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ABSTRACT

The impact on seasonal polar predictability from improved tropical and midlatitude forecasts is explored
using a perfect-model experiment and applying a nudging approach in a GCM. We run three sets of 7-month
long forecasts: a standard free-running forecast and two nudged forecasts in which atmospheric winds,
temperature, and specific humidity (U, V, T, Q) are nudged toward one of the forecast runs from the free
ensemble. The two nudged forecasts apply the nudging over different domains: the tropics (30°S—-30°N) and
the tropics and midlatitudes (55°S-55°N). We find that the tropics have modest impact on forecast skill in the
Arctic or Antarctica both for sea ice and the atmosphere that is mainly confined to the North Pacific and
Bellingshausen-Amundsen—Ross Seas, whereas the midlatitudes greatly improve Arctic winter and Antarctic
year-round forecast skill. Arctic summer forecast skill from May initialization is not strongly improved in the
nudged forecasts relative to the free forecast and is thus mostly a ““local’’ problem. In the atmosphere, forecast
skill improvement from midlatitude nudging tends to be largest in the polar stratospheres and decreases

toward the surface.

1. Introduction

Polar environmental predictability has become a
growing area of research over the last decade, spurred
by a combination of environmental (sea ice loss, rapid
warming) and socioeconomic (increasing economic in-
terests, national security) factors (e.g., Jung et al. 2016).
This effort spans research on potential predictability in
dynamical models (e.g., Holland et al. 2011; Blanchard-
Wrigglesworth et al. 2011), developing real-world fore-
casts using a range of dynamical and statistical models
(e.g., Wang et al. 2013; Merryfield et al. 2013; Sigmond
et al. 2013; Msadek et al. 2014; Yuan et al. 2016), im-
proving model simulation of polar-specific processes
such as sea ice floe size distribution (e.g., Roach et al.
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2018), advances in sea ice data assimilation (e.g., Zhang
et al. 2018), and the deployment of observing networks
and fieldwork campaigns [e.g., NASA’s Operation Ice-
Bridge and Ice, Cloud and Land Elevation Satellite-2
(IceSAT-2) platforms or the upcoming Multidisciplinary
Drifting Observatory for the Study of Arctic Climate
experiment]. Recent or current examples that charac-
terize the growing momentum in polar predictability are
the start of regular seasonal sea ice forecasts such as the
sea ice outlook (Stroeve et al. 2015), a year-round sea ice
forecast portal (Wayand et al. 2019), and the Year of
Polar Prediction (YOPP) taking place over 2017-19
(Jung et al. 2016).

An emerging picture from potential predictability
studies shows that forecasts of pan-Arctic sea ice area
(SIA) and volume (SIV) should be skillful for about one
and three years, respectively, yet SIA forecasts of ob-
servations tend to lose skill within a season or two,
revealing a gap between potential and observed forecast
skill (e.g., Bushuk et al. 2019). Polar predictability of
other variables such as air temperature and precipitation
has received less attention. Surface air temperature
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predictability tends to be coupled to the predictability of
SIA over the marginal ice zone and adjacent regions
(e.g., Day et al. 2014a), given the influence of sea ice on
lower-tropospheric air temperature particularly outside
the summer months. He et al. (2018) find that the pre-
dictability time scale of the Arctic atmosphere is sea-
sonal at best both in observations and a suite of GCMs.

At the same time, studies have focused on unveiling
skillful predictors of sea ice. For Arctic summer sea ice
forecasts, a range of variables have been shown to of-
fer skill, such as preceding spring sea ice thickness (e.g.,
Day et al. 2014b), spring melt-pond fraction (Schroder
et al. 2014), late winter/early spring sea ice motion
(Williams et al. 2016), ocean heat flux (Woodgate
et al. 2010), stratospheric conditions (Smith et al. 2018),
spring longwave radiation/cloud fraction (Kapsch et al.
2013), surface winds (Ogi et al. 2010), summer tropo-
spheric temperatures and downwelling longwave radi-
ation (Ding et al. 2017), or summer tropical Pacific sea
surface temperatures (SSTs) (Hu et al. 2016; Ding et al.
2019). Thus, a range of ocean, sea ice, and atmospheric
predictors, both local and remote, are thought to influ-
ence the evolution of summer sea ice and thus offer
forecast skill. Nevertheless, it is the atmosphere that
dominates forecast error growth of Arctic sea ice at the
daily to seasonal time scales (Tietsche et al. 2016), owing
to its smaller overall heat capacity, thermal inertia, and
shorter predictability time scales relative to the ocean—
sea ice system.

Antarctic sea ice predictability has generally received
less attention relative to the Arctic. Here, it is thought
that sea ice thickness is less relevant as a predictor than
in the Arctic, likely given the thinner, less perennial sea
ice, while ocean heat content and SST anomalies are
particularly relevant predictors (Holland et al. 2013).
More so than in the Arctic, remote sources of Antarctic
variability have been found in tropical Pacific SSTs (e.g.,
Yuan 2004), particularly linked with forcing from EIl
Nifio—Southern Oscillation (ENSO) mode of variability,
which is thought to influence Antarctic sea ice both at
annual (e.g., Stuecker et al. 2017) and decadal time
scales (Stammerjohn et al. 2008; Meehl et al. 2016),
but not shorter, monthly time scales (Kohyama and
Hartmann 2016). More locally, an important source of
Antarctic atmospheric variability that impacts sea ice is
the southern annular mode (SAM; e.g., Simpkins et al.
2012). While there is a vast body of work on ENSO
predictability (e.g., Latif et al. 1998), the predictability
of SAM or other local modes of Antarctic variability is
less well studied.

