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Abstract

Over the last thirty years, we have witnessed a dramatic rise in the use of zebrafish in preclinical research.
Every year, more than 5,000 technical papers are published about zebrafish, many of them seeking to explain
the underpinnings of anxiety through animal testing. In-silico experiments could significantly contribute to
zebrafish research and welfare, by offering new means to support the 3Rs principles of replacement, reduc-
tion, and refinement. Here, we propose a data-driven modeling framework to predict the anxiety-related
behavioral response of zebrafish to acute caffeine administration. The modeling framework unfolds along a
two-time-scale dichotomy to capture freezing behavior along a slow temporal scale and burst-and-coast loco-
motion at a fast time-scale. Anchored in the theory of Markov chains and stochastic differential equations,
we demonstrate a parsimonious, yet robust, modeling framework to accurately simulate experimental ob-
servations of zebrafish treated at different caffeine concentrations. Our results complement recent modeling
efforts, laying the foundations for conducting in-silico experiments in zebrafish behavioral pharmacology.
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1. Introduction

Zebrafish (Danio rerio) is a freshwater species
that is employed as a model organism in a wide ar-
ray of scientific disciplines, ranging from toxicology
(Hill et al., 2005) and behavioural genetics (Nor-
ton and Bally-Cuif, 2010), and on to translational
neuroscience (Stewart et al., 2014) and evolution-
ary ecology (Spence et al., 2008). Every year, more
than 5,000 technical papers are published about ze-
brafish (Meyers, 2018). Easy maintenance, knowl-
edge of their genome, and psychological and neu-
rological homologies with humans are some of the
key advantages that have promoted zebrafish use in
preclinical research (Nusslein-Volhard and Dahm,
2002).

Experiments with zebrafish could help clarify the
underpinnings of anxiety in humans, an emotional
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state that is associated with alarming and troubling
feelings about potential threats, as defined by the
Psychiatric Association (2013). Zebrafish exhibits a
complex behavioral repertoire, which is modulated
by acute and chronic administration of psychoactive
compounds that can be simply released in water,
such as ethanol, caffeine, citalopram, and cocaine,
to name a few; in this vein, several pharmacolog-
ical studies have utilized the zebrafish as an ani-
mal model to investigate the effect of psychoactive
compounds on anxiety-related behavioral response
(Lépez-Patifio et al., 2008; Egan et al., 2009; Max-
imino et al., 2011).

Zebrafish anxiety-related behavioral phenotype
(Maximino et al., 2010a,b; Kalueff et al., 2013) in-
cludes erratic activity (repeated darting accompa-
nied by sudden changes in direction or velocity),
geotaxis (preference to stay at the bottom of the
tank), thigmotaxis (preference to stay closer to the
walls), and freezing (complete cessation of move-
ment except for eyes and gills). High-throughput
pharmacological assays measure the behavior of fo-
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cal subjects along these metrics, or a subset of them,
in response to acute or chronic administration at
chosen concentrations. These studies typically re-
quire a large number of individuals (Khan et al.,
2017) and many substances that could be harmful
to the animals (Jayne and See, 2019; Sloman et al.,
2019).

Although animal experiments are the final cor-
nerstone against which hypotheses shall be tested,
computational modeling represents a viable means
to accelerate the process of scientific discovery and
contribute to animal well-being. In particular, com-
putational, in-silico, models of zebrafish behavioral
response to psychoactive compounds could benefit
all of the three pillars of 3Rs endeavors, namely, to
reduce the number of subjects, refine experimental
designs, and replace the use of live animals (Russell
et al., 1959). Empowered with accurate and reliable
computational tools, researchers could: (i) conduct
in-silico pilot tests to isolate critical experimental
conditions that should be tested with live animals;
(ii) improve on the analysis of their in-vivo exper-
imental data to garner further insight on zebrafish
response; and (iii) inform initial power analysis to
optimize the design of their in-vivo experiment.

Caffeine is the most consumed psychoactive com-
pound in the world, with an estimate of 80% of
the population consuming a caffeinated product ev-
ery day (de Paula Lima and Farah, 2019). One
of the side-effects of caffeine in humans relates to
anxiety-related response (Fredholm et al., 1999).
Experimental evidence on zebrafish suggests that
acute caffeine treatment can stimulate fish activity
at low doses, while evoking robust anxiety-related
response in the form of increased freezing response
and reduced locomotion at higher concentrations
(Santos et al., 2017; Rosa et al., 2018; Neri et al.,
2019).

Data-driven computational modeling has been
recently shown to be an effective approach to de-
scribe zebrafish swimming in isolation (Gautrais
et al., 2009; Mwaffo et al., 2015a; Mwaffo and Por-
firi, 2015; Zienkiewicz et al., 2015b; Mwaffo et al.,
2017b) and in groups (Gautrais et al., 2012; Calovi
et al., 2015; Zienkiewicz et al., 2015a; Butail et al.,
2016; Collignon et al., 2016; Mwaffo et al., 2017a,c;
Calovi et al., 2018; Zienkiewicz et al., 2018). In par-
ticular, the jump persistent turning walker (JPTW)
model has been proposed as a versatile paradigm to
capture the burst-and-coast swimming style of ze-
brafish, consisting of isolated tail bursts that are
followed by coasting phases without tail beating

(Mwaffo et al., 2015a). In its original formulation,
this model describes the turn rate dynamics of an
individual swimming at a constant speed in shallow
water via a stochastic mean reverting jump diffu-
sion process (Klebaner, 2012). Building upon the
JPTW, we have recently incorporated diving along
the water column and speed modulation through a
Cox-Ingersoll-Ross process (Mwaffo et al., 2017b).

While this modeling framework constitutes a
promising approach toward studying zebrafish lo-
comotion, its systematic use in the pharmacologi-
cal study of anxiety-related response has yet to be
demonstrated. Thus far, to the best of our knol-
wedge, the only study about modeling zebrafish re-
sponse to psychoactive compounds is the paper by
Mwaffo and Porfiri (2015), where the original for-
mulation of the JPTW for the turn rate dynamics
was calibrated on experimental data of zebrafish
exposed to acute ethanol administration.

