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Abstract—While traffic modeling and prediction are at the heart of providing high-quality telecommunication services in cellular
networks and attract much attention, they have been approved as an extremely challenging task. Due to the diverse network demand
of Internet-based apps, the cellular traffic from an individual user can have a wide dynamic range. Most existing methods, on the other
hand, model traffic patterns as probabilistic distributions or stochastic processes and impose stringent assumptions over these models.
Such assumptions may be beneficial at providing closed-form formula in evaluating prediction performances, but fall short for practice
use. In this paper we propose STEP, a spatio-temporal fine-granular user traffic prediction mechanism for cellular networks. A deep
graph convolution network, called GCGRN, is constructed. It is a novel combination of the graph convolution network (GCN) and gated
recurrent units (GRU), which exploits graph neural network to learn an efficient spatio-temporal model from a user’s massive dataset
for traffic prediction. The prototype of STEP has been implemented. Extensive experimental results demonstrate that our model
outperforms the state-of-the-art time-series based approaches. Besides, STEP merely incurs mild energy consumption,
communication overhead and system resource occupancy to mobile devices. Moreover, NS-3 based simulations validate the efficacy of
STEP in reducing session dropping ratio in cellular networks.

Index Terms—Fine-granular traffic prediction, deep graph convolution network, cellular networks.
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1 INTRODUCTION

With billions of mobile devices accessing the Internet via
3G/4G/5G networks, cellular traffic has skyrocketed in the
past a few years. It is predicted that over 50% of the global
devices and connections will be mobile and the monthly
global mobile data traffic will surpass 30.6 exabytes (1018)
by 2020 [1]. This trend will continue in the foreseeable
future. To accommodate the ever-increasing large volume
of data in cellular networks, small cells, including micro-
cells, femtocells, and picocells, have been widely deployed
because of their capability of growing network capacity
especially in populated urban areas that cannot be sustained
by conventional macrocells. Despite the nice property, this
fashion also raises critical concerns on frequent handoffs
a moving user can experience even at low to moderate
velocities. To validate this statement, we show in Fig. 1 the
distribution of duration that users stay connected to one
BS. It is a statistical result from our collected dataset on
individual user cellular usage (please refer to Section 3.2
for more details). We observe that 50% of the duration is
shorter than 12.7s, which means handoffs take place every
12.7s or even less time. Apparently, the shorter a user stays
in a cell, the more frequent it switches between BSs.
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Fig. 1. Cumulative distribution function (CDF) of time duration that users
stay connected to one BS.

On the other hand, the current handoff procedure for
cellular networks mainly follows the first release of Long-
Term Evolution (LTE) standard (Rel-8) where decisions are
made according to realtime signal strength measurement
from neighboring BSs. As a result, the frequent handoffs
will inevitably lead to increased call dropping probability
(CDP) due to the latency caused by multi-round interactions
between handoff BSs [2], [3], [4], [5]. Moreover, in 5G and
beyond, BSs are foreseen to operate over a set of drastically
varying frequencies, e.g., from 450 MHz to 50 GHz. Without
further assistance, quick switching between shortwave and
millimeter wave may be possible in theory but challeng-
ing to light-weight radios. Due to the above reasons, the
reliability of conventional handoff procedure in handling
high-mobility low-latency cellular services, such as commu-
nications for self-driving vehicles, in 5G and beyond will be
deteriorated.

To address this issue, intelligent schemes, such as proac-
tive cell selection [6], [7], [8], [9] and spectrum reservation
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[10], [11], [12], have been proposed to assist handoffs. They
facilitate carriers to agilely allocate transmission resources to
individual users. For instance, the forecasted accessing BSs
can reserve certain amount of resource blocks (RBs) tightly
based on users’ future traffic demands, a few seconds ahead
of their arrivals. In this way, the CDP can be largely reduced
by avoiding transmission resource deficiency at target BSs.
(Further discussion is provided in Section 6.) Besides, since
a user knows which BS it is going to access next and thus
its operating frequency range, it can prepare for the proper
antenna hardware/software stack ahead of time for later
transmission.

The efficacy of these schemes heavily relies on accurate
prediction on user traffic and its mobility, which, however,
is not an easy task. First, because of the diverse demands
of Internet-based apps (e.g., mobile videos, online games,
VoIP), a user’s cellular traffic can be of a wide dynamic
range. Second, in addition to the data rate of each app, fine-
granular traffic prediction discussed in this work also aims
to associate it with user mobility, i.e., which BSs an online
app is going to route through under a time resolution man-
ner. Uncertain human behaviors (e.g., at work, in transit,
during sleep) introduces another dimension of uncertainty
in prediction. These factors often have a complex correlation
and can change over time. Consequently, modeling them
is prohibitively difficult, let along exploring them for pre-
diction. While there have been substantial prior works on
these topics [13], [14], [15], [16], [17], [18], [19], [20], [21],
[22], [23], [24], [25], [26], [27], [28], [29], [30], [31], [32], [33],
[34], they have to impose stringent assumptions on how the
above-mentioned factors behave, interact with each other,
and affect the prediction. Traffic patterns are modeled as
probabilistic distributions or stochastic processes. They may
be effective in providing expressive formulas but fall short
for practice use. More importantly, existing research mainly
focuses on large-scale prediction, e.g., forecasting the future
traffic load or the number of subscribers for a city, an urban
area, or a cell. Such a prediction is too coarse to be applied
to assist handoffs for a particular user.

Under these observations, in this work we propose STEP,
a spatio-temporal fine-granular user traffic prediction sys-
tem for cellular networks. Its main objective is to assist
carrier to reserve proper amount of RBs for individual users
at BSs that they will access soon. The prediction-empowered
resource reservation then helps to alleviate the performance
degradation caused by frequent handoffs among densely
deployed cells. STEP predicts user’s time-resolved mobility
and traffic for each online app in a realtime manner. For
this purpose, we first leverage graphical models to represent
user’s traffic and mobility patterns in both temporal and
spatial domains. To extract latent features in these two do-
mains, a deep graph convolution network, called GCGRN,
is developed. It is a novel combination of the graph convo-
lution network (GCN) and gated recurrent units (GRU). The
user’s historical record is then fed into GCGRN for training,
which later forecasts this user’s future data rate for each of
its online apps and the set of BSs the user is going to access.
Instead of coarse large-scale datasets collected by network
administrators, our fine-grained prediction relies on data
recorded by individual users locally. The contributions of
this work are summarized as follows.