What is the relative importance of remote versus local
sources for polar variability? One way to investigate this
problem is through the use of regional climate models
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(RCMs) in which ensembles are created either by forc-
ing an RCM with boundary conditions and/or initial
conditions (ICs) that are not held fixed (e.g., Mikolajewicz
et al. 2005; Doscher et al. 2010; Rinke et al. 2004), or
by using different RCM domains (Sein et al. 2014). The
comparison of ensemble spread and the ensemble mean
can then offer a quantification of local to remotely
sourced variability. One of the drawbacks, however, from
using RCMs for polar studies is that the RCM domain
is limited, by definition, to one pole, and all of the above-
cited RCM studies focus on the Arctic. Nevertheless,
these studies have found that in long (multidecadal)
historical simulations of Arctic sea ice the relative con-
tribution of locally sourced variability is largest in sum-
mer, as the influence of large-scale processes decreases,
yet in general, remotely sourced variability dominates.
Within the Arctic, the Barents—Kara—Greenland-Iceland—
Norwegian (GIN) Seas have shown greater internal
variability relative to other Arctic regions both in atmo-
spheric (geopotential heights, temperature) and sea ice
(ice thickness) variables (Sein et al. 2014). Other studies,
using a combination of models and observations, have
shown how trends in tropical SSTs exert an influence on
atmospheric and sea ice trends in both the Arctic (Ding
et al. 2014; Meehl et al. 2018) and Antarctica (Meehl
et al. 2016).

Less work has been done on quantifying the contri-
butions of remotely sourced variability (or forecast error
growth) to initial-value seasonal polar predictability. In
other words, how much would a polar prediction im-
prove if the tropics/midlatitudes could be perfectly
predicted at seasonal time scales? This problem can be
explored using a nudging approach in which a forecast
simulation is relaxed toward a known solution over a
specific domain (e.g., the tropics and/or midlatitudes).
Using this technique, Jung et al. (2014) explored winter
atmospheric predictability in the ECMWF model and
found modest to negligible improvement in weekly-to-
monthly forecast skill in the northern midlatitudes
originating from the tropics. More recently, Ye et al.
(2018), using a similar methodology, found some tropi-
cally sourced skill over the North Pacific but less over
the far North Atlantic in the Northern Hemisphere, and
greater skill in winter relative to summer. Additionally,
over the Southern Ocean they found tropically sourced
skill mostly in the Bellingshausen—Amundsen Seas. In
an earlier study, Ferranti et al. (1990) did find a signifi-
cant improvement in 15-day atmospheric forecast skill
over the North Pacific and Asia (but marginal over the
North Atlantic/Europe) originating in the tropics, but
did not consider polar predictability. In this work, we
use a similar nudging technique to the papers above but
in a fully coupled GCM, which allows us to investigate
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TABLE 1. Summary of perfect-model experiments.

Initialization
start date
(forecast cycle) PME name Nudging ICs from LENS member PME size, forecast length

1 May 2000 Free None 5,10, 14, 22, 23,29 6 ensembles of 15 runs each, 7 months

1 May 2000 Nudge30 30°N-30°S 5,10, 14, 22, 23,29 6 ensembles of 15 runs each, 7 months

1 May 2000 Nudge55 55°N-55°S 5,10, 14, 22, 23,29 6 ensembles of 15 runs each, 7 months

1 Nov 2000 Free None 10, 23 (1 May members 2, 9, 11), 6 ensembles of 15 runs each, 7 months
29 (1 May members 5, 14)

1 Nov 2000 Nudge30 30°N-30°S 10, 23 (1 May members 2, 9, 11), 6 ensembles of 15 runs each, 7 months
29 (1 May members 5, 14)

1 Nov 2000 Nudge55 55°N-55°S 10, 23 (1 May members 2, 9, 11), 6 ensembles of 15 runs each, 7 months

29 (1 May members 5, 14)

the predictability of the atmosphere, sea ice, and ocean
components. Unlike the above papers, we focus on
monthly-to-seasonal predictability and use a perfect-
model experiment (PME) approach whereby we quan-
tify the predictability inherent to the model (Collins
2002). To the authors’ knowledge, this is the first study
that investigates remote influence on polar predict-
ability using a nudging approach with a fully coupled
GCM.

2. Data, model, and experiment design

For observational data of sea level pressure (SLP),
SST, and SIA we use the NCEP-NCAR reanalysis SLP
(Kalnay et al. 1996), the Hadley SST product (Rayner
et al. 2003), and the NSIDC sea ice index SIA (Fetterer
et al. 2002, updated 2017).

