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We calculate the pair production rates for spin-1 or vector particles on spaces of the formM × R
1;1, with

M corresponding to R
2 (flat), S2 (positive curvature), and H2 (negative curvature), with and without a

background (chromo)magnetic field on M. Beyond highlighting the effects of curvature and background
magnetic field, this is particularly interesting since vector particles are known to suffer from the Nielsen-

Olesen instability, which can dramatically increase pair production rates. The form of this instability for S2

and H2 is obtained. We also give a brief discussion of how our results relate to ideas about confinement in
non-Abelian theories.
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I. INTRODUCTION

In part 1 [1], we analyzed the Schwinger pair production
process on spacetimes with nonzero curvature and with a
background magnetic field, in addition to the uniform
electric field [1]. The general motivation for this was to
elucidate the impact of spin-curvature and spin-magnetic
field couplings on threshold effects and hence on pair
production rates. We considered cases of the spacetime
manifolds which would provide explicit solvable examples.
The analysis in [1] was for spin-0 and spin-1

2
particles.

Specifically, in addition to flat Minkowski space R
3;1, we

considered the manifolds M × R
1;1, with M ¼ S2; H2; T2,

where S2 is the two-sphere, H2 the two-dimensional
hyperbolic plane, and T2 the flat two-torus. In the present
paper, we will consider similar analyses for the spin-1
particles. The Schwinger process has a long history. For the
proper placement of our work and for some of the relevant
literature, we refer the reader to references cited in [1].
There are many issues which make the discussion of

spin-1 particles more involved compared to the scalar and
spinor cases and there are some interesting and new facets
as well. There are well-known no-go theorems which point
to difficulties in constructing a field theory of charged

spin-1 particles [2]. The only consistent formulation is to
consider the spin-1 charged fields as part of a non-Abelian
gauge field, minimally an SUð2Þ gauge theory. One of the
non-Abelian fields, say the A3

μ field for the SUð2Þ example,
can be considered as the electromagnetic field and the other
components as the charged spin-1 fields. In this case, the
Yang-Mills action automatically incorporates the correct
spin-magnetic field and spin-curvature couplings, the
gyromagnetic ratio being 2, as it is for Dirac particles.
We also have to ensure that only the physical polarizations
are effective in the pair production process. This will
require the elimination of the unphysical polarizations
via gauge fixing or via suitable constraints on the quantum
states. The simplest way will be to use the Becchi-Rouet-
Stora-Tyutin (BRST) formalism, which is what we do in
what follows.
Since the spin-1 fields are part of a Yang-Mills multiplet,

our analysis has the potential to generate results relevant to
QCD; this is another motivation for the present work. For
Yang-Mills fields, it has been known for a long time that the
vacuum tends to generate chromomagnetic fields [3,4] and
at the same time that there is an instability for such fields
[5,6]. The decay of chromoelectric fields via the Schwinger
effect has also been considered in [7], where it was argued
that, for a non-Abelian plasma, there is an instability which
does not allow for a net nonzero color charge along with
field configurations which are coherent over a length scale
given by the chemical potential. Therefore the situation
with both chromoelectric and chromomagnetic fields is
clearly an interesting case.
This paper is organized as follows. In Sec. II, we set up

the basic framework and the calculation of the rate for pair
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production in flat Minkowski space R
3;1. By taking the

limit of this result for zero electric field we are also able to
recover the Nielsen-Olesen result [5]. The two sections
that follow are devoted to similar calculations for S2 ×R

1;1

andH2 × R
1;1. In Sec. V, we give a brief summary and also

consider our results in the context of chromodynamics,
commenting on the difficulties of maintaining stable
chromoelectric configurations. Calculation of the energy
spectrum for the charged vector particles and the corre-
sponding density of states on the hyperbolic plane requires
the use of the representation theory of SLð2;RÞ. Essential
points regarding this as well as a semiclassical estimate of
the density of states on Sn and Hn, using the Hamilton-
Jacobi theory, are provided in the Appendixes A and B,
respectively.

II. PAIR PRODUCTION OF VECTOR

PARTICLES IN FLAT SPACE

We launch our discussion by considering vector particles
in flat space. For this we need the action for a charged
vector field coupled to background magnetic fields, includ-
ing the magnetic moment or Zeeman coupling term. We
have already seen, for the case of spin-1

2
particles, that the

Zeeman coupling has a crucial role in enhancing pair
production via the zero modes [1]. The only consistent
theory for charged vector fields must treat them as part of a
non-Abelian multiplet. Thus we start with an SUð2Þ gauge
theory with the dynamics given by the Yang-Mills action.
Some of the arguments we develop can be applied to QCD
as well, so the Yang-Mills theory is indeed the appropriate
starting point. The Euclidean Yang-Mills action is given by

S ¼ 1

4

Z

d4xFa
μνF

a
μν ¼ −

1

2

Z

d4xTrðFμνFμνÞ; ð2:1Þ

where, as usual, Fμν ¼ ð−itaÞFa
μν ¼ ∂μAν − ∂νAμ þ

½Aμ; Aν� and Aμ ¼ ð−itaÞAa
μ is the gauge potential.

ftag; a ¼ 1, 2, 3, are Hermitian matrices forming a basis
for the Lie algebra of SUð2Þ; thus ta obey the usual
commutator algebra with the structure constants fabc, i.e.,
½ta; tb� ¼ ifabctc, and we take them to be normalized
as TrðtatbÞ ¼ 1

2
δab.

We introduce a background for the SUð2Þ gauge
potential by Aa

μ → Aa
μ þWa

μ, where Aa
μ is now the back-

ground field and Wa
μ denote the fluctuations around the

background. The problem of gauge fixing and reduction to
the physical polarizations can be dealt with using the BRST
formalism. The BRST transformations are given by

QðAa
μ þWa

μÞ ¼ ∂μc
a þ ½Aμ þWμ; c�a ¼ ðDμcÞa þ ½Wμ; c�a

Qca ¼ −
1

2
fabccbcc

Qc̄a ¼ ba; Qba ¼ 0: ð2:2Þ

Here Dμ denotes the covariant derivative with the back-
ground field Aμ as the connection and ba is the Nakanishi-
Lautrup field. Since this is a fixed background, QAa

μ ¼ 0,
and the first of the equations in (2.2) is to be interpreted as
QWa

μ ¼ ðDμcÞa þ ½Wμ; c�a. We take the gauge-fixed action
to be

S ¼ SYMðAþWÞ þQ

�
Z

c̄a
�

ðDμW
μÞa − 1

2
ba
��

¼ SYMðAþWÞ þ
Z

d4x

�

ðDμc̄ÞaðDμcþ ½Wμ; c�Þa

þ 1

2
ðD ·WÞaðD ·WÞa

�

: ð2:3Þ

We have done some partial integrations and also, in the
second line, eliminated ba by its equation of motion, which
is equivalent to integrating it out in the functional integral.
The Yang-Mills part of the action simplifies to