Several technical steps should be undertaken to-
ward a parsimonious, accurate, and robust mod-
eling framework for zebrafish behavioral pharma-
cology. First, existing modeling schemes should
be extended to describe freezing behavior, which
might dominate the response of treated individuals
in many assays (Maximino et al., 2010a,b; Kalueff
et al., 2013). Second, the description of the speed
modulation should be refined to encapsulate tran-
sitions between freezing and swimming episodes.
Third, the effect of pharmacological manipulations
on all the model parameters should be robustly
identified from experimental data of animal trajec-
tories to allow for mapping treatment into pheno-
type. In this work, we seek to address these tech-
nical steps in the context of zebrafish response to
acute caffeine treatment in a shallow water tank.

Our modeling framework predicts zebrafish be-
havior along two time-scales: a slow time-scale,
where zebrafish alternates between freezing and
swimming, and a fast time-scale, associated with
the evolution of speed and turn rate during loco-
motion. The dynamics unfolding on the slow time-
scale is described by a discrete-time Markov chain
(Brémaud, 2013), with two states that are associ-
ated with swimming and freezing. The dynamics on
the fast time-scale follows an improved version of
the JPTW model, in which we employ a stochastic
logistic equation (Gard, 1988), rather than a Cox-
Ingersoll-Ross process to study speed modulation.
The model has two constant parameters associated
with the speed variability and its rate of growth.
When compared to the Cox-Ingersoll-Ross process,



such a logistic equation offers improved robustness
in handling the transitions between swimming and
freezing, along with a reduced number of model pa-
rameters to be experimentally calibrated.

Model parameters are estimated using data ob-
tained from over-head recordings of zebrafish be-
havior in a shallow-water tank. The parameters of
the Markov chain are estimated from the frequency
of the transitions between swimming and freezing
(Bowman et al., 2013), while maximum likelihood
(Lo, 1988) is utilized to calibrate the stochastic dif-
ferential equations of the locomotion model. We
use our previous dataset (Neri et al., 2019) con-
sisting of subjects acutely treated at four different
caffeine concentrations; that is, 0 mg/1, 25 mg/1, 50
mg/l, and 70 mg/l. We carry out a detailed statisti-
cal analysis to explore the dependence of the model
parameters on caffeine treatment, thereby shedding
light on the potential value of data-driven compu-
tational modeling in zebrafish pharmacology.

The rest of the paper is organized as follows. The
description of the experiment along with the data
collection and analysis are presented in Section 2.
Our novel approach to modeling zebrafish behav-
ior is presented in Section 3. Technical details on
model calibration are summarized in Section 4. A
parametric analysis of the model for different caf-
feine concentrations is presented in Section 5, along
with in-silico experiments that illustrate the poten-
tial value of the approach. The main results along
with concluding remarks and avenues for future re-
search are discussed in Section 6.

2. Experiments: description, data collection,
and analysis

2.1. Ezperiment description

We use the dataset from our previous experiment
in Neri et al. (2019), approved by the Animal Wel-
fare Committee of the New York University Tandon
School of Engineering (protocol number 13-1424).
The experiment consisted of recording the trajec-
tories of individual fish acutely-exposed to different
caffeine concentrations in a circular arena of 90 cm
in diameter and 10cm in depth. The arena was
covered with white contact paper allowing high-
contrast background that facilitated visual track-
ing, see Neri et al. (2019) for further details.

Four different caffeine concentrations C were
considered: 0mg/l (control condition), 25mg/l,
50mg/l, and 70mg/l. Ten naive fish were tested

for each caffeine concentration (forty fish in total).
The sex was randomized in the experiments and
the average body length (BL) was approximately
3cm. The pharmacological manipulation consisted
of: (i) randomly picking one fish from the holding
tank using a hand net and transferring it to a 500
ml glass beaker with a solution of water (from the
experimental tank) and caffeine with concentration
C; (ii) placing the beaker with the fish in the tank
for one hour; and, finally, (iii) transferring the fish
from the beaker to the arena using again a hand
net.

2.2. Data collection and processing

Fish activity was recorded for 5min (Toxp, =
300s) at 40 frame/s.  Videos were processed
in MATLAB, employing a multi-target tracking
system (Ladu et al., 2014) to obtain individ-
ual (z(kA),y(kA)) centroid positions in the tank,
with respect to a global Cartesian reference frame,
where A = 1/40s is the sampling time and k €
{1,...,N =12,000} the time-stamp of the record-
ing. The centroid positions were processed using
a Daubechies wavelet filter (Mwaffo et al., 2015b).
The filtered outputs were used for the identifica-
tion of freezing episodes and for the computation
of speed and turn rate, as illustrated in what fol-
lows.

Following Kopman et al. (2013), we identified a
freezing episode when the fish centroid trajectories
were enclosed in a circle of 2cm in radius for 2s.
In particular, freezing can be described through a
binary variable, denoted by G(iA) taking values ev-
ery 2s, so that A = 80A and i € {1,...,]\7 = 150}.
The binary values that the variable can take are
denoted with F and S, identifying freezing or swim-
ming episodes. Specifically, we set G(zA) =F
if the centroid positions (z(iA),y(iA)) along with
all the subsequent centroid positions within a 2s
time window (z(1A + A),y(iA + A)), ..., (z(i1A +
79A),y(iA + T9A)), were contained in a circle of
2cm in radius, and G(iA) = S otherwise. Not
only does this definition of freezing include com-
plete cessation of movement, but also it comprises
akinesia episodes, where the fish exhibits an abnor-
mal reduction of its swimming speed (Kalueff et al.,
2013).

Exemplary fish trajectories for different caffeine
concentrations are illustrated in Figure 1. Freez-
ing instances with their duration are indicated in
the figure to help appreciate typical patterns in ze-
brafish locomotion, alternating smooth swimming
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Figure 1: Exemplary experimental trajectories at different caffeine concentrations. Each square represents a freezing episode,
whose duration is indicated on the side legend. Green and blue asterisks mark the start and end of each trajectory, respectively.

segments with freezing episodes. As one might
expect, the frequency of freezing bouts seems to
be controlled by caffeine concentration, such that
fish spend more time freezing at higher concentra-
tions (Neri et al., 2019).

