered as the electromagnetic field and the other
components as the charged spin-1 fields. In this case, the
Yang-Mills action automatically incorporates the correct
spin-magnetic field and spin-curvature couplings, the
gyromagnetic ratio being 2, as it is for Dirac particles.
We also have to ensure that only the physical polarizations
are effective in the pair production process. This will
require the elimination of the unphysical polarizations
via gauge fixing or via suitable constraints on the quantum
states. The simplest way will be to use the Becchi-Rouet-
Stora-Tyutin (BRST) formalism, which is what we do in
what follows.

Since the spin-1 fields are part of a Yang-Mills multiplet,
our analysis has the potential to generate results relevant to
QCBD; this is another motivation for the present work. For
Yang-Mills fields, it has been known for a long time that the
vacuum tends to generate chromomagnetic fields [3,4] and
at the same time that there is an instability for such fields
[5,6]. The decay of chromoelectric fields via the Schwinger
effect has also been considered in [7], where it was argued
that, for a non-Abelian plasma, there is an instability which
does not allow for a net nonzero color charge along with
field configurations which are coherent over a length scale
given by the chemical potential. Therefore the situation
with both chromoelectric and chromomagnetic fields is
clearly an interesting case.

This paper is organized as follows. In Sec. II, we set up
the basic framework and the calculation of the rate for pair

Published by the American Physical Society



D. KARABALL S. KURKCUOGLU, and V. P. NAIR

PHYS. REV. D 100, 065006 (2019)

production in flat Minkowski space R>!. By taking the
limit of this result for zero electric field we are also able to
recover the Nielsen-Olesen result [5]. The two sections
that follow are devoted to similar calculations for §? x R!!
and H? x R, In Sec. V, we give a brief summary and also
consider our results in the context of chromodynamics,
commenting on the difficulties of maintaining stable
chromoelectric configurations. Calculation of the energy
spectrum for the charged vector particles and the corre-
sponding density of states on the hyperbolic plane requires
the use of the representation theory of SL(2, R). Essential
points regarding this as well as a semiclassical estimate of
the density of states on S" and H", using the Hamilton-
Jacobi theory, are provided in the Appendixes A and B,
respectively.

II. PAIR PRODUCTION OF VECTOR
PARTICLES IN FLAT SPACE

We launch our discussion by considering vector particles
in flat space. For this we need the action for a charged
vector field coupled to background magnetic fields, includ-
ing the magnetic moment or Zeeman coupling term. We
have already seen, for the case of spin—% particles, that the
Zeeman coupling has a crucial role in enhancing pair
production via the zero modes [1]. The only consistent
theory for charged vector fields must treat them as part of a
non-Abelian multiplet. Thus we start with an SU(2) gauge
theory with the dynamics given by the Yang-Mills action.
Some of the arguments we develop can be applied to QCD
as well, so the Yang-Mills theory is indeed the appropriate
starting point. The Euclidean Yang-Mills action is given by

1 1
S=1 / d*xF4,F¢, = ) / d*xTr(F,F,). (2.1)

where, as wusual, F,, = (-it")F}, =0,A, —0,A, +
[A,,A)] and A, = (—it*)A] is the gauge potential.
{t*},a =1, 2, 3, are Hermitian matrices forming a basis
for the Lie algebra of SU(2); thus t“ obey the usual
commutator algebra with the structure constants %, i.e.,
[t9,1°] = if>ct°, and we take them to be normalized
as Tr(r9%) =15

We introduce a background for the SU(2) gauge
potential by Aj — Aj + Wy, where Aj is now the back-
ground field and Wy denote the fluctuations around the
background. The problem of gauge fixing and reduction to
the physical polarizations can be dealt with using the BRST
formalism. The BRST transformations are given by

QA +W3) =0, +[A, +W,.c]* = (Dyc) + [W,.c]*
1
Qc® = _Efabccbcc
Qct = b“,

0b® =0. (2.2)

Here D, denotes the covariant derivative with the back-
ground field A, as the connection and b“ is the Nakanishi-
Lautrup field. Since this is a fixed background, QA§ = 0,
and the first of the equations in (2.2) is to be interpreted as
QW4 = (D,c)* 4 [W,,, c]*. We take the gauge-fixed action
to be

S=SymA+W)+0 U o <(D,,W”)“ - ;b“)]
= Sym(A+ W) + / d*x {(Dﬂz)a(Dﬂc + [W#, c])*

+%(D W)a(D - W)“} (23)

We have done some partial integrations and also, in the
second line, eliminated b* by its equation of motion, which
is equivalent to integrating it out in the functional integral.
The Yang-Mills part of the action simplifies to

1 -
SYM(A + W) = Z / d4xfﬂbf”’”“ + S
- 1
53— / & {5 (D, W,)* (DA W)
I
X0 Wy Wy g g wiws

+ cubic and quartic terms in W|{. (2.4)

Here f,, is the field strength tensor for the background field
A,. We have omitted the term linear in W as it vanishes for
backgrounds which obey the classical equations of motion.
The term f*f4 WOW¢ is the Zeeman coupling corre-
sponding to a gyromagnetic ratio of 2. Combining (2.3) and
(2.4), we find

1
S = / d*x [5 (D,W,)(D*W*)*
+ fabefa, WoW< + (D,&)" (D c)”

+ cubic and quartic terms in W, ¢,c|. (2.5)

We take the background field to be along the ¢ direction in
the SU(2) algebra, so that

?2:_f31:Bl7 f§4:_f§13:32- (2-6)

Further, we take combinations of Wj; and the ghosts to
define the fields
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1 .
Wi =S [Wi = W3 +i(W; + Wi)l.

2
1 :
wh =Ly - wa s awy W,
cizi(clj:icz) Ei:L
V2 V2

1 .

W= 2wl wa vy - W)
1 :

W3 = LWL W W) — W)

The fields W3, ¢, ¢ are uncharged with respect to the background field. Further, W= = W1*, Wi = W7*, etc. The

quadratic terms in the action (2.5) become

S = /d4x [(DMW+)+*(D”W+)+ + (D,W_) P (DFW_)T = 2B (W W — WH W)

+ (Dw ) (DFw )t + (Dw_ )T (DFw_)T = 2By (wiwl — wi*wl)

1
+ (D)~ (D¥e)™ + (D,e)" (DFe)™ + Eaﬂwgaﬂwﬁ + 9,800 |.