SYMðAþWÞ ¼ 1

4

Z

d4xfaμνf
aμν þ S̃

S̃ ¼
Z

d4x

�

1

2
ðDμWνÞaðDμWνÞa

−
1

2
ðD ·WÞaðD ·WÞa þ fabcfaμνW

b
μW

c
ν

þ cubic and quartic terms in W

�

: ð2:4Þ

Here fμν is the field strength tensor for the background field
Aμ. We have omitted the term linear in W as it vanishes for
backgrounds which obey the classical equations of motion.
The term fabcfaμνW

b
μW

c
ν is the Zeeman coupling corre-

sponding to a gyromagnetic ratio of 2. Combining (2.3) and
(2.4), we find

S ¼
Z

d4x

�

1

2
ðDμWνÞaðDμWνÞa

þ fabcfaμνW
b
μW

c
ν þ ðDμc̄ÞaðDμcÞa

þ cubic and quartic terms inW; c̄; c

�

: ð2:5Þ

We take the background field to be along the t3 direction in
the SUð2Þ algebra, so that

f3
12

¼ −f3
21

¼ B1; f3
34

¼ −f3
43

¼ B2: ð2:6Þ

Further, we take combinations of Wa
μ and the ghosts to

define the fields
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Wþ
þ ¼ 1

2
½W1

1
−W2

2
þ iðW1

2
þW2

1
Þ�; W−

þ ¼ 1

2
½W1

1
þW2

2
þ iðW1

2
−W2

1
Þ�

wþ
þ ¼ 1

2
½W1

3
−W2

4
þ iðW1

4
þW2

3
Þ�; w−

þ ¼ 1

2
½W1

3
þW2

4
þ iðW1

4
−W2

3
Þ�

c� ¼ 1
ffiffiffi

2
p ðc1 � ic2Þ; c̄� ¼ 1

ffiffiffi

2
p ðc̄1 � ic̄2Þ: ð2:7Þ

The fields W3
μ, c

3, c̄3 are uncharged with respect to the background field. Further, W−
− ¼ Wþ�

þ , Wþ
− ¼ W−�

þ , etc. The
quadratic terms in the action (2.5) become

S ¼
Z

d4x

�

ðDμWþÞþ�ðDμWþÞþ þ ðDμW−Þþ�ðDμW−Þþ − 2B1ðWþ�
þ Wþ

þ −Wþ�
− Wþ

−Þ

þ ðDμwþÞþ�ðDμwþÞþ þ ðDμw−Þþ�ðDμw−Þþ − 2B2ðwþ�
þ wþ

þ − wþ�
− wþ

−Þ

þ ðDμc̄Þ−ðDμcÞþ þ ðDμc̄ÞþðDμcÞ− þ 1

2
∂μW

3
ν∂

μW3ν þ ∂μc̄
3∂μc3

�

: ð2:8Þ

The eigenvalues of the kinetic operator (which we shall often refer to as the energy eigenvalues even though we are
discussing the Euclidean action) forW3

μ and c
3, c̄3 are independent of the magnetic fields and lead to an infinite constant in

the effective action which is removed by renormalization. The eigenvalues for the charged fields are shown in Table I. The
density of states is ðB1B2=4π

2Þ, for all cases. Using these values, we find the effective action Γ ¼ Γ1 þ Γ2 with

−Γ1 ¼
1

8π2

Z

d4x
ds

s

�

B2

sinh sB2

��

B1

X

n1

ðe−s½m2þð2n1−1ÞB1� þ e−sð2n1þ3ÞB1Þ
�

−Γ2 ¼
1

4π2

Z

d4x
ds

s

�

B2

sinh sB2

�

ðcosh 2sB2 − 1Þ
�

B1

X

n1

e−sð2n1þ1ÞB1

�

: ð2:9Þ

Γ1 is the contribution from Wþ
�. Rather than a zero mode

as in the case of spin 1

2
, we now have a negative mode

ð2n1 þ 1ÞB1 − 2B1 ¼ −B1 (for n1 ¼ 0), due to the Zeeman
term. This instability is what was noticed long ago by
Nielsen and Olesen [5] and has led to arguments in favor of
the QCD vacuum spontaneously generating chromomag-
netic fields with a consequent instability which is then
eliminated by mass generation. We will discuss the physics
of this later. For now, we notice that the negative mode can
lead to a divergence, so we have introduced a mass term as
an ad hoc infrared cutoff.
The rate for pair production or decay of the field is

obtained by continuing Γ to the Minkowski signature by
using x4 → ix0, B2 → −iE. The continuation of −Γ should

then be identified as iSeff , with the vacuum-to-vacuum
amplitude given as h0j0i ¼ eiSeff . We are thus interested in
the real part of iSeff . The factor ðsinh sB2Þ−1 in (2.9), upon
continuation, becomes ð−i sinEsÞ−1 and can potentially
produce poles at sE ¼ nπ, n ¼ 1; 2;…. (There is no
singularity at n ¼ 0, or s ¼ 0, since the integration over
s starts at s ¼ ϵ, with ϵ being an ultraviolet cutoff. To put it
another way, the s ¼ 0 singularity is subtracted out via
renormalization before taking ϵ → 0.) The imaginary part
of Seff (i.e., the real part of iSeff) arises from going around
the poles in doing the s-integration. Near sE ¼ nπ, we
write s ¼ ðnπ=EÞ þ z, sin sE ¼ sinðnπ þ EzÞ ≃ ð−1ÞnEz
and calculate the contribution from integration over a
small semicircle around these points to obtain
ReðiSeffÞ [1].
The second term in the effective action, namely, Γ2, is the

contribution from w’s and the ghosts. In going over to
Minkowski space, we note that since cosh 2sB2 − 1 ¼
2 sinh2 sB2, the continuation of Γ2 to the Minkowski
signature does not have any poles and so it does not
contribute to the pair production. This is a reflection of the
ghosts canceling out the effects of two polarizations of
the vector particle, reducing the physics to that of the two
physical polarizations.

TABLE I. Eigenvalues for the charged components of the
vector fields and ghosts.

Fields Eigenvalues

c� ð2n1 þ 1ÞB1 þ ð2n2 þ 1ÞB2

wþ
−

wþ
þ

ð2n1 þ 1ÞB1 þ ð2n2þ3ÞB2

ð2n2−1ÞB2

Wþ
−

Wþ
þ

ð2n1þ3ÞB1

ð2n1−1ÞB1

þ ð2n2 þ 1ÞB2

MAGNETIC FIELD AND CURVATURE EFFECTS ON PAIR … PHYS. REV. D 100, 065006 (2019)

065006-3



From Γ1, which is due to Wþ
�, we get

ReðiSeffÞ ¼
Z

d4x
E

8π2

X

∞

n¼1

ð−1Þn
n

B1

×
X

n1

ðe−s½m2þð2n1−1ÞB1� þ e−sð2n1þ3ÞB1Þs¼nπ=E

¼ −

Z

d4x
E2

96π
f1ðB1=EÞ ð2:10Þ

f1ðxÞ ¼
12x

π

X

∞

n¼1

ð−1Þnþ1

n

×
X

n1

ðe−½m2ðnπ=EÞþð2n1−1Þnπx� þ e−ð2n1þ3ÞnπxÞ

¼ 12x

π

�

logð1þ eπxÞ þ logð1þ e−πxÞ

þ 2

X

∞

n1¼1

logð1þ e−ð2n1þ1ÞπxÞ
�

: ð2:11Þ

The summation over n in f1ðxÞ will converge if m2 > B1.
We have used this to calculate the sum and then setm2 ¼ 0.
This may be viewed as defining the sum in a region where it
converges and then defining the result in the larger domain
by continuation. For zero magnetic field, we have f1 ¼ 1,
so enhancement effects can be identified by considering
values of f1ðxÞ. A graph of this function is shown in Fig. 1.
We see clearly that there is enhancement of pair production
due to the magnetic field, namely, f1ðxÞ ≥ 1.
It is also interesting to consider the large x limit of

f1ðxÞ ≈ 12x2 from (2.11). In this limit, which also corre-
sponds to E → 0, we find

ReðiSeffÞ ¼ −

Z

d4x
B2

1

8π
: ð2:12Þ

This is exactly the result for the magnetic instability given
in [5]. Thus Eqs. (2.10) and (2.11) do incorporate the
Nielsen-Olesen instability.

