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ABSTRACT

Federated Learning (FL) enables learning a shared model across
many clients without violating the privacy requirements. One of
the key attributes in FL is the heterogeneity that exists in both
resource and data due to the differences in computation and com-
munication capacity, as well as the quantity and content of data
among different clients. We conduct a case study to show that het-
erogeneity in resource and data has a significant impact on training
time and model accuracy in conventional FL systems. To this end,
we propose TiFL, a Tier-based Federated Learning System, which
divides clients into tiers based on their training performance and
selects clients from the same tier in each training round to miti-
gate the straggler problem caused by heterogeneity in resource and
data quantity. To further tame the heterogeneity caused by non-
IID (Independent and Identical Distribution) data and resources,
TiFL employs an adaptive tier selection approach to update the
tiering on-the-fly based on the observed training performance and
accuracy. We prototype TiFL in a FL testbed following Google’s
FL architecture and evaluate it using the state-of-the-art FL bench-
marks. Experimental evaluation shows that TiFL outperforms the
conventional FL in various heterogeneous conditions. With the
proposed adaptive tier selection policy, we demonstrate that TiFL
achieves much faster training performance while achieving the
same or better test accuracy across the board.
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1 INTRODUCTION

Modern mobile and IoT devices are generating massive amount
of data every day, which provides opportunities for crafting so-
phisticated machine learning (ML) models to solve challenging AI
tasks [11]. In conventional high-performance computing (HPC), all
the data is collected and centralized in one location and proceed by
supercomputers with hundreds to thousands of computing nodes.
However, security and privacy concerns have led to new legislation
such as the General Data Protection Regulation (GDPR) [27] and
the Health Insurance Portability and Accountability Act (HIPAA)
[24] that prevent transmitting data to a centralized location, thus
making conventional high performance computing difficult to be
applied for collecting and processing the decentralized data. Fed-
erated Learning (FL) [15] shines light on a new emerging high
performance computing paradigm by addressing the security and
privacy challenges through utilizing decentralized data that is train-
ing local models on the local data of each client (data parties) and
using a central aggregator to accumulate the learned gradients
of local models to train a global model. Though the computing
resource of individual clients may be far less powerful than the
computing nodes in conventional supercomputers, the computing
power from the massive number of clients can accumulate to form
a very powerful “decentralized virtual supercomputer”. Federated
learning has demonstrated its success in a range of applications
ranging from user-end devices to medical analysis systems. There
has also been a rise of FL tools and framework development, such as
Tensorflow Federated [13], LEAF [7], PaddleFL [12] and PySyft [25]
to facilitate these demands. Depending on the usage scenarios, FL
is usually categorized into cross-silo FL and cross-device FL [14]. In
cross-device FL, the clients are usually a massive number of mo-
bile or IoT devices with various computing and communication
capacities [14, 15, 20] while in cross-silo FL, the clients are a small
number of organizations with ample computing power and reliable
communications [14, 29]. In this paper, we focus on the cross-device
FL (for simplicity, we call it FL in the following), which intrinsi-
cally pushes the heterogeneity of computing and communication
resources to a level that is rarely found in datacenter distributed
learning and cross-silo FL. More importantly, the data in FL is also
owned by clients where the quantity and content can be quite dif-
ferent from each other, causing severe heterogeneity in data that
usually does not appear in datacenter distributed learning, where
data distribution is well controlled.

We conduct a case study to quantify how data and resource het-
erogeneity in clients impacts the training performance and model
accuracy of FL. The key findings are below: (1) training throughput
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is usually bounded by slow clients (a.k.a. stragglers) with less com-
putational capacity and/or slower communication, which we name
as the resource heterogeneity. Asynchronous training is often em-
ployed to mitigate this problem in datacenter distributed learning.
However, in FL, almost all the existing privacy methods [2, 5, 21] are
built with the assumption of synchronous training, which makes
asynchronous training difficult to be applied here.

(2) Different clients may train on different quantity of samples
per training round and results in different round time (similar to
straggler effect), which impacts the training time and potentially
also the accuracy. We name this observation the data quantity
heterogeneity. (3) In datacenter distributed learning, the classes and
features of the training data are uniformly distributed among all
clients, namely Independent Identical Distribution (IID). However,
in FL, the distribution of data classes and features depends on the
data owners, thus resulting in a non-uniform data distribution,
known as non-Identical Independent Distribution (non-IID data
heterogeneity). Our experiments show that such heterogeneity can
significantly impact the training time and accuracy.

Driven by the above observations, we propose TiFL, a Tier-based
Federated Learning System. The key idea here is adaptively select-
ing clients with similar per round training time so that the hetero-
geneity problem can be mitigated without impacting the model
accuracy. Specifically, we first employ a lightweight profiler to mea-
sure the training time of each client and group them into different
logical data pools based on the measured latency, called tiers. Dur-
ing each training round, clients are selected uniform randomly from
the same tier based on the adaptive client selection algorithm of
TiFL. In this way, the heterogeneity problem is mitigated as clients
belonging to the same tier have similar training time. In addition
to heterogeneity mitigation, such tiered design and adaptive client
selection algorithm also allows controlling the training through-
put and accuracy by adjusting the tier selection intelligently, e.g.,
selecting tiers such that the model accuracy is maintained while
prioritizing selection of faster tiers.

While resource heterogeneity and data quantity heterogeneity
information can be reflected in the measured training time, the
non-IID data heterogeneity information is difficult to capture. This is
because any attempt to measure the class and feature distribution
violates the privacy-preserving requirements. To solve this chal-
lenge, TiFL offers an adaptive client selection algorithm that uses
the accuracy as indirect measure to infer the non-IID data hetero-
geneity information and adjust the tiering algorithm on-the-fly to
minimize the training time and accuracy impact. Such approach
also serves as an online version to be used in an environment where
the characteristics of heterogeneity change over time.

We prototype TiFL in a FL testbed that follows the architecture
design of Google’s FL system [4] and perform extensive experi-
mental evaluation to verify its effectiveness and robustness using
popular ML benchmarks such as LEAF [7]. The experimental re-
sults show that in the resource heterogeneity case, TiFL can improve
the training time by a magnitude of 6× without affecting the ac-
curacy. In the data quantity heterogeneity case, a 3× speedup is
observed in training time with comparable accuracy to the con-
ventional FL. Overall, TiFL outperforms the conventional FL with

3× improvement in training time and 8% improvement in accu-
racy in CIFAR10 [16] and 3× improvement in training time using
FEMINIST[7] under LEAF.

2 RELATED WORK

The straggler problem is not new in FL, and it has been well studied
in datacenter distributed learning. However, the privacy require-
ment and significantly higher heterogeneity level in FL impose
new challenges. [10] proposes to use P2P communication among
workers to detect slowed workers, performs work re-assignment,
and exploits iteration knowledge to further reduce how much data
needs to be preloaded on helpers. However, migrating data between
users is strictly restricted in FL. SpecSync is proposed in [30], where
each worker speculates about the parameter updates from others,
and if necessary, it aborts the ongoing computation, pulls fresher
parameters to start over, so as to opportunistically improve the
training quality. However, information sharing between clients is
not allowed in FL.