• We carefully investigate the characteristics of indi-
vidual cellular traffic with daily cellular usage col-
lected from 10 volunteers. We demonstrate that there
are strong spatio-temporal patterns in individual
user cellular traffic, which was not well exploited in
previous research.

• We develop a graph convolution network, GCGRN,
to exploit features in spatial and temporal domains
for fine-granular traffic prediction.

• To assess prediction performances, the prototype of
STEP is implemented. Extensive in-field experiments
are conducted, examining STEP from the aspects of
energy consumption, communication overhead, and
system utility.

• NS-3 based simulations are also conducted to inves-
tigate the impact of prediction-empowered resource
reservation to cellular network performances.

In the rest of the paper, related works are reviewed in
Section 2. System architecture and overview are given in
Section 3. Spatial-temporal dependency of user traffic and
the proposed GCGRN are discussed in Section 4. Extensive
experimental results are provided in Section 5, followed by
NS-3 based simulation results in Section 6. We conclude the
paper in Section 7.

2 RELATED WORKS

2.1 Traffic Prediction
Traffic prediction is well-known to facilitate resource allo-
cation and enable intelligent cellular networks. Extensive
efforts have been devoted to this topic [13], [14], [15], [16],
[17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30], [31], [32], [33], [34]. It is generally treated as a time
series analysis problem, the performance of which depends
on the statistical or stochastic models, such as Lognorm
distribution model [34] and Wiener Process [33]. In fact,
the pattern of cellular traffic is much more complicated
due to various factors, e.g., user mobility and diverse user
requirements. Therefore, ideal analytical models can hardly
capture complex and nonlinear hidden spatio-temporal de-
pendency in wireless traffic data. Recently, advances in deep
learning models have emerged as strong approaches for
traffic prediction [35], [36], [37], [38]. For example, Qiu et
al. [36] applied recurrent neural network (RNN) to learn
and predict cellular traffic. A citywide cellular traffic pre-
diction scheme [37] is proposed based on convolutional
neural network (CNN). In the same line of research, Wang
et al. [38] resorted to the graph neural network (GNN) to
characterize urban cellular traffic. While RNN is good at
learning time domain features, it is incompetent in exploring
spatial dependencies. Besides, CNN and GNN are originally
designed for computer vision or graphical tasks and may
have poor performances over sequential data prediction.
More importantly, the existing research mainly focuses on
large-scale wireless traffic prediction, e.g., forecasting the
future traffic load for a city, an urban area, or a cell. Instead,
this work studies individual user traffic prediction at a fine
granularity. Besides, the dataset that existing works rely on
is collected by the network administrator. As we point out
later, such a dataset is too vague for fine-granular user-level
traffic prediction.
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TABLE 1
An illustration of raw data in csv file.

Time Cell tower ID GPS coordinate Overall Tx rate Overall Rx rate Youtube Tx rate Youtube Rx rate · · ·
March 14, 09:43:50 173113097 37.79419728; 12.75 kbps 365.19 kbps 4.36 kbps 312.33 kbps · · ·

-122.26488491
March 14, 09:43:51 173116680 37.79419157; 25.92 kbps 223.56 kbps 12.3 kbps 201.04 kbps · · ·

-122.26482702
...

...
...

2.2 Mobility Prediction

Mobility prediction rests on the notion that mobility pat-
terns of mobile users are, to a certain extent, predictable as
verified by literature [39], [40]. Some existing studies, such
as [13], [14], [15] leverage Discrete Time Markov Chains
(DTMC) for mobility modeling and prediction. However,
DTMC assumes human mobility is memoryless. Thus, most
works apply DTMC only for spatial prediction, i.e., the next
cell a user is going to head to. The same limitation also
exists in the Continuous Time Markov Chain (CTMC) based
mobility prediction [16], [17]. Taking into account the mem-
ory property exhibiting in wireless traffic, Semi-Markov
model is later adopted, allowing for arbitrarily distributed
sojourn times. The works [18], [19], [20], [21] fall into this
category. There is also some research [22], [23] applying
low-order Markov predictor for mobility prediction. Aside
from Markovian models, Nadembega et al. [24] proposed a
mobility prediction scheme on estimating the time window
that a user stays in one cell along his path. Nonetheless, they
assume that the path is known in advance.

Like traffic prediction, most existing works on mobility
prediction rely on statistic or stochastic models, which typi-
cally impose certain impractical assumptions over user mo-
bility patterns. Besides, none of the above works provides
time-resolved mobility prediction as we do. They can only
answer questions, such as which cell a user is heading to,
or how long a user will stay in a cell. Instead, we endeavor
to find out which BS a user is associated with at a given
future specific time instance. Therefore, we are targeting a
more challenging task.

3 THE SYSTEM ARCHITECTURE

3.1 Overall Architecture of STEP

STEP consists of two modules: data collection and traffic
forecasting. Due to the lack of computing and storage re-
sources at mobile terminals, the traffic forecasting module is
implemented at the core network of cellular systems, while
the realtime data collection is conducted at devices locally.
In particular, data collection is only triggered when a device
is using cellular services and is thus off most of the time.
It is worth mentioning that existing learning-based large-
scale traffic prediction mechanisms [35], [36], [37], [38] rely
on traffic statistics recorded by the network administrator.
The reasons that we do not utilize the existing dataset but
collect our own are as follows. First, these traffic statistics are
relatively coarse, e.g., aggregated traffic volume or number
of associated devices at each BS. They are of less use for
fine-granular user-level traffic prediction. More importantly,
network administrators can only have vague visibility over

their subscribers’ traffic. Previously, an administrator typ-
ically looked into HTTP User-Agent fields for app names
to identify a user’s online app usage. Nowadays, such an
approach becomes less effective due to the wide adoption
of HTTPs. User’s most online data connections have been
encrypted and hidden from the administrator.

3.2 Dataset Description

3.2.1 Data Collection
To facilitate data collection, a specialized app is developed
and implemented in smartphones. The app runs as a back-
ground service and records phone’s traffic statistics and
geolocations. Table 1 shows the structure of our dataset. The
data is sorted by time sequence. Each entry consists of the
phone’s time instance, the connected BS ID, GPS coordinate,
overall cellular Tx/Rx data rate, and cellular Tx/Rx data
rate for each online app. This record will serve as both
the training and testing set. The fine granularity guaran-
tees the accuracy of traffic prediction. The data collection
process spans a period of one month (from 03/01/2019 to
04/01/2019) with a major cellular carrier in the US. Ten
volunteers have participated. Half of them live and work in
the bay area, while the other half are in a mid-sized city of
the US. As for the means of commute, three of the volunteers
take the Bay Area Rapid Transit (BART), five of them drive,
and the last two walk. In total, we collected more than 106

data samples involving 1564 BSs and 12 online apps after
deleting erroneous samples.