(2.8)

The eigenvalues of the kinetic operator (which we shall often refer to as the energy eigenvalues even though we are

discussing the Euclidean action) for W3 and ¢, ¢

are independent of the magnetic fields and lead to an infinite constant in

the effective action which is removed by renormalization. The eigenvalues for the charged fields are shown in Table I. The
density of states is (B,B,/4x?*), for all cases. Using these values, we find the effective action I' = I'; + ', with

1 ds B
-, = — d4 il 2 B —s[m?>+(2n,—1)B] —s(2n,+3)B,
LT 822 / Ty <sinhs32> { ‘Zl(e e )

1
-T,

I, is the contribution from W. Rather than a zero mode
as in the case of spin % we now have a negative mode
(2n; + 1)B, — 2B, = =B, (for n; = 0), due to the Zeeman
term. This instability is what was noticed long ago by
Nielsen and Olesen [5] and has led to arguments in favor of
the QCD vacuum spontaneously generating chromomag-
netic fields with a consequent instability which is then
eliminated by mass generation. We will discuss the physics
of this later. For now, we notice that the negative mode can
lead to a divergence, so we have introduced a mass term as
an ad hoc infrared cutoff.

The rate for pair production or decay of the field is
obtained by continuing I" to the Minkowski signature by
using x;, — ixy, B, = —iE. The continuation of —I" should

TABLE 1. FEigenvalues for the charged components of the
vector fields and ghosts.

Fields Eigenvalues

c* (2n; + 1)B; + (2n, + 1)B,
i (2n + 1)B, + Eiﬁiﬁ;ﬁj
" Gum + (2ny+ 1)B,

ds B
=—— [ d*x— 2 h2sB, —1)|B —s@m+1)B1 |
4n? s <sinhs32> (cosh 255, ){ 1;6

(2.9)

|
then be identified as iS.sy, with the vacuum-to-vacuum
amplitude given as (0|0) = eSer. We are thus interested in
the real part of iS. The factor (sinh sB,)~" in (2.9), upon
continuation, becomes (—isin Es)~! and can potentially
produce poles at sE =nz, n=1,2,.... (There is no
singularity at n = 0, or s = 0, since the integration over
s starts at s = €, with ¢ being an ultraviolet cutoff. To put it
another way, the s = 0 singularity is subtracted out via
renormalization before taking ¢ — 0.) The imaginary part
of S.f (i.e., the real part of iS.g) arises from going around
the poles in doing the s-integration. Near sE = nz, we
write s = (nx/E) + z, sinsE = sin(nz + Ez) =~ (—1)"Ez
and calculate the contribution from integration over a
small semicircle around these points to obtain
Re(iSesr) [1].

The second term in the effective action, namely, ', is the
contribution from w’s and the ghosts. In going over to
Minkowski space, we note that since cosh2sB, —1 =
2sinh? sB,, the continuation of I', to the Minkowski
signature does not have any poles and so it does not
contribute to the pair production. This is a reflection of the
ghosts canceling out the effects of two polarizations of
the vector particle, reducing the physics to that of the two
physical polarizations.

065006-3



D. KARABALL S. KURKCUOGLU, and V. P. NAIR

PHYS. REV. D 100, 065006 (2019)

From I';, which is due to W1, we get

1
% Z(e—s[m2+(2nl—l)81] + e—s(2n1+3)31)s=m/E

(2.10)

% Z(e—[nlz(nﬂ/E)+(2n]—l)nﬂx] + e—(2n1+3)mrx)
n

12
= TX {log(l + ™) +log(1 + e™™)

+2) log(l 4 e~@n+ha) | (2.11)

n =1

The summation over 7 in f;(x) will converge if m*> > B,.
We have used this to calculate the sum and then set m?> = 0.
This may be viewed as defining the sum in a region where it
converges and then defining the result in the larger domain
by continuation. For zero magnetic field, we have f; = 1,
so enhancement effects can be identified by considering
values of f;(x). A graph of this function is shown in Fig. 1.
We see clearly that there is enhancement of pair production
due to the magnetic field, namely, f(x) > 1.

It is also interesting to consider the large x limit of
f1(x) ~ 12x? from (2.11). In this limit, which also corre-
sponds to E — 0, we find

B}

Re(iS.y) = — / iy (2.12)

8

This is exactly the result for the magnetic instability given
in [5]. Thus Eqgs. (2.10) and (2.11) do incorporate the
Nielsen-Olesen instability.

0.2 0.4 0.6 0.8 1.0

FIG. 1. The graph of f,(x) showing enhancement due to the
background magnetic field.

III. PAIR CREATION OF VECTOR
PARTICLES ON §2 x R!!

The case of vector particles on S? x R? can be analyzed
using what we did in flat space, with only a couple of
changes. We will consider uniform magnetic fields on S?
and R?, which we take to be of the form B,#* and B,#’,
respectively. On the sphere there is a quantization condition
for the field By ; it can be written as B| = 2—’;’2 withN € Z, a
being the radius of curvature of the sphere. The wave
functions for the S? part will be given by representa-
tion matrices for SU(2) of the form (j,m|j|j, m’), for
g€ SU(2), where we regard S? as SU(2)/U(1). [The
SU(2) here is used to define the manifold S? and it is not
related to the gauge group which we have chosen to be
SU(2) as well.] The Laplace operator now takes the form
of =D} — D73+ (R} 4+ R3)/a*, where R, are the right
translation operators acting on §. iR,/a, iR,/a define
the covariant derivatives on the sphere, the commutator
of which should be the magnetic field (multiplied by the
charge matrix) plus the curvature (multiplied by the spin).
Since

Ry, R;] R;

=—i—, 3.1
a? laz (3.1)

[D19D2] ==

we see that the eigenvalue of R; must be chosen to
represent the sum of the magnetic field and the appro-
priate spin-curvature term. The eigenvalues of R? + R can
be evaluated by writing it as (R?+R3+R%)—R; =
j(j+1)—R3, with Ry set to the appropriate values for
the various components, keeping in mind that w, are
scalars on S, while W are vectors. This means that we
must have the R5 and j values as given in Table II, where ¢
is an integer, ¢ > 0. The degeneracy factor for the Landau
levels on the sphere will be 2j + 1 as usual. (For the general
background on such calculations, see [8].)