The fish speed v(kA) was obtained according to
v(kA) = \/va%(kA) +v2(kA), where v, (kA) and
vy(kA) are two components of the velocity vector
along the z- and y-axes, computed through numeri-

cal differentiation (using the first-order forward dif-
ference method).

In addition, we calculated the turn rate w(kA)
by mapping the filtered centroid positions to in-
trinsic coordinates, as described by Gautrais et al.
(2009). The method estimates the curvilinear ab-
scissa S((k+1)A) and the heading angle ¢((k+1)A)
using the following three steps: (i) fitting three sub-
sequent centroid positions (z(kA), y(kA)), (z((k+
DA),y((k+1)A)), and (z((k+2)A), y((k+2)A)) on
a circle; (ii) calculating the increment of the head-
ing angle d¢((k + 1)A), which is the angle between
the two lines from the center of the circle to the

first and third centroid positions, at the kth and
(k + 2)th steps, respectively; and (iii) approximat-
ing the turn rate as w((k+1)A) = Jo((k+1)A)/2A.
No post-processing was conducted on the turn rate,
except for removing a few false peaks whose mag-
nitude exceeded 20rad/s — supplementary analy-
sis not included in this work suggests that local
smoothing of the data would neither change the fea-
tures of the time-series nor confound the effect of
caffeine, but it may lower the values of the cali-
brated model parameters.

An example of the time-evolution of the speed
and turn rate is shown in Figures 2 and 3, along
with their corresponding histograms. Subscript S
indicates that the computations have been executed
only when the fish was swimming, that is, dis-
carding freezing from the original measurements of
w(kA) and v(kA) — the same notation will be used
in the development of the data-driven mathemat-
ical model to distinguish swimming from freezing.
The speed for the four different caffeine concentra-
tions fluctuates around a mean value of 6.68 cm/s,
6.27cm/s, 4.30 cm/s, and 3.41 cm/s, respectively.
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Figure 2: Time-trace and histograms of the speed for each fish trajectory from Figure 1 neglecting freezing episodes. The top
four panels are the time- evolution of the speed (for visualization purposes, only the first 125s are displayed) and the bottom
row panels are their corresponding histograms. The bin size for all histograms is 0.25cm/s, and the skewness is indicated by

Sk.

The distribution of the speed is positively skewed,
indicating that there are more deviations from the
mean towards higher speeds. Moreover, the turn
rate fluctuates around zero, suggesting that fish do
not have a preferential swimming direction in the
tank. As expected from our previous work (Mwaffo
et al., 2015a), the turn rate displays a sequence
of spikes (or jumps), corresponding to values ex-
ceeding three times the standard deviation of the
turning rate trajectory. These spikes correspond to
C- and U-turns, typical bouts of burst-and-coast
locomotion (Danos and Lauder, 2007), and they
manifest into heavy tails in the distributions shown
in the panels on the right-hand-side of Figure 3.
We comment that the turn rate for the control
subject shows more variability than the caffeine-
treated subjects, whereby increasing C' from 0mg/1
to 70 mg/l, the standard deviation of the turn rate
attains the following values: 2.65rad/s, 1.81rad/s,

2.20rad/s, and 1.78rad/s, respectively.

2.3. Ezperiments and analysis

Four trials were discarded due to a recording issue
that was detected in the post-processing phase, one
for 25mg/1, one for 50 mg/1, and two for 70 mg/1.
Three additional trials, two for C' = 50mg/l and
one for C' = 70 mg/1, were dismissed, since the fish
froze more than 95% of the time, thus failing to pro-
vide sufficient data for swimming trajectory analy-
sis and parameter calibration.

The effect of caffeine concentration on the fish
swimming behavior was quantified through four
salient metrics, namely, (i) time spent freezing tp,
(ii) distance traveled D, (iii) mean speed Vg, and
(iv) mean absolute turn rate {2g.

The time spent freezing was computed by sum-
ming all the occurrences of freezing, that is, ag-
gregating all the numbers reported in the legends
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Figure 3: Time-evolution and histograms of turn rate for each fish trajectory from Figure 1 neglecting freezing episodes. The
top four panels are the time- evolution of the speed (for visualization purposes, only the first 125s are displayed) and the
bottom row panels are their corresponding histograms, plotted with a bin size of 0.25rad/s. The dashed-dotted blue lines are
three times the standard deviation of the turn rate (+3std[wg(kA)], where std(-) is the standard deviation).

of Figure 1. The distance traveled was obtained
by summing the Euclidean distances between two
consecutive centroid positions, (z(kA),y(kA)) and
(x((k+1)A),y((k+ 1)A)), respectively. The mean
speed was calculated by averaging the speed dur-
ing swimming, that is, discarding freezing episodes.
The mean absolute turn rate was equivalently com-
puted by excluding freezing episodes when averag-
ing the absolute value of the turn rate. We note
that, for each trial, the number of samples used
to compute Vg and Qg could be different, as fish
spend different times swimming or freezing across
trials. Further, we comment that dividing D by the
time of the experiment (300 s) does not exactly yield
Vs since in the latter quantity we exclude freezing
episodes, where the speed should be zero in princi-
ple.

We compared the four metrics tg, D, Vg, and Qg
across different caffeine concentrations using a one-
way analysis of variance (ANOVA) with C as the
independent variable (Navidi, 2008). One outlier
was identified and discarded from the analysis for
C = 70 mg/] using the interquartile range rule (Na-
vidi, 2008) on the average distance traveled. Once
a significant difference was found with ANOVA,
we applied the Fisher’s least significant difference
(LSD) method (Navidi, 2008) for conducting post-
hoc analysis that could reveal differences between
caffeine concentrations.

The overall results of the ANOVA on the con-
sidered four metrics are shown in Figure 4. As re-
ported by Neri et al. (2019), caffeine concentration
influences the time spent freezing (F'(3,28) = 3.27,
P = 0.035). Specifically, post-hoc comparisons re-



vealed that subjects treated at C' = 70 mg/1 spent
more time freezing than subjects in any other con-
dition: control condition (P = 0.014), 25mg/]
(P = 0.002), and 50mg/1 (P = 0.009). Similarly,
we found that the distance traveled D was affected
by the caffeine concentration (F(3,30) = 3.27,
P = 0.031). Post-hoc analysis indicated that the
distance traveled by individuals treated at the high-
est caffeine concentration of 70 mg/1 was lower than
that of control subjects (P = 0.012) and fish treated
at 50mg/1 (P = 0.008).