III. PAIR CREATION OF VECTOR

PARTICLES ON S2 ×R
1;1

The case of vector particles on S2 ×R
2 can be analyzed

using what we did in flat space, with only a couple of
changes. We will consider uniform magnetic fields on S2

and R
2, which we take to be of the form B1t

3 and B2t
3,

respectively. On the sphere there is a quantization condition
for the field B1; it can be written as B1 ¼ N

2a2
, withN ∈ Z, a

being the radius of curvature of the sphere. The wave
functions for the S2 part will be given by representa-
tion matrices for SUð2Þ of the form hj; mjĝjj;m0i, for
ĝ ∈ SUð2Þ, where we regard S2 as SUð2Þ=Uð1Þ. [The
SUð2Þ here is used to define the manifold S2 and it is not
related to the gauge group which we have chosen to be
SUð2Þ as well.] The Laplace operator now takes the form
of −D2

3
−D2

4
þ ðR2

1
þ R2

2
Þ=a2, where Ra are the right

translation operators acting on ĝ. iR1=a, iR2=a define
the covariant derivatives on the sphere, the commutator
of which should be the magnetic field (multiplied by the
charge matrix) plus the curvature (multiplied by the spin).
Since

½D1; D2� ¼ −
½R1; R2�

a2
¼ −i

R3

a2
; ð3:1Þ

we see that the eigenvalue of R3 must be chosen to
represent the sum of the magnetic field and the appro-
priate spin-curvature term. The eigenvalues of R2

1
þ R2

2
can

be evaluated by writing it as ðR2

1
þ R2

2
þ R2

3
Þ − R2

3
¼

jðjþ 1Þ − R2

3
, with R3 set to the appropriate values for

the various components, keeping in mind that w� are
scalars on S2, while W� are vectors. This means that we
must have the R3 and j values as given in Table II, where q
is an integer, q ≥ 0. The degeneracy factor for the Landau
levels on the sphere will be 2jþ 1 as usual. (For the general
background on such calculations, see [8].)
In the action, there is also an additional Zeeman-like

term due to the coupling of spin to curvature. We can
simplify the action as follows. With the background fields,
we have

Fμν ¼ fμν þ ðDμWν −DνWμÞ þ ½Wμ;Wν�: ð3:2Þ

In using this in (2.1), the quadratic terms are given by

0.2 0.4 0.6 0.8 1.0

2

4

6

8

10

12

FIG. 1. The graph of f1ðxÞ showing enhancement due to the
background magnetic field.

TABLE II. R3 and j values for the charged fields.

Fields R3 j

c�, wþ
� − N

2
qþ N

2

Wþ
− −1 − N

2
qþ 1þ N

2

Wþ
þ 1 − N

2
q − 1þ N

2
if N ≥ 2

1

2
qþ 1

2
if N ¼ 1

1 qþ 1 if N ¼ 0
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SðAþWÞ ¼
Z

d4x½−TrðDμWνDμWνÞ þ TrðDμWνDνWμÞ

− Trðfμν½Wμ;Wν�Þ� þ � � �

¼
Z

d4x½−TrðWνð−D2ÞWνÞ

− TrðWν½Dμ; Dν�WμÞ þ TrðD ·WÞ2

− Trðfμν½Wμ;Wν�Þ� þ � � � ð3:3Þ

In the case of flat space, the commutator of the two
covariant derivatives acting on Wμ gives ½fμν;Wμ�, which
is added on to the last term and gives the Zeeman term
−2Trfμν½Wμ;Wν�. As mentioned above, the commutator
also gives a term proportional to the Riemann tensor. For
S2 ×R

2, this applies to the case of μ, ν ¼ 1, 2. Using
Db ¼ iRb=a, b ¼ 1, 2, this term can be evaluated as

−TrðWν½Dμ; Dν�WμÞ ¼
1

a2
TrðWb½Ra; Rb�WaÞ

¼ i

a2
Trð−W1R3W2 þW2R3W1Þ

¼ 1

a2
TrðWþR3W− −W−R3WþÞ

¼ 1

2a2
ðWc

−R3W
c
þ −Wc

þR3W
c
−Þ

¼ 1

a2
Wc

−W
c
þ: ð3:4Þ

In this equation, in evaluating the action of R3, we have
only indicated the gravitational or curvature part since the
gauge field part involving fμν was already included (as part
of the Zeeman term). It is now easy to write down the
spectrum of various fields. Ignoring the uncharged fields
W3

μ, c̄
3, c3, which do not contribute to the pair production,

the fields and the corresponding eigenvalues and densities
of states ρ are as given in Table III. We have not indicated
the conjugate fields.
From the values given in the table, there is a useful

observation we can make regarding the decay rate. Notice
that wþ

þ, w
þ
− have the same eigenvalues and degeneracies as

the ghosts except for an additional ∓ 2B2, respectively.
In the formula for the effective action, this will give an
additional factor e−sð∓2B2Þ. Upon continuation to

Minkowski space, when this is evaluated at the poles of
the ðsin sEÞ−1 factor, we get e∓2πin ¼ 1. So these factors
will not affect the decay rate. Since all other terms are
identical, the contribution of the w-fields (i.e., W3, W4) is
exactly canceled by the ghosts. Again, this is essentially the
reduction of the degrees of freedom to the two physical
polarizations. The decay rate can thus be obtained from just
the W�

�-fields and is given by

ReðiSeffÞ ¼ −

Z

dμdx0dx3
E2

16π3
β1ðωÞ; ð3:5Þ

β1ðωÞ ¼ ω
X

∞

n¼1

ð−1Þnþ1

n

X

q

½ð2qþ N þ 3Þ

× e−nωðq
2þqðNþ3Þþ3ðN=2Þþ2þm2a2Þ

þ ð2qþ N − 1Þe−nωðq2þqðN−1Þ−ðN=2Þþm2a2Þ�; ð3:6Þ

where ω ¼ π=ðEa2Þ. For N ≥ 2, the eigenvalue forWþ
þ for

q ¼ 0 is negative, namely, −ðN=2Þ, so there is a con-
vergence problem for the summation over n. So we have
again added a mass term as an ad hoc infrared regulator.
The eigenvalues and degeneracy forWþ

þ for q ≥ 2 coincide
with those of Wþ

− . Thus after separating out the q ¼ 0, 1
terms for the Wþ

þ spectrum and redefining q, we can write
the formula for β1ðωÞ as

β1ðωÞ ¼ ω
X

∞

n¼1

ð−1Þnþ1

n

�

ðN − 1Þe−nωðm2a2−ðN=2ÞÞ

þ ðN þ 1Þe−nωðm2a2þðN=2ÞÞ

þ 2

X

∞

q¼1

ð2qþ N þ 1Þe−nωðm2a2þq2þqðNþ1ÞþðN=2ÞÞ
�

¼ ω

�

ðN − 1Þ logð1þ e−ωðm
2a2−ðN=2ÞÞÞ

þ ðN þ 1Þ logð1þ e−ωðm
2a2þðN=2ÞÞÞ

þ 2

X

∞

q¼1

ð2qþ N þ 1Þ

× logð1þ e−ωðm
2a2þq2þqðNþ1ÞþðN=2ÞÞÞ

�

: ð3:7Þ

TABLE III. Eigenvalues and degeneracies for the charged components of the vector fields and ghosts.