a. Model simulations

We use the NCAR Community Earth System Model,
version 1, with the Community Atmosphere Model,
version 5 [CESM1 (CAMS); see Hurrell et al. 2013]. The
model simulates fully coupled atmosphere, ocean, sea
ice, and land components at a ~1° resolution, and is
among the CMIP5 models with highest fidelity in sim-
ulating observations (Knutti et al. 2013). We explore
seasonal polar predictability in a year 2000 mean
state by initializing PMEs from year 2000 ICs taken
from preexisting twentieth-century simulations from
the CESM-Large Ensemble (CESM-LENS) experiment
(Kay et al. 2015). We create two forecast cycles of three
sets of PMEs, each set consisting of 6 different forecast
ensembles of 15 runs each that are seven months long.
Each forecast ensemble has identical external forcing
(e.g., greenhouse gases, ozone) and ICs in all compo-
nents taken from one of the simulations from CESM-
LENS, chosen to sample the range of year 2000 sea ice
conditions in CESM-LENS (high to low SIA and SIV).
To create the forecast ensemble, a random white noise

perturbation of order 10~ '*C is added to the initial
temperature field in the atmosphere across the 15 runs of
each ensemble. We initialize two different forecast cy-
cles of PMEs at two different dates that are symmetric
with respect to the seasonal cycle: 1 May 2000 and
1 November 2000. This allows us to compare predict-
ability in the same season for each hemisphere at the
same lead time (e.g., boreal winter predictability in the
Arctic and austral winter predictability in Antarctica).
The simulations include a total of 540 (6 X 6 X 15)
7-month integrations that are summarized in Table 1.

In each forecast cycle the first set, called the Free
PME, is a standard, free-running PME with no nudging
that we use to quantify the model’s potential pre-
dictability and from which 6-hourly zonal and meridio-
nal winds, air temperature and atmospheric water
content (U, V, T, and Q) output data are saved in order
to be used later by the nudging experiments. The second
and third PMEs are set up with identical initial condi-
tions to the Free PME, but during the forecast simula-
tion each ensemble is nudged in the atmosphere toward
one of the runs from the Free PME over a specific
geographic area in order to quantify the contribution to
polar predictability from extrapolar regions. The second
PME, called the Nudge30 PME, nudges the simulation
over the tropics (30°N-30°S), while the third PME,
called the Nudge55 PME, nudges the simulation over
the tropics and midlatitudes (55°N to 55°S). We nudge
U, V,and T at all atmospheric levels, and Q at the lowest
atmospheric level (sigma level 1), a desired configura-
tion that minimizes model drift (P. Callaghan 2018,
personal communication). The nudging (also termed
relaxation approach in the literature) is performed by
adding an extra term to the model as follows:

dx

E = F(X) + Fnudge ’
nudge = [P+ 1) = x(D)]/7, (1)
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FIG. 1. Nudging weighting factor « in the (left) Nudge30 and (right) Nudge55 PMEs.

where Fyyqge is the nudging force, a is a coefficient from
0to1, P(f + 1) is the target analysis at analysis time step
¢ + 1 (every 6h), x(¢) is the model state at model time
step ¢, and 7 is the time scale 7 = ¢ ;1exy — fcurrent, that is,
the time between the current model time step and the
following analysis time step. The nudging coefficient « is
1 everywhere within the nudging domain and changes to
0 smoothly across the borders as shown in Fig. 1. In the
Nudge5S5 PME, we select nudging boundaries at the
same latitudes in both hemispheres to be consistent with
the Nudge30 and to maintain the hemispheric symmetry
in terms of the latitudinal dependence of distance to the
nudging domain (in other words, 70°N is the same dis-
tance to the nudging domain as 70°S). Since the latitudes
of sea ice concentration variability are approximately
seasonally symmetric hemispherically (see Fig. 2), we
believe this approach is appropriate for studying hemi-
spheric differences in sea ice predictability.

b. Skill metrics used

We quantify forecast skill by assessing the root-mean-
square error (RMSE) and the normalized root-mean-
square error (NRMSE) as used in the PME literature
(Collins 2002), whereby skill is quantified by considering
each single member of an ensemble as the “truth,”” and
all other members from that ensemble as forecasts. We
choose these metrics over the anomaly correlation co-
efficient (ACC) given known ACC biases (Bushuk et al.
2019). We have also calculated the integrated ice edge
error (IIEE, Goessling et al. 2016), which yields similar
results to RMSE and NRMSE (not shown).

When used to assess skill in PMEs, RMSE and
NRMSE are defined as follows:

RMSE =, /((x,; — xij)>ij7k¢i,
(e —x,))
NRMSE =V 9 07ik#i )

202

where the (); indicate the expectation value, calculated
by summing over the specified index with appropriate
normalization, x;; () is the variable of interest at lead
time ¢, index j indicates the ensemble, and indices i and
k indicate the ensemble member. The o in the NRMSE
denominator is the standard deviation in the control
run calculated from the CESM-LENS ensemble for the
period 1996-2005. An NRMSE of 1 indicates no fore-
cast skill relative to a climatological forecast, and 0
indicates perfect skill. We assess statistical signifi-
cance using a 95% confidence level calculated with an
F test. We consider predictability both for total pan-
Arctic and Antarctic metrics and for regional metrics
as shown in Fig. 2. When relevant, we quantify a
“forecast skill improvement” as 100 X (NRMSE; —
NRMSE,,)/NRMSE;%, where n is one of the Nudging
PME:s and f is the Free PME.

3. Results

We first inspect the response in the climate’s mean
state in the forecast experiments in the context of the
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FIG. 2. (top left) Latitudinal boxplot of SIC variability in CESM-LENS for year 2000—the horizontal red lines represent the median, the
edges of the box are the 25th and 75th percentiles. The whiskers extend to the more extreme data points. The green line is the 55° latitude.
Maps show the regional seas. (bottom five rows) Mean monthly variability in year 2000 SIA (in millions of km?) in CESM-LENS and mean
monthly SIA across the forecast PMEs. The gray shading represents the *+1o spread about the climatology in CESM-LENS.