In agreement with previous pharmacological
studies (Santos et al., 2017; Rosa et al., 2018; Neri
et al., 2019), we noted that the mean speed de-
creased as the the caffeine concentration increases.
In addition, we found that the mean absolute turn
rate had an inverted U-shape with the highest ac-
tivity attained at C' = 50 mg/1. However, no signif-
icant differences were registered through ANOVA
on either metric.

3. Data-driven modeling framework

3.1. Zebrafish kinematics

Zebrafish can be modeled as a rigid body moving
on a horizontal plane. Fish motion is measured in
the global reference frame {X;, Y} with origin O,
as shown in Figure 5. We also define a local ref-
erence frame {Xg, Vgr} relative to the fish centroid
position in the global frame as Pc(t) = [z(t), y(t)] "
at time ¢, where the superscript T is matrix trans-
position. Then, the pose of the fish with respect
to the global reference can described by the three-
dimensional vector [z(t),y(t),0(t)]T where 0(t) €
[—7,m) is the angular rotation from the global to
local reference frame. The pose in either the lo-
cal or global reference can be mapped onto the
other through a linear transformation (de Wit et al.,
2012).

The fish pose in the global frame can be com-
puted by integrating the following system of ordi-
nary differential equations:

d‘fi(t) v(t) cos(6(t))
W) | = | o(t)sin(0(t) |, (la)
9 <

with initial conditions

z(0) = xo, y(0)=yo, 6(0)= 0o, (1b)

where v(t) and w(t) are the instantaneous speed
and turn rate of the fish, and xg, yg, 6y € R are the
initial conditions.

Variables v(t) and w(t) constitute the key compo-
nents of the kinematic model in Eq. (1); modeling
their time-evolution with respect to caffeine admin-
istration is the chief objective of this study.

3.2. Zebrafish dynamics

To establish a valid modeling framework to study
zebrafish response to caffeine exposure, it is im-
portant to account for the possibility of freezing.
Toward this aim, we split the modeling problem
into two different sub-problems. First, we exam-
ine the transitions between freezing and swimming,
and then, during the swimming segments of the tra-
jectory, we characterize the subject locomotion in
terms of speed and turn rate. The resulting mod-
eling architecture unfolds along a two time-scales
dichotomy.

3.2.1. Transitioning between freezing and swim-
ming

Toward modeling the transitions between freez-
ing and swimming, we use a discrete-time Markov
chain, as sketched in Figure 6. The red circle repre-
sents a freezing state, and the blue circle is associ-
ated with swimming. Each state has a probability
of persistence, given by pr and pg, and a proba-
bility of transitioning to the other state, given by
prs =1 — pp, and pgr = 1 — ps, respectively.

Letting I'(¢T") be the binary random variable tak-
ing the values F (freezing) or S (swimming), the
speed v(t) and turn rate w(t) can be written as

o, if (iT) = F
v(t) = {vs(t), wremy —s’ Y
o, if (iT) = F
wlt) = {ws(t)7 v —s’ Y
v(0) = vg, w(0) = wo, (2¢)

where t € [0, Texpl, i = {1, - ,JV} and vg,wg € R
are the initial conditions. The realizations of I'(iT")
are drawn from the Markov model shown in Figure
6 with T' > 0 being a constant time period and
initial condition given by

I(0) =Ty € {S,F). (3)
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Figure 5: Zebrafish kinematics, depicting the global and lo-
cal reference frames, along with the fish trajectory (blue line)
and the interaction with the tank wall.

Figure 6: Markov model of swimming and freezing behavior
of zebrafish.

We note that I'(iT") should predict the evolution of
G(iA) obtained from the experimental data. Equa-
tion (2) has two different time-scales associated
with the transitions process I'(:T) that is updated
with T, and the speed and turn rate that evolve
continuously in time. Following the definition of
freezing by Kopman et al. (2013), we set T' = 2s,
so that N = 150.

We acknowledge that in its present formulation,
the model defines freezing as a complete cessation of
movement. As a result, the theoretical definition of
freezing excludes akinesia episodes that are instead

retained in the analysis of experimental data as part
of freezing, due to inherent uncertainty in the track-
ing software. A potential way to reconcile experi-
mental constraints with mathematical assumptions
might be to add a nonzero threshold in both the
speed and the turn rate in Eqgs. (2a) and (2b).

3.2.2. Locomotion

To describe the evolution of the speed and
turn rate once the fish enters the swimming state
(T(#T) = S), we use a set of continuous-time
stochastic differential equations that extend pre-
vious work on zebrafish swimming in shallow wa-
ter (Mwaffo et al., 2015a; Mwaffo and Porfiri, 2015;
Zienkiewicz et al., 2015b).

Experimental observations of fish speed (see Fig-
ure 2) for different caffeine concentrations C' indi-
cate that the probability distribution of the speed
is positively skewed and has a shape similar to a
gamma distribution. To encapsulate these features,
we propose the use of a stochastic logistic equation
(Pasquali, 2001), as follows:

dvs (t) = (nus(t) — glws(t))vg(t))dt
+ 0,08 (t)dW, (t), (4)

where 1) [s~'] and o, [s~'/?] are positive parameters
of the logistic model, measuring the linear rate of
growth of the speed and the strength of the added
noise, respectively; W, () is a standard Wiener pro-
cess; and the nonlinear function g(ws(t)) [cm™1]
regulates the increase or decrease of the speed ac-
cording to the turn rate wg(t).

To adequately select the function g(ws(t)), we
first recall that the expected value of Eq. (4) for

2

oy < 2n, and a given value of the turn rate, say
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ws(t) = w*, is given by (Pasquali, 2001)

AP

where g* = g(w*) quantifies the influence of the
turn rate on the expected value of the speed, such
that fish should decrease their speed when experi-
encing large turn rates (for example, during C- and
U-turns), and, vice versa, they will be able to attain
larger speeds during straight swimming.

