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Abstract

We propose a new machine-learning approach to Stokes inversion based on a convolutional neural network (CNN)
and the Milne–Eddington (ME) method. The Stokes measurements used in this study were taken by the Near
InfraRed Imaging Spectropolarimeter (NIRIS) on the 1.6 m Goode Solar Telescope (GST) at the Big Bear Solar
Observatory. By learning the latent patterns in the training data prepared by the physics-based ME tool, the
proposed CNN method is able to infer vector magnetic fields from the Stokes profiles of GST/NIRIS.
Experimental results show that our CNN method produces smoother and cleaner magnetic maps than the widely
used ME method. Furthermore, the CNN method is four to six times faster than the ME method and able to
produce vector magnetic fields in nearly real time, which is essential to space weather forecasting. Specifically, it
takes ∼50 s for the CNN method to process an image of 720×720 pixels comprising Stokes profiles of GST/
NIRIS. Finally, the CNN-inferred results are highly correlated to the ME-calculated results and closer to the ME’s
results with the Pearson product-moment correlation coefficient (PPMCC) being closer to 1, on average, than those
from other machine-learning algorithms, such as multiple support vector regression and multilayer perceptrons
(MLP). In particular, the CNN method outperforms the current best machine-learning method (MLP) by 2.6%, on
average, in PPMCC according to our experimental study. Thus, the proposed physics-assisted deep learning–based
CNN tool can be considered as an alternative, efficient method for Stokes inversion for high-resolution
polarimetric observations obtained by GST/NIRIS.

Unified Astronomy Thesaurus concepts: Solar magnetic fields (1503); Computational methods (1965);
Convolutional neural networks (1938)

1. Introduction

Stokes inversion has been an important yet challenging task
in solar physics for decades (Auer et al. 1977; del Toro Iniesta
& Ruiz Cobo 1996; Asensio Ramos & de la Cruz
Rodríguez 2015). Its purpose is to infer physical parameters,
such as the total magnetic field strength, inclination and
azimuth angles, Doppler shift of the line center, and so on, from
spectropolarimetric data. In general, such an inversion task is
accomplished by attempting to find an appropriate forward
model that best describes the relationship between the spectral
shapes of the four Stokes components and the physical
parameters, which is essentially a nonlinear nonconvex inverse
problem. In the past, several inversion models have been
developed. Based on the Levenberg–Marquardt algorithm
(Landolfi et al. 1984; Skumanich & Lites 1987; Press et al.
1991), a simplified model named the Milne–Eddington (ME)
method (Auer et al. 1977; Landi Degl’Innocenti 1984) provides
an analytical solution for fast evaluation of the required
derivatives in the algorithm. Later, a more sophisticated
method based on response functions was introduced by Ruiz
Cobo & del Toro Iniesta (1992) that is able to retrieve height-
dependent information. This method has several different
implementations, including SPINOR (Frutiger et al. 2000),
Helix+ (Lagg et al. 2004), and VFISV (Borrero et al. 2011).

In recent years, with rapid developments of advanced
instruments and high-performance computers, powerful tele-
scopes, such as the Daniel K. Inouye Solar Telescope (McMullin
et al. 2012), European Solar Telescope (Collados 2008), and

Goode Solar Telescope (GST; Goode & Cao 2012) at the Big
Bear Solar Observatory (BBSO), can produce data in unprece-
dented spatial and spectral resolution with high cadence. In order
to process these data in a time that is practical on a human
timescale, more efficient and stable automated methods are in
demand. Many researchers have demonstrated that it is effective
and efficient to perform Stokes inversion based on machine
learning. For example, Socas-Navarro et al. (2001), Ruiz Cobo
& Asensio Ramos (2012), and Quintero Noda et al. (2015)
developed methods for transforming Stokes profiles to a low-
dimensional space using principal component analysis, which
reduces the computational load and makes subsequent inversions
faster. Carroll & Staude (2001), Socas-Navarro (2003, 2005),
and Carroll & Kopf (2008) employed multilayer perceptrons
(MLP) for Stokes inversion, demonstrating the speed, noise
tolerance, and stability of the MLP. Rees et al. (2004) and Teng
(2015) used multiple support vector regression (MSVR) for real-
time Stokes inversion. More recently, Asensio Ramos & Díaz
Baso (2019) performed Stokes inversion based on convolutional
neural networks (CNNs; LeCun et al. 2015) and applied their
techniques to synthetic Stokes profiles obtained from snapshots
of three-dimensional magnetohydrodynamic (MHD) numerical
simulations of different structures of the solar atmosphere.
In this paper, we present a new machine-learning method, also

based on CNNs, for Stokes inversion on the Near InfraRed
Imaging Spectropolarimeter (NIRIS) data (Cao et al. 2012). Our
CNN method differs from that of Asensio Ramos & Díaz Baso
(2019) in two ways. First, Asensio Ramos & Díaz Baso (2019)
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used Stokes spectra synthesized in three-dimensional MHD
simulations of the solar atmosphere and employed the CNNs to
exploit all of the spatial information encoded in a training data
set. In contrast, our method performs pixel-by-pixel inversions,
exploiting the spatial information of the Stokes profiles in a
pixel. Second, in the synthetic data used by Asensio Ramos &
Díaz Baso (2019), each Stokes component has 112 spectral
points. In contrast, in our NIRIS data, each Stokes component
has 60 spectral points. Due to the different input sizes, the
architecture of our CNN is different from those in Asensio
Ramos & Díaz Baso (2019).

The rest of this paper is organized as follows. Section 2
describes the NIRIS data used in this study and our data
collection scheme. Section 3 details our proposed CNN
architecture and algorithm. Section 4 reports experimental
results. Section 5 concludes the paper.

2. Data

The GST/NIRIS is the second generation of the InfraRed
Imaging Magnetograph (Cao et al. 2006), offering unprece-
dented high-resolution vector magnetograms of the solar
atmosphere from the deepest photosphere through the base of
the corona. Its dual Fabry–Perot etalons provide an 85″ field of
view with a cadence of 1 s for spectroscopic scans and 10 s for
full Stokes measurements. The system utilizes half the chip to
capture two simultaneous polarization states side by side and
provides an image scale of 0 083 pixel−1. It produces full
spectroscopic measurements I, Q, U, and V (Stokes profiles) at
a spectral resolution of 0.01 nm in the Fe I 1564.8 nm band,
with a typical range of −0.25 to +0.25 nm from the line center
(Wang et al. 2015, 2017; Xu et al. 2016, 2018; Liu et al. 2018).
Figure 1 illustrates the Stokes I, Q, U, and V components of a

pixel with an 857 G magnetic field strength, 98° inclination
angle, and 8° azimuth angle calculated by the ME method
(Auer et al. 1977; Landi Degl’Innocenti 1984). Each Stokes
component contains 60 wavelength sampling points.
We consider three active regions (ARs), namely, AR 12371,

AR 12665, and AR 12673, on four different days. For AR
12371, we consider 10 990×950 images collected at 10
different time points on 2015 June 22; we randomly select 1
million pixels (data samples) from these 10 images to form the
training set. Then, again for AR 12371, we consider 10
720×720 images collected at 10 different time points on 2015
June 25; we use the image collected at 20:00:00 UT on 2015
June 25 as the first test set. Next, we consider 10 720×720
images from AR 12665 collected at 10 different time points on
2017 July 13; we use the image collected at 18:35:00 UT on
2017 July 13 as the second test set. Finally, we consider one
720×720 image from AR 12673 collected at 19:18:00 UT on
2017 September 6 and use this image as the third test set. Each
test set (image) has 518,400 pixels corresponding to 518,400
data samples. The training set and each of the test sets are
disjoint. The first test set is of the same AR and within ∼3 days
of the training set, while the second and third test sets are of
different ARs just over 2 yr later. We want to see how well the
trained CNN model works on these different test sets.
Each data sample (pixel) is comprised of Stokes I, Q, U, and

V profiles taken at 60 spectral points. In addition, each data
sample has a label, which is the vector magnetic field,
including the total magnetic field strength; inclination angle;
and azimuth angle, calculated by the ME method. During
training, the labels of the data samples in the training set are
used to train and optimize our CNN model. Because the labels
of the training data are created by the physics-based ME

Figure 1. Stokes profiles of a pixel with an 857 G magnetic field strength, 98° inclination angle, and 8° azimuth angle calculated by the ME method. Each Stokes
component has 60 wavelength sampling points.
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method, our CNN model can be considered as a physics-
assisted deep learning–based method.