For general background of FL, we recommend readers to read
these papers [14, 17]. Some recent research efforts in FL focus on
the functionality [15] and privacy [5, 21], where they assume no
heterogeneity in resource and data. [9] proposes a general statistical
model for Byzantine machines and clients with data heterogeneity
and uses it to cluster edge devices such that their datasets are similar.
However, the authors do not consider the impact of clustering
on training time or accuracy. FedCS [23] proposes to solve client
selection issue via a deadline-based approach that filters out slowly-
responding clients. However, FedCS does not consider how this
approach effects the contributing factors of straggler clients in
model training. [18] takes into account the resource heterogeneity
in FL. The proposed approach assumes only two types of clients -
stragglers and non-stragglers. But in a real FL environment there
is a wide range of heterogeneity levels. In addition, their proposed
solution involves partial training on stragglers which can lead to
biasness in the trained model. [4] proposes a simple approach to
handle stragglers problem in FL, where the aggregator selects 130%
of the target number of devices to initially participate, and discards
stragglers during training process. However, simply dropping the
slower clients might exclude certain data distributions on the slower
clients from contributing towards training the global model.

Asynchronous training is a common approach for mitigating
the straggler problem in datacenter distributed learning, but it
is difficult to be applied in FL as almost all the existing privacy
methods [2, 5, 21] are built with the assumption of synchronous
model weight updates.For instance, Differential Privacy [2] applies
noise to each client’s weights and the noise is determined by the
variations of weights between other client’s weights in that round.
Similarly, Secure Aggregation [5] depends on Secret Sharing, where
clients share secret keys to each other’s encryption, thus requiring
all secret sharing clients to be present during aggregation.

3 HETEROGENEITY IMPACT STUDY

Compared with datacenter distributed learning and cross-silo FL,
one of the key features of cross-device FL is the significant resource
and data heterogeneity among clients, which can potentially impact
both the training throughput and the model accuracy. Resource
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Algorithm 1 Federated Averaging Training Algorithm
1: Aggregator: initialize weight 𝑤0
2: for each round 𝑟 = 0 to 𝑁 − 1 do
3: 𝐶𝑟 = (random set of |𝐶 | clients)
4: for each client c ∈ 𝐶𝑟 in parallel do

5: 𝑤𝑐
𝑟+1 = 𝑇𝑟𝑎𝑖𝑛𝐶𝑙𝑖𝑒𝑛𝑡 (𝑐)

6: 𝑠𝑐 = (training size of c)
7: end for

8: 𝑤𝑟+1 =
∑|𝐶 |
𝑐=1 𝑤

𝑐
𝑟+1 ∗

𝑠𝑐∑|𝐶 |
𝑐=1 𝑠𝑐

9: end for

heterogeneity arises as a result of vast number of computational
devices with varying computational and communication capabili-
ties involved in the training process. The data heterogeneity arises
as a result of two main reasons - (1) the varying number of train-
ing data samples available at each client and (2) the non-uniform
distribution of classes and features among the clients.

3.1 Formulating Vanilla Federated Learning

FL is performed as an iterative process whereby the model is trained
over a series of global training rounds, and the trained model is
shared by all the involved clients. We define 𝐾 as the total pool of
clients available to select from for each global training round, and
𝐶 as the set of clients selected per round. In every global training
round, the aggregator selects a random fraction of clients 𝐶𝑟 from
𝐾 . The vanilla FL algorithm is briefly summarized in Alg. 1. The
aggregator first randomly initializes weights of the global model
denoted by 𝜔0. At the beginning of each round, the aggregator
sends the current model weights to a subset of randomly selected
clients. Each selected client then trains its local model with its
local data and sends back the updated weights to the aggregator
after local training. At each round, the aggregator waits until all
selected clients respond with their corresponding trained weights.
This iterative process keeps on updating the global model until a
certain number of rounds are completed or a desired accuracy is
reached.

The state-of-the-art FL system proposed in [5] adopts a client
selection policy where clients are selected randomly. A coordinator
is responsible for creating and deploying a master aggregator and
multiple child aggregators for achieving scalability as the real world
FL system can involve up to tens of thousands of clients [5, 14, 17].
At each round, the master aggregator collects the weights from all
the child aggregators to update the global model.

3.2 Heterogeneity Impact Analysis

The resource and data heterogeneity among involved clients may
lead to varying response latencies (i.e., the time between a client
receives the training task and returns the results) in the FL process,
which is usually referred as the straggler problem.

We denote the response latency of a client 𝑐𝑖 as 𝐿𝑖 , and the
latency of a global training round is defined as

𝐿𝑟 = 𝑀𝑎𝑥

(
𝐿1, 𝐿2, 𝐿3, 𝐿4 ...𝐿 |𝐶 |

)
. (1)

where 𝐿𝑟 is the latency of round 𝑟 . From Equation (1), we can see
the latency of a global training round is bounded by the maximum
training latency of clients in 𝐶 , i.e., the slowest client.

We define 𝜏 levels of clients, i.e., within the same level, the clients
have similar response latencies. Assume that the total number of
levels is𝑚 and 𝜏𝑚 is the slowest level with |𝜏𝑚 | clients inside. In the
baseline case (Alg. 1), the aggregator selects the clients randomly,
resulting in a group of selected clients with composition spanning
multiple client levels.

We formulate the probability of selecting |𝐶 | clients from all
client levels except the slowest level 𝜏𝑚 as follows:

𝑃𝑟 =

( |𝐾 |− |𝜏𝑚 |
|𝐶 |

)( |𝐾 |
|𝐶 |

) . (2)

Accordingly, the probability of at least one client in 𝐶 comes
from 𝜏𝑚 can be formulated as:

𝑃𝑟𝑠 = 1 − 𝑃𝑟 . (3)

Because 𝑎−1
𝑏−1 < 𝑎

𝑏
, 𝑤ℎ𝑖𝑙𝑒 1 < 𝑎 < 𝑏, we have

𝑃𝑟𝑠 = 1 −

( |𝐾 |− |𝜏𝑚 |
|𝐶 |

)( |𝐾 |
|𝐶 |

)
= 1 − (|𝐾 | − |𝜏𝑚 |) ...( |𝐾 | − |𝜏𝑚 | − |𝐶 | + 1)

|𝐾 |...( |𝐾 | − |𝐶 | + 1)

= 1 − |𝐾 | − |𝜏𝑚 |
|𝐾 | ...

|𝐾 | − |𝜏𝑚 | − |𝐶 | + 1
|𝐾 | − |𝐶 | + 1 .

where 𝑃𝑟𝑠 is probability of at least one client in 𝐶 comes from
𝜏𝑚 . By applying the above proof, we get:

𝑃𝑟𝑠 > 1 − |𝐾 | − |𝜏𝑚 |
|𝐾 | ...

|𝐾 | − |𝜏𝑚 |
|𝐾 |

= 1 − ( |𝐾 | − |𝜏𝑚 |
|𝐾 | )

|𝐶 |
(4)

In real-world scenarios, large number of clients can be selected at
each round, which makes |𝐾 | extremely large. As a subset of 𝐾 , the
size of 𝐶 can also be sufficiently large. Since |𝐾 |− |𝜏𝑚 |

|𝐾 | < 1, we get

( |𝐾 |− |𝜏𝑚 |
|𝐾 | ) |𝐶 | ≈ 0, which makes 𝑃𝑟𝑠 ≈ 1, meaning in a vanilla FL

training process, the probability of selecting at least one client from
the slowest level is reasonably high for each round. According to
Equation (1), the random selection strategy adopted by state-of-the-
art FL system may suffer from a slow training performance.