CESM-LENS climate for year 2000. We do not expect
the Free PME to show any drift over the short 7-month
forecasts, as the model physics and external forcing are
identical to the CESM-LENS, but it is not known a
priori if model drift may develop in the nudged PMEs
that could affect the mean state—we note that Arctic
RCMs that use different domains but identical physics

and reanalysis product for the boundary forcing can
show significantly different mean climate states [e.g.,
Sein et al. (2014) found in Arctic RCMs that the Arctic
Oscillation is an internally generated mode of variability
as long as the Aleutian low region is included in the
domain]. Additionally, past nudging experiments have
shown mean state drift (Greatbatch et al. 2012). Since
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climate variability and predictability are mean-state
dependent (Goosse et al. 2009; Screen 2014; Blanchard-
Wrigglesworth and Bushuk 2019), it is important to
consider this issue [note how the NRMSE metric com-
pares the forecast spread to the control climate vari-
ability, the denominator in Eq. (2)]. Figure 2 shows the
climatological SIA values in CESM-LENS (averaged
over 1996-2005 using all ensemble members) and the
ensemble-mean SIA in the forecast PMEs. As expected,
there is no drift in the Free PMEs. There is a small
drift with respect to climatology over Antarctica in the
Nudge30 PME, a slight decrease in SIA in the last
2/3 months of the forecast ensembles (mostly over the
south Indian Ocean) that is too modest to affect sea
ice variability (Goosse et al. 2009). Elsewhere, there is
no significant drift in the Nudging PMEs sea ice con-
ditions. We also inspect the atmospheric mean state and
its variability in all three PMEs. We show the patterns
of mean sea level pressure (MSLP) in June-August
(JJA; lead 2—4-month forecast in the 1 May PMEs) and
December-February (DJF; lead 2-4-month forecast in
the 1 November PMEs—herein we just refer to these
forecast leads as JJA or DJF) in Fig. S1 (in the online
supplemental material) and the leading EOF patterns
of MSLP over 20°-90°N and 20°-90°S in Fig. S2. The
Free and Nudge55 PME:s replicate almost identically
the MSLP fields in CESM-LENS, whereas the Nudge30
PME replicates the mean CESM-LENS MSLP in the
Arctic but has a positive bias in MSLP over Antarctica
and its leading EOF pattern of variability also shows
significant biases with respect to CESM-LENS. The
cause of this bias and why it is confined to the Southern
Hemisphere remains unclear.

a. Sea ice predictability

1) HEMISPHERIC PREDICTABILITY

We now analyze the predictability of Arctic and
Antarctic SIA. Figure 3 shows the NRMSE for SIA in
both polar regions for the 1 May and 1 November PME:s.
The results from the Free PME agree with previously
published results from perfect-model studies: signifi-
cant seasonal SIA predictability in both the Arctic and
Antarctica, while SIV shows higher seasonal predict-
ability (see Fig. S3). In the 1 May Free PME, the rapid
loss of skill from June to July in Arctic SIA showcases
the so-called predictability barrier (e.g., Blanchard-
Wrigglesworth et al. 2011; Day et al. 2014b). Interest-
ingly, the loss in predictability in the 1 November Free
PME is also not linear with lead time, as a rapid loss in
forecast skill in the first two months is followed by a
plateau in forecast skill, similar to results in Bushuk et al.
(2019). In the Arctic 1 May PMEs, there is significant
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improvement in forecast skill (lower NRMSE) in the
Nudge5S5 PME relative to the Free PME throughout
the forecast period, whereas forecast skill in the
Nudge30 PME is not statistically different to the Free
PME until the last two months of the forecast (Fig. 3a).
The forecast of the summer STA minimum (September)
shows no significant improvement in the Nudge30 rela-
tive to Free PME, and a forecast skill improvement of
~25% in the Nudge55 PME relative to the Free PME.
Thus, three quarters of the forecast error in the summer
SIA minimum forecast is due to local (Arctic) forecast
error growth.

In the 1 November PMEs (Fig. 3b), the improvement
in forecast skill in the Nudge55 PME is more pronounced
(forecast skill improvement of ~60% ), whereas forecast
skill in the Nudge30 is not statistically different to the
Free PME for most of the forecast. For Antarctic SIA
(Figs. 3c,d), forecast skill in the Nudge30 PME is not
significantly different to the Free PME in either 1 May or
1 November PMEs, while the Nudge5S5 PMEs show a
marked improvement in forecast skill relative to the Free
PME for both 1 May and 1 November PMEs (forecast
skill improvement of ~65%-75%).

2) REGIONAL PREDICTABILITY

We next analyze regional sea ice predictability. We
split the Arctic into three regions and the Antarctic into
five regions (see Fig. 2). In the Arctic, we define a
“North Pacific” region, which includes seas both south
and north of the Bering Strait (Bering and Okhotsk Seas
to the south, and Beaufort-Chukchi—East Siberian—
Laptev Seas to the north). This simplifies our analysis
as this region encompasses the full annual evolution of
the sea ice edge north and south of the Bering Strait, and
displays sea ice variability in all months of the year. We
also define a “North Atlantic”” region, which includes
the East Greenland, Barents, and Kara Seas, and a
“Canadian” region, which includes the Labrador-Baffin—
Hudson—-Canadian Arctic archipelago seas. In Antarctica
the five regions, each 72° in longitude, are roughly
aligned west to east along the Weddell-south Indian—
southwest Pacific-Ross—Amundsen and Bellingshausen
(A&B) Seas.