The sampling rate here is 1 sample per second, i.e.,
1Hz. To our best knowledge, 1Hz is the highest sampling
rate available in most commercial smartphones. While some
GPS chips provide sampling frequency up to 5-10Hz, they
are not equipped to current smartphones yet. A higher
sampling rate produces more fine-granular real-time read-
ings of user traffic and thus potentially produces a more
accurate prediction. On the other hand, while the traffic
data is sampled at 1Hz, this module is active only when
a phone is transmitting/receiving via cellular connections.
Thus, no data is collected when the phone is in sleep mode
or connecting with WiFi. Besides, it does not mean that
the collected samples should be uploaded at such a high
frequency too. As discussed later, the collected data actually
can be uploaded in a much lower frequency.

3.2.2 Data Augmentation
Realizing that deep learning usually benefits from large
training sets [41], the original dataset is then compensated
by the addition of synthetic data that is generated via
data augmentation. The commonly used slicing window
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Fig. 2. Illustration of slicing window based data augmentation.

technique is adopted. It was originally introduced for deep
CNNs in [42], and then employed to enlarge sample space in
computer vision tasks and time-series data processing [43],
[44], [45].

Consider a volunteer’s data series collected in 30 days
Y = {y1,y2, · · · ,y30}, where yi represents the data vec-
tor for day i. A slice is a snippet of the original time
series, defined as Si:j = {yi,yi+1, · · · ,yj}, 1 ≤ i ≤
j ≤ 30. Suppose the length of the slice is s. The slic-
ing operation will be performed over a warping data
and generate a set of sliced time series: Slicing(Y , s) =
{S1:s, S2:s+1, · · · , S30−s+1,30, S30−s+2,1, · · ·S30:s−1}. Each
element (slice) in Slicing(Y , s) is treated as a data set
collected from a virtual user. We illustrate the entire process
in Fig. 2. Note that the slicing unit is a single day so as to
preserve the day-based temporal dependency in the original
dataset. The augmented dataset can be viewed constituting
of data from 150 users, including 10 volunteers and 140
virtual users, involving approximate 1.6×107 data samples.

As pointed out by [44], both window slicing, the one
adopted here, and window warping are widely used data
augmentation techniques for time series. While first inspired
from computer vision community, with its idea of extracting
slices from time series to construct synthetic dataset, win-
dow slicing has been investigated for augmenting training
dataset for time series for quite some time [42], [44], [46]. As
studied in [44], window slicing and window warping data
augmentation can both help improve time series classifica-
tion performance using CNN. Nonetheless, it is hard to tell
which one beats the other. On one hand, warping window
results in a lower error rate in classification than window
slicing. On the other hand, the former causes much higher
error rate dispersion than the latter. Besides, the user’s traffic
data exhibits clear daily-periodic pattern on weekdays, as
demonstrated in Fig. 3. Thus, it is convenient to set one-
day duration as the size of window for slicing in our case.
In regard to window warping, while it does not require
any clear time-domain pattern in the original time series
for data augmentation, its computation complexity is higher
due to, for example, identifying the minimum warping path
between two datasets.

As a note, instead of sharing a common model, the
proposed GCGRN is customized for each user, i.e., the
parameters in the neural network are distinct from each
other. Thus, a user’s GCGRN is trained solely based on
her own historical data and irrelevant to her peers. In this
sense, it is more critical to collect a user’s data for a long
time duration for the training purpose. In the experiment,
the data collection lasts for one month, which is deemed
sufficient for the proposed GCGRN to extract daily-patterns
from the traffic usage. The main reason for collecting data

from multiple volunteers, 10 in this paper, and creating 140
more synthetic users is not for training a single model.
Instead, it is for validating the effectiveness of GCGRN in
traffic prediction across different users with diverse service
usage pattern.

3.3 Privacy Considerations
According to our design, telecommunication carriers, e.g.,
AT&T and Verizon, acquire mobile user’s traffic statistics
and geolocations for traffic prediction. These data are classi-
fied as customer proprietary network information (CPNI) by
FCC 16-148 [47]. This regulation recognizes three categories
of approval with respect to use of customer CPNI obtained
by providing telecommunications services: opt-in approval
for the use of sensitive CPNI, opt-out approval for the
use of non-sensitive one, and congressionally-recognized
exceptions to approval for the use of CPNI that is essential
for providing broadband services. Apparently, our case falls
into the first category, opt-in approval. In a word, STEP is
designed as an add-on function for cellular communication
systems. Its installment and launching in a personal mobile
device should receive affirmative permission from the user.

4 SPATIO-TEMPORAL MODELING FOR USER
TRAFFIC PREDICTION

4.1 Spatio-Temporal Dependency of User Traffic
We first demonstrate the spatio-temporal dependency of
user traffic, which lays a foundation for developing spatio-
temporal deep learning techniques in traffic forecasting.
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Fig. 3. Time-domain distribution of a randomly selected volunteer’s
cellular traffic.

Fig. 3 shows the time-domain traffic characteristics from
an arbitrary volunteer. We randomly select two working
days for comparison. It is observed that the volunteer’s traf-
fic on different days exhibit quite similar patterns. Cellular
traffic exists in relatively constant time durations through-
out a day. Besides, the traffic demonstrates a similar shape in
these two days. This is because a user has a relatively stable
app usage habit, and each app has similar data rate patterns.
STEP should be capable of capturing such properties from
the historical record and leveraging them for prediction.

Fig. 4 shows the spatial distribution of a volunteer’s
traffic at a given fixed time duration. It is a statistic re-
sult from his mobility observed for the entire month. This
volunteer takes BART from home to work every morning
during weekdays. Thus, his cellular traffic presents in the
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Fig. 4. Heat map (aggregated over one month) of a randomly selected
volunteer’s mobility at a fixed time duration of a day.
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Fig. 5. Part of graph representation of a particular user.

same section of his commute route. As shown in Fig. 4(a), he
consistently shows up between Dublin/Pleasanton station
and Castro Valley station at 9:40am-9:50am every day. This
is because BART is scheduled to arrive at these stations
following a fixed timetable daily. We have a similar ob-
servation over this volunteer’s mobility in other time slots
(e.g., Fig. 4(b)), as well as other volunteers’ mobility. Clearly,
a stronger spatio-temporal correlation in one’s traffic will
benefit accurate prediction.