During testing, we use the trained CNN model to predict or
infer the label of a test data sample from the Stokes Q, U, and V
profiles, calibrated by the Stokes I component (Unno 1956), of
the test data sample. We then compare the labels (i.e., vector
magnetic fields) inferred by our CNN model with those
calculated by the ME method for the test data samples under
consideration. Because the Stokes profiles and labels have
different units and scales, we normalize them as follows. For
the Stokes profiles, we normalize them by dividing them by
1000. For the labels, we normalize the total magnetic field
strength by dividing it by 5000 and the inclination and azimuth
angles by dividing them by π. The two numbers, 1000 and
5000, are used here because most of the Stokes measurements
have values between −1000 and +1000, and their total
magnetic field strengths range from −5000 to +5000 G.

After obtaining the estimated vector magnetic field, which is
inferred by our trained model, of a test data sample (pixel), we
can derive the three Cartesian components of the magnetic
field, namely, Bx, By, and Bz, of the pixel as follows:
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f q
f
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where Btotal denotes the total magnetic field strength, f is the
inclination angle, and θ is the azimuth angle.

3. Methodology

We use a CNN to infer vector magnetic fields from Stokes
profiles of GST/NIRIS. Our CNN model helps in denoising
inversions by exploiting the spatial information of the Stokes
profiles. Figure 2 presents the architecture of our network. It
contains an input layer, three convolutional blocks, two fully
connected layers, and an output layer. The input layer receives
a sequence of Stokes Q, U, and V components, each having 60
wavelength sampling points, with three channels. Each channel
corresponds to a Stokes component.

After the input layer, there are three convolutional blocks
with the following structures. The first convolutional block
consists of two convolutional layers that take, as input, the
output from the previous layer and filter it with 64 kernels
of sizes 3×1×3 and 3×1×64, respectively, and a
max-pooling layer with a pooling factor of 2. The second

convolutional block consists of two convolutional layers with
filters of 128 kernels of sizes 3×1×64 and 3×1×128,
respectively, and a max-pooling layer with a pooling factor of
2. The third convolutional block consists of two convolutional
layers with filters of 256 kernels of sizes 3×1×128 and
3×1×256, respectively. The third convolutional block does
not contain a max-pooling layer.
The activation functions used in both the convolutional and

fully connected layers are rectified linear units (ReLUs;
Goodfellow et al. 2016), defined as

= =
<
x x x x

x
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The output of the three convolutional blocks is flattened into a
sequence, which is then sent to the two fully connected layers
each having 1024 neurons activated by ReLUs. Finally, there is
an output layer with three neurons activated by the hyperbolic
tangent function (Tanh; Goodfellow et al. 2016), defined as
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where each neuron outputs a value that lies in the range (−1, 1)
representing the total magnetic field strength, inclination angle,
and azimuth angle, respectively. The training of the CNN
model is done by optimizing L1 loss, defined as follows
(Goodfellow et al. 2016):
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where N=1,000,000 is the total number of pixels in the
training set, and yi

tot, yi
inc, and yi

azi (yi
totˆ , yi

incˆ , and yi
aziˆ ,

respectively) denote the total magnetic field strength, inclina-
tion angle, and azimuth angle of the ith pixel calculated by the
ME method (inferred by our CNN method), respectively. The
L1 loss is chosen here because it is efficient and produces good
results, as shown in Section 4.
Our CNN model is implemented in Python, TensorFlow, and

Keras. A mini-batch strategy (LeCun et al. 2015; Goodfellow
et al. 2016) is used to achieve faster convergence during back-
propagation. The optimizer used is Adam (LeCun et al. 2015;
Goodfellow et al. 2016), which is a stochastic gradient descent
method. The initial learning rate is set to 0.001 with a learning

Figure 2. Architecture of our CNN. This network is comprised of an input layer, three convolutional blocks, two fully connected layers, and an output layer. The input
of the CNN is a three-channel sequence of Stokes Q, U, and V components each having 60 wavelength sampling points. The intermediate outputs of the three
convolutional blocks have 64, 128, and 256 channels, respectively. There are 1024 neurons activated by ReLUs in both of the two fully connected layers. The output
layer has three neurons activated by the Tanh function, where each neuron produces a value in the range (−1, 1) representing the total magnetic field strength,
inclination angle, and azimuth angle, respectively.
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rate decay of 0.01 over each epoch, β1 is set to 0.9, and β2 is set
to 0.999. The batch size is set to 256, and the number of epochs
is set to 50.

During testing, to infer the physical parameters of each pixel
in a test image, we take the Stokes Q, U, and V profiles of the
pixel and feed them to the trained CNN model. The CNN
model will output a three-dimensional vector with normalized
values in the range (−1, 1) representing the total magnetic field
strength (Btotal), inclination angle (f), and azimuth angle (θ),
respectively. By denormalization of the values, we can obtain
the inferred or estimated Btotal, f, and θ of the pixel.
Furthermore, based on the estimated Btotal, f, and θ, we can
derive the three Cartesian components of the magnetic field,
namely, Bx, By, and Bz, of the pixel using Equation (1).

4. Results

4.1. Performance Metrics

We conducted a series of experiments to evaluate the
performance of the proposed CNN model and compare it with
related methods based on four performance metrics: mean
absolute error (MAE; Sen & Srivastava 1990), percent
agreement (PA; McHugh 2012), R-squared (Sen & Srivastava
1990), and Pearson product-moment correlation coefficient
(PPMCC; Galton 1886; Pearson 1895). We considered six
quantities: total magnetic field strength (Btotal), inclination
angle (f), azimuth angle (θ), Bx, By, and Bz. For each quantity,
we compared its ME-calculated values with our CNN-inferred
values and computed the four performance metrics.

The first performance metric is defined as (Sen & Srivastava
1990)

å= -
=N

y yMAE
1

, 5
i

N

i i
1

∣ ˆ ∣ ( )

where N is the total number of data samples (pixels) in a test
image, and yi (yî) denotes the ME-calculated (CNN-inferred)
value for the ith pixel in the test image. This metric is used to
quantitatively assess the dissimilarity (distance) between the
ME-calculated and CNN-inferred values in the test image. The
smaller the MAE is, the better performance a method has.

The second performance metric is defined as (McHugh 2012)

= ´
M

N
PA 100%, 6( )

where M denotes the total number of agreement pixels in the
test image. We say the ith pixel in the test image is an
agreement pixel if -y yi i∣ ˆ∣ is smaller than a user-specified
threshold. (The default thresholds are set to 200 G for Btotal, Bx,
By, and Bz and 10° for f and θ.) This metric is used to
quantitatively assess the similarity between the ME-calculated
and CNN-inferred values in the test image. The larger the PA
is, the better performance a method has.

The third performance metric is defined as (Sen & Srivastava
1990)
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1 denotes the mean of the ME-calculated

values for all the pixels in the test image. The R-squared value,
ranging from -¥ to 1, is used to measure the strength of the

relationship between the ME-calculated and CNN-inferred
values in the test image. The larger (i.e., closer to 1) the R-
squared value, the stronger the relationship between the ME-
calculated and CNN-inferred values.
The fourth performance metric is defined as (Galton 1886;

Pearson 1895)

m m
s s
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where X and Y represent the ME-calculated and CNN-inferred
values, respectively; μX and μY are the mean of X and Y,
respectively; σX and σY are the standard deviation of X and Y,
respectively; and E(·) is the expectation. The value of the
PPMCC ranges from −1 to 1. A value of 1 means that a linear
equation describes the relationship between X and Y perfectly
where all data points are lying on a line for which Y increases
as X increases. A value of −1 means that all data points lie on a
line for which Y decreases as X increases. A value of zero
means that there is no linear correlation between the variables X
and Y. We will mainly use the PPMCC in our experimental
study because it measures the linear correlation between the
ME-calculated and CNN-inferred values, quantifying how well
the CNN-inferred values agree with the ME-calculated values
in the test image (Galton 1886; Pearson 1895; Sen & Srivastava
1990). The larger (i.e., closer to 1) the PPMCC is, the better
performance a method has. Notice that PA, R-squared, and
PPMCC do not have units, while MAE has units: Gauss for
Btotal, Bx, By, and Bz and degrees for f (inclination angle) and
θ (azimuth angle).

