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ABSTRACT

The impact on seasonal polar predictability from improved tropical and midlatitude forecasts is explored

using a perfect-model experiment and applying a nudging approach in a GCM. We run three sets of 7-month

long forecasts: a standard free-running forecast and two nudged forecasts in which atmospheric winds,

temperature, and specific humidity (U, V, T, Q) are nudged toward one of the forecast runs from the free

ensemble. The two nudged forecasts apply the nudging over different domains: the tropics (308S–308N) and

the tropics and midlatitudes (558S–558N). We find that the tropics have modest impact on forecast skill in the

Arctic or Antarctica both for sea ice and the atmosphere that is mainly confined to the North Pacific and

Bellingshausen–Amundsen–Ross Seas, whereas themidlatitudes greatly improveArctic winter andAntarctic

year-round forecast skill. Arctic summer forecast skill fromMay initialization is not strongly improved in the

nudged forecasts relative to the free forecast and is thusmostly a ‘‘local’’ problem. In the atmosphere, forecast

skill improvement from midlatitude nudging tends to be largest in the polar stratospheres and decreases

toward the surface.

1. Introduction

Polar environmental predictability has become a

growing area of research over the last decade, spurred

by a combination of environmental (sea ice loss, rapid

warming) and socioeconomic (increasing economic in-

terests, national security) factors (e.g., Jung et al. 2016).

This effort spans research on potential predictability in

dynamical models (e.g., Holland et al. 2011; Blanchard-

Wrigglesworth et al. 2011), developing real-world fore-

casts using a range of dynamical and statistical models

(e.g., Wang et al. 2013; Merryfield et al. 2013; Sigmond

et al. 2013; Msadek et al. 2014; Yuan et al. 2016), im-

proving model simulation of polar-specific processes

such as sea ice floe size distribution (e.g., Roach et al.

2018), advances in sea ice data assimilation (e.g., Zhang

et al. 2018), and the deployment of observing networks

and fieldwork campaigns [e.g., NASA’s Operation Ice-

Bridge and Ice, Cloud and Land Elevation Satellite-2

(IceSAT-2) platforms or the upcomingMultidisciplinary

Drifting Observatory for the Study of Arctic Climate

experiment]. Recent or current examples that charac-

terize the growing momentum in polar predictability are

the start of regular seasonal sea ice forecasts such as the

sea ice outlook (Stroeve et al. 2015), a year-round sea ice

forecast portal (Wayand et al. 2019), and the Year of

Polar Prediction (YOPP) taking place over 2017–19

(Jung et al. 2016).

An emerging picture from potential predictability

studies shows that forecasts of pan-Arctic sea ice area

(SIA) and volume (SIV) should be skillful for about one

and three years, respectively, yet SIA forecasts of ob-

servations tend to lose skill within a season or two,

revealing a gap between potential and observed forecast

skill (e.g., Bushuk et al. 2019). Polar predictability of

other variables such as air temperature and precipitation

has received less attention. Surface air temperature
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predictability tends to be coupled to the predictability of

SIA over the marginal ice zone and adjacent regions

(e.g., Day et al. 2014a), given the influence of sea ice on

lower-tropospheric air temperature particularly outside

the summer months. He et al. (2018) find that the pre-

dictability time scale of the Arctic atmosphere is sea-

sonal at best both in observations and a suite of GCMs.

At the same time, studies have focused on unveiling

skillful predictors of sea ice. For Arctic summer sea ice

forecasts, a range of variables have been shown to of-

fer skill, such as preceding spring sea ice thickness (e.g.,

Day et al. 2014b), spring melt-pond fraction (Schröder
et al. 2014), late winter/early spring sea ice motion

(Williams et al. 2016), ocean heat flux (Woodgate

et al. 2010), stratospheric conditions (Smith et al. 2018),

spring longwave radiation/cloud fraction (Kapsch et al.

2013), surface winds (Ogi et al. 2010), summer tropo-

spheric temperatures and downwelling longwave radi-

ation (Ding et al. 2017), or summer tropical Pacific sea

surface temperatures (SSTs) (Hu et al. 2016; Ding et al.

2019). Thus, a range of ocean, sea ice, and atmospheric

predictors, both local and remote, are thought to influ-

ence the evolution of summer sea ice and thus offer

forecast skill. Nevertheless, it is the atmosphere that

dominates forecast error growth of Arctic sea ice at the

daily to seasonal time scales (Tietsche et al. 2016), owing

to its smaller overall heat capacity, thermal inertia, and

shorter predictability time scales relative to the ocean–

sea ice system.

Antarctic sea ice predictability has generally received

less attention relative to the Arctic. Here, it is thought

that sea ice thickness is less relevant as a predictor than

in the Arctic, likely given the thinner, less perennial sea

ice, while ocean heat content and SST anomalies are

particularly relevant predictors (Holland et al. 2013).

More so than in the Arctic, remote sources of Antarctic

variability have been found in tropical Pacific SSTs (e.g.,

Yuan 2004), particularly linked with forcing from El

Niño–SouthernOscillation (ENSO)mode of variability,

which is thought to influence Antarctic sea ice both at

annual (e.g., Stuecker et al. 2017) and decadal time

scales (Stammerjohn et al. 2008; Meehl et al. 2016),

but not shorter, monthly time scales (Kohyama and

Hartmann 2016). More locally, an important source of

Antarctic atmospheric variability that impacts sea ice is

the southern annular mode (SAM; e.g., Simpkins et al.

2012). While there is a vast body of work on ENSO

predictability (e.g., Latif et al. 1998), the predictability

of SAM or other local modes of Antarctic variability is

less well studied.