4.2 Graph Representation of Spatio-Temporal Depen-
dency

We propose to utilize time-dependent graphs to model the
spatio-temporal dependency of user traffic. For a target user,
denote by V the set of all BSs that the user has accessed
before. Two BSs, i.e., nodes, are considered as neighbors
if the user was observed handed over between them at
least once in history. There is a directed edge connecting
two neighbors, indicating the direction of the handoff.
We then denote by E the entire set of directed edges. A
directed graph G = (V , E) is constructed for each user.
Both nodes and edges have associated time-variant features.
Given a time instance t, there is only one active node that
the user is accessing to. Its features include its index and
uplink/downlink traffic for each online app it carries for
the user. The features of other nodes at t are all empty
sets. If a handoff is observed over an edge at t, the edge
features include the source and destination for this handoff.
Similarly, features at other edges are empty sets.

Let Y (t) be the information observed over G(t) =
{V(t), E(t)}. The traffic prediction problem aims to learn
a function h(·) that maps T ′ graph information to future

T graph information, given a series of time-variant graph
G(t)’s

[Y (t− T ′ + 1), · · · ,Y (t);G(t− T ′ + 1), · · · ,G(t)]
h(·)−−→ [Y (t+ t0), · · · ,Y (t+ t0 + T )]. (1)

t0 is the prediction length, which is defined as the number
of time slots ahead of current time instance t. Theoretically,
t0 can range from several seconds to even dozens of hours.
For different t0’s, the parameters (fixed through training) in
a prediction model will vary as well.

4.3 Overview of GCGRN

To effectively learn spatio-temporal dependency of user
traffic, we construct a deep graph network, called graphic
convolution gated recurrent unit network (GCGRN). It is a
novel combination of graphic convolution network (GCN)
[48] and gated recurrent unit (GRU) [49]. Since user cellular
traffic is presented as graph-structured data, we want to
perform learning and prediction that take graphs as inputs.
Feasible approaches include GCN [48], [50], [51], [52], GNN
[53], [54], [55] and spectral networks [56]. They are superior
to conventional CNN based approaches due to their capabil-
ity in handling non-Euclidean characteristics of the complex
structure of graphs, while CNN was originally designed to
process rigid grid-structured pictures. Besides, we choose
GCN over GNN, because GNN is more computationally
intensive compared to the convolutional approaches, due
to the complexities of ensuring convergence or running
backpropagation through time. As a contribution of this
work, the proposed GCGRN extends the application of GCN
to time sequence data, which has rarely been investigated
before. A unit of GCGRN is given in Fig. 6. Specifically,
GRU is employed to capture temporal patterns exhibited
in user traffic. Thus, GCGRN allows to jointly learn user
traffic patterns among neighboring cells (in spatial domain)
and accumulate such patterns across a long-time periods (in
temporal domain).

4.4 Design Details

Convolution Operator. We thus model the spatial depen-
dency by relating traffic flow to a convolution process.
Given a graph signal Y ∈ RN×P that consists of features
of both nodes and edges, the convolution operation over Y
and a filter fθ is defined as Y :,p∗Gfθ =

∑K
k=1 θkL

kY :,p, p ∈
{1, · · · , P}where P stands for the number of input features,
N is the cardinality of the entire set of nodes and edges in
G, k is the diffusion step, and θ ∈ RN×K are parameters for
the filter. This expression is the spectral graph convolution
utilizing the concept of normalized graph Laplacian L =
D−

1
2 (D −W )D−

1
2 [55], with D ∈ RN×N as the diagonal

degree matrix. By this definition, a graph signal Y is filtered
by a kernel θ. In general, computing the convolution can be
expensive. However, since G is sparse, the computation can
be executed efficiently using O(K) recursive sparse-dense
matrix multiplication [57]. With the convolution operation,
we can build a diffusion convolution layer that maps P -
dimensional input features into Q-dimensional output fea-
tures. Denote the parameter tensor as Θ ∈ RQ×P×N×K ,
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Fig. 6. Architecture for one unit of GCGRN. GCGRN is a concatenation
of such units.

where Θq,p,:,: ∈ RN×K parameterizes the convolutional fil-
ter for the p-th input and the q-th output. The convolutional
layer is thus H :,q = σ(

∑P
p=1 x:,p∗GfΘq,p,:,:

), q ∈ {1, · · · , Q}
where H ∈ RN×Q is the output and σ is a non-linear
activation function, e.g., ReLU, Sigmoid. The convolutional
layer learns the representations for graph-structured data
and can be trained using stochastic gradient based methods.

We then integrate GRU into the above graph convolution
to further model temporal dependency. In particular, we
replace the matrix multiplications in GRU with the convo-
lution operation, which leads to our proposed GCGRN.

r(t) = σ(Θr∗G [Y (t),H(t− 1)] + br)

u(t) = σ(Θu∗G [Y (t),H(t− 1)] + bu)

C(t) = tanh(ΘC∗G [Y (t), r(t)�H(t− 1)] + bc)

H(t) = u(t)�H(t− 1) + (1− u(t))�C(t)

where Θr , Θu, and ΘC are parameters for corresponding
filters. r(t) is the reset gate at time t. Essentially, this gate
is used from the model to decide how much of the past
information to forget. u(t) is the update gate at time t.
It helps the model to determine how much of the past
information (from previous time steps) needs to be passed
along to the future. C(t) is the current memory content,
which determines how exactly the gates will effect the final
output. It is realized by the weight matrix and the nonlinear
activation function tanh. H(t) is the final memory at the
current time step, which holds the information for the cur-
rent unit and passes it down to the network. It determines
what to collect from the current memory content C(t) and
what from the previous steps H(t− 1).

Output Model. It is where the final prediction takes
place. Recall that STEP forecasts two classes of information:
which BS to access and uplink/downlink traffic of each
online app at a given future time instance. Thus the output
model consists of two components, one for each of them.

For the component of traffic prediction, because its
output is real-valued, i.e., a vector of predicted up-
link/downlink data rate for each app, we simply adopt
the linear activation function. For the component of BS
prediction, we apply the softmax function, which is typically
used in various multiclass classification. Specifically, the
input to the function is the result of |V| distinct linear
functions. Recall that |V| is the number of different BSs in
the dataset. Given the output of hidden layers H ′ and a

AWS Mobile Hub Amazon EC2

Fig. 7. The prototype of STEP built based on smartphones, AWS Mobile
Hub and Amazon EC2.

weighting vector W ′, the probability that the j-th BS will
be the serving BS at a specific future time instance is

Pr[c = j|H ′] = eH
′>W ′j∑K

k=1 e
H′>W ′k

.