Fields Eigenvalues 8π2a2ρ

c� ð2n2 þ 1ÞB2 þ ðqðqþ 1Þ þ Nðqþ 1

2
ÞÞ=a2 B2ðN þ 2qþ 1Þ

wþ
−

wþ
þ

ð2n2þ3ÞB2

ð2n2−1ÞB2

þðqðqþ 1Þ þ Nðqþ 1

2
ÞÞ=a2 B2ðN þ 2qþ 1Þ

Wþ
− ð2n2 þ 1ÞB2 þ ðq2 þ qðN þ 3Þ þ 3ðN=2Þ þ 2Þ=a2 B2ðN þ 2qþ 3Þ

þðq2 þ qðN − 1Þ − ðN=2ÞÞ=a2 B2ðN þ 2q − 1Þ, if N ≥ 2

Wþ
þ ð2n2 þ 1ÞB2 þ ðq2 þ 2qþ 1

2
Þ=a2 B2ð2qþ 2Þ, if N ¼ 1

þðq2 þ 3qþ 2Þ=a2 B2ð2qþ 3Þ, if N ¼ 0
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This equation holds for any N ≥ 1. It is easy to verify that,
for large a2 or the flat limit of S2, we can approximate
β1ðωÞ by

βflat
1
ðωÞ ¼ ω

X

∞

n¼1

ð−1Þnþ1

n
N
X

q

½e−nωðqNþ3ðN=2Þþm2a2Þ

þ e−nωðqN−ðN=2Þþm2a2Þ�

¼ ωN

�

logð1þ e−ωðm
2a2−ðN=2ÞÞÞ

þ logð1þ e−ωðm
2a2þðN=2ÞÞÞ

þ 2

X

∞

q¼1

logð1þ e−ωðm
2a2þqNþðN=2ÞÞÞ

�

: ð3:8Þ

If we use this limiting value in (3.5) and take m ¼ 0, we
get the formulas (2.10) and (2.11), which apply for the flat
case with a background field, with the identification
N ¼ 2B1a

2. We can now define

γ1ðωÞ ¼
�

β1ðωÞ
βflat
1
ðωÞ

�

: ð3:9Þ

This gives a good measure of the effect of curvature. In the
absence of the transverse magnetic field, i.e., for the N ¼ 0

case, β1ðωÞ takes the form

β1ðω; N ¼ 0Þ ¼ 2ω
X

∞

q¼1

ð2qþ 1Þ logð1þ e−ωqðqþ1ÞÞ;

ð3:10Þ

while the corresponding quantity in the flat limit is
π2=6. Therefore, for N ¼ 0, we find γ1ðω; N ¼ 0Þ ¼
6

π2
β1ðω; N ¼ 0Þ. The graphs of γ1ðωÞ, for different values

of the magnetic field, or N, are shown in Figs. 2 and 3. It is
clear that the main features of these graphs are independent
of the cutoff used. Notice that, for all values of N (≠0),
γ1ðωÞ is less than 1, with an asymptotic limit of ðN − 1Þ=N

for large ω. Thus the effect of the positive curvature of S2 is
to suppress pair production compared to the rate in flat
space. As the asymptotic value shows, this effect is
essentially due to the degeneracy factors. (In broad terms,
the situation is similar to what happens for spin-1

2
fields, but

is very different from the result for scalar fields; see [1].)
It is also clear that the pair production rate is higher with
a background magnetic field than it is for zero magnetic
field since the graphs show clearly that γ1ðω; NÞ >
γ1ðω; N ¼ 0Þ, although the enhancement is less pro-
nounced than it is for the flat case, since γ1ðω; NÞ < 1.
In this example of S2 × R

1;1 also, it is instructive to take
the small E limit or large ω limit. The expression for the
real part of iSeff becomes

ReðiSeffÞ ¼ −

Z

dμdx0dx3
1

8π
B1

�

B1 −
1

2a2

�

¼ −

Z

dμdx0dx3
1

8π
B1

�

B1 −
R

4

�

; ð3:11Þ

where R is the Ricci scalar for the sphere, R ¼ 2=a2. Notice
that the instability is cured by a small enough radius for the
sphere, 2B1a

2 ¼ 1. This is intuitively in agreement with
curing the instability with a mass term [6]; both provide
suitable infrared cutoffs.
We also want to contrast this result with the calculation

reported in [9], where the imaginary part of the effective
action is obtained as

ReðiSeffÞ ¼ −

Z

dμd2x
1

8π
B1

�

B1 þ
1

3a2

�

: ð3:12Þ

(We have rewritten the formula in our notation.) It should
be emphasized that the case considered in [9] is for S2 ×R

2

with the magnetic field purely in the R2 part and not on the
S2, as we are doing here. So, while (3.12) is an interesting
result, it cannot be compared to our calculation.
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FIG. 2. Cutoff m2a2 ¼ 4.
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FIG. 3. No cutoff, m2a2 ¼ 0.
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IV. PAIR CREATION OF VECTOR

PARTICLES ON H2 × R
1;1

As before we consider a magnetic field B1 on H2 and a
magnetic field B2 on R

2 (which will be continued to the
electric field on R

1;1). We also define b ¼ B1a
2, where the

curvature on H2 is −2=a2. The space H2 can be analyzed
using group theory in a way similar to what we did for S2,
since H2 ¼ SUð1; 1Þ=Uð1Þ. The eigenvalues for the
Laplacian for H2 can be obtained in terms of unitary
representations of SUð1; 1Þ ∼ SLð2;RÞ, as explained in
[10,11] and [1]. The generators R�, R3 of SLð2;RÞ satisfy
the commutation relations

½R3; R�� ¼ �R�; ½Rþ; R−� ¼ −2R3: ð4:1Þ

The wave functions are the group elements of SLð2;RÞ
with R3-values fixed by the magnetic field and the
curvature, similar to what we did for S2 ¼ SUð2Þ=Uð1Þ.
The relevant representations in the present case are the
discrete series bounded below and the principal continuous
series. In considering the kinetic operators, which have the
spin-magnetic field and spin-curvature couplings as well,
we note that, since H2 has constant negative curvature, the
sign of the curvature term used in the spherical case (3.4)
now flips to the negative sign. Therefore, we have

−TrWν½Dμ; Dν�Wμ ¼ −
1

2a2
ðWc

−R3W
c
þ −Wc

þR3W
c
−Þ

¼ −
1

a2
Wc

−W
c
þ: ð4:2Þ

Keeping these facts in mind, the energy eigenvalues and the
corresponding densities for the charged fields can be
determined in a straightforward manner. The eigenvalues

of the H2 part of the kinetic operator for Wþ
�, including the

spin-magnetic field and spin-curvature terms, are of the
form

−DWþ
�
¼ 1

a2
½ðR2 þ R2

3
Þ ∓ 2b − 1�; ð4:3Þ

where R3 ¼ b� 1 for Wþ
� and R2 is the eigenvalue for the

quadratic Casimir operator of SUð1; 1Þ. Explicitly, for the
principal continuous series representation, R2 ¼ λ2 þ 1

4
,

where λ is real, 0 ≤ λ < ∞, and for the discrete series
R2 ¼ −ΛðΛ − 1Þ, where Λ ¼ R3 − k ≥ 1

2
. We use the dis-

crete series representations which are bounded below as is
appropriate with the finite norm condition defined by the
parametrization we have chosen for H2 [1]. Detailed
calculations are given in Appendix A and the results are
summarized in the tables given below for convenience.
Table IV gives the continuous part of the energy spectrum
on H2, while Table V refers to the discrete part. The
discrete energy levels are labeled by an integer k ≥ 0. It is
clear from the table of discrete levels that, for 0 ≤ b < 1

2

only a single discrete energy level exists forWþ
þ, which has

energy −b=a2 on H2, which is a zero mode in the absence
of the magnetic field. For 1

2
< b < 3

2
, there is an additional

discrete level forWþ
þ with energy b=a2. For b > 3

2
, there is a

finite number of discrete states, labeled by the integer k ≥ 0

with k ≤ ½b − 3

2
�. ([X] indicates the integer part of the

argument X.) It is also easily verified that the continuum
starts at a higher energy than the highest discrete level.
Contributions to the imaginary part of the effective

action coming from the w�
� and the ghosts c� cancel in

the same manner as they do in the S2 ×R
1;1 case. This

leaves us with the contributions coming from theW�
� fields,

which lead to

ReðiSeffÞ ¼ −

Z

H2×R1;1

dμdx0dx3
E2

16π3
β1ðωÞ; ð4:4Þ

where β1ðωÞ ¼ β1;CðωÞ þ β1;DðωÞ, with

β1;CðωÞ ¼ 4ω

Z

∞

0

dλ
λ sinh 2πλ

cosh 2πλþ cos 2πb

× log½1þ e−ωðλ
2þ1

4
þb2þm2a2Þ� ð4:5Þ

TABLE IV. Charged fields and the eigenvalues for the con-
tinuous part of the spectrum on H2.