What is the relative importance of remote versus local

sources for polar variability? One way to investigate this

problem is through the use of regional climate models

(RCMs) in which ensembles are created either by forc-

ing an RCM with boundary conditions and/or initial

conditions (ICs) that are not held fixed (e.g., Mikolajewicz

et al. 2005; Döscher et al. 2010; Rinke et al. 2004), or

by using different RCM domains (Sein et al. 2014). The

comparison of ensemble spread and the ensemble mean

can then offer a quantification of local to remotely

sourced variability. One of the drawbacks, however, from

using RCMs for polar studies is that the RCM domain

is limited, by definition, to one pole, and all of the above-

cited RCM studies focus on the Arctic. Nevertheless,

these studies have found that in long (multidecadal)

historical simulations of Arctic sea ice the relative con-

tribution of locally sourced variability is largest in sum-

mer, as the influence of large-scale processes decreases,

yet in general, remotely sourced variability dominates.

Within the Arctic, the Barents–Kara–Greenland–Iceland–

Norwegian (GIN) Seas have shown greater internal

variability relative to other Arctic regions both in atmo-

spheric (geopotential heights, temperature) and sea ice

(ice thickness) variables (Sein et al. 2014). Other studies,

using a combination of models and observations, have

shown how trends in tropical SSTs exert an influence on

atmospheric and sea ice trends in both the Arctic (Ding

et al. 2014; Meehl et al. 2018) and Antarctica (Meehl

et al. 2016).

Less work has been done on quantifying the contri-

butions of remotely sourced variability (or forecast error

growth) to initial-value seasonal polar predictability. In

other words, how much would a polar prediction im-

prove if the tropics/midlatitudes could be perfectly

predicted at seasonal time scales? This problem can be

explored using a nudging approach in which a forecast

simulation is relaxed toward a known solution over a

specific domain (e.g., the tropics and/or midlatitudes).

Using this technique, Jung et al. (2014) explored winter

atmospheric predictability in the ECMWF model and

found modest to negligible improvement in weekly-to-

monthly forecast skill in the northern midlatitudes

originating from the tropics. More recently, Ye et al.

(2018), using a similar methodology, found some tropi-

cally sourced skill over the North Pacific but less over

the far North Atlantic in the Northern Hemisphere, and

greater skill in winter relative to summer. Additionally,

over the Southern Ocean they found tropically sourced

skill mostly in the Bellingshausen–Amundsen Seas. In

an earlier study, Ferranti et al. (1990) did find a signifi-

cant improvement in 15-day atmospheric forecast skill

over the North Pacific and Asia (but marginal over the

North Atlantic/Europe) originating in the tropics, but

did not consider polar predictability. In this work, we

use a similar nudging technique to the papers above but

in a fully coupled GCM, which allows us to investigate
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the predictability of the atmosphere, sea ice, and ocean

components. Unlike the above papers, we focus on

monthly-to-seasonal predictability and use a perfect-

model experiment (PME) approach whereby we quan-

tify the predictability inherent to the model (Collins

2002). To the authors’ knowledge, this is the first study

that investigates remote influence on polar predict-

ability using a nudging approach with a fully coupled

GCM.

2. Data, model, and experiment design

For observational data of sea level pressure (SLP),

SST, and SIA we use the NCEP–NCAR reanalysis SLP

(Kalnay et al. 1996), the Hadley SST product (Rayner

et al. 2003), and the NSIDC sea ice index SIA (Fetterer

et al. 2002, updated 2017).

a. Model simulations

We use the NCAR Community Earth System Model,

version 1, with the Community Atmosphere Model,

version 5 [CESM1 (CAM5); see Hurrell et al. 2013]. The

model simulates fully coupled atmosphere, ocean, sea

ice, and land components at a ;18 resolution, and is

among the CMIP5 models with highest fidelity in sim-

ulating observations (Knutti et al. 2013). We explore

seasonal polar predictability in a year 2000 mean

state by initializing PMEs from year 2000 ICs taken

from preexisting twentieth-century simulations from

the CESM-Large Ensemble (CESM-LENS) experiment

(Kay et al. 2015). We create two forecast cycles of three

sets of PMEs, each set consisting of 6 different forecast

ensembles of 15 runs each that are seven months long.

Each forecast ensemble has identical external forcing

(e.g., greenhouse gases, ozone) and ICs in all compo-

nents taken from one of the simulations from CESM-

LENS, chosen to sample the range of year 2000 sea ice

conditions in CESM-LENS (high to low SIA and SIV).

To create the forecast ensemble, a random white noise

perturbation of order 102148C is added to the initial

temperature field in the atmosphere across the 15 runs of

each ensemble. We initialize two different forecast cy-

cles of PMEs at two different dates that are symmetric

with respect to the seasonal cycle: 1 May 2000 and

1 November 2000. This allows us to compare predict-

ability in the same season for each hemisphere at the

same lead time (e.g., boreal winter predictability in the

Arctic and austral winter predictability in Antarctica).

The simulations include a total of 540 (6 3 6 3 15)

7-month integrations that are summarized in Table 1.