3.3 Experimental Study

To experimentally verify the above analysis and demonstrate the
impact of resource heterogeneity and data quantity heterogeneity,
we conduct a study with a setup similar to the paper [8]. The testbed
is briefly summarized as follows:

• We use a total of 20 clients and each client is further divided
into 5 groups with 4 client per group.

• We allocate 4 CPUs, 2 CPUs, 1 CPU, 1/3 CPU, 1/5 CPU for
every client from group 1 through 5 respectively to emulate
the resource heterogeneity.

• The model is trained on the image classification dataset
CIFAR10 [16] using the vanilla FL process 3.1 (model and
learning parameters are detailed in Section 5).
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Figure 1: (a) Training time per round (logscale) for one client

with varying amount of resource and training data quan-

tity (number of training points) ; (b) accuracy under varying

number of classes per client (non-IID) with fixed amoumd

of computational resources.

• Experiments with different data size and non-IIDness level
for clients are conducted to produce data heterogeneity re-
sults.

As shown in Fig. 1 (a), with the same amount of CPU resource,
increasing the data size from 500 to 5000 results in a near-linear in-
crease in training time per round. As the amount of CPU resources
allocated to each client increases, the training time gets shorter. Ad-
ditionally, the training time increases as the number of data points
increase with the same number of CPUs. These preliminary results
imply that the straggler issues can be severe under a complicated
and heterogeneous FL environment. To evaluate the impact of data
distribution heterogeneity, we keep the same CPU resources for
every client (i.e., 2 CPUs) and generate a biased class and feature
distribution following [31]. Specifically, we distribute the dataset
in such a way that every client has equal number of images from
2 (non-IID(2)), 5 (non-IID(5)) and 10 (non-IID(10)) classes, respec-
tively. We train the model on Cifar10 dataset using the vanilla FL
system as described in Section 3.1 with the model and training
parameters detailed in Section 5. As seen in Fig. 1 (b), there is a
clear difference in the accuracy with different non-IID distributions.
The best accuracy is given by the IID since it represents a uniform
class and feature distribution. As the number of classes per client is
reduced, we observe a corresponding decrease in accuracy. Using 10
classes per client reduces the final accuracy by around 6% compared
to IID (it is worth noting that non-IID(10) is not the same as IID as
the feature distribution in non-IID(10) is skewed compare to IID).
In the case of 5 classes per client, the accuracy is further reduced
by 8%. The lowest accuracy is observed in the 2 classes per client
case, which has a significant 18% drop in accuracy.

These studies demonstrate that the data and resource hetero-
geneity can cause significant impact on training time and training
accuracy in FL. To tackle these problems, we propose TiFL— a tier-
based FL system which introduces a heterogeneity-aware client
selection methodology that selects the most profitable clients dur-
ing each round of the training to minimize the heterogeneity impact
while preserving the FL privacy proprieties, thus improving the
overall training performance of FL.

Figure 2: Overview of TiFL.

4 TIFL: A TIER-BASED FEDERATED

LEARNING SYSTEM

In this section, we present the design of the proposed tier-based
federated learning system TiFL. The key idea of a tier-based system
is that given the global training time of a round is bounded by
the slowest client selected in that round (see Equation 1), selecting
clients with similar response latency in each round can significantly
reduce the training time. We first give an overview of the archi-
tecture and the main flow of TiFL system. Then we introduce the
profiling and tiering approach. Based on the profiling and tiering
results, we explain how a tier selection algorithm can potentially
mitigate the heterogeneity impact through a straw-man proposal
as well as the limitations of such static selection approach. To this
end, we propose an adaptive tier selection algorithm to address the
limitations of the straw-man proposal. Finally, we propose an ana-
lytical model through which one can estimate the expected training
time using selection probabilities of tiers and the total number of
training rounds.
4.1 System Overview

The overall system architecture of TiFL is present in Fig. 2. TiFL
follows the system design to the state-of-the-art FL system [5] and
adds two new components: a tiering module (a profiler & tiering
algorithms) and a tier scheduler. These newly added components can
be incorporated into the coordinator of the existing FL system [4].
It is worth to note that in Fig. 2, we only show a single aggregator
rather than the hierarchical master-child aggregator design for a
clean presentation purpose. For large scale system in practice, TiFL
supports master-child aggregator design for scalability and fault
tolerance.

In TiFL, the first step is to collect the latency metrics of all the
available clients through a lightweight profiling as detailed in Sec-
tion 4.2. The profiled data is further utilized by our tiering algorithm.
This groups the clients into separate logical pools called tiers. Once
the scheduler has the tiering information (i.e., tiers that the clients
belong to and the tiers’ average response latencies), the training
process begins. Different from vanilla FL that employs a random
client selection policy, in TiFL the scheduler selects a tier and then
randomly selects targeted number of clients from that tier. After
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the selection of clients, the training proceeds as state-of-the-art FL
system does. By design, TiFL is non-intrusive and can be easily
plugged into any existing FL system in that the tiering and sched-
uler module simply regulate client selection without intervening
the underlying training process.

4.2 Profiling and Tiering

Given the global training time of a round is bounded by the slowest
client selected in that round (see Equation 1), if we can select clients
with similar response latency in each round, the training time can
be improved. However, in FL, the response latency is unknown
a priori, which makes it challenging to carry out the above idea.
To solve this challenge, we introduce a process through which the
clients are tiered (grouped) by the Profiling and Tiering module as
shown in Fig. 2.
Offline Profiling and Tiering. As the first step, all available
clients are initialized with a response latency 𝐿𝑖 of 0. The profiling
and tiering module then assigns all the available clients the profiling
tasks. The profiling tasks execute for 𝑠𝑦𝑛𝑐_𝑟𝑜𝑢𝑛𝑑𝑠 rounds and in
each profiling round, the aggregator asks every client to train on the
local data and waits for their acknowledgement for 𝑇𝑚𝑎𝑥 seconds.
All clients that respond within 𝑇𝑚𝑎𝑥 have their response latency
value 𝑅𝑇𝑖 incremented with the actual training time, while the ones
that have timed out are incremented by 𝑇𝑚𝑎𝑥 . After 𝑠𝑦𝑛𝑐_𝑟𝑜𝑢𝑛𝑑𝑠
rounds are completed, the clients with 𝐿𝑖 >= 𝑠𝑦𝑛𝑐_𝑟𝑜𝑢𝑛𝑑𝑠 ∗𝑇𝑚𝑎𝑥
are considered dropouts and excluded from the rest of the calcula-
tion. The collected training latencies through profiling of clients
creates a histogram, which is split into𝑚 groups and the clients that
fall into the same group forms a tier. The response latency of each
client are then stored by the scheduler and recorded persistently
which is used later for scheduling and selecting tiers. The total over-
head incurred by the offline profiling would be 𝑠𝑦𝑛𝑐_𝑟𝑜𝑢𝑛𝑑𝑠 ∗𝑇𝑚𝑎𝑥 .
Online Profiling and Tiering. The profiling and tiering can be
conducted online to reflect the dynamic computation and commu-
nication performance so that clients can be adaptively grouped
into the right tiers. It is important for online profiling to be light-
weight, thus our online profiling method only measures the training
throughput of a client instead of running a complete iteration. The
training throughput can be paired with the quantity of training
data to estimate the training latency. We also utilize the latency of
the already participated clients to reduce the number of clients that
need to be profiled to further reduce the profiling overhead.
4.3 Straw-man Proposal: Static Tier Selection