In the action, there is also an additional Zeeman-like
term due to the coupling of spin to curvature. We can
simplify the action as follows. With the background fields,
we have

F/u/ :fﬂb+(DMWD_DDWﬂ)+ [Wva}' (32)

In using this in (2.1), the quadratic terms are given by

TABLE II. R; and j values for the charged fields.

Fields R5 j

c* wi -5 q+%

we -1-4 g+1+%

wi 1-4 g-1+% it N 22
% q +% if N=1
1 q+1 if N=0
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S(A+ W) = / dx[=Te(D,W,D,W,) + Tr(D,W,D,W,)
- Tr(fuv[Ww Wu])] +

— [ asfrew, 00w,
- Tr(W,[D,.D,JW,) + Tr(D - W)?

- Tr(fﬂl/[W/l’ WU])] +oee (33)

In the case of flat space, the commutator of the two
covariant derivatives acting on W, gives [f,,, W,], which
is added on to the last term and gives the Zeeman term
—2Trf,,[W,.W,]. As mentioned above, the commutator
also gives a term proportional to the Riemann tensor. For
§? x R?, this applies to the case of u, v =1, 2. Using
D, =iR,/a, b =1, 2, this term can be evaluated as

1
— Tr(W,[Ry, Ry|W,)

—Tl’(W,,[DI“ DU]Wﬂ) =
a

1
= —ZTF(—W1R3W2 + W2R3W1)

a
) Tr(W, RsW_ - W_R;W )
1 c (& C c
=57 5 (WERs WS — WERWE)
1
— S Wewe. (3.4)

In this equation, in evaluating the action of R;, we have
only indicated the gravitational or curvature part since the
gauge field part involving f,, was already included (as part
of the Zeeman term). It is now easy to write down the
spectrum of various fields. Ignoring the uncharged fields
W3, &%, ¢, which do not contribute to the pair production,
the fields and the corresponding eigenvalues and densities
of states p are as given in Table III. We have not indicated
the conjugate fields.

From the values given in the table, there is a useful
observation we can make regarding the decay rate. Notice
that wT, w have the same eigenvalues and degeneracies as
the ghosts except for an additional F 2B,, respectively.

Minkowski space, when this is evaluated at the poles of
the (sinsE)~! factor, we get e¥2"" = 1. So these factors
will not affect the decay rate. Since all other terms are
identical, the contribution of the w-fields (i.e., W5, W) is
exactly canceled by the ghosts. Again, this is essentially the
reduction of the degrees of freedom to the two physical
polarizations. The decay rate can thus be obtained from just
the W*-fields and is given by

EZ
—/d/idxod%@ﬁl(w)» (3.5)

n+1
——> [2g+N+3)
q
% e—nm(q +q(N+3)+3(N/2)+2+m?a*)

+ (2 + N — 1)o@ +aN=D)=(N/2)tm*a®)] (3 6)

where w = r/(Ea?). For N > 2, the eigenvalue for W for
g = 0 is negative, namely, —(N/2), so there is a con-
vergence problem for the summation over n. So we have
again added a mass term as an ad hoc infrared regulator.
The eigenvalues and degeneracy for W for ¢ > 2 coincide
with those of WZ. Thus after separating out the ¢ = 0, 1
terms for the W spectrum and redefining ¢, we can write
the formula for () as

)
o) =0d
=1

+ (N + 1)e—z1a)(m2a2+(N/2))

n+l

|: _ 1) —nw(m?>a*~(N/2))

+2) (2q+ N+ 1)emmoma N+ +(V/2)

In the formula for the effective action, this will give an x log(1 + e—w(m2aZ+qZ+q(N+1)+(N/2))) _ (3.7)
additional factor ¢~*(¥282) Upon continuation to
TABLE III. Eigenvalues and degeneracies for the charged components of the vector fields and ghosts.
Fields Eigenvalues 872
c* (2n2 + 1)By + (q(g + 1) + N(g +3))/a’ By(N +2q+1)
i G +(glg+ 1)+ N(g+1)/a By(N +2g + 1)
wZ (2ny + 1)By + (¢* + q(N +3) + 3(N/2) + 2)/a* By(N +2q +3)
+(q* + q(N —1)—(N/2))/a2 By(N+2g—1),if N>2
wi (2ny + )B2+(q +2q+1)/a? By(2q +2), ifN=1
+(4? +3q—|—2)/a B,(2q + 3), ifN=0
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This equation holds for any N > 1. It is easy to verify that,
for large a® or the flat limit of S?, we can approximate

pi(@) b

ﬂﬂat —w i

n=1

n+

1
NZ —nw(gN+3(N/2)+m*a?)
+ e—nw(qN—(N/2)+m a* )]
— N [log(l T gmata=/2))

+ log(l + e—w(m2a2+(N/2)))
+2 Z log(1

If we use this limiting value in (3.5) and take m = 0, we
get the formulas (2.10) and (2.11), which apply for the flat
case with a background field, with the identification
N = 2B,a’. We can now define

ﬂn(w)]

71 (w> = f]‘[at(w) .

(3.8)

P m*a +qN+(N/2))):| .

(3.9)

This gives a good measure of the effect of curvature. In the
absence of the transverse magnetic field, i.e., forthe N = 0
case, f};(w) takes the form

(o, N =0) = 2w2(2q + 1) log(1 + e~®a(a+1)),
g=1

(3.10)

while the corresponding quantity in the flat limit is
7%/6. Therefore, for N =0, we find y,(w,N =0) =
7% Bi(w, N = 0). The graphs of y;(w), for different values
of the magnetic field, or N, are shown in Figs. 2 and 3. It is
clear that the main features of these graphs are independent
of the cutoff used. Notice that, for all values of N (#£0),
y1(w) is less than 1, with an asymptotic limit of (N — 1)/N

yi(w)
1.0}

FIG. 2. Cutoff m?a* = 4.

for large . Thus the effect of the positive curvature of S is
to suppress pair production compared to the rate in flat
space. As the asymptotic value shows, this effect is
essentially due to the degeneracy factors. (In broad terms,
the situation is similar to what happens for spin—% fields, but
is very different from the result for scalar fields; see [1].)
It is also clear that the pair production rate is higher with
a background magnetic field than it is for zero magnetic
field since the graphs show clearly that y(w,N) >
y1(w,N =0), although the enhancement is less pro-
nounced than it is for the flat case, since y;(w, N) < 1.