4.2. Results of Using AR 12371 on 2015 June 22 as
Training Data

In this experiment, we used the 1 million data samples
(pixels) from AR 12371 collected on 2015 June 22 as the
training data to train our CNN model. We then used the trained
CNN model to infer vector magnetic fields from the Stokes Q,
U, and V profiles of the pixels in the three test sets (images)
described in Section 2.5 For comparison purposes, we also used
the ME method (Auer et al. 1977; Landi Degl’Innocenti 1984)
to derive the vector magnetic fields of the pixels in the three test
images.
Figure 3 (Figures 4 and 5) presents results for the three

obtained quantities Btotal, f (inclination angle), and θ (azimuth
angle), displayed from top to bottom in the figure, of the test
image with 720×720 pixels from AR 12371 (AR 12665 and
AR 12673) collected on 2015 June 25 20:00:00 UT (2017 July
13 18:35:00 UT and 2017 September 6 19:18:00 UT). In all of
the figures, the first column shows scatter plots for each
obtained quantity. The X-axis and Y-axis in each scatter plot
represent the values obtained by the ME and CNN methods,
respectively. The black diagonal line in each scatter plot
corresponds to pixels whose ME-calculated values are identical
to CNN-inferred values. The second column shows magnetic
maps with 720×720 pixels derived by the ME method. The
third column shows magnetic maps with 720×720 pixels
inferred by our CNN method.

5 The source code and data sets used in the experiment can be downloaded
from https://web.njit.edu/~wangj/CNNStokesInversion/.
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Summary of the results. The scatter plots in the figures show
that the Stokes inversion results obtained by our CNN method
and the ME method are highly correlated. From the top left
panels in Figures 3–5, we see that the CNN-inferred Btotal

values are closer to the ME-calculated Btotal values in the low-
field end and farther from the ME-calculated Btotal values in the
high-field end. The figures also show that the CNN method
produces smoother and cleaner magnetic maps than the ME
method. There are salt-and-pepper noise pixels in the magnetic
maps produced by the ME method. To help locate the noise
pixels, we use percentage difference images in which the value
of the ith pixel is equal to -y yi i( ˆ)/yi × 100%, where yi (yî)
denotes the ME-calculated (CNN-inferred) value for the ith
pixel. For example, Figure 6 shows the percentage difference
images for the f (inclination angle) maps in Figures 3–5. The
percentage difference images highlight the locations of the

differences between the CNN-inferred f values and ME-
calculated f values in the test images. Figure A1 (Figures A2
and A3) in the Appendix presents results for the quantities Bx,
By, and Bz, displayed from top to bottom in the figure, of the
test image with 720×720 pixels from AR 12371 (AR 12665
and AR 12673) collected on 2015 June 25 20:00:00 UT (2017
July 13 18:35:00 UT and 2017 September 6 19:18:00 UT).
To quantitatively assess the number of noise pixels in the

magnetic maps derived by the ME and CNN methods, we
adopt a threshold-based algorithm, which works as follows. We
define P to be a noise pixel (outlier) with respect to a user-
specified threshold if, among Pʼs eight neighboring pixels,
there are more than four neighboring pixels satisfying the
following condition: the difference between the value of a
neighboring pixel and the value of P is greater than or equal to
the threshold. The default thresholds are set to 500 G for Btotal,

Figure 3. Comparison between the ME and CNN methods for deriving Btotal, f (inclination angle), and θ (azimuth angle) based on the test image from AR 12371
collected on 2015 June 25 20:00:00 UT, where training data were taken from AR 12371 on 2015 June 22. Displayed from top to bottom are the results for Btotal, f
(inclination angle), and θ (azimuth angle). The first column shows scatter plots where the X-axis and Y-axis represent the values obtained by the ME and CNN
methods, respectively. The black diagonal line in each scatter plot corresponds to pixels whose ME-calculated values are identical to CNN-inferred values. The second
column shows magnetic maps derived by the ME method. The third column shows magnetic maps inferred by our CNN method.
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Bx, By, and Bz and 20° for f (inclination angle) and θ (azimuth
angle). We define the outlier difference to be the number of
outliers produced by the ME method minus the number of
outliers produced by our CNN method. A positive outlier
difference means ME produces more outliers than CNN, while
a negative outlier difference means CNN produces more
outliers than ME.

Table 1 presents the performance metric values of the CNN
method. The results in Table 1 are consistent with those in
Figures 3–A3. Specifically, the CNN-inferred results are highly
correlated to the ME-calculated results, with PPMCC values
being close to 1. Furthermore, CNN produces smoother
magnetic maps with fewer outliers (noise pixels) than the ME
method. This happens because, among the 1 million training
data samples whose labels are calculated by the ME method,
there are relatively few outliers. The CNN method can learn

latent patterns from the majority of the training data samples,
which are clean. As a consequence, we obtain a good CNN
model capable of producing clean results. Tables A1 and A2 in
the Appendix present the performance metric values for the test
images from AR 12371 and AR 12665 collected at 10 different
time points on 2015 June 25 and 2017 July 13, respectively.
The results in these tables are consistent with those in Table 1.
Comparison with related methods. To further understand the

behavior of our CNN method and compare it with related
machine-learning algorithms, we conduct a cross-validation
study as follows. We partition the training set of 1 million data
samples from AR 12371 on 2015 June 22 into 10 equal-sized
folds. For every two training folds i and j, ¹i j, folds i and j
are disjoint. The first test set contains the 10 720×720
images, also from AR 12371, collected on 2015 June 25. These
test images are numbered from 1 to 10. In run i, 1�i�10, all

Figure 4. Comparison between the ME and CNN methods for deriving Btotal, f (inclination angle), and θ (azimuth angle) based on the test image from AR 12665
collected on 2017 July 13 18:35:00 UT, where training data were taken from AR 12371 on 2015 June 22. Displayed from top to bottom are the results for Btotal, f
(inclination angle), and θ (azimuth angle). The first column shows scatter plots where the X-axis and Y-axis represent the values obtained by the ME and CNN
methods, respectively. The black diagonal line in each scatter plot corresponds to pixels whose ME-calculated values are identical to CNN-inferred values. The second
column shows magnetic maps derived by the ME method. The third column shows magnetic maps inferred by our CNN method.
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training data samples except those in training fold i are used to
train a machine-learning model, and the trained model is then
used to make predictions on test image i. We calculate the
performance metrics MAE, PA, R-squared, PPMCC, and
outlier difference based on the predictions made in run i.
There are 10 runs. The means and standard deviations over the
10 runs are calculated and recorded. We also conduct the same
cross-validation study for the second test set containing the 10
720×720 images from AR 12665 collected on 2017 July 13
and the third test set containing the 720×720 image from AR
12673 collected on 2017 September 6. The third test set has
only one image; hence, in each run, the same test image is used.

The related machine-learning algorithms considered here
include MSVR (Rees et al. 2004; Teng 2015) and MLP
(Carroll & Staude 2001; Socas-Navarro 2003, 2005; Carroll &
Kopf 2008). The MSVR method uses the radial basis function

kernel. The MLP model consists of an input layer, an output
layer, and two hidden layers, both with 1024 neurons. Table 2
(Tables 3 and 4) presents the mean MAE, PA, R-squared,
PPMCC, outlier difference, and standard deviation for each
quantity Btotal, Bx, By, Bz, f (inclination angle), and θ (azimuth
angle) inferred by each of the three machine-learning methods,
MSVR, MLP, and our CNN, for the first (second and third) test
set. In the tables, PA, R-squared, PPMCC, and outlier
difference do not have units, while MAE has units: Gauss for
Btotal, Bx, By, and Bz and degrees for f (inclination angle) and θ
(azimuth angle) respectively. It can be seen from the tables that
the CNN-inferred results are highly correlated to the ME-
calculated results and closer to the ME’s results with PPMCC
values being closer to 1, on average, than those from the other
two machine-learning methods. In particular, based on the
calculations on the six quantities Btotal, Bx, By, Bz, f (inclination

Figure 5. Comparison between the ME and CNN methods for deriving Btotal, f (inclination angle), and θ (azimuth angle) based on the test image from AR 12673
collected on 2017 September 6 19:18:00 UT, where training data were taken from AR 12371 on 2015 June 22. Displayed from top to bottom are the results for Btotal, f
(inclination angle), and θ (azimuth angle). The first column shows scatter plots where the X-axis and Y-axis represent the values obtained by the ME and CNN
methods, respectively. The black diagonal line in each scatter plot corresponds to pixels whose ME-calculated values are identical to CNN-inferred values. The second
column shows magnetic maps derived by the ME method. The third column shows magnetic maps inferred by our CNN method.
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angle), and θ (azimuth angle) in Tables 2–4, our CNN method
outperforms the current best machine-learning method (MLP)
by 2.6%, on average, in PPMCC. However, there is no definite
conclusion about outlier differences among the three machine-
learning methods.