Algorithm

In this section, we present a naive static tier-based client selection
policy and discuss its limitations, which motivates us to develop
an advanced adaptive tier selection algorithm in the next section.
While the profiling and tiering module introduced in Section 4.2
groups clients into𝑚 tiers based on response latencies, the tier se-
lection algorithm focuses on how to select clients from the proper
tiers in the FL process to improve the training performance. The
natural way to improve training time is to prioritize towards faster
tiers, rather than selecting clients randomly from all tiers (i.e., the
full 𝐾 pool). However, such selection approach reduces the training
time without taking into consideration of the model accuracy and
privacy properties. To make the selection more general, one can

specify each tier 𝑛 𝑗 is selected based on a predefined probability,
which sums to 1 across all tiers. Within each tier, | 𝐶 | clients are se-
lected according to inner-tier selection policy. While a sophisticated
inner-tier selection policy can further optimize the performance, it
needs to be carefully co-designed with the privacy method (detailed
in Section 4.6). In this paper, we present a simple uniform selec-
tion policy to illustrate our approach and defer more sophisticated
inner-tier selection policy as our future work.

In a real-world FL scenarios, there can be a large number of
clients involved in the FL process [5, 14, 17]. Thus in our tiering-
based approach, the number of tiers is set such that𝑚 << |𝐾 | and
number of clients per tier 𝑛 𝑗 is always greater than |𝐶 |. Another
consideration for the number of clients per tier is that too few clients
in a tier may introduce training bias as these clients can be selected
too often, causing overfitting on the data for these clients. One way
to solve this issue is by adjusting the tier selection probabilities.

However, adjusting the tier selection probabilities results in dif-
ferent trade-offs. If the users’ objective is to reduce the overall
training time, they may increase the chances of selecting the faster
tiers. However, drawing clients only from the fastest tier may in-
evitably introduce training bias due to the fact that different clients
may own a diverse set of heterogeneous training data spread across
different tiers; as a result, such bias may end up affecting the ac-
curacy of the global model. To avoid such undesired behavior, it
is preferable to involve clients from different tiers so as to cover a
diverse set of training datasets. We perform an empirical analysis
on the latency-accuracy trade-off in Section 5.

4.4 Adaptive Tier Selection Algorithm

While the above naive static selection method is intuitive, it does
not provide a method to automatically tune the trade-off to optimize
the training performance nor adjust the selection based on changes
in the system. In this section, we propose an adaptive tier selection
algorithm that can automatically strike a balance between training
time and accuracy, and adapt the selection probabilities adaptively
over training rounds based on the changing system conditions. The
observation here is that heavily selecting certain tiers (e.g., faster
tiers) may eventually lead to a biased model, TiFL needs to balance
the client selection from other tiers (e.g., slower tiers). The question
being which metric should be used to balance the selection. Given
the goal here is to minimize the bias of the trained model, we can
monitor the accuracy of each tier throughout the training process.
A lower accuracy value of a tier 𝑡 typically indicates that the model
has been trained with less involvement of this tier, therefore tier
𝑡 should contribute more in the next training rounds. To achieve
this, we can increase the selection probabilities for tiers with lower
accuracy. To achieve good training time, we also need to limit
the selection of slower tiers across training rounds. Therefore, we
introduce 𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑡 , a constraint that defines how many times a
certain tier can be selected.

Specifically, a tier is initialized randomly with equal selection
probability. After the weights are received and the global model
is updated, the global model is evaluated on every client for every
tier on their respective 𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎 and their resulting accuracies
are stored as the corresponding tier 𝑡 ’s accuracy for that round 𝑟 .
This is stored in 𝐴𝑟𝑡 , which is the mean accuracy for all the clients
in tier 𝑡 in training round 𝑟 . In the subsequent training rounds,
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Algorithm2Adaptive Tier Selection Algorithm.𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑡 : the cred-
its of Tier 𝑡 , 𝐼 : the interval of changing probabilities, 𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑡 :
evaluation dataset specific to that tier 𝑡 , 𝐴𝑟𝑡 : test accuracy of tier 𝑡
at round 𝑟 , 𝜏 : set of Tiers.
1: Aggregator: initialize weight 𝑤0, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑒𝑟 = 1, 𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑡 ,
𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑡 , equal probability with 1

𝑇
, for each tier 𝑡 .

2: for each round 𝑟 = 0 to 𝑁 − 1 do
3: if 𝑟%𝐼 == 0 and r ≥ I then
4: if 𝐴𝑟

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑒𝑟
≤ 𝐴𝑟−𝐼

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑒𝑟
then

5: 𝑁𝑒𝑤𝑃𝑟𝑜𝑏𝑠 = 𝐶ℎ𝑎𝑛𝑔𝑒𝑃𝑟𝑜𝑏𝑠 (𝐴𝑟
1 , 𝐴

𝑟
2 ...𝐴

𝑟
𝑇
)

6: end if

7: end if

8: while𝑇𝑟𝑢𝑒 do

9: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑒𝑟 = (select one tier from T tiers with 𝑁𝑒𝑤𝑃𝑟𝑜𝑏𝑠)
10: if 𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑒𝑟 > 0 then
11: 𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑒𝑟 = 𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑒𝑟 − 1
12: break

13: end if

14: end while

15: 𝐶𝑟 = (random set of |𝐶 | clients from 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑇𝑖𝑒𝑟 )
16: for each client c ∈ 𝐶𝑟 in parallel do

17: 𝑤𝑐
𝑟 = 𝑇𝑟𝑎𝑖𝑛𝐶𝑙𝑖𝑒𝑛𝑡 (𝑐)

18: 𝑠𝑐 = (training size of c)
19: end for

20: 𝑤𝑟 =
∑|𝐶 |
𝑐=1 𝑤

𝑐
𝑟+1 ∗

𝑠𝑐∑|𝐶 |
𝑐=1 𝑠𝑐

21: for each 𝑡 in 𝜏 do
22: 𝐴𝑟

𝑡 = 𝐸𝑣𝑎𝑙 (𝑤𝑟 ,𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑡 )
23: end for

24: end for

25: function ChangeProbs(𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠𝐵𝑦𝑇𝑖𝑒𝑟 )
26: 𝐴 = 𝑆𝑜𝑟𝑡𝐴𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 (𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑖𝑒𝑠𝐵𝑦𝑇𝑖𝑒𝑟 )
27: 𝐷 = 𝑛 ∗ (𝑛 − 1)/2 where 𝑛 = # of tiers with𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑡 > 0
28: 𝑁𝑒𝑤𝑃𝑟𝑜𝑏𝑠 = []
29: for each Index 𝑖 , Tier 𝑡 in 𝐴 do