In this example of §? x R!! also, it is instructive to take
the small £ limit or large o limit. The expression for the
real part of iS. becomes

. 1 1
Re(iSesr) = —/dydxodx3531 (Bl _ﬁ>

1 R
_/dlbtdxodx?,SﬂB](Bl —4>,

where R is the Ricci scalar for the sphere, R = 2/a?. Notice
that the instability is cured by a small enough radius for the
sphere, 2B,a®> = 1. This is intuitively in agreement with
curing the instability with a mass term [6]; both provide
suitable infrared cutoffs.

We also want to contrast this result with the calculation
reported in [9], where the imaginary part of the effective
action is obtained as

(3.11)

. 1 1
iRe(lSeff) = —/d,btdszﬂ_Bl <B1 +3az) (312)

(We have rewritten the formula in our notation.) It should
be emphasized that the case considered in [9] is for §? x R?
with the magnetic field purely in the R? part and not on the
§?, as we are doing here. So, while (3.12) is an interesting
result, it cannot be compared to our calculation.

v1(w)
1.0}

N=8
N=6
08 N=5
N=4
N=3
0.6}
N=2
044t
0.2t

0.5 1.0 1.5 2.0 25 3.0

FIG. 3. No cutoff, m2a® = 0.
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TABLE IV. Charged fields and the eigenvalues for the con-
tinuous part of the spectrum on H>.

Field Eigenvalues dn’a’p

c* (2my + DBy + (P 4+ D7)/a® Byt
wi »+3)B, Asinh 274

wt E%Z;j;g; + (’12 + }T + bz)/az Bz cosh 2571r;+cos 27b
Vuljj‘r (2112 + ])32 + (12 + % + bZ)/aZ 32 cosh12321%2i2nh

IV. PAIR CREATION OF VECTOR
PARTICLES ON H? x R

As before we consider a magnetic field B, on H? and a
magnetic field B, on R? (which will be continued to the
electric field on R'!). We also define b = B,a?, where the
curvature on H? is —2/a”. The space H? can be analyzed
using group theory in a way similar to what we did for S2,
since H?> = SU(1,1)/U(1). The eigenvalues for the
Laplacian for H? can be obtained in terms of unitary
representations of SU(1,1) ~SL(2,R), as explained in
[10,11] and [1]. The generators R, R3 of SL(2, R) satisfy
the commutation relations

[R3, Ri] — :tR:t, [R+,R_] — —2R3 (41)
The wave functions are the group elements of SL(2,R)
with R;-values fixed by the magnetic field and the
curvature, similar to what we did for S? = SU(2)/U(1).
The relevant representations in the present case are the
discrete series bounded below and the principal continuous
series. In considering the kinetic operators, which have the
spin-magnetic field and spin-curvature couplings as well,
we note that, since H? has constant negative curvature, the
sign of the curvature term used in the spherical case (3.4)
now flips to the negative sign. Therefore, we have

1
~TiW,[Dy. DW, = =5 (WERsWS — WLR W)

1
=== WeWe. (4.2)
Keeping these facts in mind, the energy eigenvalues and the
corresponding densities for the charged fields can be
determined in a straightforward manner. The eigenvalues

of the H? part of the kinetic operator for W, including the
spin-magnetic field and spin-curvature terms, are of the
form

~Dy: = [(R* + R3) ¥ 2b - 1],

’ 3)

a

where Ry = b & 1 for W1 and R? is the eigenvalue for the
quadratic Casimir operator of SU(1, 1). Explicitly, for the
principal continuous series representation, R*> = A2 —i—i,
where A is real, 0 <1 < oo, and for the discrete series
R?> = —A(A —1), where A = R; — k > 1. We use the dis-
crete series representations which are bounded below as is
appropriate with the finite norm condition defined by the
parametrization we have chosen for H? [1]. Detailed
calculations are given in Appendix A and the results are
summarized in the tables given below for convenience.
Table IV gives the continuous part of the energy spectrum
on H?, while Table V refers to the discrete part. The
discrete energy levels are labeled by an integer £ > 0. It is
clear from the table of discrete levels that, for 0 < b < %
only a single discrete energy level exists for W, which has
energy —b/a’ on H?, which is a zero mode in the absence
of the magnetic field. For 1 < b < 3, there is an additional
discrete level for W1 with energy b/a” For b > 3, there is a
finite number of discrete states, labeled by the integer k > 0
with k < [b— %] ([X] indicates the integer part of the
argument X.) It is also easily verified that the continuum
starts at a higher energy than the highest discrete level.

Contributions to the imaginary part of the effective
action coming from the wi and the ghosts ¢* cancel in
the same manner as they do in the S?> x R!! case. This
leaves us with the contributions coming from the W= fields,
which lead to

. E2
Re(iSesr) = _/ dpdxodxs 7 —pi(@),  (4.4)

H2xR!! 16z

where f (@) = By c(@) + B p(@), with

0 Asinh 27/

—4
Prcl@) a)[) cosh 274 + cos 2zh

% log[l + e—a)(/12+i+b2+m2a2)] (45)

TABLE V. Charged fields and the eigenvalues for the discrete part of the spectrum on HZ.

Field Eigenvalues 4n%a?p
ct (2ny + 1)By+(=k(k + 1) + 2bk + b)/a?, k<[b-1 By(b—k—1)
Gt dee +(—k(k + 1) + 2k + b) /@, k<[pb-1 By(b—k—1)
+ H(—k(k+3)+2bk+3b-2) /a2, 3 k2
% (22 + 1)B L Jeln) 1 2bicb) ) ,]:[[: +2%]] g;éé—llz +-;>
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4}

/}ID _2 Z 1)n+1 (Z

k=0

(3]

1 2.2 3 2.2
—on(—k(k—1)+2bk—b+m-a —wn(—k(k+3)+2bk+3b-2+m*a
(b k—l—z)e (—k(k=1) ) + E (b k —2>e (—k(k+3) )>.