Field Eigenvalues 4π2a2ρ

c� ð2n2 þ 1ÞB2 þ ðλ2 þ 1

4
þ b2Þ=a2 B2

λ sinh 2πλ
cosh 2πλþcos 2πb

wþ
−

wþ
þ

ð2n2þ3ÞB2

ð2n2−1ÞB2

þ ðλ2 þ 1

4
þ b2Þ=a2 B2

λ sinh 2πλ
cosh 2πλþcos 2πb

Wþ
−

Wþ
þ

ð2n2 þ 1ÞB2 þ ðλ2 þ 1

4
þ b2Þ=a2 B2

λ sinh 2πλ
cosh 2πλþcos 2πb

TABLE V. Charged fields and the eigenvalues for the discrete part of the spectrum on H2.

Field Eigenvalues 4π2a2ρ

c� ð2n2 þ 1ÞB2þð−kðkþ 1Þ þ 2bkþ bÞ=a2, k ≤ ½b − 1

2
� B2ðb − k − 1

2
Þ

wþ
−

wþ
þ

ð2n2þ3ÞB2

ð2n2−1ÞB2

þð−kðkþ 1Þ þ 2bkþ bÞ=a2, k ≤ ½b − 1

2
� B2ðb − k − 1

2
Þ

Wþ
−

Wþ
þ

ð2n2 þ 1ÞB2

þð−kðkþ3Þþ2bkþ3b−2Þ=a2;
þð−kðk−1Þþ2bk−bÞ=a2; k≤½b−3

2
�

k≤½bþ1

2
�

B2ðb−k−3

2
Þ

B2ðb−kþ1

2
Þ
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β1;DðωÞ ¼ 2ω
X

∞

n¼1

ð−1Þnþ1

n

�

X

½bþ1

2
�

k¼0

�

b − kþ 1

2

�

e−ωnð−kðk−1Þþ2bk−bþm2a2Þ þ
X

½b−3

2
�

k¼0

�

b − k −
3

2

�

e−ωnð−kðkþ3Þþ2bkþ3b−2þm2a2Þ
�

:

ð4:6Þ

After separating out the k ¼ 0, 1 terms, the first sum in (4.7) gives an identical contribution to the second and we can
express β1;DðωÞ as

β1;DðωÞ ¼ 2ω

��

bþ 1

2

�

logð1þ e−ωð−bþm2a2ÞÞ þ
�

b −
1

2

�

logð1þ e−ωðbþm2a2ÞÞ

þ 2

X

½b−3

2
�

k¼0

�

b − k −
3

2

�

logð1þ e−ωð−kðkþ3Þþ2bkþ3b−2þm2a2ÞÞ
�

≡ β
ð<1=2Þ
1;D ðωÞ þ β

ð<3=2Þ
1;D ðωÞ þ β

ð>3=2Þ
1;D ðωÞ; ð4:7Þ

where in the last line we have introduced a helpful notation to facilitate the fact that not all the terms in β1;DðωÞ are present
for all b. Thus, only β

ð<1=2Þ
1;D ðωÞ is present for 0 ≤ b < 1

2
, βð<1=2Þ

1;D ðωÞ þ β
ð<3=2Þ
1;D ðωÞ for 1

2
< b < 3

2
, and all three terms are

present for b > 3

2
. The degeneracy factors should be positive; this gives a quick check on which terms are present when.

In the flat limit of the hyperbolic plane, β1;CðωÞ does not give any contribution, while β1;DðωÞ takes the form

βflat
1;DðωÞ ¼ 2ωb

X

kmax→∞

k¼0

½logð1þ e−ωð2bk−bþm2a2ÞÞ þ logð1þ e−ωð2bkþ3bþm2a2ÞÞ�

¼ 2ωb

�

logð1þ e−ωð−bþm2a2ÞÞ þ logð1þ e−ωðbþm2a2ÞÞ

þ 2

X

kmax→∞

k¼0

logð1þ e−ωð2bkþ3bþm2a2ÞÞ
�

: ð4:8Þ

As before, to probe the curvature effects at a given magnetic
field, we compare β1ðωÞ to its flat space value by defining
the functions

γ1ðωÞ ¼

8

>

>

>

>

>

<

>

>

>

>

>

:

β
ð<1=2Þ
1;D

ðωÞþβ1;CðωÞ
βflat
1;D

ðωÞ ; 0 ≤ b < 1

2

β
ð<1=2Þ
1;D

ðωÞþβ
ð<3=2Þ
1;D

ðωÞþβ1;CðωÞ
βflat
1;D

ðωÞ ; 1

2
< b < 3

2

β1;DðωÞþβ1;CðωÞ
βflat
1;D

ðωÞ ; b > 3

2
:

ð4:9Þ

For the special case of b ¼ 0, we find

γ
ð0Þ
1
ðωÞ ¼ 6

π2

�

ω log 2

þ 4ω

Z

∞

0

dλλ tanh πλ log½1þ e−ωðλ
2þ1

4
Þ�
�

:

ð4:10Þ

In the absence of the transverse magnetic field, in
addition to the contribution from the continuous energy
spectrum, there is a single discrete mode, which is a zero
mode, with a constant density of states, whose contribution
to γð0Þ

1
ðωÞ is 6

π2
ω log 2. This mode is essentially responsible

for the monotonic increase in the pair production rate
compared to the flat case by accommodating produced
particles at virtually no energy cost. This feature is clearly

seen in the profile of γð0Þ
1
ðωÞ provided in Fig. 4.

In order to understand the emerging physics from the
profiles of γ1ðωÞ, several facts should be simultaneously
taken into account. From Figs. 5–8, we can see that the pair
production rate on H2 ×R

1;1 is always larger than that for
vector particles on flat space and converges to the latter at
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FIG. 4. γ1ðωÞ at b ¼ 0.

D. KARABALI, S. KÜRKÇÜOǦLU, and V. P. NAIR PHYS. REV. D 100, 065006 (2019)

065006-8



sufficiently large magnetic fields. Next, it is important to
emphasize that all the ensuing results regarding the
comparison of pair production rates at different values of
the magnetic field or comparison with the results obtained
in the flat case are insensitive to the value of the mass term
m2a2, which is acting as an effective infrared cutoff.
In retrospect, this may be expected since the infrared
cutoff is introduced formally to facilitate certain summa-
tions because the negative energy mode is present in the
spectrum of Wþ

þ. As such, the cutoff appears in all the
exponentials in the expressions for γ1ðωÞ, and that makes
the latter almost completely insensitive to whatever value it
may take (as long as it is not unphysically large). From now
on, we therefore set it to zero without loss of generality.
For 0 < b < 1

2
, we observe from the profiles of γ1ðωÞ in

Fig. 5 that there is a further increase in the pair production
effect over and above the rate at b ¼ 0. For this range of
values for the magnetic field there is still just one discrete
mode but now with energy − b

a2
þm2, which, in the absence

of infrared cutoff m2, is the one and only negative energy
mode. This, in itself, is sufficient to render the effect larger
than what it is for the flat case and also larger than for the

b ¼ 0 case as long as ω is not too large. The reason for this
is the larger degeneracy of this state compared to that of the
corresponding state in the flat limit; i.e., bþ 1

2
> b, with the

extra 1

2
due to the nonzero curvature. In fact, for sufficiently

large ω, we infer that γ1ðωÞ goes like ≃1þ 1

2b
> 1.