4.3. Results of Using Different ARs as Training Data

In the previous subsection, we use data points (pixels) from
AR 12371 on 2015 June 22 as training data. In this subsection,
we conduct additional experiments by varying the training data
as follows. There are four data sets, D1, D2, D3, and D4,
containing the images from AR 12371 on 2015 June 22, AR
12371 on 2015 June 25, AR 12665 on 2017 July 13, and AR
12673 on 2017 September 6, respectively. In each experiment,
we randomly select 1 million pixels (data samples) from one or
more data sets to form a training set. The CNN model is trained
on this training set, and the trained model is then used to
perform Stokes inversion on a test image. This test image must

be from a data set that is different from those data sets used to
construct the training set. The time points for the test image are
17:33:00 UT on 2015 June 22, 20:00:00 UT on 2015 June 25,
18:35:00 UT on 2017 July 13, and 19:18:00 UT on 2017
September 6. We use D Dx w

train test ( D Dx y w,
train test and

D Dx y z w, ,
train test) to represent the experiment that uses training

data samples from Dx (Dx and Dy and Dx, Dy, and Dz) and test
data samples (pixels) from Dw, where 1�x, y, z, w�4.
Because D4 has only one 720×720 image with 518,400
pixels, D4 alone is not used as a training set. Hence, there are
25 experiments in total. In each experiment, we calculate the
performance metrics MAE, PA, R-squared, PPMCC, and
outlier difference. Tables A3–A6 in the Appendix present the
experimental results. Major findings based on these tables are
summarized below.

1. Our CNN-inferred and ME-calculated results are highly
correlated and close to each other with a PPMCC of ∼0.9

Figure 6. Percentage difference images for the f (inclination angle) maps. The first panel shows the percentage difference image based on the test image from AR
12371 collected on 2015 June 25 20:00:00 UT. The second panel shows the percentage difference image based on the test image from AR 12665 collected on 2017
July 13 18:35:00 UT. The third panel shows the percentage difference image based on the test image from AR 12673 collected on 2017 September 6 19:18:00 UT.
These percentage difference images highlight the locations of the differences between the CNN-inferred f values and ME-calculated f values in the three test images.

Table 1
Performance Metric Values of Our CNN Method Based on the Test Images from Three ARsa

Btotal Bx By Bz f θ

2015 Jun 25 20:00:00 UT (AR 12371) MAE 86.660 88.997 66.140 55.653 4.867 11.136
PA 91.6% 91.3% 95.2% 94.7% 92.2% 79.1%

R-squared 0.963 0.936 0.901 0.976 0.838 0.720
PPMCC 0.983 0.968 0.951 0.989 0.916 0.853

Outlier differenceb 2959 4380 −770 1050 15108 7219

2017 Jul 13 18:35:00 UT (AR 12665) MAE 73.684 71.555 51.170 49.023 7.573 17.437
PA 91.5% 93.3% 96.4% 92.6% 84.8% 60.6%

R-squared 0.950 0.841 0.851 0.941 0.663 0.665
PPMCC 0.976 0.918 0.926 0.971 0.827 0.821

Outlier difference 3801 7280 3413 2478 35649 28274

2017 Sep 6 19:18:00 UT (AR 12673) MAE 193.680 146.100 124.783 136.892 5.497 9.009
PA 75.0% 80.1% 86.2% 87.2% 91.3% 79.1%

R-squared 0.841 0.884 0.777 0.736 0.776 0.807
PPMCC 0.935 0.943 0.888 0.859 0.881 0.902

Outlier difference 19651 22317 16592 12950 21951 14265

Notes.
a The performance metric values in the table are obtained by training the CNN model using 1 million pixels from AR 12371 collected on 2015 June 22 and then
applying the trained model to the test image from AR 12371 collected on 2015 June 25 20:00:00 UT (AR 12665 collected on 2017 July 13 18:35:00 UT and AR
12673 collected on 2017 September 6 19:18:00 UT).
b A positive outlier difference means ME produces more outliers than CNN, while a negative outlier difference means CNN produces more outliers than ME.
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or higher for the total magnetic field strength, regardless
of whether the training and test data used by the CNN
method are from the same or different ARs or are close
(e.g., within ∼3 days) or distant (e.g., over 2 yr) in
time. This finding can be seen from Tables A3–A6, where
the PPMCC of Btotal in D D2

train
1
test ( D D3

train
1
test,

D D1
train

2
test, D D3

train
2
test, D D1

train
3
test, D2

train

D3
test, D D1

train
4
test, D D2

train
4
test, and D D3

train
4
test)

is 0.956 (0.924, 0.983, 0.951, 0.976, 0.979, 0.936, 0.927,
and 0.896).

2. With respect to the same test image, using the training
data from the same AR from which the test image is taken

Table 2
Performance Metric Values of MSVR, MLP, and Our CNN Method Based on the Test Set from AR 12371 Collected on 2015 June 25 a,b

Btotal Bx By Bz f θ

MSVR 437.02 (27.44) 712.02 (19.03) 706.51 (12.24) 339.26 (17.86) 23.02 (0.73) 84.43 (1.53)
MAE MLP 115.68 (5.15) 109.44 (7.60) 86.08 (4.80) 80.62 (4.19) 5.85 (0.31) 12.29 (1.72)

CNN 81.57 (3.66) 76.56 (5.63) 58.83 (2.86) 52.18 (2.22) 4.54 (0.23) 9.34 (1.04)

MSVR 34.7% (0.5%) 48.4% (1.0%) 44.6% (1.1%) 15.2% (1.5%) 5.6% (0.2%) 4.1% (0.5%)
PA MLP 86.2% (0.7%) 88.4% (0.8%) 91.5% (0.5%) 89.5% (0.7%) 89.4% (1.0%) 76.7% (1.0%)

CNN 91.6% (0.7%) 92.5% (0.8%) 96.1% (0.5%) 95.1% (0.4%) 93.6% (0.6%) 81.4% (1.4%)

MSVR 0.45 (0.05) −0.92 (0.07) −5.34 (0.37) 0.28 (0.08) −0.09 (0.03) −2.80 (0.16)
R-squared MLP 0.92 (0.01) 0.91 (0.01) 0.85 (0.01) 0.93 (0.01) 0.80 (0.01) 0.73 (0.04)

CNN 0.97 (0.01) 0.94 (0.01) 0.93 (0.01) 0.97 (0.01) 0.83 (0.01) 0.76 (0.03)

MSVR 0.82 (0.01) −0.09 (0.04) −0.10 (0.08) 0.89 (0.01) 0.85 (0.01) 0.48 (0.03)
PPMCCc MLP 0.97 (0.01) 0.96 (0.01) 0.93 (0.01) 0.97 (0.01) 0.91 (0.01) 0.86 (0.02)

CNN 0.98 (0.01) 0.97 (0.01) 0.96 (0.01) 0.99 (0.01) 0.91 (0.01) 0.88 (0.02)

MSVR 2572 (945) 3009 (511) −1794 (555) −2038 (688) 13864 (887) 38828 (2083)
Outlier differenced MLP 3056 (823) 3587 (679) −208 (166) 1417 (403) 14495 (877) 13526 (2480)

CNN 3060 (809) 3415 (488) −419 (235) 1436 (380) 14503 (883) 12645 (2930)

Notes.
a Each number in the table represents the average value of 10 experiments.
b Standard deviations are enclosed in parentheses.
c The best PPMCC values achieved by the three machine-learning methods are highlighted in bold.
d A positive outlier difference means ME produces more outliers than the machine-learning method, while a negative outlier difference means the machine-learning
method produces more outliers than ME.