In each forecast cycle the first set, called the Free

PME, is a standard, free-running PME with no nudging

that we use to quantify the model’s potential pre-

dictability and from which 6-hourly zonal and meridio-

nal winds, air temperature and atmospheric water

content (U, V, T, and Q) output data are saved in order

to be used later by the nudging experiments. The second

and third PMEs are set up with identical initial condi-

tions to the Free PME, but during the forecast simula-

tion each ensemble is nudged in the atmosphere toward

one of the runs from the Free PME over a specific

geographic area in order to quantify the contribution to

polar predictability from extrapolar regions. The second

PME, called the Nudge30 PME, nudges the simulation

over the tropics (308N–308S), while the third PME,

called the Nudge55 PME, nudges the simulation over

the tropics and midlatitudes (558N to 558S). We nudge

U,V, andT at all atmospheric levels, andQ at the lowest

atmospheric level (sigma level 1), a desired configura-

tion that minimizes model drift (P. Callaghan 2018,

personal communication). The nudging (also termed

relaxation approach in the literature) is performed by

adding an extra term to the model as follows:

dx

dt
5F(x)1F

nudge
,

F
nudge

5a[P(t0 1 1)2 x(t)]/t , (1)

TABLE 1. Summary of perfect-model experiments.

Initialization

start date

(forecast cycle) PME name Nudging ICs from LENS member PME size, forecast length

1 May 2000 Free None 5, 10, 14, 22, 23, 29 6 ensembles of 15 runs each, 7 months

1 May 2000 Nudge30 308N–308S 5, 10, 14, 22, 23, 29 6 ensembles of 15 runs each, 7 months

1 May 2000 Nudge55 558N–558S 5, 10, 14, 22, 23, 29 6 ensembles of 15 runs each, 7 months

1 Nov 2000 Free None 10, 23 (1 May members 2, 9, 11),

29 (1 May members 5, 14)

6 ensembles of 15 runs each, 7 months

1 Nov 2000 Nudge30 308N–308S 10, 23 (1 May members 2, 9, 11),

29 (1 May members 5, 14)

6 ensembles of 15 runs each, 7 months

1 Nov 2000 Nudge55 558N–558S 10, 23 (1 May members 2, 9, 11),

29 (1 May members 5, 14)

6 ensembles of 15 runs each, 7 months
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where Fnudge is the nudging force, a is a coefficient from

0 to 1, P(t0 1 1) is the target analysis at analysis time step

t0 1 1 (every 6 h), x(t) is the model state at model time

step t, and t is the time scale t 5 t0next 2 tcurrent, that is,

the time between the current model time step and the

following analysis time step. The nudging coefficient a is

1 everywhere within the nudging domain and changes to

0 smoothly across the borders as shown in Fig. 1. In the

Nudge55 PME, we select nudging boundaries at the

same latitudes in both hemispheres to be consistent with

the Nudge30 and to maintain the hemispheric symmetry

in terms of the latitudinal dependence of distance to the

nudging domain (in other words, 708N is the same dis-

tance to the nudging domain as 708S). Since the latitudes
of sea ice concentration variability are approximately

seasonally symmetric hemispherically (see Fig. 2), we

believe this approach is appropriate for studying hemi-

spheric differences in sea ice predictability.

b. Skill metrics used

We quantify forecast skill by assessing the root-mean-

square error (RMSE) and the normalized root-mean-

square error (NRMSE) as used in the PME literature

(Collins 2002), whereby skill is quantified by considering

each single member of an ensemble as the ‘‘truth,’’ and

all other members from that ensemble as forecasts. We

choose these metrics over the anomaly correlation co-

efficient (ACC) given known ACC biases (Bushuk et al.

2019). We have also calculated the integrated ice edge

error (IIEE, Goessling et al. 2016), which yields similar

results to RMSE and NRMSE (not shown).

When used to assess skill in PMEs, RMSE and

NRMSE are defined as follows:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(x

kj
2 x

ij
)i2

i,j,k 6¼ i

r
,

NRMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h(x

kj
2 x

ij
)i2

i,j,k 6¼ i

q
ffiffiffiffiffiffiffiffi
2s2

p , (2)

where the h ii indicate the expectation value, calculated

by summing over the specified index with appropriate

normalization, xij (t) is the variable of interest at lead

time t, index j indicates the ensemble, and indices i and

k indicate the ensemble member. The s in the NRMSE

denominator is the standard deviation in the control

run calculated from the CESM-LENS ensemble for the

period 1996–2005. An NRMSE of 1 indicates no fore-

cast skill relative to a climatological forecast, and 0

indicates perfect skill. We assess statistical signifi-

cance using a 95% confidence level calculated with an

F test. We consider predictability both for total pan-

Arctic and Antarctic metrics and for regional metrics

as shown in Fig. 2. When relevant, we quantify a

‘‘forecast skill improvement’’ as 100 3 (NRMSEf 2
NRMSEn)/NRMSEf%, where n is one of the Nudging

PMEs and f is the Free PME.

3. Results

We first inspect the response in the climate’s mean

state in the forecast experiments in the context of the

FIG. 1. Nudging weighting factor a in the (left) Nudge30 and (right) Nudge55 PMEs.
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CESM-LENS climate for year 2000. We do not expect

the Free PME to show any drift over the short 7-month

forecasts, as the model physics and external forcing are

identical to the CESM-LENS, but it is not known a

priori if model drift may develop in the nudged PMEs

that could affect the mean state—we note that Arctic

RCMs that use different domains but identical physics

and reanalysis product for the boundary forcing can

show significantly different mean climate states [e.g.,

Sein et al. (2014) found in Arctic RCMs that the Arctic

Oscillation is an internally generatedmode of variability

as long as the Aleutian low region is included in the

domain]. Additionally, past nudging experiments have

shown mean state drift (Greatbatch et al. 2012). Since

FIG. 2. (top left) Latitudinal boxplot of SIC variability in CESM-LENS for year 2000—the horizontal red lines represent themedian, the