Elvs ()]

Next, we plot phase portraits of turn rate ver-
sus speed for the fish trajectories of Figure 1, cor-
responding to different caffeine concentrations, as
shown in Figure 7. Therein, we identify a clear
triangular-like region with higher turn rates corre-
sponding to lower speeds, and vice versa. This re-
lation can be captured by considering the following
equation:

gles(t)) = o os(O)] (6

Here, std, = std|ws(t)] is the experimental value
of the standard deviation in the turn rate, which is
treated as a fish-specific parameter (as indicated for
example in Figure 1), and BL = 3 c¢m is the average
body length of the animals. Equation (6) does not
require any parameter for calibration, whereby it
assumes a simple linear relationship on the absolute
turn rate with a coefficient of proportionality that
is given by experimental data. By scaling the turn
rate by its standard deviation and the body length,
we recognize that C- and U-turns are associated
with extreme values of the turn rate and are defined
with respect to the characteristic size of the animal.

According to the JPTW model, the turn rate evo-
lution is governed by the following mean reversion

jump diffusion process (Mwaffo et al., 2015a):

dws(t) = (—aws(t) + f(p(?), d(t)))dt
+ 0L dW,,(t) + dJ (t), (7)

where o [s7!] and o, [rads™3/?] are positive pa-
rameters representing the relaxation rate associ-
ated with the ability of fish to resume straight
swimming and the strength of the added noise,
respectively; W, (t) is a standard Wiener process;
and J(t) is a jump process capturing sudden turn
rates that are typical of zebrafish swimming style
(Mwaffo et al., 2015a). In particular, the jump dif-
fusion term is a compound Poisson process J(t) =
Z;”:(? Y;, where Y; are independent and identically
distributed Gaussian random variables with zero
mean and variance v2. The intensity of the jump
term at time ¢ is determined by the stochastic pro-
cess m(t), whose increments m(t") —m(t’) are Pois-
son random variables with parameter A(t"” —¢') for
any t',t" € [t1,to] with ¢/ > ¢'.

The nonlinear function f(¢(t),d(t)) [rads™2] rep-
resents the interaction with the wall, as illustrated
in Figure 5, and can be approximated following
Gautrais et al. (2009) and Zienkiewicz et al. (2015b)
through

F(e(t), d(t) = asgn(p(t))e " (8)

where sgn(-) is the sign function, a [rads~2] and b
[cm™!] are positive parameters, d(t) is the distance
from the wall, and ¢(t) is the projected angle to
collision, as illustrated in Figure 5.



4. Computational implementation of the
modeling framework

4.1. Calibration of the transition probabilities of the
Markov model

From the real time-series of the binary variable
G(iA) for each fish, we estimate the transition
probabilities through

__ Nsr
Ngs + Ngp’

Nrs

SF ==,
P Ny + Nrg

PrFs

where Ngr and Ngg are the number of transitions
from swimming to freezing and freezing to swim-
ming, respectively. Similarly, Ngg and Npp are the
number of times the fish remains in the swimming
or freezing state, respectively. The estimated prob-
abilities for all of the tested concentrations are re-
ported in Table A.1.

4.2. Calibration of the parameters of the locomotion
model

The calibration of the model is organized in two
steps. First, we examine the segments of the tra-
jectories where fish swim away from the wall to es-
timate the parameters n, o, a, gy, v, and A using
the maximum likelihood estimation method. Then,
we calibrate the wall avoidance function in Eq. (8),
using the data corresponding to the fish swimming
near the wall via a weighted least squares method.

4.2.1. Discrete approzimation of the locomotion
equations

Following Zienkiewicz et al. (2015b), we consider
that the fish is away from the wall if the distance
from the circular arena is greater than 6cm (or 2
BL). Next, we obtain discrete approximations of
Eq. (4) and Eq. (7). In particular, we use the
Euler-Maruyama method (Higham, 2001) to dis-
cretize Eq. (4), which upon replacing Eq. (6),
yields

vs((k+1DA) = (1 +nA)vg(kA)
- m|ws(’fA)\U§(kA)

+ 0y VAvs (kA)ey (), (10)
where g,(k) is a standard Gaussian random vari-
able, with zero mean and unit variance. Similarly,
the discrete approximation of the turn rate without
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wall avoidance function is given by (Mwaffo et al.,
2015a)

ws((k+1)A) = e *Puwg(kA) + /s(kA)e,, (k)

+9C(k)ew, (k) (11a)
s(kA) = %(1 — 2Ry, (11b)

where ¢, , €., are independent standard Gaussian

random variables and (k) is a Bernoulli random
variable with probability AA. In Egs. (10) and
(11), we have used the same time-step as the ex-
perimental recordings A; however, one might also
consider alternative discretizations of the system of
continuous-time stochastic differential equations for
fish swimming.

4.2.2. Mazimum likelihood estimation

We introduce the two vectors of unknown param-
eters ©; = [1,0,]" and Oy = [a, 0,7, A\]T. We de-
fine o, = ko,, with k being a positive known con-
stant, to avoid singularities on the objective func-
tion of the optimization problem. Estimates of ©;
and Oy can be obtained by solving two indepen-
dent optimization problems formulated within two
separate admissible sets of parameter values y; and
X2, respectively, which were selected from previous
work (Mwaffo et al., 2015a, 2017b). These opti-
mization problems take as input real time-series of
the speed and turn rate, vs(kA) and wg(kA), to
return the calibrated model parameters.

In particular, an estimate of ®; can be obtained
by solving

N

©1 = argmin — > log/, (01, vs(kA), ws(kA)),
©1exaCR? ;T

(12a)

subject to 2 < 2. (12b)

Here, N* < N is the number of time-steps where

the fish is away from the wall of the arena in
the experimental observations, and the function
0,(01,ws(kA),vs(kA)) is the likelihood function
obtained from the discrete model approximation in
Eq. (10) as

£,(0,vs(EA),ws(EA)) =H(q(kA),0, \/agA)(, |
13



where H(z,p,0) is the Gaussian distribution at a
value z with mean y and variance o2, and we have
introduced the aggregated quantity

’Us(kA) |ws(kA)A|
kBLstd,,]

nA+1

q(kA) =

Us((k‘ + 1)A)

kus(kA) (14)

The last term on the right-hand-side of Eq. (14)
takes large values when the speed is near zero for
k = 1. Using values of x larger than one allows
for rescaling the denominator and avoiding numer-
ical issues when solving the optimization problem.
Heuristically, we found that setting x = 5 is suf-
ficient to avoid singularities in the whole dataset.
The constraint o2 < 27 in Eq. (12) guarantees the
existence of a nontrivial solution of the stochastic
logistic equation (Pasquali, 2001).