Table 3
Performance Metric Values of MSVR, MLP, and Our CNN Method Based on the Test Set from AR 12665 Collected on 2017 July 13 a,b

Btotal Bx By Bz f θ

MSVR 387.23 (9.67) 582.00 (65.91) 36.15 (9.34) 209.48 (21.31) 23.09 (1.16) 120.30 (23.96)
MAE MLP 108.99 (17.69) 90.04 (5.95) 76.68 (3.25) 66.71 (18.89) 7.67 (0.97) 23.38 (4.95)

CNN 87.70 (10.69) 79.27 (3.60) 58.04 (3.05) 53.26 (13.44) 7.26 (0.80) 19.94 (4.25)

MSVR 19.7% (1.4%) 5.3% (2.2%) 7.8% (1.8%) 78.9% (1.3%) 9.2% (0.8%) 0.5% (0.5%)
PA MLP 87.0% (2.4%) 89.9% (0.9%) 94.5% (1.1%) 91.9% (1.9%) 85.8% (1.8%) 51.2% (5.7%)

CNN 90.8% (1.3%) 92.4% (0.5%) 96.4% (0.8%) 93.8% (1.2%) 87.7% (1.8%) 60.0% (3.7%)

MSVR 0.24 (0.27) −3.37 (1.53) −2.39 (0.56) 0.54 (0.12) 0.13 (0.09) −5.67 (3.98)
R-squared MLP 0.85 (0.04) 0.77 (0.04) 0.71 (0.06) 0.86 (0.06) 0.68 (0.05) 0.49 (0.12)

CNN 0.90 (0.02) 0.80 (0.03) 0.79 (0.05) 0.89 (0.04) 0.70 (0.04) 0.50 (0.14)

MSVR 0.73 (0.10) 0.18 (0.06) 0.52 (0.08) 0.84 (0.03) 0.76 (0.04) 0.35 (0.14)
PPMCCc MLP 0.95 (0.01) 0.89 (0.02) 0.86 (0.04) 0.94 (0.02) 0.84 (0.03) 0.71 (0.08)

CNN 0.96 (0.01) 0.89 (0.02) 0.89 (0.03) 0.95 (0.02) 0.85 (0.03) 0.72 (0.09)

MSVR 5448 (1026) 6767 (2603) 3142 (1633) 4052 (864) 34672 (7581) 93448 (19733)
Outlier differenced MLP 5668 (1108) 6623 (2620) 3127 (1674) 4185 (928) 34716 (7959) 39277 (14562)

CNN 5600 (1128) 6267 (2557) 2953 (1583) 4137 (915) 34721 (7945) 24276 (12194)

Notes.
a Each number in the table represents the average value of 10 experiments.
b Standard deviations are enclosed in parentheses.
c The best PPMCC values achieved by the three machine-learning methods are highlighted in bold.
d A positive outlier difference means ME produces more outliers than the machine-learning method, while a negative outlier difference means the machine-learning
method produces more outliers than ME.
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yields a better result with a higher PPMCC than using the
training and test data that are from different ARs. This
finding can be seen from Tables A3 and A4, where the
PPMCC of Btotal in D D2

train
1
test is 0.956, which is

greater than the PPMCC of Btotal, 0.924, in D3
train

D1
test. Moreover, the PPMCC of Btotal in D D1

train
2
test is

0.983, which is greater than the PPMCC of Btotal, 0.951,
in D D3

train
2
test.

3. However, with respect to the same test image, using the
training and test data that are close in time does not
necessarily yield a better result than using the training
and test data that are distant in time. This finding can be
seen from Table A6, where the PPMCC of Btotal in

D D1
train

4
test is 0.936, which is greater than the PPMCC

of Btotal, 0.896, in D D3
train

4
test, though D3 is closer to

D4 than D1 in time.
4. From Tables A3–A6, we can see that the CNN-inferred

results have far fewer outliers than the ME-calculated
results for all of Btotal, Bx, By, Bz, f, and θ in all of the
experiments except for By in Table A4. This finding is
consistent with the results reported in Table 1.

5. Discussion and Conclusions

We develop a new machine-learning method to infer vector
magnetic fields from Stokes profiles of GST/NIRIS based on
a CNN and the ME method. We then conduct a series of
experiments to evaluate the performance of our method. First,
we use data samples (pixels) from AR 12371 collected on 2015
June 22 to train the CNN model, where the labels (i.e., vector
magnetic fields) of the training data samples are calculated by
the ME method. Next, we use the trained model to infer vector
magnetic fields from Stokes profiles of pixels in three different
unseen test sets. The first test set contains image data from AR
12371 collected on 2015 June 25. The second test set contains

image data from AR 12665 collected on 2017 July 13. The
third test set contains image data from AR 12673 collected on
2017 September 6. We compare our CNN method with the ME
method and two related machine-learning algorithms, MSVR
and MLP, on the three test sets. Finally, we conduct more
experiments by varying the training data to get different trained
models and applying the models to different test data.
Our findings based on these experiments are consistent and

summarized as follows.

1. Our CNN method produces smoother and cleaner
magnetic maps with fewer outliers (noise pixels) than
the ME method.

2. It takes ∼50 s for the CNN method to process an image of
720×720 pixels comprising Stokes profiles of GST/
NIRIS, which is four to six times faster than the current
version of the ME method. The ability to produce vector
magnetic fields in nearly real time is essential to space
weather forecasting.

3. Our CNN-inferred and ME-calculated results are highly
correlated and close to each other with a PPMCC of ∼0.9
or higher for the total magnetic field strength, regardless
of whether the training and test data used by the CNN
method are from the same or different ARs or are close
(e.g., within ∼3 days) or distant (e.g., over 2 yr) in time.
With respect to the same test image, using the training
data from the same AR in which the test image is taken
yields a better result with a higher PPMCC than using the
training and test data that are from different ARs. Hence,
for a given test image, it is recommended to adopt the
CNN model trained on the same AR from which the test
image is collected.

4. The CNN-inferred results are closer to the ME-calculated
results, with PPMCC values being closer to 1, on
average, than those from the related machine-learning
methods MSVR and MLP. In particular, the CNN method

Table 4
Performance Metric Values of MSVR, MLP, and Our CNN Method Based on the Test Set from AR 12673 Collected on 2017 September 6a,b

Btotal Bx By Bz f θ

MSVR 549.84 (0.01) 851.67 (0.01) 1079.51 (0.01) 709.89 (0.01) 73.19 (0.01) 56.87 (0.01)
MAE MLP 339.40 (8.48) 206.18 (6.98) 203.56 (5.43) 223.20 (5.43) 7.35 (0.14) 13.23 (0.17)

CNN 198.92 (3.94) 150.57 (2.17) 128.04 (1.63) 139.30 (4.40) 5.57 (0.12) 9.27 (0.20)

MSVR 17.7% (0.1%) 39.7% (0.1%) 43.9% (0.1%) 6.9% (0.1%) 2.3% (0.1%) 12.9% (0.1%)
PA MLP 55.9% (1.3%) 70.4% (1.5%) 67.9% (0.8%) 73.5% (0.8%) 82.6% (1.1%) 66.0% (0.7%)

CNN 73.6% (0.4%) 80.4% (0.4%) 84.9% (0.2%) 85.7% (1.5%) 90.9% (0.3%) 78.4% (0.5%)

MSVR 0.45 (0.01) −1.37 (0.01) −7.11 (0.01) −0.05 (0.01) −5.49 (0.01) −1.10 (0.01)
R-squared MLP 0.60 (0.01) 0.80 (0.01) 0.57 (0.01) 0.65 (0.01) 0.76 (0.01) 0.77 (0.01)

CNN 0.84 (0.01) 0.87 (0.01) 0.79 (0.01) 0.74 (0.01) 0.78 (0.01) 0.80 (0.01)

MSVR 0.81 (0.01) −0.18 (0.01) −0.31 (0.01) 0.56 (0.01) 0.81 (0.01) 0.54 (0.01)
PPMCCc MLP 0.85 (0.01) 0.92 (0.01) 0.81 (0.01) 0.82 (0.01) 0.88 (0.01) 0.88 (0.01)

CNN 0.93 (0.01) 0.94 (0.01) 0.89 (0.01) 0.86 (0.01) 0.88 (0.01) 0.90 (0.01)

MSVR 19154 (0) 21841 (0) 15980 (0) 12306 (0) 21734 (0) 32424 (0)
Outlier differenced MLP 19632 (20) 22346 (20) 16780 (38) 12941 (8) 21918 (10) 20692 (552)

CNN 19664 (11) 22234 (46) 16534 (35) 12965 (7) 21950 (7) 14294 (1436)

Notes.
a Each number in the table represents the average value of 10 experiments.
b Standard deviations are enclosed in parentheses.
c The best PPMCC values achieved by the three machine-learning methods are highlighted in bold.
d A positive outlier difference means ME produces more outliers than the machine-learning method, while a negative outlier difference means the machine-learning
method produces more outliers than ME.
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outperforms the current best machine-learning method
(MLP) by 2.6%, on average, in PPMCC. This happens
because the CNN method is able to exploit the spatial
information of the Stokes profiles and learn latent patterns
between the Stokes profiles and ME-calculated vector
magnetic fields in a better way.