: (4.6)

After separating out the k = 0, 1 terms, the first sum in (4.7) gives an identical contribution to the second and we can
express f1 p(w) as

profw) =20 (b 3) 0g(1 +

(b3

3 2 < >
+2 § (b k— _> 10g( te —w(—k(k+3)+2bk+3b—24m az)):| ﬂ( 1/2) ( ) +ﬂ (<3/2) ( ) +ﬁ 3/2) (a))’ (47)
k=0

(—b+m2a2)) + (b _%) log(l + e—w(b+m2a2)>

where in the last line we have introduced a helpful notation to facilitate the fact that not all the terms in 3| (@) are present

for all b. Thus, only ﬁ <1/2) (w) is present for 0 < b <3, B, (<179 (@) + B ) (<3/2) (w) for 5 < b <3, and all three terms are
present for b > 2. The degeneracy factors should be posmve, this gives a qulck check on which terms are present when.
In the flat limit of the hyperbolic plane, 3, (@) does not give any contribution, while 3, p(®) takes the form

kimax =00

14 (@) = 2wb Y [log(1 + e™@CH-bma)) 4 log(1 4 ¢
kf

—w(2bk+3b+m?a®) )]

=2wb <10g(1 + e—(x}(—b+m2a2)) + 10g<1 + e—a)(h+m2a2))

kmux -0

+2 Z log(l+e—m(2bk+3b+m2a2)>>‘

k=0

As before, to probe the curvature effects at a given magnetic
field, we compare 3, (w) to its flat space value by defining
the functions

ﬂﬁj)‘/z) (@0)+p1.c(w)

T 0<b<3
(@) = { #5” <~>+/f?;; swwl_c(m)’ 1 p<3 (49)
ﬂl,D(??S’(i}lf(w)’ bh> %
For the special case of b = 0, we find
) = 5 (102
T
+4w Am dAAtanh A log[l + e‘“’(’lz’“él‘t)}) :
(4.10)

In the absence of the transverse magnetic field, in
addition to the contribution from the continuous energy
spectrum, there is a single discrete mode, which is a zero
mode, with a constant density of states, whose contribution
to yg >( ) is ﬂz wlog 2. This mode is essentially responsible

(4.8)

|
for the monotonic increase in the pair production rate
compared to the flat case by accommodating produced
particles at virtually no energy cost. This feature is clearly
seen in the profile of ygo)(a)) provided in Fig. 4.

In order to understand the emerging physics from the
profiles of y,(w), several facts should be simultaneously
taken into account. From Figs. 5-8, we can see that the pair
production rate on H> x R"! is always larger than that for
vector particles on flat space and converges to the latter at

y1(w)
1.7L

16F

15[

FIG. 4. y,(w) at b =0.
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y1(w)
4,

b=1/8

N " N N w
2 4 6 8

FIG. 5. 7/(w) at 0 < b <1 and no infrared cutoff.

sufficiently large magnetic fields. Next, it is important to
emphasize that all the ensuing results regarding the
comparison of pair production rates at different values of
the magnetic field or comparison with the results obtained
in the flat case are insensitive to the value of the mass term
m?a®, which is acting as an effective infrared cutoff.
In retrospect, this may be expected since the infrared
cutoff is introduced formally to facilitate certain summa-
tions because the negative energy mode is present in the
spectrum of WZI. As such, the cutoff appears in all the
exponentials in the expressions for y;(w), and that makes
the latter almost completely insensitive to whatever value it
may take (as long as it is not unphysically large). From now
on, we therefore set it to zero without loss of generality.
For 0 < b < 4, we observe from the profiles of y; (@) in
Fig. 5 that there is a further increase in the pair production
effect over and above the rate at b = 0. For this range of
values for the magnetic field there is still just one discrete
mode but now with energy — a% + m?, which, in the absence
of infrared cutoff m?, is the one and only negative energy

mode. This, in itself, is sufficient to render the effect larger
than what it is for the flat case and also larger than for the

y1(w)
1.8~

b=0
Asm

b=1

0.5 1.0 15 2.0 25 3.0

FIG. 6. y,(w) at 3 < b <3 and no infrared cutoff.

y1(w)
1.30

1.25

1.20

1.15

1.10

1.05

L L L L L w
0.2 0.4 0.6 0.8 1.0

FIG. 7. 7i(w) at b >3 and infrared cutoff value m*a* = 8.

b = 0 case as long as w is not too large. The reason for this
is the larger degeneracy of this state compared to that of the
corresponding state in the flat limit; i.e., b + % > b, with the
extra 4 due to the nonzero curvature. In fact, for sufficiently
large w, we infer that y,(w) goes like ~1 + 37 > 1.

For % <b< %, there are two discrete modes, one with
energy —b/a” and one with energy b/a>. Profiles of y,(w)
in Fig. 6 show that the enhancement in pair production over
and above the b = 0 case is sustained in a shorter interval of
o which gets gradually narrower with increasing b-field.
The observed behavior of y; (@) can be anticipated from the
foregoing discussion, since, besides the opposing effect
from the continuous energy levels, the additional discrete
level also becomes costlier to fill with increasing b.

Finally, for b > % there are as many additional discrete
energy levels as is consistent with ¢ < [b — 3/2]. From the
profiles of y;(®w) shown in Figs. 7 and 8, we see that the
influence of increasing magnetic field on pair production
rate 1s to drive its value back towards that for the flat case,
since it becomes progressively costlier in energy for
produced particles to fill the available quantum states at
higher magnetic fields. (We include two sets of figures to
emphasize that the basic features are independent of the
cutoff.)