Loss Function. Loss function is a critical indicator for
whether GCGRN has achieved stable convergence in train-
ing. Different from traditional neural networks that typically
have homogeneous classification objects, GCGRN handles
the prediction over heterogeneous objects, i.e, BS (one-
hot vector) and user traffic (real value). We then adopt
different weights for each of them during aggregation.
These weights, together with weight matrices/vectors in
hidden layers and output models, are determined during
training. Almeida-Pineda algorithm [58], a gradient-based
optimization method, is adopted. It runs the propagation
step to convergence and computes gradients based on the
converged solution.

5 EXPERIMETAL EVALUATION

The purpose for this section is threefold, to validate the
effectiveness of applying GCGRN model to user traffic
prediction, to compare its performance with the state-of-the-
art time-series based approaches, and to evaluate its system
performances.

5.1 Experimental Settings

As a proof-of-concept implementation, we prototype STEP
based on smartphones, AWS Mobile Hub [59], and Amazon
EC2 [60]. Its logic architecture is shown in Fig. 7. All data
readings are uploaded to Amazon EC2 with the assistance
of AWS Mobile Hub at a predefined frequency. Amazon
Mobile Hub is a collection of AWS tools designed to help de-
velopers build cloud-based applications for mobile devices.
In our implementation, we integrate and configure Amazon
EC2 as one service console of AWS Mobile Hub. Thus, the
data collected via Mobile Hub can be readily available at the
backend EC2 where training and prediction are performed.
Amazon EC2 is configured with the central processing unit
(CPU) Intel(R) Xeon(R) CPU E5-2686 v4 @ 2.30GHz, with
60GB RAM and the Cuda enabled graphics processing unit
(GPU) Nvidia Tesla K80. Besides, Huawei Honor 5X mobile
phones are used. Each runs Android 5.1, and is equipped
with a Qualcomm 8-core processor at 1.5GHz clock speed,
16GB storage and 2GB memory. GCGRN is built using the
Keras library [61]. Performances are evaluated based on the
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Fig. 9. Prediction performance with respect to training sample size and
prediction length.

dataset discussed in Section 3.2. It covers comprehensive cel-
lular data usage traces of 150 users, including both real and
synthetic ones. The entire dataset is divided into training
and test sets.

5.2 Offline Training Performance
Training plays a critical role to ensure the prediction ac-
curacy. To determine whether the model has been trained
properly, we monitor the training process in Fig. 8. Fig.
8(a) shows the stability coefficient. It is calculated by∑
|ŷ(t) − ŷ(t − 1)|/

∑
|ŷ(t)| that measures the distance be-

tween outputs from two successive epochs and tells whether
the network converges. Note that one epoch is when an
entire training dataset is passed both forward and backward
through the model once. The stability coefficient quickly
drops to 0 after around 30 epochs. Fig. 8(b) plots the loss
value, another indicator whether the model is properly
trained. It is considered as the “price” paid for prediction
inaccuracy. As shown, loss tends to be stable after 20 epochs.
Combining the results above, it is sufficient to set 40 epochs
for training. Its corresponding time will be discussed later.

5.3 Prediction Performance
We now examine the prediction performance via two com-
monly used metrics: Mean Absolute Relative Error (MARE)
and Relative Mean Square Error (RMSE). Specifically,
MARE = 1

M

∑
i
|yi−ŷi|

yi
and RMSE =

√
1
M (

∑
i |yi − ŷi|2)

where M is the test data size, i ∈ [1,M ] is the index of each
test sample, and yi and ŷi stand for the ground truth and
prediction, respectively. MARE measures the relative error
in a set of predictions. RMSE is a quadratic scoring rule

that also measures the average magnitude of the error. Both
of them are negatively-oriented scores, which means the
lower the better. As a note, the prediction output of GCGRN
consists of heterogeneous objects, i.e, BS (one-hot vector)
and user traffic (real value). In the evaluation of MARE and
RMSE, we follow the same idea of unifying them in the loss
function. A set of weights are adopted. Their values are set to
the weights in the loss function derived in the last iteration
of training.

Impact of Training Sample Size. We observe in Fig.
9(a) that RMSE decreases almost linearly as the training
sample ratio increases. Thus, in order to achieve better
prediction accuracy, a straightforward solution is to involve
more training samples. On the other hand, as shown in Fig.
9(b), it leads to longer training time. For example, when half
of the data is used for training, the corresponding time is
212.5s, which is still acceptable for the offline model.

Impact of Prediction Length. Fig. 9(c) shows that the
prediction accuracy deteriorates as the prediction length
grows. The prediction length is exactly t0 in (1), the number
of time slots ahead of the current time instance. Loss expe-
riences a sudden surge after t0 = 1s. It increases gradually
after that but becomes relatively stable after t0 = 300s. We
further plot MARE with respect to t0 in Fig. 9(d). A similar
trend is observed.

Time instance
0 100 200 300 400 500

D
at

a 
ra

te
 (k

bp
s)

0

100

200

300

400

500
Ground truth
GCGRN

(a) t0 = 5s

Time instance
0 100 200 300 400 500

D
at

a 
ra

te
 (k

bp
s)

0

100

200

300

400

500
Ground truth
GCGRN

(b) t0 = 180s

Fig. 10. Virtualized prediction result under different prediction lengths
(t0).

To better quantify prediction accuracy, we visualize fore-
casting results on traffic data rate under different t0’s in Fig.
10. We find that the forecasting result matches well with the
ground truth when t0 = 5s. It not only accurately estimates
the mean when small oscillations exist, but also predicts
abrupt changes. The performance becomes mediocre under
a longer prediction length, which meets our expectations.

5.4 Performance Comparison with Other Prediction
Models

In this section, we compare the performance of GCGRN
with some other existing prediction models.

• ARIMA. It is short for Auto-Regressive Integrated
Moving Average model [62], which is commonly
used for modeling time series behaviors and has
been widely adopted in time series prediction.

• LSTM. It is short for Long-Short Term Memory
[63], which is one type of recurrent neural network
(RNN). In the evaluation, we have 4 layers of LSTM
cell. For each layer, there are 8 LSTM cells. ReLU is
adopted as the activation function.

• GNN. In [38], GNN is applied to predict large-scale
cellular traffic. We use 5 hidden neurons for each
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Fig. 11. Prediction accuracy comparison among GCGRN, ARIMA,
LSTM, and GNN.

layer of the propagation model with a linear acti-
vation function and 6 neurons for each layer of the
output model with tanh activation function.