30: 𝑁𝑒𝑤𝑃𝑟𝑜𝑏𝑠 [𝑡 ] = (𝑛 − 𝑖)/𝐷
31: end for

32: return 𝑁𝑒𝑤𝑃𝑟𝑜𝑏𝑠
33: end function

the adaptive algorithm updates the probability of each tier based
on that tier’s test accuracy at every 𝐼 rounds. This is done in the
function 𝐶ℎ𝑎𝑛𝑔𝑒𝑃𝑟𝑜𝑏𝑠 , which adjusts the probabilities such that
the lower accuracy tiers get higher probabilities to be selected for
training.With the new tier-wise selection probabilities (𝑁𝑒𝑤𝑃𝑟𝑜𝑏𝑠),
a tier that has remaining𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑡 is selected from all available tiers
𝜏 . The selected tier will have its 𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑡 decremented. As clients
from a particular tier gets selected over and over throughout the
training rounds, the 𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑡 for that tier ultimately reduces down
to zero, meaning that it will not be selected again in the future.
This is a way of limiting the number of times a tier can be selected
so as to control the training time by controlling the maximum
number of times the slower tiers are selected. This serves as a
control knob for the number of times a tier is selected and by
setting this upper-bound, we can limit the amount of times a slower
tier contributes to the training, thereby effectively gaining some
control over setting a soft upper-bound on the total training time.
For the straw-man implementation, we used a skewed probability
of selection to manipulate training time. Since we now wish to

adaptively change the probabilities, we add the 𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑡 to gain
control over limiting training time.

On one hand, the tier-wise accuracy𝐴𝑡𝑟 essentially makes TiFL’s
adaptive tier selection algorithm data heterogeneity aware; as such,
TiFL makes the tier selection decision by taking into account the
underlying dataset selection biasness, and automatically adapt the
tier selection probabilities over time. On the other hand,𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑡 is
introduced to intervene the training time by enforcing a constraint
over the selection of the relatively slower tiers. While 𝐶𝑟𝑒𝑑𝑖𝑡𝑠𝑡
and 𝐴𝑟𝑡 mechanisms optimize towards two different and sometimes
contradictory objectives — training time and accuracy, TiFL co-
hesively synergizes the two mechanisms to strike a balance for
the training time-accuracy trade-off. More importantly, with TiFL,
the decision making process is automated, thus relieving the users
from intensive manual effort. The adaptive algorithm is summa-
rized in Algo. 2. One potential problem is that the uneven selection
probability might impact the overall accuracy due to overfitting on
data from particular tiers or training too long on tiers with “bad”
data. We denote such tiers as “bad tiers”. “Bad tier(s)” can result
in lower accuracy on other tiers due to overfitting. In Algo. 2, we
use the function ChangeProbs to change the selection probability
of tiers. ChangeProbs sorts the tiers in ascending order based on
their accuracies and assigns higher tier selection probabilities to
the lower accuracy tiers and vice versa. Given “bad tier(s)” have
higher accuracy, in the next rounds other tiers would get selected
more often, and thus mitigate the overfitting impact of “bad tier(s)”.

4.5 Training Time Estimation Model

In real-life scenarios, the training time and resource budget is typi-
cally finite. As a result, FL users may need to compromise between
training time and accuracy. A training time estimation model would
facilitate users to navigate the training time-accuracy trade-off
curve to effectively achieve desired training goals.

Therefore, we build a training time estimation model that can
estimate the overall training time based on the given latency values
and the selection probability of each tier:

𝐿𝑎𝑙𝑙 =

𝑛∑
𝑖=1

(𝑚𝑎𝑥 (𝐿𝑡𝑖𝑒𝑟_𝑖 ) ∗ 𝑃𝑖 ) ∗ 𝑅. (5)

where 𝐿𝑎𝑙𝑙 is the total training time, 𝐿𝑡𝑖𝑒𝑟_𝑖 is the response la-
tency of all the clients in tier 𝑖 , 𝑃𝑖 is the probability of tier 𝑖 , and
𝑅 is the total number of training rounds. The model is a sum of
products of the tier and maximum latency of each tier, which gives
the latency expectation per round. This is multiplied by the total
number of training rounds to get the total training time.

4.6 Discussion: Compatibility with

Privacy-Preserving Federated Learning

FL has been used together with privacy preserving approaches such
as differential privacy to prevent attacks that aim to extract private
information [22, 26].

Privacy-preserving FL is based on client-level differential privacy,
where the privacy guarantee is defined at each individual client.
This can be accomplished by each client implementing a centralized
private learning algorithm as their local training approach. For
example, with neural networks this would be running one or more
epochs using the approach proposed in [2], wherein each client
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adds the appropriate noise into their local learning to protect the
privacy of their individual datasets. Here we demonstrate that TiFL
is compatible with such privacy preserving approaches.

Assume that for client 𝑐𝑖 , one round of local training using a
differentially private algorithm is (𝜖 , 𝛿)-differentially private, where
𝜖 bounds the impact any individual may have on the algorithm’s
output and 𝛿 defines the probability that this bound is violated.
Smaller 𝜖 values therefore signify tighter bounds and provide a
stronger privacy guarantee. Enforcing smaller values of 𝜖 requires
more noise to be added to the model updates sent by clients to the
FL server which leads to less accurate models. Selecting clients at
each round of FL has distinct privacy and accuracy implications for
client-level privacy-preserving FL approaches. Let us consider the
scenario wherein a tier is chosen randomly each round according
to a pre-defined probability distribution. Recall that each client
adds differential privacy noise to its model updates every time it
replies to a query and that this noise prevents any leakage of private
information. In our approach, clients are queried according to a
tier-based random process, where the number of times a client gets
selected depends both on the tier selection policy and the inner-tier
selection policy. Because of the composition property of differential
privacy and the fact that each client adds its own noise, each client
can monitor and control how their differential privacy budget is
spent and thus their differential privacy guarantee. Therefore, it
is possible for each client to meet their privacy requirements by
stopping their replies if their budget has been consumed. In this
fashion, it is possible to combine our approach and differential pri-
vacy. While additional optimizations to further reduce the amount
of differential private noise (e,g. by incorporating techniques that
would enable random sampling amplification [3]) are interesting
research directions, these optimizations are orthogonal to the scope
of this paper.

5 EXPERIMENTAL EVALUATION

We prototype TiFL with both the naive and our adaptive selection
approach and perform extensive testbed experiments under three
scenarios: resource heterogeneity, data heterogeneity, and resource
plus data heterogeneity.

5.1 Experimental Setup

Testbed. As a proof of concept case study, we build a FL testbed
for the syntehtic datasets by deploying 50 clients on a CPU cluster
where each client has its own exclusive CPU(s) using Tensorflow [1].
In each training round, 5 clients are selected to train on their own
data and send the trained weights to the server which aggregates
them and updates the global model similar to [4, 20]. [4] introduces
multiple levels of server aggregators in order to achieve scalability
and fault tolerance in extreme scale situations, i.e., with millions of
clients. In our prototype, we simplify the system to use a powerful
single aggragator as it is sufficient for our purpose here, i.e., our
system does not suffer from scalabiltiy and fault tolerance issues,
though multiple layers of aggregator can be easily integrated into
TiFL.