For 1

2
< b < 3

2
, there are two discrete modes, one with

energy −b=a2 and one with energy b=a2. Profiles of γ1ðωÞ
in Fig. 6 show that the enhancement in pair production over
and above the b ¼ 0 case is sustained in a shorter interval of
ω which gets gradually narrower with increasing b-field.
The observed behavior of γ1ðωÞ can be anticipated from the
foregoing discussion, since, besides the opposing effect
from the continuous energy levels, the additional discrete
level also becomes costlier to fill with increasing b.
Finally, for b > 3

2
, there are as many additional discrete

energy levels as is consistent with q < ½b − 3=2�. From the
profiles of γ1ðωÞ shown in Figs. 7 and 8, we see that the
influence of increasing magnetic field on pair production
rate is to drive its value back towards that for the flat case,
since it becomes progressively costlier in energy for
produced particles to fill the available quantum states at
higher magnetic fields. (We include two sets of figures to
emphasize that the basic features are independent of the
cutoff.)

b=0

b=1/4

b=3/8

b=1/8

2 4 6 8

1

2

3

4
1( )

FIG. 5. γ1ðωÞ at 0 < b < 1

2
and no infrared cutoff.
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FIG. 6. γ1ðωÞ at 1
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and no infrared cutoff.
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FIG. 7. γ1ðωÞ at b > 3

2
and infrared cutoff value m2a2 ¼ 8.
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FIG. 8. γ1ðωÞ at b > 3

2
and no infrared cutoff.
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Finally, as in the case of flat space and S2 ×R
1;1, we can

take the limit of E → 0 or ω → ∞. From Eqs. (4.5) and

(4.7), we see that only β
ð<1=2Þ
1;D ðωÞ can give a nonzero value

in this limit. The result is that

ReðiSeffÞ ¼ −

Z

dμdx0dx3
1

8π
B1

�

B1 þ
1

2a2

�

¼ −

Z

dμdx0dx3
1

8π
B1

�

B1 −
R

4

�

: ð4:11Þ

Comparison of this formula with (2.12) and (3.11) shows
that this formula, as written in terms of the Ricci scalar,
captures the general result for the Nielsen-Olesen instability
for all three cases, M ¼ R

2, S2, H2.

V. SUMMARY AND REMARKS ON QCD

VACUUM AND CONFINEMENT

We calculated the pair production rate for vector par-
ticles, and corresponding decay of a background electric
field, on manifolds of the form M ×R

1;1, with a back-
ground magnetic field onM, whereM ¼ R

2, S2, andH2. In
order for this to be embedded in a consistent theory of
vector particles we used the Yang-Mills action. The latter
specified the spin-magnetic field and spin-curvature cou-
plings. The pair production rate is enhanced by the
negative eigenvalues for the kinetic operator due to the
spin-magnetic field coupling. The additional spin-curvature
coupling suppresses this effect to some extent for positive
curvature and enhances it further for negative curvature.
Comparison of γ1ðωÞ for S2 and H2 at zero magnetic
field can be made by inspecting Fig. 9, which shows the
deviation of γ1ðωÞ for S2 and H2 compared to the flat case
which has f1ðx ¼ 0Þ ¼ 1 for M ¼ R

2 for all ω. Our
calculations also give the generalization of the Nielsen-
Olesen instability to include nonzero curvature.
Since we obtained the action for charged vector particles

by considering an expansion around a background field of

the standard Yang-Mills action, our calculations have some
implications for non-Abelian gauge theories. Admittedly,
even though our calculations are not entirely perturbative,
they are still equivalent to a one-loop effective action and
hence it is not possible to make definitive conclusions
about confinement and related phenomena. Nevertheless,
we know that there are many calculations, which, while not
definitive, do carry intimations of confinement. Beyond the
well-known issue of asymptotic freedom, among these we
can include the difficulty with unitary implementation of
color rotations [12], the problem of sustaining a statistical
distribution of nonzero color charge [7], etc. Our calcu-
lation of the pair production in this paper, coupled with the
known instability of chromomagnetic fields, leads to a
similar suggestive view on confinement.
A consequence of asymptotic freedom is that the vacuum

of QCD has a tendency to spontaneously develop nonzero
expectation values for chromomagnetic fields. In other
words, a state with a nonzero magnetic field can have lower
energy than the perturbative vacuum with zero field. This
was noticed decades ago [3]. It has been used as the basis
for assigning a nonzero vacuum value h0jF2j0i and used in
sum rules [4]. A chromomagnetic field, however, can lead
to instability due to the negative eigenvalue for the kinetic
operator arising from the spin-magnetic field coupling [5].
This is also clear from our Eqs. (2.12), (3.11), and (4.11).
There have been many attempts to use this observation due
to Nielsen and Olesen to develop an understanding of the
nonperturbative confining vacuum of Yang-Mills theory,
leading to the so-called spaghetti vacuum, or Copenhagen
vacuum [5]. Arguments have also been made that the
instability could be cured by a new vacuum state which
generates a “mass” for the gluons [6].
Combining these observations with the calculations in

this paper gives another perspective on some aspects of
confinement. Asymptotic freedom moves the theory in the
direction of generating a chromomagnetic field. Such a
field, by our arguments, leads to a highly enhanced decay
rate for any chromoelectric field. Our calculations are for
uniform fields, but they should still apply approximately to
fields which are uniform over some small range. Thus any
chromoelectric field decays at an enhanced rate by pair
production. But the particles produced in this process of the
decay of the field are themselves charged and have their
own chromoelectric fields, so in principle, the process can
continue. (For the electromagnetic case, a similar statement
is true as well, but the field carried by the decay products is
weak and further pair production is suppressed by mass
thresholds.) Thus further decays (of the chromoelectric
fields of the produced pairs), in fact a whole cascade of
decays, can be terminated and stability obtained only if
the charged particles which are produced combine into
color-singlets and so become free of any accompanying
chromoelectric fields. This gives a dynamic view of how
confinement could arise.
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FIG. 9. Comparison of γ1 at zero magnetic field for the sphere
and hyperboloid.
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Admittedly, the calculations we have given have limited
validity. But we see that, even within a one-loop back-
ground field approximation, or within a resummation of
one-loop diagrams, there are serious difficulties in main-
taining chromoelectric fields.
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APPENDIX A: SPECTRUM OF THE KINETIC

OPERATOR FOR VECTORS ON H2

Using (2.8) and (4.2) it is straightforward to see that the
relevant quadratic differential operators for Wþ

� on H2 are
given as

−D2
V ≔ −D2

H2 ∓ 2
b

a2
−

1

a2
; ðA1Þ

where the second and third terms in the right-hand side are
due to the spin-magnetic field and the spin-curvature
couplings, respectively.
Following the discussion and the results given in the

Appendix of [1], we can determine the discrete and the
continuous spectrum of −D2

V . (For general references on
the relevant representation theory, see [13].) For Wþ

þ, to
compute the discrete part of the spectrum of the first term in
(A1), we see that the Uð1Þ subgroup of SLð2;RÞ has the
charge R3 ¼ bþ 1, taking into account the intrinsic vector
charge of Wþ

þ and the curvature contribution. The corre-
sponding unitary irreducible representation of SLð2;RÞ
therefore has the extremal weight Λ ¼ bþ 1 − k with
k ∈ Zþ. Putting this information together, we find

−D2þ
Vþ ¼ 1

a2
ð−ΛðΛ − 1Þ þ R2

3
− 2b − 1Þ

¼ 1

a2
ð−ðbþ 1 − kÞðbþ 1 − k − 1Þ

þ ðbþ 1Þ2 − 2b − 1Þ

¼ 1

a2
ð−kðk − 1Þ þ 2bk − bÞ; ðA2Þ

where k ¼ 0; 1; 2;… labels the Landau levels (LLs). The
ground state, jbþ 1; 0i, is specified by taking k ¼ 0 and
has negative energy− b

a2
. Representation theory of SLð2;RÞ

requires the condition Λ ¼ bþ 1 − k ≥ 1

2
to be fulfilled

which gives k ≤ ½bþ 1

2
�. This means that, for a given

value of b, there are only as many LLs as allowed by
this inequality and they are labeled by the integers k.