edges of the box are the 25th and 75th percentiles. The whiskers extend to the more extreme data points. The green line is the 558 latitude.
Maps show the regional seas. (bottomfive rows)Meanmonthly variability in year 2000 SIA (inmillions of km2) in CESM-LENS andmean

monthly SIA across the forecast PMEs. The gray shading represents the 61s spread about the climatology in CESM-LENS.
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climate variability and predictability are mean-state

dependent (Goosse et al. 2009; Screen 2014; Blanchard-

Wrigglesworth and Bushuk 2019), it is important to

consider this issue [note how the NRMSE metric com-

pares the forecast spread to the control climate vari-

ability, the denominator in Eq. (2)]. Figure 2 shows the

climatological SIA values in CESM-LENS (averaged

over 1996–2005 using all ensemble members) and the

ensemble-mean SIA in the forecast PMEs. As expected,

there is no drift in the Free PMEs. There is a small

drift with respect to climatology over Antarctica in the

Nudge30 PME, a slight decrease in SIA in the last

2/3 months of the forecast ensembles (mostly over the

south Indian Ocean) that is too modest to affect sea

ice variability (Goosse et al. 2009). Elsewhere, there is

no significant drift in the Nudging PMEs sea ice con-

ditions. We also inspect the atmospheric mean state and

its variability in all three PMEs. We show the patterns

of mean sea level pressure (MSLP) in June–August

(JJA; lead 2–4-month forecast in the 1 May PMEs) and

December–February (DJF; lead 2–4-month forecast in

the 1 November PMEs—herein we just refer to these

forecast leads as JJA or DJF) in Fig. S1 (in the online

supplemental material) and the leading EOF patterns

of MSLP over 208–908N and 208–908S in Fig. S2. The

Free and Nudge55 PMEs replicate almost identically

the MSLP fields in CESM-LENS, whereas the Nudge30

PME replicates the mean CESM-LENS MSLP in the

Arctic but has a positive bias in MSLP over Antarctica

and its leading EOF pattern of variability also shows

significant biases with respect to CESM-LENS. The

cause of this bias and why it is confined to the Southern

Hemisphere remains unclear.

a. Sea ice predictability

1) HEMISPHERIC PREDICTABILITY

We now analyze the predictability of Arctic and

Antarctic SIA. Figure 3 shows the NRMSE for SIA in

both polar regions for the 1May and 1November PMEs.

The results from the Free PME agree with previously

published results from perfect-model studies: signifi-

cant seasonal SIA predictability in both the Arctic and

Antarctica, while SIV shows higher seasonal predict-

ability (see Fig. S3). In the 1 May Free PME, the rapid

loss of skill from June to July in Arctic SIA showcases

the so-called predictability barrier (e.g., Blanchard-

Wrigglesworth et al. 2011; Day et al. 2014b). Interest-

ingly, the loss in predictability in the 1 November Free

PME is also not linear with lead time, as a rapid loss in

forecast skill in the first two months is followed by a

plateau in forecast skill, similar to results in Bushuk et al.

(2019). In the Arctic 1 May PMEs, there is significant

improvement in forecast skill (lower NRMSE) in the

Nudge55 PME relative to the Free PME throughout

the forecast period, whereas forecast skill in the

Nudge30 PME is not statistically different to the Free

PME until the last two months of the forecast (Fig. 3a).

The forecast of the summer SIA minimum (September)

shows no significant improvement in the Nudge30 rela-

tive to Free PME, and a forecast skill improvement of

;25% in the Nudge55 PME relative to the Free PME.

Thus, three quarters of the forecast error in the summer

SIA minimum forecast is due to local (Arctic) forecast

error growth.

In the 1 November PMEs (Fig. 3b), the improvement

in forecast skill in the Nudge55 PME is more pronounced

(forecast skill improvement of ;60%), whereas forecast

skill in the Nudge30 is not statistically different to the

Free PME for most of the forecast. For Antarctic SIA

(Figs. 3c,d), forecast skill in the Nudge30 PME is not

significantly different to the Free PME in either 1 May or

1 November PMEs, while the Nudge55 PMEs show a

marked improvement in forecast skill relative to the Free

PME for both 1 May and 1 November PMEs (forecast

skill improvement of ;65%–75%).

2) REGIONAL PREDICTABILITY

We next analyze regional sea ice predictability. We

split the Arctic into three regions and the Antarctic into

five regions (see Fig. 2). In the Arctic, we define a

‘‘North Pacific’’ region, which includes seas both south

and north of the Bering Strait (Bering andOkhotsk Seas

to the south, and Beaufort–Chukchi–East Siberian–

Laptev Seas to the north). This simplifies our analysis

as this region encompasses the full annual evolution of

the sea ice edge north and south of the Bering Strait, and

displays sea ice variability in all months of the year. We

also define a ‘‘North Atlantic’’ region, which includes

the East Greenland, Barents, and Kara Seas, and a

‘‘Canadian’’ region, which includes the Labrador–Baffin–

Hudson–Canadian Arctic archipelago seas. In Antarctica

the five regions, each 728 in longitude, are roughly

aligned west to east along the Weddell–south Indian–

southwest Pacific–Ross–Amundsen and Bellingshausen

(A&B) Seas.

Figure 4 shows the NRMSE for SIA in Arctic regions

in both 1 May and 1 November PMEs. In the 1 May

PMEs, we observe a fast loss in forecast skill in the first

two months, followed by a plateau in skill (in the North

Atlantic) or even a slight reemergence of skill by the end

of summer (in the North Pacific and Canadian region).