Based on these findings, we conclude that the proposed CNN
model can be considered as an alternative, efficient method for
Stokes inversion for high-resolution polarimetric observations
obtained by GST/NIRIS. More accurate and efficient Stokes
inversion will improve nearly real-time prediction of space
weather in the future as it prepares more accurate magnetic
boundary conditions at the solar surface quickly. With the
advent of big and complex observational data gathered from
diverse instruments, such as the BBSO/GST and the upcoming
Daniel K. Inouye Solar Telescope, it is expected that our
physics-assisted deep learning–based CNN tool will be a useful
utility for processing and analyzing the data.

We thank the referees for very helpful and thoughtful
comments. The data used in this study were obtained with the
GST at BBSO, which is operated by the New Jersey Institute of
Technology. Obtaining the excellent data would not have been
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Astronomy and Space Science Institute and Seoul National
University. The related machine-learning algorithms studied
here were implemented in Python. This work was supported by
NSF grant AGS-1927578. Y.X., J.J., C.L., and H.W. acknowl-
edge the support of NASA under grants NNX16AF72G,
80NSSC17K0016, 80NSSC18K0673, and 80NSSC18K1705.
Facility: Big Bear Solar Observatory.

Appendix

Tables A1 and A2 present the performance metric values of
our CNN method based on the test images from AR 12371 and
AR 12665 collected at 10 different time points on 2015 June 25
and 2017 July 13, respectively, where training data were taken
from AR 12371 on 2015 June 22. Tables A3–A6 present the
performance metric values of our CNN method obtained by
using different combinations of ARs as training data and using
the images from AR 12371 on 2015 June 22 17:33:00 UT, AR
12371 on 2015 June 25 20:00:00 UT, AR 12665 on 2017 July
13 18:35:00 UT, and AR 12673 on 2017 September 6 19:18:00
UT, respectively, as test data. Figure A1 (Figures A2 and A3)
presents results for the quantities Bx, By, and Bz, displayed
from top to bottom in the figure, based on the test image from
AR 12371 (AR 12665 and AR 12673) collected on 2015 June
25 20:00:00 UT (2017 July 13 18:35:00 UT and 2017
September 6 19:18:00 UT) where training data were taken
from AR 12371 on 2015 June 22.

Table A1
Performance Metric Values of Our CNN Method Based on the Test Images from AR 12371 Collected at 10 Different Time Points on 2015 June 25

Btotal Bx By Bz f θ

2015 Jun 25 (AR 12371) 17:02:00 UT MAE 79.916 72.753 61.458 53.999 4.578 9.069
PA 91.9% 93.4% 95.3% 94.6% 93.6% 81.3%
R-squared 0.965 0.935 0.921 0.968 0.823 0.769
PPMCC 0.983 0.968 0.961 0.984 0.908 0.879
Outlier difference 3935 3881 159 1857 14543 18746

17:20:00 UT MAE 86.211 74.157 56.345 54.512 4.254 8.416
PA 90.2% 92.0% 96.6% 94.4% 94.1% 81.9%
R-squared 0.961 0.941 0.932 0.966 0.833 0.8797
PPMCC 0.982 0.971 0.968 0.984 0.913 0.895
Outlier difference 5148 3754 −263 2225 13631 14329

17:41:00 UT MAE 75.772 68.146 57.255 47.984 4.184 8.376
PA 92.4% 93.6% 96.1% 95.5% 93.8% 82.5%
R-squared 0.968 0.947 0.925 0.974 0.847 0.795
PPMCC 0.985 0.974 0.963 0.987 0.920 0.893
Outlier difference 2958 2995 −555 1596 12989 13302

18:00:00 UT MAE 77.941 71.767 57.802 50.538 4.498 8.586
PA 92.6% 93.6% 96.7% 95.4% 93.9% 82.4%
R-squared 0.970 0.943 0.927 0.974 0.825 0.786
PPMCC 0.987 0.972 0.966 0.987 0.909 0.888
Outlier difference 2813 3036 −630 1639 14735 15265

18:20:00 UT MAE 80.294 74.324 56.363 49.600 4.278 8.389
PA 91.9% 92.5% 96.5% 95.7% 94.5% 83.2%
R-squared 0.965 0.940 0.931 0.975 0.839 0.788
PPMCC 0.984 0.970 0.967 0.988 0.917 0.889
Outlier difference 2754 2840 −432 1407 13432 12845

18:40:00 UT MAE 82.176 77.420 57.013 52.885 4.760 8.948
PA 91.2% 92.0% 96.4% 94.8% 93.7% 82.2%
R-squared 0.964 0.942 0.933 0.972 0.822 0.770
PPMCC 0.984 0.971 0.967 0.987 0.907 0.881
Outlier difference 2508 2863 −389 1253 15026 10675
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Table A1
(Continued)

Btotal Bx By Bz f θ

19:00:00 UT MAE 79.144 76.014 57.960 52.950 4.716 9.507
PA 91.7% 92.8% 96.1% 94.9% 93.7% 80.8%
R-squared 0.967 0.943 0.925 0.975 0.828 0.757
PPMCC 0.985 0.972 0.964 0.990 0.911 0.872
Outlier difference 2450 3166 −424 1125 15383 11646

19:22:00 UT MAE 86.917 79.777 59.833 51.695 4.470 9.586
PA 90.6% 92.3% 95.9% 95.4% 93.3% 81.9%
R-squared 0.962 0.939 0.924 0.975 0.837 0.742
PPMCC 0.983 0.970 0.964 0.988 0.915 0.865
Outlier difference 2644 3508 −392 1297 14243 11326

19:41:00 UT MAE 80.683 82.218 58.095 51.991 4.775 11.341
PA 91.7% 91.8% 96.3% 95.5% 93.1% 78.8%
R-squared 0.966 0.935 0.928 0.974 0.827 0.706
PPMCC 0.984 0.968 0.965 0.988 0.910 0.845
Outlier difference 2426 3722 −495 908 15939 11092

20:00:00 UT MAE 86.660 88.997 66.140 55.653 4.867 11.136
PA 91.6% 91.3% 95.2% 94.7% 92.2% 79.1%
R-squared 0.963 0.936 0.901 0.976 0.838 0.720
PPMCC 0.983 0.968 0.951 0.989 0.916 0.853
Outlier difference 2959 4380 −770 1050 15108 7219

Table A2
Performance Metric Values of Our CNN Method Based on the Test Images from AR 12665 Collected at 10 Different Time Points on 2017 July 13

Btotal Bx By Bz f θ

2017 Jul 13 (AR 12665) 17:18:00 UT MAE 96.763 77.228 59.555 65.277 6.995 15.623
PA 89.9% 93.5% 95.7% 92.7% 88.5% 62.2%
R-squared 0.895 0.796 0.726 0.875 0.716 0.686
PPMCC 0.961 0.893 0.857 0.947 0.851 0.834
Outlier difference 5612 8931 5341 4805 36440 39816

17:54:00 UT MAE 108.101 86.635 60.292 83.230 8.276 16.899
PA 90.8% 92.3% 95.6% 92.8% 86.0% 60.8%
R-squared 0.866 0.745 0.695 0.789 0.647 0.677
PPMCC 0.953 0.864 0.838 0.902 0.814 0.829
Outlier difference 5430 11516 5702 5728 45541 41897