ARIMA model is implemented using the “forecast” R
package. It automatically selects the best model parameters
based on the given order constraints. LSTM and GNN
models are implemented using the “Keras” python library
[61]. Fig. 11(a) compares MARE achieved by the four models
for five randomly selected volunteers. MARE is short for
Mean Absolute Relative Error. It reflects the prediction error
of a given algorithm; the higher value is, the more error is
exhibited. Take data from the first volunteer as an example,
the MARE achieved by GCGRN, ARIMA, LSTM, and GNN
is 2.96 × 104, 3.90 × 104, 3.41 × 104, and 3.15 × 104,
respectively. Given these values, the prediction error, i.e.,
MARE, caused by our GCGRN is merely 2.96×104

3.90×104 = 75.2%,
2.96×104

3.41×104 = 84.9% and 2.96×104

3.15×104 = 90.7% of ARIMA, LSTM
and GNN, respectively. We have a similar observation on
RMSE in Fig. 11(b). ARIMA is a model that captures a suite
of temporal structures in time series data. For LSTM, since
it introduces “memories” (cells), it takes into account the
historical data for prediction. When applied in traffic pre-
diction, they simply explore temporal dependencies in user
traffic data, but neglect spatial correlations. While GNN is
capable of extracting spatial features from graph-structured
cellular traffic, it is not designed for handling time series
data.

TABLE 2
BS Prediction accuracy comparison.

Volunteers GCGRN (%) GNN [38] (%)
Vol. 1 94.4± 1.3 81.9± 0.7
Vol. 2 93.6± 2.9 80.8± 1.9
Vol. 3 93.3± 4.2 81.1± 1.5
Vol. 4 92.8± 0.6 79.8± 2.5
Vol. 4 94.5± 1.8 80.1± 3.3

TABLE 3
Performance breakdown of GCGRN and GNN on vol.1.

Training 30% 40% 50% 60% 70%sample
GCGRN 71.2±1.7 81.5±2.4 87.8±0.9 92.9±2.1 94.4±1.3

GNN 62.5±0.4 71.7±1.2 75.2±2.2 80.6±1.6 81.9±0.7

Table 2 compares the BS prediction accuracy over each
volunteer’s dataset by GCGRN and GNN. This parameter
is defined as the ratio of correct prediction on BS access.
The prediction length t0 is set to 5s for both models. We
observe that GCGRN is superior to GNN across all apps.
As mentioned, this is because GCGRN is empowered by
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Fig. 12. Virtualized prediction result comparison between GCGRN and
GNN.

GRU, the memory cells to recognize temporal patterns.
Table 3 further breaks down the prediction performance
for volunteer 1 as the training data size varies. GCGRN
outperforms GNN in all cases. To realize a similar accuracy
level, GCGRN acquires for much less training data than
GNN. Fig. 12 provides the virtualized prediction result
comparison between GCGRN and GNN regarding traffic
data rate. Apparently, the former outperforms the latter.

TABLE 4
Comparison of BS Prediction accuracy at handoffs.

Volunteer GCGRN (%) GNN [38] (%)
Vol. 1 90.1± 0.7 79.9± 1.1
Vol. 2 89.3± 1.2 78.2± 1.2
Vol. 3 91.2± 1.3 73.4± 2.1
Vol. 4 88.1± 0.6 77.1± 1.9
Vol. 5 90.7± 1.6 75.3± 1.7

Table 4 shows BS prediction accuracy during handoff
process. Since it is too strict to predict the exact time instance
that a handoff is to occur, in the evaluation, a prediction is
deemed success if the ground truth is within ±5s of the pre-
dicted value. Such a relaxation is not far-fetched. In practice,
we can have BSs to reserve resources a short period ahead of
the predicted service arrival to remedy the impact caused by
inaccurate BS prediction during handoffs. (This is also what
we do in the NS-3 simulation.) We observe in the above table
that its accuracy is slightly lower than the overall BS predic-
tion accuracy (Table 2). Still, the performance is satisfactory.
As shown later, GCGRN achieves similar performance with
resource reservation under perfect prediction, in terms of
handoff blocking ratio and resource utilization. Moreover,
we also compare the prediction accuracy between our pro-
posed GCGRN and GNN. Our approach outperforms GNN
over all datasets. For example, the average accuracy for vol.
1 is 90.1%, while that of GNN is only 79.9%.

5.5 Online Training vs. Offline Training

We consider both offline and online training for the pro-
posed GCGRN. For offline training, the model, i.e., param-
eters, is fixed during prediction. The training is conducted
based on datasets collected for a long time duration, say one
month. For online training, the model continues to update
according to newly reported data collected from a user. Fig.
13 compares the prediction performance of GCGRN under
these two training frameworks. For the setting t0 = 1min
of online training, the user uploads its transmission record
for the past one minute to the cloud, which sequentially
trains the model and outputs the forecasting. From Fig.
13(a) and Fig. 13(c), we find that online training produces
more accurate results. Besides, even when t0 = 5min, the
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TABLE 5
Time comsumption comparison.

Training time Testing time

Offline
123.22± 2.4(s) (30%) 2.72± 0.1(s)
170.79± 3.1(s) (40%) 1.65± 0.1(s)
212.09± 1.1(s) (50%) 1.37± 0.2(s)

Online
45.3± 0.1(ms) (1/1min) 1.4± 0.1(ms)
67.9± 0.7(ms) (1/3min) 1.9± 0.2(ms)
87.7± 0.5(ms) (1/5min) 2.8± 0.2(ms)

prediction still matches well with the ground truth via
online training. A similar performance can be achieved by
offline training, but at a much shorter prediction length (see
Fig. 10). Therefore, online training can effectively capture
abrupt changes in user traffic even at a relatively longer
prediction length.
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Fig. 13. Prediction performance comparison between offline and online
training.

Table 5 gives the time consumption of offline and online
training. The number in a pair of parentheses of online and
offline stands for training sample ratio and training data up-
loading frequency, respectively. We observe that testing (i.e.,
prediction) can be efficiently conducted, within a couple of
seconds, in either case. The most time-consuming part is
training. Besides, offline training takes longer than online
training. This is because the former is performed over a
much larger dataset, while the latter is conducted over a
data segment for a short time period. For example, only
data collected in the past one minute is used to update the
current model under the uploading frequency 1/1min, i.e.,
t0 = 1min.

As a summary, online training produces a more accurate
prediction for consistently updating the GCGRN model to
better accommodate unforeseen changes in a timely man-
ner. On the other hand, online training also requires more
frequent data uploading at the user side. As a result, it
inevitably causes extra communication and energy con-
sumption which will be evaluated soon.