Figure 4 shows the NRMSE for SIA in Arctic regions
in both 1 May and 1 November PMEs. In the 1 May
PMEs, we observe a fast loss in forecast skill in the first
two months, followed by a plateau in skill (in the North
Atlantic) or even a slight reemergence of skill by the end
of summer (in the North Pacific and Canadian region).
The Nudge30 PME offers no improved skill in any re-
gion relative to the Free PME, while the Nudge55 PME
offers improved skill relative to the Free PME in the
Pacific and Labrador sectors throughout the forecasts,
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FIG. 3. (a),(b) SIA NRMSE for the Arctic and (c),(d) Antarctic for the (left) 1 May PMEs and (right) 1 Nov
PME:s. A small filled circle indicates that the NRMSE is statistically different to 1 at the 95% level, and a larger
open circle indicates that the Nudge PME NRMSE is statistically different to the Free PME NRMSE.

but in the North Atlantic forecast skill is only signifi-
cantly improved in the first three months and not for the
September summer minimum. Thus the remote contri-
bution of forecast error growth of the September mini-
mum is regionally confined to the Pacific and Canadian
regions (note, however, the low summer SIA and STA
variability in the Canadian region in Fig. 2).

In the 1 November PMEs (Fig. 4 bottom row), all
three sectors show similar patterns of predictability in
the Free PME, with fast loss of forecast skill in the first
two months followed by a slower loss of skill, or a slight
reemergence of skill in the Pacific and North Atlantic
regions. In the Nudge30 PME, the Pacific shows signif-
icant improvement in skill relative to the Free PME
from January onward, the North Atlantic shows im-
provement in skill over January—March, while the Ca-
nadian region shows no improvement in skill at any lead
time. In the Nudge55 PME, all three regions show
forecast skill improvement over the Free and Nudge30
PME:s, the Pacific (North Atlantic) showing the highest

(lowest) improvement in skill relative to the Free PME,
and much more forecast skill improvement compared to
that offered by 1 May Nudge55 PME.

Figure 5 shows the NRMSE for SIA in Antarctic re-
gions in both 1 May and 1 November PMEs. In the
1 November (austral summer) Free PME, forecast skill
loss with lead time tends to be slightly more linear than
in the Arctic (i.e., less evidence of a predictability bar-
rier). The Nudge30 PME only offers short-lived signifi-
cant improvement in forecast skill relative to the Free
PME in the A&B and Ross Seas—elsewhere, forecast
skill is not significantly different. The Nudge55 PME
shows significantly improved skill in all regions for all
lead times, with forecast skill improvement of ~60%.

In the 1 May PMEs (austral winter, Fig. 5 top row), the
Free PME shows similar predictability compared to the
1 November Free PME, although there are slightly more
regional differences in predictability: the A&B and
south Indian sectors show significant forecast skill
throughout the whole forecasts (seasonal NRMSE of 0.5
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FIG. 4. NRMSE of Arctic regional seas for the Free, Nudge30, and Nudge55 (top) 1 May PMEs and (bottom) 1 Nov PMEs.

in A&B Seas, ~0.7 in Ross Sea), while the south-
west Pacific and the Weddell sectors lose skill after 4/5
months forecast lead time. As in the 1 November PMEs,
the Nudge30 PME only offers brief improvement in skill

relative to the Free PME in the Ross Sea, where fore-
cast skill improvement is ~15% in July-September.
Interestingly, in the south Indian and southwest Pacific
sectors, the Nudge30 PME shows a faster loss of forecast
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FIG. 5. As in Fig. 4, but for Antarctic regions. Months when mean SIA approaches zero are left blank (SW Pacific and south Indian in the
austral summer).
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skill relative to the Free PME. We hypothesize that
the model bias that results from nudging introduces
an enhanced meridional component to the variability
in the SLP field over the south Indian-southwest
Pacific seas (see the trough in the first EOF aligned
at ~15°W in JJA and ~25°E in DJF in Fig. S2), which
results in greater variability of northerly/southerly
winds and associated temperature/sea ice responses
(warm/cold, respectively) in the region compared to
the control ensemble. In all sectors, the NudgeS5
PME offers marked improvement over both the
Nudge30 and Free PME (forecast skill improvement
of ~80%).

b. Atmospheric predictability

Since previous studies have suggested that various
atmospheric variables (e.g., temperature, winds, SLP) in
the polar regions may serve as useful predictors of sea
ice variability, we now investigate the predictability of
the atmosphere. We begin by showing the RMSE of
seasonal mean SLP of JJA for the 1 May PMEs and DJF
for the 1 November PMEs in Fig. 6 together with the
background CESM-LENS variability [quantified as the
denominator of NRMSE, /(2) X o, that is, the RMSE
values at which forecast skill is lost with respect to a
climatological forecast]. We also show the NRMSE of
SLP in Fig. S4. In the Northern Hemisphere during
the boreal summer [JJA, Fig. 6 (top row)], there are
three centers of action of variability in CESM-LENS:
one each in the North Pacific and North Atlantic asso-
ciated, respectively, with the Pacific and Atlantic storm
tracks and weather regimes, and a stronger third one
over the central Arctic. In the Free PME, a similar
pattern emerges, with only slightly lower RMSE values
(NRMSE > 0.9), indicating negligible predictability in
seasonal MSLP. In the Nudge30 PME, the North Pacific
center of action has lower RMSE values relative to both
the Free PME and CESM-LENS indicating improved
predictability there (NRMSE ~0.6-0.7), whereas RMSE
over the Arctic and North Atlantic is similar to the Free
PME, indicating no improved forecast skill in those re-
gions. Finally, in the Nudge55 PME, only the central
Arctic center of action remains, with similar values to
the Nudge30 and Free PMEs, indicating that this Arctic
center of action is likely mostly generated from internal
variability in the Arctic and mostly unpredictable even
in the Nudge55 PME (NRMSE ~0.8-0.9), a rather re-
markable finding given the relatively small size of the
free-running domain in the Nudge55 PME. Trivially, in
the Nudge 55 PME both Pacific and Atlantic centers of
action are quasi-perfectly predictable (RMSE ~0), which
is expected given their location within or bordering the
nudging domain.