18:25:00 UT MAE 95.509 81.222 59.119 66.639 7.984 17.809
PA 89.6% 92.2% 95.7% 91.9% 86.5% 60.1%
R-squared 0.914 0.822 0.792 0.874 0.661 0.664
PPMCC 0.971 0.907 0.893 0.947 0.824 0.820
Outlier difference 3874 8158 4134 3657 42169 39937

18:35:00 UT MAE 73.684 71.555 51.170 49.023 7.573 17.437
PA 91.5% 93.3% 96.4% 92.6% 84.8% 60.6%
R-squared 0.950 0.841 0.851 0.941 0.663 0.665
PPMCC 0.976 0.918 0.926 0.971 0.827 0.821
Outlier difference 3801 7280 3413 2478 35649 28274

20:19:00 UT MAE 75.811 78.550 55.695 38.701 8.014 26.263
PA 92.8% 92.1% 97.4% 95.7% 86.6% 55.6%
R-squared 0.915 0.826 0.831 0.930 0.680 0.456
PPMCC 0.960 0.910 0.916 0.966 0.831 0.693
Outlier difference 5089 4479 1900 3341 41315 12610

20:52:00 UT MAE 77.201 78.757 56.624 41.618 7.979 26.759
PA 92.6% 92.1% 97.6% 95.1% 86.4% 54.3%
R-squared 0.914 0.805 0.827 0.926 0.682 0.401
PPMCC 0.957 0.897 0.913 0.963 0.834 0.656
Outlier difference 5878 4499 1788 4019 38418 10550

21:20:00 UT MAE 80.011 77.987 57.099 42.847 7.200 25.012
PA 92.2% 92.4% 97.4% 94.9% 88.3% 55.1%
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Table A2
(Continued)

Btotal Bx By Bz f θ

R-squared 0.901 0.799 0.805 0.918 0.710 0.352
PPMCC 0.952 0.895 0.901 0.961 0.851 0.624
Outlier difference 5997 4505 1771 3992 33783 15985

21:48:00 UT MAE 84.746 78.946 57.296 43.822 6.471 21.160
PA 89.6% 91.9% 97.0% 94.9% 90.1% 60.7%
R-squared 0.895 0.791 0.808 0.917 0.728 0.380
PPMCC 0.953 0.891 0.901 0.963 0.859 0.643
Outlier difference 6234 4556 1938 3916 28967 19769

22:18:00 UT MAE 95.769 81.151 61.962 52.672 5.890 16.784
PA 88.8% 91.7% 95.7% 93.6% 90.3% 64.6%
R-squared 0.869 0.771 0.779 0.893 0.776 0.364
PPMCC 0.942 0.881 0.884 0.952 0.888 0.640
Outlier difference 7325 4238 1721 5022 22740 15454

22:39:00 UT MAE 89.352 80.647 61.617 48.760 6.226 15.683
PA 90.3% 92.0% 95.8% 94.4% 89.4% 65.9%
R-squared 0.889 0.774 0.751 0.913 0.775 0.399
PPMCC 0.951 0.885 0.868 0.961 0.889 0.664
Outlier difference 6757 4506 1826 4408 22186 18471

Table A3
Performance Metric Values of Our CNN Method Obtained by Using D1 to Form Test Data and Different Combinations of D2, D3, and D4 to Form Training Data

Btotal Bx By Bz f θ

MAE D D2
train

1
test 112.104 70.871 77.554 83.761 5.040 10.286

D D3
train

1
test 168.905 96.727 116.505 112.322 5.724 11.874

D D2,3
train

1
test 99.187 74.859 75.777 81.588 5.330 10.330

D D2,4
train

1
test 96.981 78.739 77.672 70.458 5.111 11.356

D D3,4
train

1
test 137.511 87.619 105.794 83.560 5.315 11.086

D D2,3,4
train

1
test 97.594 73.092 75.116 74.675 5.095 10.258

PA D D2
train

1
test 88.5% 93.6% 92.4% 90.8% 90.6% 78.0%

D D3
train

1
test 71.8% 89.5% 80.8% 85.7% 89.0% 78.6%

D D2,3
train

1
test 89.2% 92.7% 92.5% 91.2% 89.6% 78.5%

D D2,4
train

1
test 90.0% 92.2% 92.6% 92.4% 90.5% 76.3%

D D3,4
train

1
test 81.7% 91.3% 87.6% 90.5% 90.2% 78.9%

D D2,3,4
train

1
test 89.7% 92.7% 92.5% 92.3% 90.2% 79.1%

R-squared D D2
train

1
test 0.903 0.913 0.878 0.955 0.867 0.710

D D3
train

1
test 0.845 0.860 0.810 0.929 0.867 0.576

D D2,3
train

1
test 0.907 0.910 0.875 0.953 0.868 0.706

D D2,4
train

1
test 0.909 0.899 0.862 0.962 0.861 0.657

D D3,4
train

1
test 0.886 0.888 0.830 0.954 0.864 0.661

D D2,3,4
train

1
test 0.904 0.908 0.874 0.956 0.869 0.701

PPMCC D D2
train

1
test 0.956 0.956 0.937 0.982 0.935 0.847

D D3
train

1
test 0.924 0.933 0.929 0.965 0.933 0.780

D D2,3
train

1
test 0.954 0.956 0.936 0.980 0.936 0.846

D D2,4
train

1
test 0.954 0.951 0.932 0.982 0.932 0.822

D D3,4
train

1
test 0.946 0.947 0.931 0.978 0.932 0.821

D D2,3,4
train

1
test 0.952 0.955 0.935 0.980 0.936 0.843

Outlier difference D D2
train

1
test 9396 4718 3419 6808 33687 22528

D D3
train

1
test 9527 3625 3355 6554 33202 27896

D D2,3
train

1
test 9266 4045 3120 6760 33114 25720

D D2,4
train

1
test 9185 4480 3086 6782 33754 24704

D D3,4
train

1
test 9160 3921 2878 6771 33671 33627

D D2,3,4
train

1
test 8668 4528 3301 6813 33691 26670
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Table A4
Performance Metric Values of Our CNN Method Obtained by Using D2 to Form Test Data and Different Combinations of D1, D3, and D4 to Form Training Data

Btotal Bx By Bz f θ

MAE D D1
train

2
test 86.660 88.997 66.140 55.653 4.867 11.136

D D3
train

2
test 165.558 132.399 92.024 109.629 6.157 12.191

D D1,3
train

2
test 83.631 86.654 61.893 51.414 4.650 10.949

D D1,4
train

2
test 90.098 88.494 63.458 60.282 4.935 10.595

D D3,4
train

2
test 133.132 104.756 85.091 79.925 5.250 11.805

D D1,3,4
train

2
test 79.830 84.662 59.412 50.448 4.736 11.023

PA D D1
train

2
test 91.6% 91.3% 95.2% 94.7% 92.2% 79.1%

D D3
train

2
test 69.4% 81.8% 87.8% 81.2% 87.3% 74.9%

D D1,3
train

2
test 89.7% 90.5% 95.5% 95.3% 93.3% 79.2%

D D1,4
train

2
test 89.0% 90.5% 95.1% 94.0% 92.6% 80.2%

D D3,4
train

2
test 79.0% 88.1% 89.7% 89.7% 92.3% 76.8%

D D1,3,4
train

2
test 91.9% 92.0% 95.7% 96.0% 93.1% 78.8%

R-squared D D1
train

2
test 0.963 0.936 0.901 0.976 0.838 0.720

D D3
train

2
test 0.893 0.899 0.850 0.928 0.828 0.695

D D1,3
train

2
test 0.962 0.937 0.914 0.979 0.844 0.724

D D1,4
train

2
test 0.956 0.936 0.907 0.972 0.839 0.727

D D3,4
train

2
test 0.937 0.927 0.858 0.964 0.837 0.711

D D1,3,4
train

2
test 0.966 0.938 0.918 0.980 0.842 0.724

PPMCC D D1
train

2
test 0.983 0.968 0.951 0.989 0.916 0.853

D D3
train

2
test 0.951 0.949 0.939 0.982 0.915 0.846

D D1,3
train

2
test 0.982 0.968 0.957 0.990 0.919 0.855

D D1,4
train

2
test 0.981 0.968 0.955 0.988 0.916 0.856

D D3,4
train

2
test 0.982 0.968 0.954 0.989 0.916 0.850

D D1,3,4
train

2
test 0.984 0.969 0.960 0.990 0.918 0.855

Outlier difference D D1
train

2
test 2959 4380 −770 1050 15108 7219

D D3
train

2
test 2950 3904 −246 1032 15054 10038

D D1,3
train

2
test 2948 4354 −666 1053 15108 7392

D D1,4
train

2
test 2954 4231 −574 1055 15108 11235

D D3,4
train

2
test 2953 3926 −533 1057 15000 9161

D D1,3,4
train

2
test 2959 4380 −631 1053 15108 9410

Table A5
Performance Metric Values of Our CNN Method Obtained by Using D3 to Form Test Data and Different Combinations of D1, D2, and D4 to Form Training Data