We also extend the widely adopted large scale distributed FL
framework LEAF [7] in the same way. LEAF provides inherently
non-IID with data quantity and class distributions heterogene-
ity. LEAF framework does not provide the resource heterogeneity

Table 1: Scheduling Policy Configurations.

DataSet Policy Selection probabilities

Cifar10 / FEMNIST

Tier 1 Tier 2 Tier 3 Tier 4 Tier 5
vanilla N/A N/A N/A N/A N/A
slow 0.0 0.0 0.0 0.0 1.0

uniform 0.2 0.2 0.2 0.2 0.2
random 0.7 0.1 0.1 0.05 0.05
fast 1.0 0.0 0.0 0.0 0.0

MNIST
FMNIST

vanilla N/A N/A N/A N/A N/A
uniform 0.2 0.2 0.2 0.2 0.2
fast1 0.225 F0.225 0.225 0.225 0.1
fast2 0.2375 0.2375 0.2375 0.2375 0.05
fast3 0.25 0.25 0.25 0.25 0.0

Table 2: Estimated VS Actual Training Time.

Policy Estimated [s] Actual [s] MAPE [%]
slow 46242 44977 2.76

uniform 12693 12643 0.4
random 5143 5053 1.8
fast 1837 1750 5.01

among the clients, which is one of the key properties of any real-
world FL system. The current implementation of the LEAF frame-
work is a simulation of a FL system where the clients and server
are running on the same machine. To incorporate the resource
heterogeneity we first extend LEAF to support the distributed FL
where every client and the aggregator can run on separate ma-
chines, making it a real distributed system. Next, we deploy the
aggregator and clients on their own dedicated hardware. This re-
source assignment for every client is done through uniform random
distribution resulting in equal number of clients per hardware type.
By adding the resource heterogeneity and deploying them to sepa-
rate hardware, each client mimics a real-world edge-device. Since
we do not assume specific data distribution within each tier, we
randomly distribute data across clients (i.e., clients can have very
similar or widely different datasets per tier). Specifically, for LEAF,
we use the data distribution provided by the framework. For Ci-
far10/MNIST/FMNIST, we set the level of Non-IIDness per client
and distribute the data following [20]. The clients hosting these
datasets are uniform randomly assigned to a node (for generating
resource heterogeneity). Given that LEAF already provides non-
IIDness, with the newly added resource heterogeneity feature the
new framework provides a real world FL system which supports
data quantity, quality and resource heterogeneity. For our setup,
we use exactly the same sampling size used by the LEAF [7] pa-
per (0.05) resulting in a total of 182 clients, each with a variety of
image quantities. The test sets for all the datasets are generated
through sampling 10% of the total data per client. As such, the test
distribution is representative of the distribution of the training set.

5.2 Experimental Results

Models and Datasets. We use four image classification applica-
tions for evaluating TiFL. We use MNIST and Fashion-MNIST [28],
where each contains 60,000 training images and 10,000 test images,
where each image is 28x28 pixels. We use a CNN model for both
datasets, which starts with a 3x3 convolution layer with 32 channels

http://yann.lecun.com/exdb/mnist/
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and ReLu activation, followed by a 3x3 convolution layer with 64
channels and ReLu activation, a MaxPooling layer of size 2x2, a
fully connected layer with 128 units and ReLu activation, and a fully
connected layer with 10 units and ReLu activation. Dropout 0.25
is added after the MaxPooling layer, dropout 0.5 is added before
the last fully connected layer. We use Cifar10 [16], which contains
richer features compared to MNIST and Fashion-MNIST. There is a
total of 60,000 colour images, where each image has 32x32 pixels.
The full dataset is split evenly between 10 classes, and partitioned
into 50,000 training and 10,000 test images. The model is a four-
layer convolution network ending with two fully-connected layers
before the softmax layer. It was trained with a dropout of 0.25.
Lastly we also use the FEMNIST data set from LEAF framework [7].
This is an image classification dataset which consists of 62 classes
and the dataset is inherently non-IID with data quantity and class
distributions heterogeneity. We use the standard model architecture
as provided in LEAF [6].
Training Hyperparameters. We use RMSprop as the optimizer
in local training and set the initial learning rate (𝜂) as 0.01 and decay
as 0.995. Local batch size of each client is 10, and local epochs is 1.
For CIFAR10 the total number of clients (|𝐾 |) is 50 and the number
of participated clients (|𝐶 |) at each round is 5. For FEMNIST the
number of total clients is 182, clients per round is 18 and default
training parameters provided by the LEAF Framework (SGD with lr
0.004, batch size 10).We train for a total of 2000 rounds for FEMNIST
and 500 rounds for the synthetic datasets. Every experiment is run
5 times to produce average values.
Heterogeneous Resource Setup. Among all the clients, we split
them into 5 groups with equal clients per group. For MNIST and
Fashion-MNIST, each group is assigned with 2 CPUs, 1 CPU, 0.75
CPU, 0.5 CPU, and 0.25 CPU per part respectively. For the larger
Cifar10 and FEMINIST model, each group is assigned with 4 CPUs,
2 CPUs, 1 CPU, 0.5 CPU, and 0.1 CPU per part respectively. This
leads to varying training time for clients belong to different groups.
By using the tiering algorithm of TiFL, there are 5 tiers
Heterogeneous Data Distribution. FL differs from the datacen-
ter distributed learning in that the clients involved in the training
process may have non-uniform data distribution in terms of amount
of data per client and the non-IID data distribution. • For data quan-
tity heterogeneity, the training data sample distribution is 10%, 15%,
20%, 25%, 30% of total dataset for difference groups, respectively,
unless otherwise specifically defined. • For non-IID heterogeneity,
we use different non-IID strategies for different datasets. For MNIST
and Fashion-MNIST, we adopt the setting in [20], where we sort the
labels by value first, divide into 100 shards evenly, and then assign
each client two shards so that each client holds data samples from
at most two classes. For Cifar10, we shard the dataset unevenly in
a similar way and limit the number of classes to 5 per client (non-
IID(5)) following [31], [19] unless explicitly mentioned otherwise.
In the case of FEMINIST we use its default non-IID-ness.
Scheduling Policies. We evaluate several different naive schedul-
ing policies of the proposed tier-based selection approach, defined
by the selection probability from each tier, and compare it with the
state-of-the-practice policy (or no policy) that existing FL works
adopt, i.e., randomly select 5 clients from all clients in each round
[4, 20], agnostic to any heterogeneity in the system. We name it as

vanilla . fast is a policy that TiFL only selects the fastest clients

in each round. random demonstrates the case where the selection
of the fastest tier is prioritized over slower ones. uniform is a base
case for our tier-based naive selection policy where every tier has
an equal probability of being selected. slow is the worst policy
that TiFL only selects clients from the slowest tiers and we only
include it here for reference purpose so that we can see a perfor-
mance range between the best case and the worst case scenarios for
static tier-based selection approach. We use the above policies for
CIFAR-10 and FEMINIST training. For MNIST and Fashion-MNIST,
given it is a much more lightweight workload, we focus on demon-
strating the sensitivity analysis when the policy prioritizes more
aggressively towards the fast tier, i.e., from fast1 to fast3 , the
slowest tier’s selection probability has reduced from 0.1 to 0 while
all other tiers got equal probability. We also include the uniform
policy for comparison, which is the same as in CIFAR-10. Table 1
summarizes all these scheduling policies by showing their selection
probabilities.