S S S U1
0.2 0.4 0.6 0.8 1.0

FIG. 8. y,(w) at b > 3 and no infrared cutoff.
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Finally, as in the case of flat space and S?> x R"!, we can
take the limit of £ — 0 or ® — o0. From Egs. (4.5) and

(4.7), we see that only ﬂgi;/ 2) (@) can give a nonzero value
in this limit. The result is that

1 1
ERe(iSeff) = —/d/ldedX3 @Bl <B] +—>

242

1 R
:—/d//ldXOd)@@Bl(Bl —Z> (411)

Comparison of this formula with (2.12) and (3.11) shows
that this formula, as written in terms of the Ricci scalar,
captures the general result for the Nielsen-Olesen instability
for all three cases, M = R?, S2, H?.

V. SUMMARY AND REMARKS ON QCD
VACUUM AND CONFINEMENT

We calculated the pair production rate for vector par-
ticles, and corresponding decay of a background electric
field, on manifolds of the form M x R with a back-
ground magnetic field on M, where M = R?, $?, and H>. In
order for this to be embedded in a consistent theory of
vector particles we used the Yang-Mills action. The latter
specified the spin-magnetic field and spin-curvature cou-
plings. The pair production rate is enhanced by the
negative eigenvalues for the kinetic operator due to the
spin-magnetic field coupling. The additional spin-curvature
coupling suppresses this effect to some extent for positive
curvature and enhances it further for negative curvature.
Comparison of y,(w) for S and H? at zero magnetic
field can be made by inspecting Fig. 9, which shows the
deviation of 7, (w) for S? and H? compared to the flat case
which has f;(x =0) =1 for M = R? for all w. Our
calculations also give the generalization of the Nielsen-
Olesen instability to include nonzero curvature.

Since we obtained the action for charged vector particles
by considering an expansion around a background field of

y1(w)
20

151 H2xR" !

FIG. 9. Comparison of y, at zero magnetic field for the sphere
and hyperboloid.

the standard Yang-Mills action, our calculations have some
implications for non-Abelian gauge theories. Admittedly,
even though our calculations are not entirely perturbative,
they are still equivalent to a one-loop effective action and
hence it is not possible to make definitive conclusions
about confinement and related phenomena. Nevertheless,
we know that there are many calculations, which, while not
definitive, do carry intimations of confinement. Beyond the
well-known issue of asymptotic freedom, among these we
can include the difficulty with unitary implementation of
color rotations [12], the problem of sustaining a statistical
distribution of nonzero color charge [7], etc. Our calcu-
lation of the pair production in this paper, coupled with the
known instability of chromomagnetic fields, leads to a
similar suggestive view on confinement.

A consequence of asymptotic freedom is that the vacuum
of QCD has a tendency to spontaneously develop nonzero
expectation values for chromomagnetic fields. In other
words, a state with a nonzero magnetic field can have lower
energy than the perturbative vacuum with zero field. This
was noticed decades ago [3]. It has been used as the basis
for assigning a nonzero vacuum value (0|F2|0) and used in
sum rules [4]. A chromomagnetic field, however, can lead
to instability due to the negative eigenvalue for the kinetic
operator arising from the spin-magnetic field coupling [5].
This is also clear from our Egs. (2.12), (3.11), and (4.11).
There have been many attempts to use this observation due
to Nielsen and Olesen to develop an understanding of the
nonperturbative confining vacuum of Yang-Mills theory,
leading to the so-called spaghetti vacuum, or Copenhagen
vacuum [5]. Arguments have also been made that the
instability could be cured by a new vacuum state which
generates a “mass” for the gluons [6].

Combining these observations with the calculations in
this paper gives another perspective on some aspects of
confinement. Asymptotic freedom moves the theory in the
direction of generating a chromomagnetic field. Such a
field, by our arguments, leads to a highly enhanced decay
rate for any chromoelectric field. Our calculations are for
uniform fields, but they should still apply approximately to
fields which are uniform over some small range. Thus any
chromoelectric field decays at an enhanced rate by pair
production. But the particles produced in this process of the
decay of the field are themselves charged and have their
own chromoelectric fields, so in principle, the process can
continue. (For the electromagnetic case, a similar statement
is true as well, but the field carried by the decay products is
weak and further pair production is suppressed by mass
thresholds.) Thus further decays (of the chromoelectric
fields of the produced pairs), in fact a whole cascade of
decays, can be terminated and stability obtained only if
the charged particles which are produced combine into
color-singlets and so become free of any accompanying
chromoelectric fields. This gives a dynamic view of how
confinement could arise.
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Admittedly, the calculations we have given have limited
validity. But we see that, even within a one-loop back-
ground field approximation, or within a resummation of
one-loop diagrams, there are serious difficulties in main-
taining chromoelectric fields.
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APPENDIX A: SPECTRUM OF THE KINETIC
OPERATOR FOR VECTORS ON H?

Using (2.8) and (4.2) it is straightforward to see that the
relevant quadratic differential operators for W1 on H? are
given as

b 1
-D}:=-D?, F25 ——,
14 w T Py R)

(A1)

where the second and third terms in the right-hand side are
due to the spin-magnetic field and the spin-curvature
couplings, respectively.

Following the discussion and the results given in the
Appendix of [1], we can determine the discrete and the
continuous spectrum of —D%,. (For general references on
the relevant representation theory, see [13].) For W1, to
compute the discrete part of the spectrum of the first term in
(Al), we see that the U(1) subgroup of SL(2,R) has the
charge R; = b + 1, taking into account the intrinsic vector
charge of W1 and the curvature contribution. The corre-
sponding unitary irreducible representation of SL(2,R)
therefore has the extremal weight A =b41—k with
k € Z . Putting this information together, we find

Dyt == (-AA-1)+R;-2b-1)

’_‘Qm|’_‘

= (=(b+1-k)(b+1-k=1)

IS

(b+1)2=2b-1)

| — +

= 3 (~k(k = 1) +2bk — b).

(A2)

[\S]

where k =0, 1,2, ... labels the Landau levels (LLs). The
ground state, |b + 1,0), is specified by taking k = 0 and
has negative energy — a%. Representation theory of SL(2, R)
requires the condition A=b+1—k 2% to be fulfilled
which gives k < [b-+3]. This means that, for a given
value of b, there are only as many LLs as allowed by
this inequality and they are labeled by the integers k.