Btotal Bx By Bz f θ

MAE D D1
train

3
test 73.683 71.555 51.170 49.023 7.573 17.437

D D2
train

3
test 98.412 83.441 55.674 58.326 7.330 18.232

D D1,2
train

3
test 70.574 68.776 48.467 43.919 7.381 16.780

D D1,4
train

3
test 68.492 66.340 48.593 48.398 7.394 15.661

D D2,4
train

3
test 68.903 64.068 44.475 46.860 6.539 14.911

D D1,2,4
train

3
test 68.876 67.419 48.227 43.239 7.250 16.839

PA D D1
train

3
test 91.5% 93.3% 96.4% 92.6% 84.8% 60.6%

D D2
train

3
test 90.1% 92.3% 95.7% 93.9% 87.0% 54.8%

D D1,2
train

3
test 92.8% 93.8% 96.6% 94.1% 85.6% 61.3%

D D1,4
train

3
test 91.1% 93.1% 95.8% 93.5% 84.2% 65.7%

D D2,4
train

3
test 93.1% 93.7% 96.7% 93.8% 87.1% 68.0%

D D1,2,4
train

3
test 91.5% 93.9% 96.7% 93.1% 86.2% 61.9%

R-squared D D1
train

3
test 0.950 0.841 0.851 0.941 0.663 0.665

D D2
train

3
test 0.926 0.830 0.850 0.924 0.661 0.678

D D1,2
train

3
test 0.957 0.849 0.857 0.955 0.665 0.688

D D1,4
train

3
test 0.951 0.848 0.855 0.944 0.667 0.698
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Table A5
(Continued)

Btotal Bx By Bz f θ

D D2,4
train

3
test 0.952 0.845 0.860 0.946 0.703 0.696

D D1,2,4
train

3
test 0.959 0.848 0.858 0.956 0.672 0.680

PPMCC D D1
train

3
test 0.976 0.918 0.926 0.971 0.827 0.821

D D2
train

3
test 0.979 0.913 0.923 0.978 0.829 0.829

D D1,2
train

3
test 0.979 0.921 0.928 0.978 0.828 0.834

D D1,4
train

3
test 0.975 0.921 0.926 0.973 0.828 0.839

D D2,4
train

3
test 0.976 0.922 0.929 0.973 0.843 0.844

D D1,2,4
train

3
test 0.980 0.921 0.928 0.978 0.831 0.830

Outlier difference D D1
train

3
test 3801 7280 3413 2478 35649 28274

D D2
train

3
test 3837 7284 3545 2497 35661 27447

D D1,2
train

3
test 3800 7252 3433 2480 35647 25888

D D1,4
train

3
test 3812 7200 3405 2481 35645 31320

D D2,4
train

3
test 3824 6873 3494 2496 35657 26492

D D1,2,4
train

3
test 3801 7371 3463 2490 35645 24124

Table A6
Performance Metric Values of Our CNN Method Obtained by Using D4 to Form Test Data and Different Combinations of D1, D2, and D3 to Form Training Data

Btotal Bx By Bz f θ

MAE D D1
train

4
test 193.680 146.010 124.783 136.892 5.497 9.009

D D2
train

4
test 246.086 160.538 131.986 186.657 6.296 9.501

D D3
train

4
test 231.481 153.664 129.813 173.582 5.823 7.473

D D1,2
train

4
test 198.832 143.087 123.287 146.410 5.363 8.729

D D1,3
train

4
test 204.086 143.244 123.685 148.227 5.284 7.925

D D2,3
train

4
test 201.117 137.369 119.157 162.063 5.713 7.577

D D1,2,3
train

4
test 207.075 148.718 127.467 146.775 5.674 8.679

PA D D1
train

4
test 75.0% 80.1% 86.2% 87.2% 91.3% 79.1%

D D2
train

4
test 54.9% 77.6% 83.7% 77.0% 87.7% 76.3%

D D3
train

4
test 71.0% 79.0% 83.9% 81.2% 89.5% 86.2%

D D1,2
train

4
test 72.9% 81.5% 86.2% 84.4% 91.0% 79.9%

D D1,3
train

4
test 67.8% 80.9% 85.6% 82.9% 91.3% 82.2%

D D2,3
train

4
test 72.6% 82.8% 87.2% 83.3% 88.7% 84.6%

D D1,2,3
train

4
test 70.9% 80.0% 84.8% 84.1% 90.7% 79.5%

R-squared D D1
train

4
test 0.841 0.884 0.777 0.736 0.776 0.807

D D2
train

4
test 0.805 0.876 0.808 0.710 0.770 0.794

D D3
train

4
test 0.769 0.867 0.763 0.687 0.785 0.824

D D1,2
train

4
test 0.843 0.882 0.797 0.731 0.776 0.819

D D1,3
train

4
test 0.832 0.881 0.781 0.733 0.782 0.834

D D2,3
train

4
test 0.835 0.894 0.788 0.714 0.780 0.821

D D1,2,3
train

4
test 0.830 0.875 0.796 0.738 0.782 0.822

PPMCC D D1
train

4
test 0.936 0.943 0.888 0.859 0.881 0.902

D D2
train

4
test 0.927 0.939 0.904 0.862 0.882 0.895

D D3
train

4
test 0.896 0.935 0.877 0.834 0.889 0.911

D D1,2
train

4
test 0.937 0.941 0.897 0.858 0.882 0.907

D D1,3
train

4
test 0.934 0.942 0.891 0.861 0.885 0.915

D D2,3
train

4
test 0.928 0.946 0.889 0.853 0.888 0.909

D D1,2,3
train

4
test 0.933 0.940 0.899 0.863 0.885 0.909

Outlier difference D D1
train

4
test 19651 22317 16592 12950 21951 14265

D D2
train

4
test 19562 22361 16772 12988 21959 13705

D D3
train

4
test 19647 22125 16731 12956 21931 15124

D D1,2
train

4
test 19622 22333 16645 12922 21955 14305

D D1,3
train

4
test 19650 22277 16573 12967 21961 13425

D D2,3
train

4
test 19691 22072 16668 13004 21949 15841

D D1,2,3
train

4
test 19660 22313 16594 12970 21954 13645
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Figure A1. Comparison between the ME and CNN methods for deriving Bx, By, and Bz based on the test image from AR 12371 collected on 2015 June 25 20:00:00
UT, where training data were taken from AR 12371 on 2015 June 22. Displayed from top to bottom are the results for Bx, By, and Bz. The first column shows scatter
plots where the X-axis and Y-axis represent the values obtained by the ME and CNN methods, respectively. The black diagonal line in each scatter plot corresponds to
pixels whose ME-calculated values are identical to CNN-inferred values. The second column shows magnetic maps derived by the ME method. The third column
shows magnetic maps inferred by our CNN method.
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Figure A2. Comparison between the ME and CNN methods for deriving Bx, By, and Bz based on the test image from AR 12665 collected on 2017 July 13 18:35:00
UT, where training data were taken from AR 12371 on 2015 June 22. Displayed from top to bottom are the results for Bx, By, and Bz. The first column shows scatter
plots where the X-axis and Y-axis represent the values obtained by the ME and CNN methods, respectively. The black diagonal line in each scatter plot corresponds to
pixels whose ME-calculated values are identical to CNN-inferred values. The second column shows magnetic maps derived by the ME method. The third column
shows magnetic maps inferred by our CNN method.
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