5.2.1 Training Time Estimation via Analytical Model. In this section,
we evaluate the accuracy of our training time estimation model on
different naive tier selection policies by comparing the estimation
results of the model with the measurements obtained from test-bed
experiments. The estimation model takes as input of the profiled
average latency of each tier, the selection probabilities, and total
number of training rounds to estimate the training time. We use
mean average prediction error (MAPE) as the evaluation metric,
which is defined as follows:

MAPE =
|𝐿𝑒𝑠𝑡
𝑎𝑙𝑙

− 𝐿𝑎𝑐𝑡
𝑎𝑙𝑙

|
𝐿𝑎𝑐𝑡
𝑎𝑙𝑙

∗ 100, (6)

where 𝐿𝑒𝑠𝑡
𝑎𝑙𝑙

is the estimated training time calculated by the estima-
tion model and 𝐿𝑎𝑐𝑡

𝑎𝑙𝑙
is the actual training time measured during

the training process. Table 2 demonstrates the comparison results.
The results suggest the analytical model is very accurate as the
estimation error never exceeds more than 6 % with slight variations
occurring due to system randomness.

5.2.2 Resource Heterogeneity. In this sections, we evaluate the per-
formance of TiFL with static selection policies in terms of training
time and model accuracy in a resource heterogeneous environment
as depicted in 5.1 and we assume there is no data heterogeneity.
We evaluated TiFL with adaptive selection policy in section 5.2.5.
In practice, data heterogeneity is a norm in FL, we evaluate this
scenario to demonstrate how TiFL tame resource heterogeneity
alone and we evaluate the scenario with both resource and data
heterogeneity in Section 5.2.4.

In the interest of space, we only present the Cifar10 results here
as MNIST and Fashion-MNIST share the similar observations. The
results are organized in Fig. 3 (column 1), which clearly indicate
that when we prioritize towards the fast tiers, the training time
reduces significantly. Compared with vanilla, fast achieves almost
11 times improvement in training time, see Fig. 3 (a). One interest-
ing observation is that even uniform has an improvement of over 6
times over the vanilla. This is because the training time is always
bounded by the slowest client selected in each training round. In
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Figure 3: Comparison results for different selection policies

on Cifar10 with resource heterogeneity (0.5 to 4 CPUs) and

homogenous data quantity (Column 1), and data quantity

heterogeneity with with homogenous resources (2 CPUs per

client) (Column 2).

TiFL, selecting clients from the same tier minimizes the straggler
issue in each round, and thus greatly improves the training time.
While there can be variation in training time among the clients,
it can be mitigated by tuning the number of tiers used for client
binning. For accuracy comparison, Fig. 3 (c) shows that the differ-
ence between polices are very small, i.e., less than 3.71% after 500
rounds. However, if we look at the accuracy over wall-clock time,
TiFL achieves much better accuracy compared to vanilla, i.e., up
to 6.19% better if training time is constraint, thanks to the much
faster per round training time brought by TiFL, see Fig. 3 (e). Note
here that different policies may take very different amount of wall-
clock time to finish 500 rounds. It is worth pointing out that the
accuracy of FL is expected to be lower than traditional distributed
machine learning due to the skewed data distribution among the
clients as well as the different batching and gradients aggregation
methods [15].

5.2.3 Data Heterogeneity. In this section, we evaluate data het-
erogeneity due to both data quantity heterogeneity and non-IID
heterogeneity as depicted in Section 5.1. To demonstrate only the
impact from data heterogeneity, we allocate homogeneous resource
to each client, i.e., 2 CPUs per client.
• Data quantity heterogeneity. The training time and accuracy re-
sults are show in Fig. 3 (column 2). In the interest of space, we only
show Cifar10 results here. From the training time comparison in
Fig. 3 (b), it is interesting that TiFL also helps in data heterogeneity
only case and achieves up to 3 times speedup. The reason is that
data quantity heterogeneity may also result in different round time,
which shares the similar effect as resource heterogeneity. Fig. 3
(d) and (f) show the accuracy comparison, where we can see fast
has relatively obvious drop compared to others because Tier 1 only
contains 10% of the data, which is a significant reduction in volume
of the training data. slow is also a heavily biased policy towards
only one tier, but Tier 5 contains 30% of the data thus slow main-
tains good accuracy while worst training time. These results imply
that like resource heterogeneity only, data heterogeneity only can
also benefit from TiFL. However, policies that are too aggressive
toward faster tier needs to be used very carefully as clients in fast
tier achieve faster round time due to using less samples. It is also
worth pointing out that in our experiments the total amount of data
is relatively limited. In a practical case where data is significantly
more, the accuracy drop of fast is expected to be less pronounced.
• non-IID heterogeneity. We observe that non-IID heterogeneity
does not impact the training time. Hence, we omit the results here.
However, non-IID heterogeneity effects the accuracy. Fig. 4 shows
the accuracy over rounds given 2, 5, and 10 classes per client in a
non-IID setting. We also show the IID results in plot for comparison.
These results show that as the heterogeneity level in non-IID hetero-
geneity increases, the accuracy impact also increases for all policies
due to the strongly biased training data. Another important obser-
vation is that vanilla case and uniform have a better resilience than
other policies, thanks to the unbiased selection behavior, which
helps minimize further bias introduced during the client selection
process.

5.2.4 Resource and Data Heterogeneity. This section presents the
most practical case study with static selection policies as we eval-
uate with both resource and data heterogeneity combined. We
evaluated TiFL for both resource and data heterogeneity combined
with adaptive selection policy in section 5.2.5.

MNIST and Fashion-MNIST (FMNIST) results are shown in
Fig. 5 columns 1 and 2 respectively. Overall, policies that are more
aggressive towards the fast tiers bring more speedup in training
time. For accuracy, all polices of TiFL are close to vanilla, except
fast3 falls short as it completely ignores the data in Tier 5.

Cifar10 results are shown in Fig. 6 column 1. It presents the
case of resource heterogeneity plus non-IID data heterogeneity
with equal data quantities per client and the results are similar
to resource heterogeneity only since non-IID data with the same
amount of data quantity per client results in a similar effect of
resource heterogeneity in terms of training time. However, the
accuracy degrades slightly more here as because of the non-IID-
ness the features are skewed, which results in more training bias
among different classes.
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Figure 4: Comparison results for different selection policies on Cifar10 with different levels of non-IID heterogeneity (Class)

and fixed resources.
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Figure 5: Comparison results for different selection poli-

cies on MNIST (Column 1) and FMNIST (Column 2) with re-

source plus data heterogeneity.