In particular, contrary to the scalar case, there is a single
discrete mode even at b = 0. Clearly this is a zero mode.
Following the same reasoning, the discrete part of the
spectrum of —D? on W1 follows from taking R; = b — 1
and A = b — 1 — k. This gives

—D¥ = — (-A(A—1)+R:+2b—1)

(=(b=1-k)(b=-1-k—1)

(b—12+2b-1)

= — (—k(k +3) + 2bk + 3b - 2), (A3)

S = + S N

with the ground state |b—1,0) carrying the energy
(3b —2)/a*. We note that the requirement A = b — 1 —
k > 1 gives k < [b — 3]. Thus, there are no discrete states for
W if b <3,

For the continuous part of the spectrum of —D?, we have

PHiep1? 20 1

SpeCC(_D%/) = 2 + 27

1 1
=—(22+=4b*).
a2< Jr4Jr )

This result shows that contributions to the spectrum from
the spin-magnetic field coupling and the spin-curvature
coupling and the vector charges +1 for H? cancel each
other and the continuous part of the spectrum for W1 over
H? is the same as that of a scalar [1,10,11]. The term
1/(4a?) is obviously related to the Breitenlohner-Freedman
bound [14].

In the Appendix of [1], we have briefly stated the
techniques used in the derivation of the exact expressions
for the density of states for the discrete and the continuous
spectrum of states of scalar and spinor particles and referred
to the relevant literature [10,11] and [13] for full details. In
order to determine the corresponding density of states for
the fields Wi, all we need to perform is the shiftb — b £ 1
in the density of states of the scalar field, which leads to the
expressions given in Tables [V and V. In particular, we note
that the density of states for the continuous spectrum
remains the same as that for the scalars, since cos(2zb)
is periodic under b — b +£ 1. Thus both the eigenvalues and
the density of states are the same as those obtained for
scalars.

(A4)

APPENDIX B: SEMICLASSICAL ESTIMATE
OF THE DENSITY OF STATES

For the analysis of the pair production effect on curved
spaces, a crucial ingredient in the calculation of the trace of
the logarithm of the energy eigenvalues of the relevant
differential operator for charged particles is the knowledge

065006-11



D. KARABALL S. KURKCUOGLU, and V. P. NAIR

PHYS. REV. D 100, 065006 (2019)

of the density of quantum states at a given energy. In this
paper and part 1 [1], which treated the scalar and spinor
particles, we have focused on the spaces of the form
M x RY!, where M can be S? or H?. General expressions
for the density of states on these spaces are known. While
these are fairly simple to obtain in the case of $2, the
corresponding calculations for the harmonics on H? [or more
generally sections of U(1)-bundles over the hyperbolic
plane], which correspond to the principal continuous series
representations of SL(2,R), are rather more involved,
requiring more sophisticated group theoretical techniques.
Although we already know the exact density of states on S?
and H? for spin 0 and spin % from the existing literature, and

inferred the result for spin-1 particles on S? and H? from the
properties of the corresponding isometry groups, it is still
desirable to have a semiclassical estimate of the density of
states on such spaces to further our understanding and
physical intuition. This is the subject of this Appendix.

The key procedure is the following. We obtain the
classical trajectories for a point-particle moving on the
space of interest. These trajectories will be labeled by a
number of parameters. The volume element of the phase
space [divided by (27)"] can be evaluated on the set of all
such trajectories, trading the momenta for the parameters
labeling the trajectories. The result is then the semiclassical
measure of the number of trajectories needed in a path
integral formula for evaluating the trace of the evolution
kernel for the operator which serves as the Hamiltonian for
the trajectories. The key result is that the Plancherel
measure, semiclassically, is simply the symplectic volume
evaluated on the classical trajectories.

Perhaps not so surprisingly, the Hamilton-Jacobi theory can
be successfully exploited for this purpose and, in fact, we are
able to obtain semiclassical estimates for the density of
harmonics over §" and H". In order to see how this can be
achieved and to handle both cases (and also the flat case R")
on essentially equal footing, we may use the Friedmann-
Robertson-Walker type parametrization of the metric for M as

dr?

ds* =
s 1 —kr?

+ rden_] .

(B1)

where k = 0, % — a% forR", ", and H", respectively, and a is
the radius/length parameter of the latter. dQ2,_ is the “solid-
angle” in n — 1 dimensions and it can be expressed using the
standard hyperspherical coordinates. In particular, the inverse
metric g;,} = ¢" has the diagonal form

. 1 1 1
g = dlag<1 - krz,ﬁ, 2

(R}

sin® @, r?sin® @, sin> 6"

1
, B2
r?sin” 6, sin® @5 - - - sin® Qn_1> (B2)

where yu,v =1,2,...,n.

We introduce the Hamilton’s principal function on
R x M by S(t,z,r,0,,05,---6,), with t, z denoting
the time and the spatial direction on R'!. Although it is
not necessary for the main purpose of this Appendix, we
also assume a uniform electric field, E, in the z-direction.
After these preparatory steps, the Hamilton-Jacobi equation
for a charged scalar of mass m can be written as

(B (2 - (2)

0S8 08
+ g m? =0,

00, 00, (B3)

where i, j = 2,3, ...n. Canonical momenta can be written
as usual

o5 os o os s
pr=€= at’ pZ_aZ? pr_ar’ pl_ael
(B4)

From (B3), we immediately observe that the Hamilton-
Jacobi equation is cyclic in ¢ and the “azimuthal”-angle 6,.
The corresponding canonical momenta, i.e., the energy &
and the azimuthal angular momentum p, are conserved
quantities; other conserved quantities will be determined
shortly. We may factor S = S(¢,z,7,0,,65,---0,) as

S:W(Z, I",92,93,"'6n_|)+pn6n—€t, (BS)
where W(z,r,60,,05,---0,_;) can be identified as
Hamilton’s characteristic function. We can further separate
variables by writing W(z,r,60,,05,---6,_;) = W,(z) +