Similarly, the estimate of ©5 is given by

~ N*

O, = argmin —ZlogZN(GQ,wS(kA)). (15)

O2€x2CRY =1

Here, the function ¢,,(02,ws(kA)) is obtained from
Eq. (11) and is given by Mwaffo et al. (2015a)

0,(0,ws(kA)) = \AH (z(k;A), 0, /s(kA) + 72)

+(1—MA)H (z(kA%O, \/m) :
(16)

where z(kA) = ws((k+1)A) — s(kA) and s(kA) is
given in Eq. (11b). Working with real time-series
of speed and turn rate, the optimization problems
in Egs. (12) and (15) are solved using the multistar
solver of MATLAB for each fish; the results of the
identification for each fish are presented in Table
A2

4.2.8. Wall function calibration

Following Gautrais et al. (2009) and Zienkiewicz
et al. (2015b), we first compute the wall-corrected
turn rate from the real time-series of the turn rate

we(kA) =
lws(kA)[,  if sgn(ws(kA)) = sgn(p(kA))
—|ws(kA)|, otherwise ’

(17)

where ¢(kA) is the orientation of the fish with re-
spect to the wall, as sketched in Figure 5. Next, we
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plot the projected distance d(kA) versus the cor-
rected turn rate w.(kA) in Eq. (17). We only con-
sider positive values of the corrected turn rate, as
we are interested in turn rates associated with wall
avoidance.

We implement a local regression smoothing to
filter out noise. In particular, we use a ro-
bust non-parametric locally weighted least squares
(RLOESS) function in MATLAB with a 10% span.
The smoothed signal is utilized as an input to fit a
parametric exponential function that provides the
estimates of the parameters a and b in Eq. (8).

In the case when the number of available data
points is limited or the noise is excessively high, the
regression performance is low and the estimation of
the wall parameters becomes inadequate, as shown
by Zienkiewicz et al. (2015b). We excluded these
instances from the analysis and we estimated com-
mon values of these parameters by averaging across
all the identifications to obtain a = 11.68rad/s?
and b= 0.19cm™!.

4.8. Model simulation and validation

Once model parameters are calibrated from ex-
perimental data, one can simulate the behavioral
response of zebrafish to caffeine exposure by inte-
grating in time the governing equations of the mod-
eling framework laid down in Section 3 for the de-
sired experimental time (Texp, = 300s). From the
Markov chain in Eq. (2), we simulate switching be-
tween freezing and swimming. In each swimming
interval, at least T" = 2s-long, we integrate the lo-
comotion model, composed of the logistic equation
in Eq. (4) and the JPTW in Eq. (7). Integration of
these continuous-time equations is performed using
the Euler-Maruyama scheme, similar to the calibra-
tion process described in Section 4.2. However, to
obtain an accurate solution of the stochastic dif-
ferential equations, we discretize them with a finer
time-step Ag_y = 0.0063s, equal to one quarter
of the experimental resolution. Simulation data are
downsampled when needed for comparison with ex-
perimental observations.

To illustrate the accuracy of the model and the
success of the identification procedure, we compare
experimental and numerical results for the four an-
imals presented in Figure 1. Simulations are ini-
tialized from experimental observations, such that
the the initial condition of the Markov chain in Eq.
(2) are chosen from the corresponding experiment,
along with the initial position and heading in Eq.

(1.
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Figure 8: Comparison between empirical data and numerical simulations with respect to fish trajectories and time spent freezing
or swimming for each fish trajectory from Figure 1. Top panels: overlay of real (green) and simulated (red) fish trajectories.
Note that instances of live animals touching the tank wall are due to the fact that the experimental arena was not a perfect
circle. Bottom panels: histograms of the number of occurrences of swimming (S) and freezing states (F) for experiments and
simulations. Note that each pair of histograms sums to 150, whereby we examine 150 segments that are 2s-long.

We start the comparison by examining the tra-
jectories of the animals and their freezing response
in Figure 8. For all of the four concentrations, we
register very good agreement between model pre-
dictions and experimental observations, in terms of
the similarity of the trajectories of the animals and
their time budgeting freezing or swimming.

Next, we compare experimental results and com-
puter simulations in terms of speed and turn rate,
as shown in Figures 9 and 10. Therein, we report
the distributions of the speed and turn rate from
experiments and simulations, along with quantile-
quantile (QQ) plots assessing the accuracy of the
simulations against experimental observations. In
agreement with our expectations, the logistic model
in Eq. (4) is able to capture the wide speed variabil-
ity of zebrafish. Similar to our previous work, we
confirm that the JPTW model in Eq. (7) identifies
the whole range of turn rates, including large values
that are associated with C- and U-turns (Mwaffo
et al., 2015a).
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5. In-silico analysis of the effect of caffeine
administration

5.1. Model parameters as functions of caffeine
treatment

Here, we investigate the effect of caffeine concen-
tration on the values of all of the model parameters:
DSF, PFS, 1, Ov, O, Oy, ¥, and A. We carried out a
one-way ANOVA choosing caffeine concentration as
the independent variable. Results are synoptically
presented in Figure 11.

We determined that the caffeine concentration
has a strong effect on the transition probability
from swimming to freezing psrp (F'(3,28) = 4.75,
P = 0.008). Post-hoc analysis revealed that fish
exposed to 70mg/l caffeine concentration have a
higher chance of transitioning from swimming to
freezing when compared to the control subjects
(P = 0.003), as well individuals treated at C' =
25mg/1 (P = 0.001) and C' = 50mg/1 (P = 0.011).
With respect to the probability of transitioning
from freezing to swimming pgrg, we did not record
a significant effect of the concentration (F'(3,28) =
1.50, P = 0.212), albeit larger values might be seen
for intermediate caffeine concentrations.
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Figure 9: Comparison between empirical data and numerical simulations with respect to the speed, captured through the
stochastic logistic equation for each fish trajectory from Figure 1. Top panels are the histograms of the speed distributions,
comparing experiments (red) with simulations (black dashed) and bottom panels are QQ plots. For all histograms the bin size
was set to 0.25cm/s. The dashed-dotted red line in each QQ plot joins the connects the first and third quartiles of the data.