Fig. 6 column 2 shows the case of resource heterogeneity plus
both the data quantity heterogeneity and non-IID heterogeneity.
As expected, the training time shown in Fig. 6 (b) is similar to Fig. 6
(a) since the training time impact from different data amounts can
be corrected by TiFL. However, the behaviors of round accuracy
are quite different here as shown in Fig. 6 (d). The accuracy of fast
has degraded a lot more due to the data quantity heterogeneity as
it further amplifies the training class bias (i.e., the data of some
classes become very little to none) in the already very biased data
distribution caused by the non-IID heterogeneity. Similar reasons
can explain for other policies The best performing policy in ac-
curacy here is the uniform case and is almost the same as vanilla,
thanks to the even selection nature which results in little increase
in training class bias. Fig. 6 (f) shows the wall-clock time accuracy.
As expected, the significantly improved per round time in TiFL
shows its advantage here as within the same time budget, more iter-
ations can be done with shorter round time and thus remedies the

 0

 10

 20

 30

 40

 50

vanilla

slow
uniform

random

fast

Tr
a
in

in
g

 t
im

e
 [

1
0

3
 s

]
(a) Training time 500 rounds

 0
 10
 20
 30
 40
 50
 60
 70
 80

vanilla

slow
uniform

random

fast

Tr
a
in

in
g

 t
im

e
 [

1
0

3
 s

]

(b) Training time 500 rounds

 0

 0.2

 0.4

 0.6

 0.8

 0  100  200  300  400  500

A
cc

u
ra

cy

Rounds

vanilla
slow
uniform
random
fast

(c) Accuracy over rounds

 0

 0.2

 0.4

 0.6

 0.8

 0  100  200  300  400  500
A

cc
u
ra

cy
Rounds

vanilla
slow
uniform
random
fast

(d) Accuracy over rounds

 0

 0.2

 0.4

 0.6

 0.8

 0  3  6  9  12

A
cc

u
ra

cy

Time [sec x 103]

vanilla
slow
uniform
random
fast

(e) Accuracy over time

 0

 0.2

 0.4

 0.6

 0.8

 0  3  6  9  12

A
cc

u
ra

cy

Time [sec x 103]

vanilla
slow
uniform
random
fast

(f) Accuracy over time

Figure 6: Comparison results for different selection policies

on Cifar10 with resource plus non-IID heterogeneity hetero-

geneity (Column 1) and resource, data quantity, and non-IID

heterogeneity heterogeneity (Column 2).

accuracy disadvantage per round. fast still falls short than vanilla
in the long run as the limited and biased data limits the benefits of
more iterations. fast also perform worse than vanilla as it has no
training advantage.
5.2.5 Adaptive Selection Policy. The above evaluation demonstrate
the naive selection approach in TiFL can significantly improve the
training time, but sometimes can fall short in accuracy, especially
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Figure 7: Comparison results of Cifar10 under non-IID heterogeneity (Class) for different client selection policies with fixed

resources (2 CPUs) per client.
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Figure 8: Comparison results for different selection policies

on Cifar10 with data quantity heterogeneity (Amount), non-

IIDheterogeneity (Class), and resource plus data heterogene-

ity (Combine).

when strong data heterogeneity presents as such approach is data-
heterogeneity agnostic. In this section, we evaluate the proposed
adaptive tier selection approach of TiFL, which takes into con-
sideration of both resource and data heterogeneity when making
scheduling decisions without privacy violation. We compare adap-
tive with vanilla and uniform, and the later is the best accuracy
performing static policy.

Fig. 8 shows adaptive outperforms vanilla and uniform in both
training time and accuracy for resource heterogeneity with data
quantity heterogeneity (Amount) and non-IID heterogeneity (Class),
thanks to the data heterogeneity-aware schemes. In the combined
resource and data heterogeneity case (Combine), adaptive achieves
comparable accuracy with vanilla with almost half of the training
time and a slightly higher training time compared to uniform. The
time difference arises when the adaptive policy tries to balance
training time and accuracy, i.e. the 10% difference in training time is
for the tradeoff of achieving around 5% better accuracy. The other
policy which achieves this accuracy is vanilla, which has almost
2x more training time. Considering this, we note that the training
time difference is not significant, and performs similar as uniform
in training time while improves significantly in accuracy.

The above robust performance of adaptive is credited to both the
resource and data heterogeneity-aware schemes. To demonstrate
the robustness of adaptive, we compare the accuracy over rounds
for different policies under different non-IID heterogeneity in Fig.
7. It is clear that adaptive consistently outperforms vanilla and
uniform in different level of non-IID heterogeneity.

5.2.6 Adaptive Selection Policy (LEAF). This section provides the
evaluation of TiFL using a widely adopted large scale distributed FL
dataset FEMINIST from the LEAF framework [7] . We use exactly
the same configurations (data distribution, total number of clients,
model and training hyperparameters) as mentioned in [7] resulting
in total number of 182 clients, i.e. deploy-able edge devices. Since
LEAF provides it’s own data distribution among devices the addi-
tion of resource heterogeneity results in a range of training times
thus generating a scenario where every edge device has a different
training latency. We further incorporated TiFL’s tiering module and
selection policy to the extended LEAF framework. The profiling
modules collects the training latency of each clients and creates a
logical pool of tiers which is further utilized by the scheduler. The
scheduler selects a tier and then the edge clients within the tier
in each training round. For our experiments with LEAF we limit
the total number of tiers to 5 and during each round we select 10
clients, with 1 local epoch per round.
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Figure 9: Comparison results for different selection policies

on LEAF with default data heterogeneity (quantity, non-IID

heterogeneity), and resource heterogeneity.

Figure 9 shows the training time and accuracy over rounds for
LEAF with different client selection policies. Figure 9a shows the
training time for different selection policies. The least training time
is achieved by using the fast selection policy however, it impact the
final model accuracy by almost 10% compared to vanilla selection
policy. The reason for the least accuracy for fast is the result of
less training point among the clients in tier 1. One interesting
observation is slow out performs the selection policy fast in terms
of accuracy even though each of these selection policies rely on
data from only one tier. It must be noted that the slow tier is not
only the reason of less computing resources but also the higher
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quantity of training data points. These results are consistent with
our observations from the results presented in Section 5.2.3.

Figure 9b shows the accuracy over-rounds for different selection
policies. Our proposed adaptive selection policy achieves 82.1% ac-
curacy and outperforms the slow and fast selection policies by 7%
and 10% respectively. The adaptive policy is on par with the vanilla
and uniform ( 82.4% and 82.6% respectively). when comparing the
total training time for 2000 rounds adaptive achieves 7 × and 2 ×
improvement compare to vanilla and uniform respectively. fast and
random both outperformed the adaptive in terms of training time
however, even after convergence the accuracy for both of these
selection policies show a noticeable impact on the final model accu-
racy. The results for FEMNIST using the extended LEAF framework
for both accuracy as well as training time are also consistent with
the results reported in Section 5.2.5.

6 CONCLUSION

In this paper, we investigate and quantify the heterogeneity impact
on “decentralized virtual supercomputer” - FL systems. Based on
the observations of our case study, we propose and prototype a
Tier-based Federated Learning System called TiFL. Tackling the re-
source and data heterogeneity, TiFL employs a tier-based approach
that groups clients in tiers by their training response latencies and
selects clients from the same tier in each training round. To ad-
dress the challenge that data heterogeneity information cannot
be directly measured due to the privacy constraints, we further
design an adaptive tier selection approach that enables TiFL be
data heterogeneity aware and outperform conventional FL in vari-
ous heterogeneous scenarios: resource heterogeneity, data quantity
heterogeneity, non-IID data heterogeneity, and their combinations.
Specifically, TiFL achieves an improvement over conventional FL
by up to 3× speedup in overall training time and by 6% in accuracy.
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