In particular, contrary to the scalar case, there is a single
discrete mode even at b ¼ 0. Clearly this is a zero mode.
Following the same reasoning, the discrete part of the
spectrum of −D2

V on Wþ
− follows from taking R3 ¼ b − 1

and Λ ¼ b − 1 − k. This gives

−D2þ
V− ¼ 1

a2
ð−ΛðΛ − 1Þ þ R2

3
þ 2b − 1Þ

¼ 1

a2
ð−ðb − 1 − kÞðb − 1 − k − 1Þ

þ ðb − 1Þ2 þ 2b − 1Þ

¼ 1

a2
ð−kðkþ 3Þ þ 2bkþ 3b − 2Þ; ðA3Þ

with the ground state jb − 1; 0i carrying the energy
ð3b − 2Þ=a2. We note that the requirement Λ ¼ b − 1 −

k ≥ 1

2
gives k ≤ ½b − 3

2
�. Thus, there are no discrete states for

Wþ
− if b < 3

2
.

For the continuous part of the spectrum of −D2
V we have

SpecCð−D2
VÞ ¼

λ2 þ 1

4
þ ðb� 1Þ2
a2

∓
2b

a2
−

1

a2

¼ 1

a2

�

λ2 þ 1

4
þ b2

�

: ðA4Þ

This result shows that contributions to the spectrum from
the spin-magnetic field coupling and the spin-curvature
coupling and the vector charges �1 for H2 cancel each
other and the continuous part of the spectrum for Wþ

� over
H2 is the same as that of a scalar [1,10,11]. The term
1=ð4a2Þ is obviously related to the Breitenlohner-Freedman
bound [14].
In the Appendix of [1], we have briefly stated the

techniques used in the derivation of the exact expressions
for the density of states for the discrete and the continuous
spectrum of states of scalar and spinor particles and referred
to the relevant literature [10,11] and [13] for full details. In
order to determine the corresponding density of states for
the fieldsWþ

�, all we need to perform is the shift b → b� 1

in the density of states of the scalar field, which leads to the
expressions given in Tables IVand V. In particular, we note
that the density of states for the continuous spectrum
remains the same as that for the scalars, since cosð2πbÞ
is periodic under b → b� 1. Thus both the eigenvalues and
the density of states are the same as those obtained for
scalars.

APPENDIX B: SEMICLASSICAL ESTIMATE

OF THE DENSITY OF STATES

For the analysis of the pair production effect on curved
spaces, a crucial ingredient in the calculation of the trace of
the logarithm of the energy eigenvalues of the relevant
differential operator for charged particles is the knowledge

MAGNETIC FIELD AND CURVATURE EFFECTS ON PAIR … PHYS. REV. D 100, 065006 (2019)

065006-11



of the density of quantum states at a given energy. In this
paper and part 1 [1], which treated the scalar and spinor
particles, we have focused on the spaces of the form
M × R

1;1, where M can be S2 or H2. General expressions
for the density of states on these spaces are known. While
these are fairly simple to obtain in the case of S2, the
corresponding calculations for the harmonics onH2 [or more
generally sections of Uð1Þ-bundles over the hyperbolic
plane], which correspond to the principal continuous series
representations of SLð2;RÞ, are rather more involved,
requiring more sophisticated group theoretical techniques.
Although we already know the exact density of states on S2

and H2 for spin 0 and spin 1

2
from the existing literature, and

inferred the result for spin-1 particles on S2 andH2 from the
properties of the corresponding isometry groups, it is still
desirable to have a semiclassical estimate of the density of
states on such spaces to further our understanding and
physical intuition. This is the subject of this Appendix.
The key procedure is the following. We obtain the

classical trajectories for a point-particle moving on the
space of interest. These trajectories will be labeled by a
number of parameters. The volume element of the phase
space [divided by ð2πÞn] can be evaluated on the set of all
such trajectories, trading the momenta for the parameters
labeling the trajectories. The result is then the semiclassical
measure of the number of trajectories needed in a path
integral formula for evaluating the trace of the evolution
kernel for the operator which serves as the Hamiltonian for
the trajectories. The key result is that the Plancherel
measure, semiclassically, is simply the symplectic volume
evaluated on the classical trajectories.
Perhapsnot sosurprisingly, theHamilton-Jacobi theorycan

be successfully exploited for this purpose and, in fact, we are
able to obtain semiclassical estimates for the density of
harmonics over Sn and Hn. In order to see how this can be
achieved and to handle both cases (and also the flat case Rn)
on essentially equal footing, we may use the Friedmann-
Robertson-Walker type parametrization of themetric forM as

ds2 ¼ dr2

1 − kr2
þ r2dΩn−1; ðB1Þ

where k ¼ 0, 1

a2
,− 1

a2
forRn,Sn, andHn, respectively, anda is

the radius/length parameter of the latter. dΩn−1 is the “solid-
angle” in n − 1 dimensions and it can be expressed using the
standard hyperspherical coordinates. In particular, the inverse
metric g−1μν ¼ gμν has the diagonal form

gμν ≡ diag

�

1 − kr2;
1

r2
;

1

r2 sin2 θ2
;

1

r2 sin2 θ2 sin
2 θ3

;…;

1

r2 sin2 θ2 sin
2 θ3 � � � sin2 θn−1

�

; ðB2Þ

where μ; ν ¼ 1; 2;…; n.

We introduce the Hamilton’s principal function on
R

1;1 ×M by Sðt; z; r; θ2; θ3; � � � θnÞ, with t, z denoting
the time and the spatial direction on R

1;1. Although it is
not necessary for the main purpose of this Appendix, we
also assume a uniform electric field, E, in the z-direction.
After these preparatory steps, the Hamilton-Jacobi equation
for a charged scalar of mass m can be written as

−

�

−
∂S

∂t
− Ez

�

2

þ
�

∂S

∂z

�

2

þ ð1 − kr2Þ
�

∂S

∂r

�

2

þ gij
∂S

∂θi

∂S

∂θj
þm2 ¼ 0; ðB3Þ

where i; j ¼ 2; 3;…n. Canonical momenta can be written
as usual

pt ≡ ε ¼ −
∂S

∂t
; pz ¼

∂S

∂z
; pr ¼

∂S

∂r
; pi ¼

∂S

∂θi
:

ðB4Þ

From (B3), we immediately observe that the Hamilton-
Jacobi equation is cyclic in t and the “azimuthal”-angle θn.
The corresponding canonical momenta, i.e., the energy ε

and the azimuthal angular momentum pn are conserved
quantities; other conserved quantities will be determined
shortly. We may factor S≡ Sðt; z; r; θ2; θ3; � � � θnÞ as

S ¼ Wðz; r; θ2; θ3; � � � θn−1Þ þ pnθn − εt; ðB5Þ

where Wðz; r; θ2; θ3; � � � θn−1Þ can be identified as
Hamilton’s characteristic function. We can further separate
variables by writing Wðz; r; θ2; θ3; � � � θn−1Þ ¼ WnðzÞ þ
W̃ðr; θ2; θ3; � � � θn−1Þ. Using this in (B3) we get the
equations

ð1 − kr2Þ
�

∂W̃

∂r

�

2

þ 1

r2

�

∂W̃

∂θ2

�

2

þ 1

r2 sin2 θ2

�

∂W̃

∂θ3

�

2

þ � � � þ p2
n

r2 sin2 θ2 � � � sin2 θn−1
¼ λ2

1

�

dWn

dz

�

2

− ðε − EzÞ2 þm2 ¼ −λ2
1
; ðB6Þ

where λ2
1
is introduced as a separation constant. The first

equation in (B6) gives rise to two equations after multi-
plying the entire equation by r2 and introducing another
separation constant, λ2