Examining the parameters of the locomotion
model associated with the logistic equation for the
speed evolution, both n (F328 = 0.57, P = 0.637)
and o, (F398 1.43, P 0.253) were indis-
tinguishable across different caffeine treatments.
These findings point at a secondary role of caffeine
treatment on the logistic model for the speed evolu-
tion, such that during swimming, one could adopt
the same stochastic differential equation to describe
caffeine-treated subjects.

The analysis of the locomotion parameters as-
sociated with the JPTW for the evolution of the
turn rate presents a richer picture on caffeine ad-
ministration. Although all of the four parame-
ters (a, 04,7, A) exhibited an inverted U-shape de-
pendence on the caffeine concentration, a signifi-
cant effect was registered only with respect to the
parameters associated with the jump term in the
JPTW. More specifically, we failed to identify a
significant effect on either the relaxation rate «
(F3.98 = 2.06, P = 0.128) or the turn rate variabil-
ity o (F3,28 = 2.16, P = 0.114), but we recorded a
robust dependence of caffeine concentration on the
intensity of jumps v (F3 08 = 4.56, P = 0.010) and
their frequency A\ (F3 28 = 3.80, P = 0.021)

Post-hoc comparisons revealed that the jump

13

intensity at the intermediate concentration C' =
50mg/1 is higher than the control condition (P =
0.005) and C = 70mg/l (P = 0.002). In addi-
tion, the jump frequency of individuals treated at
the lowest caffeine concentration C' = 25mg/1 was
higher than those treated at the highest concentra-
tion C' = 70mg/1 (P = 0.002).

Overall, our results indicate that caffeine treat-
ment has a robust effect on the probability to initi-
ate freezing, as well as on the frequency of sudden
turns and their intensity. For all these three param-
eters, we registered a nonmonotonic dependence on
caffeine concentration, such that: (i) the locomo-
tion of individuals treated at low caffeine levels is
characterized by more frequent turns of high in-
tensity, and (ii) subjects treated at high caffeine
levels are more prone to exhibit a freezing response
and their swimming style features less sudden turns,
which also have a smaller intensity.

The effect of caffeine administration on freezing
is in line with the pharmacodynamics of this com-
pound (Fredholm et al., 1999) and the literature
on anxiety-related response of zebrafish (Stewart
et al., 2010). In fact, high caffeine concentrations
should elicit an anxiogenic response in the animals,
due to antagonist compounds of adenosine A; re-
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Figure 10: Comparison between empirical data and numerical simulations with respect to the turn rate, captured by the
JPTW model for each fish trajectory from Figure 1. Top panels are the histograms of the turn rate distribution, comparing
experiments (red) with simulations (black dashed) and bottom panels are QQ plots. For all histograms the bin size was set to
0.25rad/s. The dashed-dotted red line in each QQ plot joins the connects the first and third quartiles of the data.

ceptors (Maximino et al., 2011). While heightened
erratic behavior is often proposed as a measure of
increased anxiety in zebrafish (Cachat et al., 2010),
the concurrent pharmacological modulation of the
freezing response favors the hypothesis of hyper-
locomotion (Maximino et al., 2010a) in response to
activity at adenosine Agp receptors (Karcz-Kubicha
et al., 2003).

5.2. Predicting zebrafish behavior in response to caf-
feine treatment

Finally, to demonstrate the predictive value of
the proposed data-driven modeling framework, we
conducted an in-silico experiment aimed at repli-
cating the dependence of the behavioral metrics
described in Section 2 on caffeine treatment. In
particular, we performed ten simulations of our
model for each caffeine concentration, using Euler-
Mayurama discretization at the refined time-step
AE—M = 0.0063s.

The simulation parameters were based on the cal-
ibration summarized in Figure 11, which indicated
that caffeine concentration has a clear effect only on
the probability of transitioning from swimming to
freezing psp, the intensity of jumps -, and the fre-
quency of jumps A. Hence, in our ten simulations,
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we drew the values of these three parameters from
Gaussian distributions whose means and standard
deviations corresponds to the data in Figure 11.
Given that none of the other model parameters dis-
played a significant variation, we took them as the
average across all the four caffeine concentrations.
The initial conditions xq, Yo, 0o, Lo, vo, and wy were
chosen randomly in their respective intervals. The
body length of the fish was kept at BL = 3cm and
a common value for the standard deviation of the
turn rate std,, = 2.487rad/s was taken for all fish
to describe the effect of the turn rate on the speed
in Eq. (6).

Using the synthetic dataset, we calculated the
four metrics introduced in Section 2.3, namely, the
time spent freezing tg, distance travelled D, mean
speed Vg, and mean absolute turn rate ;s as
reported in Figure 12. In-silico experiments pre-
dicted an effect of acute caffeine concentration that
is consistent with the real experimental results for
all the chosen metrics. In particular, ANOVA con-
firmed the differences found in the experiment for
the time spent freezing (Fy 40 = 11.02, P < 0.001)
and distance travelled (Fy40 = 7.47, P < 0.001).
Similar to real experiments, ANOVA on synthetic
data failed to detect an effect of caffeine on the
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Figure 11: Calibrated parameters for different caffeine concentrations. Bars represent the average across all trials for each
caffeine concentration for: (a) the probability of transitioning from swimming to freezing; (b) probability of transitioning from
freezing to swimming; (c) logistic model parameter quantifying the linear rate of growth of the speed 7n; (d) logistic model
parameter o, weighting the added noise on the speed evolution; (e) relaxation rate o of the turn rate measuring the rate at
which the fish can resume straight swimming; (f) turn rate variability 0., associated with the added noise in the turn rate
evolution; (g) intensity of the jumps in the turn rate evolution ~, and (h) frequency of the jumps in the turn rate dynamics X .
Vertical red lines represent the SEM and symbols ** and * indicate significant differences in post-hoc analysis, with P-values

satisfying P < 0.01 and P < 0.05 respectively.

mean speed, but it revealed an effect on mean ab-
solute turn rate (Fy40 = 11.29, P < 0.001) that
was not found in real experiments. This was likely
due to the limited inter-subject variability included
in the in-silico experiment, where the entire logistic
model and part of the JPTW were run with com-
mon parameters across the entire population.