The Nudge30 PME offers no improved skill in any re-

gion relative to the Free PME, while the Nudge55 PME

offers improved skill relative to the Free PME in the

Pacific and Labrador sectors throughout the forecasts,
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but in the North Atlantic forecast skill is only signifi-

cantly improved in the first three months and not for the

September summer minimum. Thus the remote contri-

bution of forecast error growth of the September mini-

mum is regionally confined to the Pacific and Canadian

regions (note, however, the low summer SIA and SIA

variability in the Canadian region in Fig. 2).

In the 1 November PMEs (Fig. 4 bottom row), all

three sectors show similar patterns of predictability in

the Free PME, with fast loss of forecast skill in the first

two months followed by a slower loss of skill, or a slight

reemergence of skill in the Pacific and North Atlantic

regions. In the Nudge30 PME, the Pacific shows signif-

icant improvement in skill relative to the Free PME

from January onward, the North Atlantic shows im-

provement in skill over January–March, while the Ca-

nadian region shows no improvement in skill at any lead

time. In the Nudge55 PME, all three regions show

forecast skill improvement over the Free and Nudge30

PMEs, the Pacific (North Atlantic) showing the highest

(lowest) improvement in skill relative to the Free PME,

and much more forecast skill improvement compared to

that offered by 1 May Nudge55 PME.

Figure 5 shows the NRMSE for SIA in Antarctic re-

gions in both 1 May and 1 November PMEs. In the

1 November (austral summer) Free PME, forecast skill

loss with lead time tends to be slightly more linear than

in the Arctic (i.e., less evidence of a predictability bar-

rier). The Nudge30 PME only offers short-lived signifi-

cant improvement in forecast skill relative to the Free

PME in the A&B and Ross Seas—elsewhere, forecast

skill is not significantly different. The Nudge55 PME

shows significantly improved skill in all regions for all

lead times, with forecast skill improvement of ;60%.

In the 1May PMEs (austral winter, Fig. 5 top row), the

Free PME shows similar predictability compared to the

1November Free PME, although there are slightlymore

regional differences in predictability: the A&B and

south Indian sectors show significant forecast skill

throughout the whole forecasts (seasonal NRMSE of 0.5

FIG. 3. (a),(b) SIA NRMSE for the Arctic and (c),(d) Antarctic for the (left) 1 May PMEs and (right) 1 Nov

PMEs. A small filled circle indicates that the NRMSE is statistically different to 1 at the 95% level, and a larger

open circle indicates that the Nudge PME NRMSE is statistically different to the Free PME NRMSE.
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in A&B Seas, ;0.7 in Ross Sea), while the south-

west Pacific and the Weddell sectors lose skill after 4/5

months forecast lead time. As in the 1 November PMEs,

the Nudge30 PME only offers brief improvement in skill

relative to the Free PME in the Ross Sea, where fore-

cast skill improvement is ;15% in July–September.

Interestingly, in the south Indian and southwest Pacific

sectors, the Nudge30 PME shows a faster loss of forecast

FIG. 5. As in Fig. 4, but for Antarctic regions. Months when mean SIA approaches zero are left blank (SW Pacific and south Indian in the

austral summer).

FIG. 4. NRMSE of Arctic regional seas for the Free, Nudge30, and Nudge55 (top) 1 May PMEs and (bottom) 1 Nov PMEs.
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skill relative to the Free PME. We hypothesize that

the model bias that results from nudging introduces

an enhanced meridional component to the variability

in the SLP field over the south Indian–southwest

Pacific seas (see the trough in the first EOF aligned

at ;158W in JJA and ;258E in DJF in Fig. S2), which

results in greater variability of northerly/southerly

winds and associated temperature/sea ice responses

(warm/cold, respectively) in the region compared to

the control ensemble. In all sectors, the Nudge55

PME offers marked improvement over both the

Nudge30 and Free PME (forecast skill improvement

of ;80%).

b. Atmospheric predictability

Since previous studies have suggested that various

atmospheric variables (e.g., temperature, winds, SLP) in

the polar regions may serve as useful predictors of sea

ice variability, we now investigate the predictability of

the atmosphere. We begin by showing the RMSE of

seasonal mean SLP of JJA for the 1May PMEs andDJF

for the 1 November PMEs in Fig. 6 together with the

background CESM-LENS variability [quantified as the

denominator of NRMSE,
ffiffiffiffiffiffiffi
(2)

p
3s, that is, the RMSE

values at which forecast skill is lost with respect to a

climatological forecast]. We also show the NRMSE of

SLP in Fig. S4. In the Northern Hemisphere during

the boreal summer [JJA, Fig. 6 (top row)], there are

three centers of action of variability in CESM-LENS:

one each in the North Pacific and North Atlantic asso-

ciated, respectively, with the Pacific and Atlantic storm

tracks and weather regimes, and a stronger third one

over the central Arctic. In the Free PME, a similar

pattern emerges, with only slightly lower RMSE values

(NRMSE . 0.9), indicating negligible predictability in

seasonal MSLP. In the Nudge30 PME, the North Pacific

center of action has lower RMSE values relative to both

the Free PME and CESM-LENS indicating improved

predictability there (NRMSE ;0.6–0.7), whereas RMSE

over the Arctic and North Atlantic is similar to the Free

PME, indicating no improved forecast skill in those re-

gions. Finally, in the Nudge55 PME, only the central

Arctic center of action remains, with similar values to

the Nudge30 and Free PMEs, indicating that this Arctic

center of action is likely mostly generated from internal

variability in the Arctic and mostly unpredictable even

in the Nudge55 PME (NRMSE ;0.8–0.9), a rather re-

markable finding given the relatively small size of the

free-running domain in the Nudge55 PME. Trivially, in

the Nudge 55 PME both Pacific and Atlantic centers of

action are quasi-perfectly predictable (RMSE;0), which

is expected given their location within or bordering the

nudging domain.