2
, and this pattern can be continued

until a set of (n − 1) decoupled ordinary differential
equations is obtained. This is equivalent to the separa-
tion ansatz W̃ðr; θ2;…; θn−1Þ ¼ W1ðrÞ þW2ðθ2Þ þ � � � þ
Wn−1ðθn−1Þ. The full set of decoupled equations is thus
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r2ð1 − kr2Þ
�

dW1

dr

�

2

¼ λ2
1
r2 − λ2

2
;

sin2 θi

�

dWi

dθi

�

2

¼ sin2 θiλ
2
i − λ2iþ1

;

i ¼ 2; 3;…; ðn − 1Þ; ðB7Þ

where λn ≡ pn. We solve these equations as

dW1

dr
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2
1
r2 − λ2

2

r2ð1 − kr2Þ

s

;
dWi

dθi
¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2i −
λ2iþ1

sin2θi

s

:

ðB8Þ

The phase space volume element in terms of the dynamical
variables ðr; θi; θn; pr; pi; pnÞ is

ω ∧ ω � � � ∧ ω

ð2πÞn ≡
1

ð2πÞn dprdr
Y

n−1

i¼2

dpidθidpndθn: ðB9Þ

The separation constants ðλ1; λiÞ can be used instead of the
momentum variables pr, pi to express the phase space
volume element. The transformation between the dynami-
cal variables ðr; θi; θn; pr; pi; pnÞ and ðr; θi; θn; pr; λi; pnÞ
leads to the Jacobian matrix J, whose determinant is not an
identity, and the phase space volume element takes the form

ω ∧ ω � � � ∧ ω

ð2πÞn ≡
1

ð2πÞn j det Jjdprdr
Y

n−1

i¼2

dλidθidpndθn;

¼ 1

ð2πÞn
λ1dλ1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2
1
r2 − λ2

2

p

rdr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kr2
p

×
Y

n−1

i¼2

λidλidθi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2i −
λ2
iþ1

sin2 θi

r dpndθn: ðB10Þ

Performing the integrals over λi and pn in the reverse order,
that is, starting with the integral over pn, and following this
up with integrals over λi, with i from n − 1 to 2, we have

Z

c

−c

dpn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2n−1 −
p2
n

sin2θn−1

q ¼ πj sin θn−1j; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2n−1sin
2θn−1

q

;

Z

jλijn−i−1
λidλi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2i−1 −
λ2
i

sin2θi−1

q ¼ j sin θi−1jn−iþ1jλi−1jn−i
1

2

Γðn−iþ1

2
ÞΓð1

2
Þ

Γðn−iþ2

2
Þ ; i ¼ 3; � � � n − 1;

Z

jλ2jn−3
λ2dλ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λ2
1
r2 − λ2

2

p ¼ jλ1jn−2rn−2
1

2

Γðn−1
2
ÞΓð1

2
Þ

Γðn
2
Þ ; ðB11Þ

where the integrations over the λi, i ¼ 2;…; ðn − 1Þ, are from zero to the positive turning points of the integrands. The
phase space element can be expressed as

ω ∧ ω � � � ∧ ω

ð2πÞn ≡
1

ð2πÞn λ
n−1dλπ2n−1

�

1

2

�

n−2 Yn−1

i¼2

Γðn−iþ1

2
ÞΓð1

2
Þ

Γðn−iþ2

2
Þ dV;

¼ λn−1dλ
1

ð2πÞn
2π

n
2

Γðn
2
Þ dV;

≕PnðλÞdV: ðB12Þ

We have included an additional factor 2n−1 in this expression. This can be viewed as accounting for both the signs in the
expressions for Wi, i ¼ 1; 2;…; ðn − 1Þ as in (B8). Equivalently, we may think of this as being due to the twofold
orientation of the paths in each case. We have also dropped the subscript in λ1, since after the integrations over λi
(i ¼ 2;…; n − 1), this is the only variable remaining in the phase space measure apart from the configuration space volume
element dV. The latter is

dV ¼ rn−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kr2
p j sin θn−2

2
sin θn−3

3
� � � sin2 θn−2 sin θn−1jdrdθ2dθ3 � � � dθn

¼ rn−1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − kr2
p drdΩn−1: ðB13Þ

The quantity PnðλÞ introduced in the last line of (B12) can be identified as our semiclassical estimate for the density of
harmonic functions on Sn andHn in terms of a continuous parameter, λ, which can naturally be thought of as a wave number.
For comparison with group theoretical results, it is useful to express Pn for even and odd values of n separately. We have
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P2mðλÞ ¼
λ2m−1dλ

ð2πÞmð2m − 2Þ!! ;

P2mþ1ðλÞ ¼
λ2mdλ

ð2πÞmπð2m − 1Þ!! : ðB14Þ

For Sn ¼ SOðnþ1Þ
SOðnÞ , the density of harmonic functions can

be given as a sum over the dimensions of the irreducible
representation ðl; 0;…; 0Þ (in the Dynkin notation) of
SOðnþ 1Þ divided by the volume of Sn, i.e.,

PSn ≡
X

l≥0

dimðl; 0;…; 0Þ
volðSnÞ ¼

X

l≥0

ðlþ n − 2Þ!ð2lþ n − 1Þ
2πðnþ1Þ=2l!ðn − 1Þ!an

× Γ

�

nþ 1

2

�

→

ðl=aÞ→λ

λn−1dλ

πðnþ1Þ=2ðn − 1Þ!
Γ

�

nþ 1

2

�

¼
�

P2mðλÞ n ¼ 2m;

P2mþ1ðλÞ n ¼ 2mþ 1:
ðB15Þ

From this expression, we infer that the semiclassical
formulas P2mðλÞ and P2mþ1ðλÞ obtained from the
Hamilton-Jacobi theory give estimates, which are in com-
plete agreement with the large l; ðl=aÞ → λ; limit of the
exact result.
For the hyperbolic spaces Hn, the situation is a little

more intricate. In this case, the exact result for the density
of harmonic states is given in terms of the Plancherel
measure, which can be obtained after rather tedious
considerations of the properties of the noncompact group
SOðn; 1Þ as [13]

MH2m ¼ jΓðm − 1

2
þ iλÞj2

jΓðiλÞj2 ; MH2mþ1 ¼ jΓðmþ iλÞj2
jΓðiλÞj2 ;

ðB16Þ

Multiplying these with the phase space factor 1

ð2πÞn, the total

solid angle 2πn=2

Γðn
2
Þ , and the differential element dλ, and

simplifying the expressions involving the Γ-functions,
we have

PH2mðλÞ ¼ 1

ð2πÞ2m
2πm

ΓðmÞ λ tanh πλdλ
Y

m

k¼2

��

k −
3

2

�

2

þ λ2
�

;

m ≥ 2

→

λ→∞

λ2m−1dλ

ð2πÞmð2m − 2Þ!! ¼ P2mðλÞ ðB17Þ

PH2ðλÞ ¼ 1

2π
λ tanh πλdλ →

λ→∞

λdλ

2π
¼ P2ðλÞ ðB18Þ

and

PH2mþ1ðλÞ ¼ 1

ð2πÞ2mþ1

2πm
ffiffiffi

π
p

Γðmþ 1

2
Þ dλ

Y

m

k¼1

½ðk − 1Þ2 þ λ2�

→

λ→∞

λ2mdλ

ð2πÞmπð2m − 1Þ!! ¼ P2mþ1ðλÞ: ðB19Þ

Thus, we see that the semiclassical estimates obtained from
the Hamilton-Jacobi theory match with the large λ limit of
the exact results on H2m and H2mþ1. For odd dimensions,
the difference between the exact and semiclassical results is
a polynomial of lower order in λ, while for even dimensions
there are similar polynomial corrections and also correc-
tions of the type λ2m−1e−2πλ (and further subdominant
terms), due to the tanh πλ factor.
We have not discussed the second equation in (B6)

which deals with the z-dependence of the action. This can
be used to calculate a tunneling amplitude as in the usual
WKB analyses, giving a semiclassical estimate of the pair
production rate. We have not done this, since, in the main
text, we have already calculated the rate without making
such an approximation, focusing instead on the Plancherel
measure.
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