5.6 Energy Consumption

Since the cloud is grid powered, its corresponding energy
consumption is of less concern. To facilitate online training,
mobile devices need to upload collected data to the cloud

and is thus energy-consuming. Since mobile devices are
battery-powered, it is critical to examine the impact of data
transmission on their battery consumption.

Fig. 14. Power measurement of a Huawei Honor smartphone. A com-
patible battery interface circuit (as shown in the red box) was carved out
from the same smartphone and used as an adapter between the phone
and the power monitor.

There have been some existing software-based ap-
proaches for measuring energy consumption at smart-
phones. However, they are mostly manually controlled and
thus cannot provide agile readings. To bridge this gap, in
this work we measure the precise energy consumption using
the dedicated hardware, the Monsoon power monitor [64] as
shown in Fig. 14. During the measurement, we kept other
components, e.g., WiFi and Bluetooth, offline.

Fig. 15(a) depicts the relation between smartphone’s
energy consumption and data uploading frequency. The
result is an accumulated value for a duration of one hour. The
energy consumption demonstrates a positive relationship
with the uploading frequency. For example, the smartphone
consumes a total of 138J in an hour, when data is uploaded
every 2min; the value becomes 42J when the frequency
decreases to once every 6min. It is worth noting that since
STEP focuses on cellular traffic prediction, data collection
and uploading are only executed when mobile devices
are using cellular connections. Thus, it is appropriate to
examine energy consumption over a one-hour period in the
experiment. Table 6 provides with power consumption of
some common smartphone tasks. We notice that the power
consumption of data uploading, 1173.6mW, is only slightly
higher than that for screen-on operations, 769.1mW. It is
much more energy-efficient than most of the operations,
such as map service, sending a text message, etc. We con-
clude that STEP only imposes mild energy overhead to
smartphones.

5.7 Communication Overhead

In addition to energy overhead, data uploading also causes
communication overhead, which is measured by the total
data amount transmitted in an hour. Communication over-
head demonstrates a positive correlation with uploading
frequency in Fig. 15(b). While the total transmission payload
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Fig. 15. Energy and communication overhead of data uploading for a
one-hour duration.
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TABLE 6
Power consumption by different operations at the smartphone.

Operation Power consumption (mW)
STEP data uploading 1173.6

Screen on 769.1
Map service 2642.8

Sending a text message 1475.0
Sending an email 1632.3

Video call 3351.6
Web browsing 1732.7
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Fig. 16. Mobile device CPU and memory utilization during data collection
and data uploading.

(in an hour) is roughly the same under different frequencies,
a higher frequency produces extra packet heads and thus
leads to larger communication costs. Fig. 15(c) shows the
impact of uploading frequency to the total transmission
duration in an hour. For example, when the smartphone
uploads its data once per 2 minutes, it takes 80.4s as a total
(in an hour); it drops to 27.3s when the frequency decreases
to once per 6 minutes, which only takes a small portion of a
one-hour period, i.e., 0.8%.

5.8 System Usage
To evaluation the CPU and memory utilization during
data collection and transmission, we run the prototype
application on mobile devices whose system specifications
are clarified in Section 5.1. The program is run alone and
concurrently with a high load benchmark program provided
by AnTuTu [65], separately. Note that AnTuTu is a software
commonly used to benchmark phones and devices.

Fig. 16(a) and Fig. 16(a) show the CPU and memory
usage during data collection, respectively. We find that the
data collection program consumes fewer system resources
when the mobile device runs with a high load. More impor-
tantly, the data collection program requires low resources.
It occupies lower than 6% CPU and 26MB memory 99% of
the time. We also provide system usage of data transmission
under different uploading frequencies in Fig. 16(c) and Fig.
16(d). Benchmark stands for the measurement obtained
when the device is in idle status (without running any
program). We observe in Fig. 16(c) that the CDF curves
for CPU usage under different uploading frequencies are

almost identical to that of the benchmark. It implies that
the uploading process of STEP costs negligible CPU from
a statistic view. Fig. 16(d) shows that a higher uploading
frequency leads to a slightly larger memory occupancy.
Still, the extra memory caused by data uploading is mild,
compared with the device’s total 2GB memory.

Clearly, there is a tradeoff between resource consump-
tion (including energy/communication overhead and sys-
tem usage) and prediction accuracy. With a lower upload
frequency, we can expect a smaller resource consumption
overhead. On the other hand, it can only support longer
prediction lengths. As shown in Fig. 13(a) and Fig. 13(b),
prediction length has a negative correlation with prediction
accuracy. Combing the results all above, we find that it is
suitable to have mobile devices upload their data records
once every 3-6 minutes to achieve both promising prediction
accuracy and reasonable resource overhead.

6 NS-3 BASED NETWORK SIMULATION

In order to evaluate the impact of user-level fine-granular
traffic prediction to cellular network performances, we fur-
ther run on the Network Simulator (NS-3) a series of net-
work simulations. The LENA LTE module (Release ns-3.18)
is adopted, which provides full LTE stack implementation
based on Release 9. Some key simulation parameters are
summarized in Table 7. We randomly pick a volunteer’s
data from the dataset that is gathered during in-field data
collection campaign. A twenty-minute record is segmented
to generate some critical simulation parameters, including
the user’s realtime data traffic and its associated cell in
each time instance, its trace, and the simulation topology.
Thus, all these parameters are extracted from a volunteer’s
real-world dataset, rather than synthetic values generated
by NS-3. As there are totally 29 different cell IDs recorded
in this 20-min session, we thus set this value as the total
number of BSs in the simulation. A critical task is to decide
their coordinates in the simulation. For each BS, we first
list the user’s coordinates where it is associated with this
BS. Then, their centroid is used to approximate the BS’
location. In addition to this “real” user, each BS is associated
with 30-40 users, randomly distributed within its radius. For
these users, each of them is set under RandomWalk model.
Besides, A2-A4-RSRQ1 is employed as the handoff model.

TABLE 7
Simulation parameters.

Parameter Value
Center frequency 5.18GHz

Subcarrier bandwidth 180KHz
BS number 29
Cell radius 500m

User distribution Random uniform
Propagation loss model Two-ray ground

Antenna height 30m (BS), 1.5m (UE)
BS Tx power 43dB
UE Tx power 20dB

UE traffic type CBR, 1Mbps
Simulation duration 20min

1. A handoff is triggered when the serving cell’s RSRQ (Reference
Signal Received Quality) becomes worse than a threshold and, mean-
while, neighbor cell’s RSRQ becomes better than another threshold.
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The implementation code is modified to channel the pre-
diction results obtained from GCGRN to guide the resource
allocation procedure in the MAC layer. Specifically, a certain
amount of RBs are reserved at target BSs 10s ahead of the
user’s arrival. The exact number of RBs is derived from the
user’s forecasting results. The reservation is released once
this user leaves that cell. Simulations are carried out in a
system running Ubuntu 16.04 (LTS) 64-bit, with an 8-core
Intel Core i7-4810MQ CPU 2.80GHz and 16GB RAM. All
results are an average over 100 trials.