During the boreal winter (DJF), atmospheric vari-

ability in the NorthernHemisphere is significantly larger

than in JJA (Fig. 6, third row). In CESM-LENS, the

Arctic and North Atlantic centers of action merge into

one center of action, representing variability in the

wintertime extension of theAtlantic storm track into the

Arctic. The Pacific center of action remains located over

the Aleutian low. The patterns of forecast skill in the

Free and Nudge30 PMEs are similar but more pro-

nounced to those in JJA: we see progressively reduced

(from CESM-LENS to Free PME to Nudge30 PME)

RMSE values in the North Pacific (NRMSE;0.7–0.8 in

Free PME, 0.3–0.6 in Nudge30), but mostly unchanged

forecast skill over the Arctic and North Atlantic

(NRMSE . 0.9 in both PMEs). In the Nudge55 PME,

there is significantly lower central Arctic RMSE (unlike

in JJA above, and NRMSE ;0.3–0.6), reflecting how

forecast error growth of central Arctic MSLP is less

‘‘local’’ in winter compared to summer.

In Antarctica, the main center of action of SLP vari-

ability in CESM-LENS is over theA&BSeas, collocated

with the Amundsen low both in DJF and JJA (Fig. 6,

second and fourth rows), but as happens in the Northern

Hemisphere, stronger during winter (JJA). During JJA,

there is no significant forecast skill in the Free PME

anywhere in Antarctica (NRMSE . 0.9, Fig. S4), while

during DJF there is some forecast skill (note the lower

RMSE values in Fig. 6 and NRMSE of 0.7) in the A&B

Seas. In the Nudge30 PME, the RMSE in JJA is actually

higher than that in CESM-LENS over most of Antarc-

tica, indicating increased variability relative to the free

simulating run, rather than decreased variability as

expected a priori. This likely results from the bias that

develops in Nudge30 that results in enhanced variability

over Antarctica (see Fig. S2). The only exception is over

the A&B Seas, where NRMSE is , 0.8. During DJF,

RMSE is reduced relative to CESM-LENS around 508–
608S and along the A&B and Ross Seas (NRMSE 0.7–

0.8 there) but unchanged relative to the Free PME over

the Antarctic continent andWeddell–southwest Indian–

southwest Pacific seas (NRMSE . 0.9). In the Nudge55

PMEs, there is very high predictability over the whole

Antarctic continent to the South Pole in JJA (NRMSE

0.1–0.4) and DJF (NRMSE 0.1–0.2).

Next we take a more global outlook on predictabil-

ity by inspecting the zonal mean of gridded NRMSE

(i.e., the NRMSE calculated at each grid cell) of

monthly air temperature for lead time of 3 months

in pressure (height)–latitude plots in Fig. 7 (see Fig. S5

to see skill for all lead times). Starting with the Free

PME, we see that outside the tropics and at all heights,

most forecast skill is lost after one month lead time in

both the summer and winter forecasts. Nevertheless,
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significant forecast skill remains over the equatorial

troposphere, particularly near the surface and toward

the top of the troposphere (NRMSE , 0.7 for all

lead times). In the Nudge30 PME, predictability is

quasi-perfect equatorward of 308 (as expected given

the nudging), but rapidly drops off poleward and by lead

month two, poleward of around 358, skill is mostly lost

(NRMSE . 0.9).

FIG. 6. RMSE (mb) in PMEs for mean seasonal MSLP in (top two rows) JJA (forecast lead of 2–4 months) and (bottom two rows) DJF

(forecast lead of 2–4months). The inner and outer latitude circles inmagenta are the 558 and 308 latitudes, respectively. Stippling indicates
the PME RMSE is significantly different to the CESM-LENS values at the 95% level.
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In the Nudge55 PMEs in contrast, significant forecast

skill is found in the Antarctic stratosphere for all lead

times in both 1 May and 1 November PMEs, and in the

Arctic stratosphere in the 1 November PME–note the

contrast between both polar stratospheres in Fig. 7c.

There is a tendency for forecast skill to be lost with lower

heights (higher pressure), and thus the troposphere is

less predictable than the stratosphere, yet the polar

differences mirror those found for SLP in Fig. 6: the

Antarctic troposphere has higher forecast skill than the

Arctic troposphere, particularly in their respective

summers (cf. the lack of forecast skill in the Arctic tro-

posphere at a 3-month lead time in July to the forecast

skill in the Antarctic troposphere at a 3-month lead time

in January in Fig. 7). During summer, the lower tropo-

sphere over the Arctic shows very little skill (Fig. 7c),

agreeing with our results of SLP skill in Fig. 6. Analyses

of T, V, Q, and geopotential height for lead months 2–7

show similar patterns (see Figs. S6–S8).

These results overall show a seasonal evolution in the

link between the Arctic and the midlatitudes. During

the summer months, Arctic predictability is mostly un-

affected by midlatitudinal influence, illustrating large

sources of local error growth internal to the Arctic.