BLANCHARD-WRIGGLESWORTH AND DING
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During the boreal winter (DJF), atmospheric vari-
ability in the Northern Hemisphere is significantly larger
than in JJA (Fig. 6, third row). In CESM-LENS, the
Arctic and North Atlantic centers of action merge into
one center of action, representing variability in the
wintertime extension of the Atlantic storm track into the
Arctic. The Pacific center of action remains located over
the Aleutian low. The patterns of forecast skill in the
Free and Nudge30 PMEs are similar but more pro-
nounced to those in JJA: we see progressively reduced
(from CESM-LENS to Free PME to Nudge30 PME)
RMSE values in the North Pacific (NRMSE ~0.7-0.8 in
Free PME, 0.3-0.6 in Nudge30), but mostly unchanged
forecast skill over the Arctic and North Atlantic
(NRMSE > 0.9 in both PMEs). In the Nudge55 PME,
there is significantly lower central Arctic RMSE (unlike
in JJA above, and NRMSE ~0.3-0.6), reflecting how
forecast error growth of central Arctic MSLP is less
“local” in winter compared to summer.

In Antarctica, the main center of action of SLP vari-
ability in CESM-LENS is over the A&B Seas, collocated
with the Amundsen low both in DJF and JJA (Fig. 6,
second and fourth rows), but as happens in the Northern
Hemisphere, stronger during winter (JJA). During JJA,
there is no significant forecast skill in the Free PME
anywhere in Antarctica (NRMSE > 0.9, Fig. S4), while
during DJF there is some forecast skill (note the lower
RMSE values in Fig. 6 and NRMSE of 0.7) in the A&B
Seas. In the Nudge30 PME, the RMSE in JJA is actually
higher than that in CESM-LENS over most of Antarc-
tica, indicating increased variability relative to the free
simulating run, rather than decreased variability as
expected a priori. This likely results from the bias that
develops in Nudge30 that results in enhanced variability
over Antarctica (see Fig. S2). The only exception is over
the A&B Seas, where NRMSE is < 0.8. During DJF,
RMSE is reduced relative to CESM-LENS around 50°-
60°S and along the A&B and Ross Seas (NRMSE 0.7-
0.8 there) but unchanged relative to the Free PME over
the Antarctic continent and Weddell-southwest Indian—
southwest Pacific seas (NRMSE > 0.9). In the Nudge55
PMEs, there is very high predictability over the whole
Antarctic continent to the South Pole in JJA (NRMSE
0.1-0.4) and DJF (NRMSE 0.1-0.2).

Next we take a more global outlook on predictabil-
ity by inspecting the zonal mean of gridded NRMSE
(i.e., the NRMSE calculated at each grid cell) of
monthly air temperature for lead time of 3 months
in pressure (height)-latitude plots in Fig. 7 (see Fig. S5
to see skill for all lead times). Starting with the Free
PME, we see that outside the tropics and at all heights,
most forecast skill is lost after one month lead time in
both the summer and winter forecasts. Nevertheless,
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FIG. 6. RMSE (mb) in PMEs for mean seasonal MSLP in (top two rows) JJA (forecast lead of 2-4 months) and (bottom two rows) DJF
(forecast lead of 24 months). The inner and outer latitude circles in magenta are the 55° and 30° latitudes, respectively. Stippling indicates
the PME RMSE is significantly different to the CESM-LENS values at the 95% level.

significant forecast skill remains over the equatorial
troposphere, particularly near the surface and toward
the top of the troposphere (NRMSE < 0.7 for all
lead times). In the Nudge30 PME, predictability is

quasi-perfect equatorward of 30° (as expected given
the nudging), but rapidly drops off poleward and by lead
month two, poleward of around 35°, skill is mostly lost
(NRMSE > 0.9).
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FIG. 7. Elevation-latitudinal plots of the zonal mean of gridded NRMSE in PMEs for mean monthly air temperature in (top) July (forecast
lead 3 months) and (bottom) January (forecast lead 3 months).

In the Nudge55 PME:s in contrast, significant forecast
skill is found in the Antarctic stratosphere for all lead
times in both 1 May and 1 November PMEs, and in the
Arctic stratosphere in the 1 November PME-note the
contrast between both polar stratospheres in Fig. 7c.
There is a tendency for forecast skill to be lost with lower
heights (higher pressure), and thus the troposphere is
less predictable than the stratosphere, yet the polar
differences mirror those found for SLP in Fig. 6: the
Antarctic troposphere has higher forecast skill than the
Arctic troposphere, particularly in their respective
summers (cf. the lack of forecast skill in the Arctic tro-
posphere at a 3-month lead time in July to the forecast
skill in the Antarctic troposphere at a 3-month lead time
in January in Fig. 7). During summer, the lower tropo-
sphere over the Arctic shows very little skill (Fig. 7c),
agreeing with our results of SLP skill in Fig. 6. Analyses
of T, V, O, and geopotential height for lead months 2—7
show similar patterns (see Figs. S6-S8).