Arrival of new handoff
session

Yes

NoIs resource
reserved?

No

Is reserved
resource

sufficient?

Allocate RBs

Is remaining
resource
sufficient

No

Yes

Handoff failed
No

Yes

Fig. 17. The flowchart of how BS handles handoff sessions with re-
source reservation.

Fig. 17 shows the policy BSs follow to handle handoff
sessions. It adopts the conventional fashion of prediction
guided resource reservation for handoffs in cellular net-
works with minor adaption. The logic is implemented at the
BS’ MAC layer in NS-3 simulations. Such a policy follows
the idea of handoff prioritization [66]. From the users perspec-
tive, the termination of an ongoing call is more annoying
than the blocking of a new call. Consequently, the handoff
blocking and the forced termination probabilities ought to
be minimized. The idea of handoff prioritization approaches
is to give handoff requests precedence over the new session
requests in some way.
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Fig. 18. Cellular network performances under different bandwidth reser-
vation schemes.

Fig. 18(a) and Fig. 18(b) plot the user’s session dropping
ratio, which is defined as the percentage of unsuccessful
session handoffs among all the tests. It happens when the
target BS is short of RBs. We tend to use this ratio to partially
reflect the conventional CDP. Besides, we also evaluate the
naive reservation and the case without reservation. In the
former, every BS reserves one RB for the user throughout the
entire simulation duration. We find that the scheme without
reservation has the highest dropping ratio, while the other
two exhibit similar performances. When the network is lack
of bandwidth, say 6MHz for each cell, handoff failures are
likely to happen, as high as 28%. However, this value is
only 5% when a reservation scheme is in place. Besides, the
ratio drops quickly as more bandwidth is available. Thus,
bandwidth reservation is effective to bring down session
dropping ratios, especially when the network is crowded.

Fig. 18(c) and Fig. 18(d) further illustrate the bandwidth
utilization under the three schemes. It is the percentage
of the total bandwidth actually being used by connections
in a cell and reflects how the network resource is being
used. We find that the naive reservation has the lowest
bandwidth utilization. Thus, the resource is poorly utilized.
For the reservation scheme guided by GCGRN, RBs are
only reserved 10s ahead of the user arrival. Moreover, since
GCGRN is able to provide accurate traffic prediction, only
a proper amount of RBs are reserved tightly according to
the forecasted traffic. Thus, GCGRN is intelligent in guiding
more flexible and efficient resource reservation.

We further evaluate the impact of inaccurate prediction
on network performance. Specifically, we consider perfect
prediction as a benchmark by which the traffic demand
and arrival time of services are the same as the ground
truth. We also apply GNN on traffic prediction. Table 8
compares the session dropping ratio among the three pre-
diction approaches. Recall that the user’s session dropping
ratio is defined as the percentage of unsuccessful session
handoffs among all the tests. We observe that the proposed
GCGRN introduces similar dropping ratios as perfect pre-
diction when there are totally 30 users in each cell due to its
high prediction accuracy. On the other hand, GNN causes
the highest dropping ratio. Besides, the difference is more
significant when the system is short of sources, i.e., smaller
spectrum bandwidth in a cell. Thus, accurate prediction is
more critical to guide resource reservation in these scenar-
ios. As a note, as GNN lacks components to capture time-
dependent features in a time series dataset, it cannot provide
accurate prediction as the proposed GCGRN.

Table 9 illustrates the spectrum utilization under the
three approaches. It is the percentage of the total bandwidth
actually being used by connections in a cell and thus reflects
how the network resource is being used. We find that
perfection prediction leads to the best performance, while
GNN results in the worst one. For example, when the total
bandwidth is 5MHz, the average utilization achieved by the
three approaches are 81.7%, 81.1%, and 76.0%, respectively.
Like above, the impact of prediction accuracy becomes
negligible when more resources are available. The reason
can be briefly explained as follows. When the predicted
traffic is larger than the real amount, it would not cause
noticeable network resource waste, as there are sufficient
RBs to support other incoming services; when the former
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TABLE 8
Session dropping ratio comparison under different prediction approaches.

Bandwidth (MHz) 5 6 7 8 9 10
Perfect prediction 3.2±1.5 2.8±1.7 1.8±1.1 1.6±0.5 1.6±0.3 1.4±0.3

GCGRN 4.5±1.4 3.7±1.8 3.2±2.2 1.8±1.5 1.8±0.7 1.8±0.5
GNN 5.0±1.2 4.0±1.3 3.6±2.0 1.9±0.8 1.8±0.4 1.8±0.3

TABLE 9
Bandwidth utilization comparison under different prediction approaches.

Bandwidth (MHz) 5 6 7 8 9 10
Perfect prediction 81.7±5.6 79.3±5.1 74.3±4.2 69.0±3.7 63.5±4.0 59.2±4.2

GCGRN 81.1±6.9 78.6±7.1 75.2±7.4 68.6±6.3 61.6±6.5 59.2±6.1
GNN 76.0±7.8 75.1±7.6 69.7±6.5 62.4±8.2 58.3±5.4 57.5±5.3

is less than the latter, the handoff service will unlikely be
rejected too, as the BS can always allocate vacant RBs to it.

As a summary, GCGRN-guided resource reservation ef-
fectively reduces session dropping ratio during handoffs in
cellular networks, which is a desirable property for densely
deployed cells. More importantly, it only occurs mild band-
width waste due to its accurate prediction.

7 CONCLUSIONS

In this paper we propose STEP, a spatio-temporal fine-
granular user traffic prediction mechanism for cellular net-
works. A novel deep graph convolution network, called
GCGRN, is developed to learn spatio-temporal dependency
from a user’s massive dataset for traffic prediction. STEP
achieves impressive prediction accuracy, especially under
online training model. Even though STEP requires mobile
users to periodically record and upload traffic statistics to
the (cloud) core network, extensive experimental results
show that they merely incur mild energy/communication
overhead and negligible system usage. Besides, NS-3 based
simulations also show that STEP is effective in bringing
down session dropping ratio in cellular networks.
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