During the winter, Arctic predictability is more influ-

enced by the midlatitudes, particularly at elevation

and subpolar latitudes. On the other hand, Antarctic

predictability shows a strong link to the midlatitudes

both in winter and summer. This contrast between

Arctic and Antarctic atmospheric predictability agrees

with the contrast in sea ice predictability found above

in the comparison between the Nudge55 and the Free

PMEs.

c. SST predictability

We now consider the predictability of SSTs. Anoma-

lous SST patterns are the primary source of atmospheric

seasonal predictability (e.g., Rowell 1998) and tele-

connections, and thus a key issue in helping understand

our experiment results is the following question: Is the

modest/negligible amount of remote forcing from the

tropics on polar predictability due to a lack of seasonal

tropical SST predictability? Figures 8 and 9 show the

RMSE and NRMSE, respectively, in seasonal SSTs

(forecast lead time 2–4 months) for the three PMEs and

CESM-LENS. We see that in CESM-LENS, the main

variability in SSTs takes place in the central-east tropical

Pacific, an expression of ENSO. Other main regions of

variability are the boundary currents, particularly the

Kuroshio and the Gulf Stream. In the Free PME, we see

high forecast skill of the tropical east Pacific cold tongue,

particularly in DJF (NRMSE of;0.2 or lower). In other

tropical ocean areas, NRMSEs are around 0.2–0.4. In

contrast, the midlatitude oceans show fairly low forecast

FIG. 7. Elevation–latitudinal plots of the zonalmean of griddedNRMSE in PMEs formeanmonthly air temperature in (top) July (forecast

lead 3 months) and (bottom) January (forecast lead 3 months).
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skill, with typical NRMSE values of ;0.7, with the ex-

ception of regions of deep ocean convection in the

subpolar North Atlantic, especially in DJF, and the

A&B Seas in the Southern Ocean. In the Nudge30PME,

we see an enhancement of SST forecast skill relative to

the Free PME in the North Pacific and North Atlantic

oceans that is more marked in DJF compared to JJA. In

contrast, Southern Ocean forecast skill is not much dif-

ferent, with the exception of an improvement in forecast

skill over the A&B Seas. In the Nudge55 PMEs, ocean

SSTs have high forecast skill globally, with the only

exception of the GIN Seas and Arctic marginal sea ice

zone in JJA. In general, the SST predictability patterns

longitudinally align with the sea ice predictability pat-

terns (e.g., higher skill in Bellingshausen–Amundsen for

SST and sea ice, lower in Weddell).

d. Assessing model teleconnection biases

How might model biases affect our results in the

context of observations? One can hypothesize that

biases in the strength and location of simulated tele-

connections in a GCM could impact the interpretation

of our results—if the model simulates weaker tele-

connections, then we may find that predictability is less

FIG. 8. RMSE (in 8C) in PMEs for mean seasonal SSTs in (left) JJA (forecast lead of 2–4months) and (right) DJF

(forecast lead of 2–4 months). The green lines are the 308 and 558 latitudes. Stippling indicates the PME RMSE is

significantly different to the CESM-LENS values at the 95% level.
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influenced by remote forcing than if it simulated stron-

ger teleconnections. One way to gain some insight on

this issue is by comparing teleconnections in CESM-

LENS to observations. Figure 10 shows the correlation

between seasonal tropical equatorial Pacific SSTs at

08 1508W (approximately the center of the Niño-3.4 do-

main and the region where SST variability and predict-

ability peak in Figs. 8 and 9) and global SLP anomalies

in the CESM-LENS (using all ensemble members

from 1939 to 2005) and in observations for the period

1950–2016. All data are detrended prior to calculating

correlations, and for CESM-LENS we show the average

of all individual ensemble members. The most obvious

feature is the SLP dipole between the east-central Pa-

cific and the western Pacific–Indian Ocean regions, a

defining signature of the Southern Oscillation. To the

south, a center of action is present over the A&B Seas

(r . 0.4 in CESM-LENS, r . 0.2 in observations),

which is slightly stronger in DJF relative to JJA, while

the SLP field in the reminder of the Southern Ocean is

mostly uncorrelated to tropical Pacific SSTs. To the

north, the North Pacific and the subtropical North At-

lantic are coupled in DJF. The Arctic is mostly un-

coupled to tropical Pacific SSTs in CESM-LENS, and

only weakly coupled in observations (r ; 0.2, not sig-

nificant at the 95% level).

We next investigate the connection between Arctic

SIA and global SSTs. Figures 11a and 11b shows the

correlation between September Arctic SIA and global

SSTs in the preceding JJA in both observations (using

1979–2017 data) and CESM-LENS (averaged over 30

ensemble members, using years 1967–2005 to com-

pare records of equal length to observations). All data

are detrended. In observations, there is a modest but

statistically significant link to the central-eastern sub-

equatorial Pacific (r . 0.4) and the eastern branch of

the Pacific decadal oscillation that is absent in CESM-

LENS. However, we note that this teleconnection shows

strong internal variability across ensemble members in

CESM-LENS, and somemembers show similar patterns

FIG. 9. NRMSE in PMEs for mean seasonal SSTs in (left) JJA (forecast lead of 2–4 months) and (right) DJF

(forecast lead of 2–4 months). The green lines are the 308 and 558 latitudes. Stippling indicates the PMENRMSE is

significant at the 95% level.
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to observations (see Fig. S8). Analyzing tropical SST–

global SLP linkages in a similar fashion to Fig. 10 but

using a tropical domain centered on the SST region that

shows highest correlations with Arctic SIA in Fig. 11b

shows stronger sub-Arctic SLP–tropical SST linkages

in observations relative to CESM-LENS. However, we

also note the large amount of internal variability in this

teleconnection pattern across ensemble members (see

Fig. S9).

Further analysis of atmospheric teleconnections using

one-point correlation maps of seasonal SLP anomalies

in the southern centers of action in the North Atlantic

FIG. 11. Correlation between September Arctic SIA and global JJA SSTs in CESM-LENS (averaged over 30

ensemble members, 1967–2005) and observations (1979–2017), and correlation between JJA SSTs averaged over

the central equatorial Pacific (58–208N, 1408–1708W, black box in plots) and global JJA SLPs in CESM-LENS

(averaged over 30 ensemble members) and observations over the same years. All data are detrended prior to

calculating correlations. Stippling indicates statistically significant correlations at the 95% level.