W(r,0,,65,---0,_,). Using this in (B3) we get the
equations
OWN? 1 (OW)\? 1 oW\ ?
1 =krd) | = — (== I e
( ) ( 81’) 7 (892> t i 0, (893>
2
TR P — 2

r*sin’ @, - - -sin’0,_,

(dW,,)Z — (e = Ez)* +m? = -1, (BO)

dz

where 47 is introduced as a separation constant. The first
equation in (B6) gives rise to two equations after multi-
plying the entire equation by r? and introducing another
separation constant, A3, and this pattern can be continued
until a set of (n—1) decoupled ordinary differential
equations is obtained. This is equivalent to the separa-
tion ansatz W(r,0,,...,0,_1) = W,(r) + W5(6,) + - +
W,_1(0,_1). The full set of decoupled equations is thus
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d 2
(1= kr?) (—;‘;1> = 3rr =23,
dW;\?
sin2€i<d6_'> = sin? 0,7 — 12,,,
(n-1),

where 1, = p,. We solve these equations as

i=2.3,..., (B7)

dWl _ /117‘ —22 dWl + 12 _ j’iz—}—l
dr r2(1 —kr?) do; ' sin?;

The phase space volume element in terms of the dynamical
variables (r,0;,0,, p,, pi, P,) is

OAND - AN® 1 nl
— = —dp,dr | | dp;d9;dp,do,.
(27) (2x) ,1:!

(B9)

The separation constants (4, 4;) can be used instead of the
momentum variables p,, p; to express the phase space
volume element. The transformation between the dynami-
cal variables (r,0;,0,, p,, pi, p,) and (r,0,,0,,p,, i, p,)
leads to the Jacobian matrix J, whose determinant is not an
identity, and the phase space volume element takes the form

n—1
AL | detJ|dp,dr || dr.d6,dp,do,,
(27) (2 ) ,11
_ 1 /Ildﬂl rdr
22)" /BT =
n—1
A;d2;dO
T dp,do, (B10)
i— A2
? /112 - sirllzrlﬂ

Performing the integrals over 4; and p,, in the reverse order,
that is, starting with the integral over p,,, and following this
up with integrals over 4;, with i from n — 1 to 2, we have

¢ d
/ P —asinG, ], =2 sin%0, ),
—C 22 — Pu
n—1 sin%,_,
n—i— Aidﬂi : n—i n—i lr(n_£+1)r(%)
/|ﬂi| 12—%:|Sln9i—l| A EF(TQH)’ i=3,---n—1,
i-1 7 §in%0,_,
(L
/l sty e IO (B11)
N T 2 TE)

where the integrations over the 4;, i =2, ...,
phase space element can be expressed as

DN®D: - NW

Qry ()

=t ——

1

=P,(4)dv

(n—1), are from zero to the positive turning points of the integrands. The

n—2 n—1 n—i+1 1
A=) <1> 2dev,

2 i=2

@

(B12)

We have included an additional factor 2"~! in this expression. This can be viewed as accounting for both the signs in the

expressions for W;, i =1,2,...,

(n—1) as in (B8). Equivalently, we may think of this as being due to the twofold

orientation of the paths in each case. We have also dropped the subscript in 1, since after the integrations over 4;

(i=2,...,
element dV. The latter is

n—1

V1—kr?

rn—l

= ﬁdrdﬂn_l.

dv =

f0 =2 oin O3
|sin @5~ *sin@ > - - -

n — 1), this is the only variable remaining in the phase space measure apart from the configuration space volume

Sin2 9,1_2 sin 9”_1 |drd(92d93 oo dHn

(B13)

The quantity P, (4) introduced in the last line of (B12) can be identified as our semiclassical estimate for the density of
harmonic functions on $” and H" in terms of a continuous parameter, 4, which can naturally be thought of as a wave number.
For comparison with group theoretical results, it is useful to express PP, for even and odd values of n separately. We have
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ﬂzm_ldﬂ
Py,() = ———
n(4) (27)"(2m — 2)!!
2md)
Pyt (1) = . Bl4
i1 (4) Qz)"z(2m — 1N (B14)
SO(n+1)

For §" = SO0 the density of harmonic functions can
be given as a sum over the dimensions of the irreducible
representation (/,0,...,0) (in the Dynkin notation) of
SO(n + 1) divided by the volume of S, i.e.,

Py EZdim(Z,O,...,O) _ Z(l+n—2)!(2[+n_ 1)

s vol(s") 22021 (n = 1)\a”
n+1
r
()
A=t p(nt!
=
(t/a)=i g2 (= 1)1 2

o { [P)Zm(j“)
a |:P)2m+l (’1)

From this expression, we infer that the semiclassical
formulas P,,(4) and [P,, (1) obtained from the
Hamilton-Jacobi theory give estimates, which are in com-
plete agreement with the large I, (I/a) — A, limit of the
exact result.

For the hyperbolic spaces H", the situation is a little
more intricate. In this case, the exact result for the density
of harmonic states is given in terms of the Plancherel
measure, which can be obtained after rather tedious
considerations of the properties of the noncompact group
SO(n, 1) as [13]

>0

n=2m,

B15
n=2m-+1. ( )

ID(m — %+ i2)|?
LNCZ) .

IT(m + iA)|?
INCZ5
(B16)

Mygn =

H2m+l —

Multiplying these with the phase space factor Ok the total

27"/2
DOK

271)”’

solid angle £ and the differential element dA, and

simplifying the expressions involving the I'-functions,
we have

1 27 3)\2
o (4) = G T )man mmH [(k 2) + 2 } :
m>2
ﬂzm_ldﬂ,
— =P Bl
1w (27)"(2m — 2)11 n(4) (B17)
1 d
Py (4) = 5~ Atanh mld/l/l:;% P,(1)  (BI13)
and
1 2ﬂ’”f
22md)
= Poyi1(4). (B19)

15w (27)" 2 (2m — )11
Thus, we see that the semiclassical estimates obtained from
the Hamilton-Jacobi theory match with the large A limit of
the exact results on H?" and H*"*!. For odd dimensions,
the difference between the exact and semiclassical results is
a polynomial of lower order in 4, while for even dimensions
there are similar polynomial corrections and also correc-
tions of the type A*"~'e=>* (and further subdominant
terms), due to the tanh zA factor.

We have not discussed the second equation in (B6)
which deals with the z-dependence of the action. This can
be used to calculate a tunneling amplitude as in the usual
WKB analyses, giving a semiclassical estimate of the pair
production rate. We have not done this, since, in the main
text, we have already calculated the rate without making
such an approximation, focusing instead on the Plancherel
measure.
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