6. Conclusions

Zebrafish exhibits a complex repertoire of loco-
motory patterns (Kalueff et al., 2013) and a com-
prehensive, all encompassing, data-driven model is
far from being developed. Such a model could be
central in supporting preclinical research with re-
spect to three principles of replacement, reduction,
and refinement.

In this work, we sought to contribute to this area
of investigation by developing a data-driven model-
ing framework to examine anxiety-related behav-
ioral response of zebrafish exposed to acute caf-
feine administration. Grounded in the theory of
Markov chains and stochastic differential equations,
our model predicts the transitions between freezing

and swimming as well as locomotion in a shallow
water tank.

The model is constructed upon two temporal
scales to simultaneously examine freezing response
and locomotion. Along the slower time-scale, we
introduce a two-state Markov chain that encap-
sulates transitions between swimming and freez-
ing. Along the fast time-scale, we complement
the JPTW model introduced in our previous work
(Mwatffo et al., 2015a) to study the dynamics of the
turn rate with a novel logistic model to capture the
time-evolution of the speed. Such a logistic model
offers a parsimonious and robust representation of
the speed dynamics, based on only two parameters
that should be calibrated from the experiments.

Working with real trajectory data of zebrafish ex-
posed to acute caffeine administration (Neri et al.,
2019), we calibrate all the model parameters toward
a first computational framework to examine phar-
macological manipulations in-silico. Our results
suggest that caffeine concentration has a strong ef-
fect on the parameters of the Markov model de-
scribing zebrafish freezing, where we registered a
tenfold increase in the probability of transitioning
from swimming to freezing between control subjects
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Figure 12: In-silico predictions of the effect of caffeine treatment on zebrafish behavior, scored through: (a) time spent freezing,
(b) distance travelled, (c) mean speed, (d) mean absolute turn rate. Vertical red lines represent the SEM, and symbols #* and
* indicate significant differences in post-hoc analysis, with P-values satisfying P < 0.01 and P < 0.05, respectively.

and individuals treated at the highest caffeine con-
centration. The logistic model of the time-evolution
of the speed is robust with respect to the level of
caffeine treatment, supporting the use of the two-
scale dichotomy on which the model is constructed.
By evolving the speed only during the swimming
episodes dictated by the underlying Markov chain,
we identify model parameters that are common to
all of the tested caffeine concentrations. The effect
of caffeine treatment on zebrafish locomotion is en-
capsulated by the JPTW, whose jump intensity and
frequency display the typical inverted U-shape with
respect to caffeine treatment. The caffeine concen-
tration seems to interfere with only three of the
model parameters, which directly impinge on freez-
ing and erratic activity — two of the typical behav-
ioral measures of anxiety (Maximino et al., 2010b,a;
Kalueff et al., 2013).

Our study is not free of limitations, which call
for future work along a number of research direc-
tions. First, our model is limited to a shallow water
tank that constraints animal locomotion in two di-
mensions, thereby preventing geotaxis (Maximino
et al., 2010a,b; Kalueff et al., 2013). Extending
our model to three dimensions is an ongoing re-
search endeavor, which will result into a more com-
plete prediction of anxiety-related phenotype. Sec-
ond, we have focused on single psychoactive com-
pound, as first step to demonstrate the possibility
of modeling the effect of pharmacological manip-
ulations. Future research should explore the ef-
fect of other substances, like citalopram, ethanol,
and cocaine (Lopez-Patino et al., 2008; Egan et al.,
2009; Maximino et al., 2011), toward a compre-
hensive toolbox to assist in-silico experimentation
of anxiety-related response. Third, our model ap-
plies to animals swimming in isolation in an open-
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field environment, without external stimuli. Fu-
ture work should seek to explore modeling of ze-
brafish groups, in which some of the individuals are
pharmacologically-manipulated (Ladu et al., 2014;
Neri et al., 2019) to determine how these manip-
ulations modify social behavior, in terms of how
untreated individuals appraise treated subjects and
how treated subjects process information from un-
treated individuals. Along a similar line of in-
quiry, we also plan to explore zebrafish response
to anxiety-evoking stimuli, such as the presence
of predators (Maximino et al., 2010a), to widen
the range of application of the proposed modeling
framework.

Another avenue of future work should also seek
to expand the number of states in the Markov
chain to include other behavioral patterns, beyond
swimming and freezing, such as thrashing (Kalueff
et al., 2013) that could play a significant role on
the quantification of the anxiety-related response
of zebrafish. Accounting for thrashing would im-
ply correcting the definition of freezing, such that
we could isolate instances where the animal display
locomotory patterns with large acceleration in the
vicinity of a wall (Kopman et al., 2013).
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Appendix A. Calibrated parameters

Here, we detail the values of the parameters of the
data-driven model calibrated from the experiments.



Table A.1: Transition probabilities of the Markov model for different caffeine concentrations. Note that the fish examined in
Figures 1(a), 1(b), 1(c), and 1(d) correspond to trials 8 for C' = 0mg/l, 7 for C = 25mg/l, 6 for C = 50mg/1, and 4 for

C = T0mg/], respectively.

0 [mg/1] 25 [mg/1] 50 [mg/1] 70 [mg/1]
Trial  prps DSF DFS DSF DFS DSF DFS DSF
1 0 1 0 1 0.019 0.208 0.007 0.006
2 0.052 0.047 0.008 0.048 0.003 0.333 0 1
3 0.012 0.004 0 1 0.008 0.4 0.082 0.054
4 0.006 0.20 0.003 0.333 0.004 0.013 0.071 0.011
5 0 1 0 1 0.051 0.102 0.022 0.166
6 0 1 0.012 0.050 0.020 0.107 0.121 0.014
7 0.020 0.013 0.013 0.027 0.007 0.250 - -
8 0.003 0.500 0 1 - - - -
9 0 1 0 1 - - - -
10 0.003 0.200 - - - - - -
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