These results overall show a seasonal evolution in the
link between the Arctic and the midlatitudes. During
the summer months, Arctic predictability is mostly un-
affected by midlatitudinal influence, illustrating large
sources of local error growth internal to the Arctic.
During the winter, Arctic predictability is more influ-
enced by the midlatitudes, particularly at elevation
and subpolar latitudes. On the other hand, Antarctic

predictability shows a strong link to the midlatitudes
both in winter and summer. This contrast between
Arctic and Antarctic atmospheric predictability agrees
with the contrast in sea ice predictability found above
in the comparison between the Nudge55 and the Free
PMEs.

c. SST predictability

We now consider the predictability of SSTs. Anoma-
lous SST patterns are the primary source of atmospheric
seasonal predictability (e.g., Rowell 1998) and tele-
connections, and thus a key issue in helping understand
our experiment results is the following question: Is the
modest/negligible amount of remote forcing from the
tropics on polar predictability due to a lack of seasonal
tropical SST predictability? Figures 8 and 9 show the
RMSE and NRMSE, respectively, in seasonal SSTs
(forecast lead time 2—4 months) for the three PMEs and
CESM-LENS. We see that in CESM-LENS, the main
variability in SSTs takes place in the central-east tropical
Pacific, an expression of ENSO. Other main regions of
variability are the boundary currents, particularly the
Kuroshio and the Gulf Stream. In the Free PME, we see
high forecast skill of the tropical east Pacific cold tongue,
particularly in DJF (NRMSE of ~0.2 or lower). In other
tropical ocean areas, NRMSEs are around 0.2-0.4. In
contrast, the midlatitude oceans show fairly low forecast
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skill, with typical NRMSE values of ~0.7, with the ex-
ception of regions of deep ocean convection in the
subpolar North Atlantic, especially in DJF, and the
A&B Seas in the Southern Ocean. In the Nudge30PME,
we see an enhancement of SST forecast skill relative to
the Free PME in the North Pacific and North Atlantic
oceans that is more marked in DJF compared to JJA. In
contrast, Southern Ocean forecast skill is not much dif-
ferent, with the exception of an improvement in forecast
skill over the A&B Seas. In the Nudge55 PMEs, ocean
SSTs have high forecast skill globally, with the only
exception of the GIN Seas and Arctic marginal sea ice

zone in JJA. In general, the SST predictability patterns
longitudinally align with the sea ice predictability pat-
terns (e.g., higher skill in Bellingshausen—Amundsen for
SST and sea ice, lower in Weddell).

d. Assessing model teleconnection biases

How might model biases affect our results in the
context of observations? One can hypothesize that
biases in the strength and location of simulated tele-
connections in a GCM could impact the interpretation
of our results—if the model simulates weaker tele-
connections, then we may find that predictability is less
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influenced by remote forcing than if it simulated stron-
ger teleconnections. One way to gain some insight on
this issue is by comparing teleconnections in CESM-
LENS to observations. Figure 10 shows the correlation
between seasonal tropical equatorial Pacific SSTs at
0° 150°W (approximately the center of the Nifio-3.4 do-
main and the region where SST variability and predict-
ability peak in Figs. 8 and 9) and global SLP anomalies
in the CESM-LENS (using all ensemble members
from 1939 to 2005) and in observations for the period
1950-2016. All data are detrended prior to calculating
correlations, and for CESM-LENS we show the average
of all individual ensemble members. The most obvious
feature is the SLP dipole between the east-central Pa-
cific and the western Pacific-Indian Ocean regions, a
defining signature of the Southern Oscillation. To the
south, a center of action is present over the A&B Seas
(r > 04 in CESM-LENS, r > 0.2 in observations),
which is slightly stronger in DJF relative to JJA, while
the SLP field in the reminder of the Southern Ocean is

mostly uncorrelated to tropical Pacific SSTs. To the
north, the North Pacific and the subtropical North At-
lantic are coupled in DJF. The Arctic is mostly un-
coupled to tropical Pacific SSTs in CESM-LENS, and
only weakly coupled in observations (r ~ 0.2, not sig-
nificant at the 95% level).

We next investigate the connection between Arctic
SIA and global SSTs. Figures 11a and 11b shows the
correlation between September Arctic SIA and global
SSTs in the preceding JJA in both observations (using
1979-2017 data) and CESM-LENS (averaged over 30
ensemble members, using years 1967-2005 to com-
pare records of equal length to observations). All data
are detrended. In observations, there is a modest but
statistically significant link to the central-eastern sub-
equatorial Pacific (r > 0.4) and the eastern branch of
the Pacific decadal oscillation that is absent in CESM-
LENS. However, we note that this teleconnection shows
strong internal variability across ensemble members in
CESM-LENS, and some members show similar patterns
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FIG. 10. Correlations in (top) CESM-LENS and (bottom) observations between seasonal SST anomalies in the
central equatorial Pacific at 0°, 150°W (marked with a black X) and seasonal SLP. All data are detrended prior to
calculating correlations. Stippling indicates statistically significant correlations at the 95% level.

to observations (see Fig. S8). Analyzing tropical SST-
global SLP linkages in a similar fashion to Fig. 10 but
using a tropical domain centered on the SST region that
shows highest correlations with Arctic SIA in Fig. 11b
shows stronger sub-Arctic SLP-tropical SST linkages
in observations relative to CESM-LENS. However, we

CESM-LENS r<Sep SIA,JJA SST>

0

also note the large amount of internal variability in this
teleconnection pattern across ensemble members (see
Fig. S9).