FIG. 10. Correlations in (top) CESM-LENS and (bottom) observations between seasonal SST anomalies in the

central equatorial Pacific at 08, 1508W (marked with a black 3) and seasonal SLP. All data are detrended prior to

calculating correlations. Stippling indicates statistically significant correlations at the 95% level.
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Oscillation (NAO) and Pacific–North American (PNA)

modes of variability [locations are taken from Wallace

and Gutzler (1981)] shows overall good agreement in

the simulation of these modes of variability in CESM-

LENS with respect to observations (see Fig. 12) in DJF,

as found to be the case with the previous generation

NCAR GCM CCSM4 (Coats et al. 2013).

While it is beyond the scope of this paper to further

investigate teleconnection patterns in the model and

observations, this preliminary analysis suggests that to

first order the model is adequately capturing the main

teleconnection modes. While we note that in observa-

tions there is a link between September Arctic SIA

and preceding JJA SSTs in the tropical Pacific that is

absent in the mean-ensemble analysis of CESM-LENS

(Fig. 11), it is unclear whether this represents a model

mean-state bias or internal variability in the evolution

of this teleconnection pattern, as single members of

CESM-LENS show a similar teleconnection pattern to

observations.

4. Discussion and conclusions

We have quantified the impact of the tropics and

midlatitudes on seasonal polar predictability with a

perfect-model experiment using a nudging approach.

Overall, our results show a strong seasonality and re-

gional dependence of the remote influence on polar

predictability. Forecast skill of Arctic summer sea ice

and atmosphere in CESM is primarily governed by local

error growth, while during winter the midlatitudes are a

significant source of forecast error (or potential forecast

skill, were the midlatitudes predictable at seasonal time

scales). The tropics offer only at best modest improved

forecast skill particularly in the North Pacific sector

and in winter. This result agrees with previous studies

(Ye et al. 2018; Jung et al. 2014) that found using the

ECMWF atmospheric model that tropical nudging of-

fered skill generally confined to the North Pacific and

North Atlantic, and is greater in winter compared

to summer.

Regionally in the Arctic, we find that forecast skill in

the Atlantic sector (Kara–Barents–Greenland Seas) is

less remotely forced than that in the Pacific sector,

echoing previously found results using RCMs (Sein et al.

2014; Döscher et al. 2010). Concerning the seasonal

predictability of Arctic summer SIA, we do not find

significant improvement in forecast skill when the

tropics are nudged. This result suggests that for summer

Arctic SIA seasonal forecasting, a forecast from a fully

coupled RCM may not be at a major disadvantage with

respect to a forecast from a fully coupled GCM.

In Antarctica, forecast skill is strongly influenced by

the midlatitudes year-round (in contrast to the Arctic,

where the midlatitude influence is found mostly in the

winter). This difference with the Arctic may be affected

by the seasonality of the climate mean state. During the

austral summer, theArctic marginal ice zone (MIZ) that

FIG. 12. One-point correlations maps of seasonal SLP DJF anomalies in (a),(b) CESM-LENS and

(c),(d) observations for the southern centers of action of the North Atlantic Oscillation (308N, 208W) and the

Pacific–North American pattern (208N, 1608W). Stippling indicates statistically significant correlations at the

95% level.
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drives SIA variability is more poleward (around 758N)

than the Antarctic MIZ during the boreal summer

(around 708N, see Fig. 2), and thus one might expect

from a simple geometric argument (distance to the

nudging boundary) that the midlatitudes may result in

more improved skill in Antarctica in the boreal summer

relative to the Arctic in the austral summer (cf. Figs. 3a

and 3d). By the same argument, when comparing mid-

latitude impact on sea ice predictability in the summer

and winter at each pole, one may expect higher im-

proved predictability relative to the Free PME in the

winter, as the sea ice edge migrates equatorward toward

558. However, we find that seasonal differences in at-

mospheric predictability mirror the seasonal and polar

differences in sea ice predictability—in the Arctic,

forecast skill of the atmosphere is muchmore influenced

by the midlatitudes in the winter compared to summer,

whereas in Antarctica, the influence on forecast skill by

the midlatitudes is strong in both seasons.

As in the Arctic, the tropics have a very weak impact

on Antarctic seasonal predictability, and it is confined to

the A&B and Ross Seas, that is, the Amundsen low

region and its vicinity. This regional signature of trop-

ical influence agrees with previous work that highlights

the coupling of this region with the tropics, even if

the magnitude of forecast skill improvement is per-

haps weaker than anticipated. While the overall weak

tropical–polar predictability link we find (particularly

the lack of a summertime tropics–Arctic link) seems to

somewhat contradict previous results documenting

the coupling between tropical trends in SST and polar

climate (Ding et al. 2014; Meehl et al. 2016), we note

that the different time scales (decadal versus seasonal)

are likely crucial (Kohyama and Hartmann 2016).

Additionally, it is unclear what role the model drift

in the tropically nudged experiment may play. Model

drift in published nudging experiments has been noted

(Greatbatch et al. 2012) but it is generally not discussed

in the literature. Finally, we are aware that the findings

described here may reflect CESM’s biases in replicating

observed tropical–global linkages (Ding et al. 2019).

Future work is planned to assess tropical–polar links in a

similar modeling framework both at longer time scales

and using a different GCM to examine whether the

modest polar predictability originating in the tropics is a

common feature across GCMs.
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