Further analysis of atmospheric teleconnections using
one-point correlation maps of seasonal SLP anomalies
in the southern centers of action in the North Atlantic
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FIG. 11. Correlation between September Arctic SIA and global JJA SSTs in CESM-LENS (averaged over 30
ensemble members, 1967-2005) and observations (1979-2017), and correlation between JTA SSTs averaged over
the central equatorial Pacific (5°-20°N, 140°~170°W, black box in plots) and global JJA SLPs in CESM-LENS
(averaged over 30 ensemble members) and observations over the same years. All data are detrended prior to
calculating correlations. Stippling indicates statistically significant correlations at the 95% level.
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95% level.

Oscillation (NAO) and Pacific-North American (PNA)
modes of variability [locations are taken from Wallace
and Gutzler (1981)] shows overall good agreement in
the simulation of these modes of variability in CESM-
LENS with respect to observations (see Fig. 12) in DJF,
as found to be the case with the previous generation
NCAR GCM CCSM4 (Coats et al. 2013).

While it is beyond the scope of this paper to further
investigate teleconnection patterns in the model and
observations, this preliminary analysis suggests that to
first order the model is adequately capturing the main
teleconnection modes. While we note that in observa-
tions there is a link between September Arctic SIA
and preceding JJA SSTs in the tropical Pacific that is
absent in the mean-ensemble analysis of CESM-LENS
(Fig. 11), it is unclear whether this represents a model
mean-state bias or internal variability in the evolution
of this teleconnection pattern, as single members of
CESM-LENS show a similar teleconnection pattern to
observations.

4. Discussion and conclusions

We have quantified the impact of the tropics and
midlatitudes on seasonal polar predictability with a
perfect-model experiment using a nudging approach.
Overall, our results show a strong seasonality and re-
gional dependence of the remote influence on polar
predictability. Forecast skill of Arctic summer sea ice

and atmosphere in CESM is primarily governed by local
error growth, while during winter the midlatitudes are a
significant source of forecast error (or potential forecast
skill, were the midlatitudes predictable at seasonal time
scales). The tropics offer only at best modest improved
forecast skill particularly in the North Pacific sector
and in winter. This result agrees with previous studies
(Ye et al. 2018; Jung et al. 2014) that found using the
ECMWF atmospheric model that tropical nudging of-
fered skill generally confined to the North Pacific and
North Atlantic, and is greater in winter compared
to summer.

Regionally in the Arctic, we find that forecast skill in
the Atlantic sector (Kara-Barents—-Greenland Seas) is
less remotely forced than that in the Pacific sector,
echoing previously found results using RCMs (Sein et al.
2014; Doscher et al. 2010). Concerning the seasonal
predictability of Arctic summer SIA, we do not find
significant improvement in forecast skill when the
tropics are nudged. This result suggests that for summer
Arctic SIA seasonal forecasting, a forecast from a fully
coupled RCM may not be at a major disadvantage with
respect to a forecast from a fully coupled GCM.

In Antarctica, forecast skill is strongly influenced by
the midlatitudes year-round (in contrast to the Arctic,
where the midlatitude influence is found mostly in the
winter). This difference with the Arctic may be affected
by the seasonality of the climate mean state. During the
austral summer, the Arctic marginal ice zone (MIZ) that
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drives SIA variability is more poleward (around 75°N)
than the Antarctic MIZ during the boreal summer
(around 70°N, see Fig. 2), and thus one might expect
from a simple geometric argument (distance to the
nudging boundary) that the midlatitudes may result in
more improved skill in Antarctica in the boreal summer
relative to the Arctic in the austral summer (cf. Figs. 3a
and 3d). By the same argument, when comparing mid-
latitude impact on sea ice predictability in the summer
and winter at each pole, one may expect higher im-
proved predictability relative to the Free PME in the
winter, as the sea ice edge migrates equatorward toward
55°. However, we find that seasonal differences in at-
mospheric predictability mirror the seasonal and polar
differences in sea ice predictability—in the Arctic,
forecast skill of the atmosphere is much more influenced
by the midlatitudes in the winter compared to summer,
whereas in Antarctica, the influence on forecast skill by
the midlatitudes is strong in both seasons.

As in the Arctic, the tropics have a very weak impact
on Antarctic seasonal predictability, and it is confined to
the A&B and Ross Seas, that is, the Amundsen low
region and its vicinity. This regional signature of trop-
ical influence agrees with previous work that highlights
the coupling of this region with the tropics, even if
the magnitude of forecast skill improvement is per-
haps weaker than anticipated. While the overall weak
tropical-polar predictability link we find (particularly
the lack of a summertime tropics—Arctic link) seems to
somewhat contradict previous results documenting
the coupling between tropical trends in SST and polar
climate (Ding et al. 2014; Meehl et al. 2016), we note
that the different time scales (decadal versus seasonal)
are likely crucial (Kohyama and Hartmann 2016).
Additionally, it is unclear what role the model drift
in the tropically nudged experiment may play. Model
drift in published nudging experiments has been noted
(Greatbatch et al. 2012) but it is generally not discussed
in the literature. Finally, we are aware that the findings
described here may reflect CESM’s biases in replicating
observed tropical-global linkages (Ding et al. 2019).
Future work is planned to assess tropical-polar links in a
similar modeling framework both at longer time scales
and using a different GCM to examine whether the
modest polar predictability originating in the tropics is a
common feature across GCMs.
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