KAIROS: Incremental Verification in High-Level
Synthesis through Latency-Insensitive Design

Luca Piccolboni, Giuseppe Di Guglielmo, and Luca P. Carloni
Department of Computer Science, Columbia University, New York, USA
Emails: {piccolboni, giuseppe, luca} @cs.columbia.edu

Abstract—High-level synthesis (HLS) improves design produc-
tivity by replacing cycle-accurate specifications with untimed or
transaction-based specifications. Obtaining high-quality RTL im-
plementations requires significant manual effort from designers,
who must manipulate the code and evaluate different HLS-knob
settings. These modifications can introduce bugs in the RTL im-
plementations. We present KAIROS, a methodology for incremen-
tal formal verification in HLS. KAIROS verifies the equivalence of
the RTL implementations the designer subsequently derives from
the same specification by applying code manipulations and knobs.

I. INTRODUCTION

The increasing complexity of hardware design is pushing
the adoption of high-level synthesis (HLS) in academia [1] and
industry [2]: designers are starting to abandon cycle-accurate
specifications, e.g., Verilog, in favor of untimed or transaction-
based specifications, e.g., C, SystemC. This allows designers to
reduce simulation times and synthesize many RTL implemen-
tations, thereby improving design-space exploration (DSE) [3].

A high-level specification is usually organized hierarchically.
A module contains processes and processes are divided into re-
gions'. Regions are defined by partitioning the code into blocks
with HLS macros. Modules, processes, and regions are often de-
signed to expose latency-insensitive interfaces [1], and they can
be connected (synchronized) with latency-insensitive channels,
through HLS libraries such as MatchLib [5]. Latency-insensitive
design (LID) allows modules (the same also applies to processes
and regions) to tolerate any timing variation in the computation
within themselves as well as in their communication with
other modules [6], [7]. This is obtained by adding valid and
ready signals to the interfaces of the modules. The valid signal
indicates that the value of the signal is valid in the current clock
cycle, while the ready signal is used to flag backpressure [8].

Unfortunately, HLS still requires considerable manual efforts
to synthesize optimized RTL solutions [9]. HLS is supported by
automatic tools and libraries [10], but manipulations of the high-
level specifications are necessary. For instance, designers may
need to modify the code to break the dependencies that limit
parallelism. Further, designers need to set the HLS knobs to ex-
plore different architectural solutions. For example, by means of
"loop unrolling", designers can generate RTL implementations
with more hardware resources, thereby increasing performance
in exchange for higher area/power. By applying code manipula-
tions and knobs, designers obtain many RTL implementations
11, ..., Iy, each offering potentially a unique trade-off point in

'We use the terminology of SystemC [4] and Cadence Stratus HLS in this
paper, but our methodology can be adapted to other languages and HLS tools.

for (i = 0, i < 128; ++i)
// Array reduction
accumulator += x[7];

for (i = 0;i < 128; ++i)
// No unrolling
x[i] = yli] + z[4];

l (a) wrong code manipulation l (b) wrong knob application

for (i = 1; i < 64; i *= 2)

// Wrong initialization

for (k=1; k< 64; k += (i *2))
| accumulator[k] += x[k + i];

for (i = 0; i < 128; ++i)
// Wrong unrolling
HLS_UNROLL_LOOP(3);
x[e] = yli] + zli];

Fig. 1. Bugs that can be introduced during HLS-based DSE.

terms of cost and performance. 74, ..., Zy are not necessarily
equivalent clock cycle by clock cycle, but they are expected to
be latency-insensitive equivalent [6], i.e., they should produce
the same sequence of outputs, possibly with different timing.

Code manipulations and knob applications are prone to bugs.
For example, in Fig. 1 (a), the code of an array reduction has
been modified to make the parallelism explicit. The index &
of the inner loop is, however, initialized wrongly (the correct
value is 0). In Fig. 1 (b), on the other hand, a loop is unrolled
three times by means of the "loop unrolling" knob. If the loop
is partially unrolled without adding the necessary exit checks,
i.e., aggressively, then out-of-bound memory accesses occur. In
fact, since the number of loop iterations (128) is not a multiple
of the unrolling factor (3), the last loop iteration is incorrect.
These two examples produce incorrect RTL implementations.
Note that, while the first bug can be caught by simulating the
high-level specification, the second bug requires to verify the
RTL code synthesized with HLS. It is thus necessary to check
the correctness of all RTL implementations obtained with HLS.

The common practice to verify the RTL implementations
generated with HLS is to use simulation-based approaches, i.e.,
the RTL implementations are co-simulated with a testbench
written in a high-level language [11]. Most commercial tools
adopt this technique, e.g., Xilinx Vivado HLS, Cadence Stratus
HLS, etc. This allows designers to detect bugs introduced by the
HLS tools or code manipulations, but it does not guarantee the
absence of bugs. In this paper, we focus on the problem of per-
forming formal incremental verification of the code manipula-
tions and knob applications made to the high-level specification
of a HLS design. Formally, we focus on the following problem:

Problem 1. Given a reference RTL implementation Z,.y and
a set of RTL implementations Z;, ..., Zn, obtained by applying
(1) code manipulations or (ii) the HLS knobs to the same HLS-
ready specification used for synthesizing Z,.. s, formally prove
that 7y, ..., Zny are latency-insensitive equivalent to Z,.¢.

For Problem 1, we assume that modules, processes and regions

Ref. RTL I,
module # 1
process #1

New RTL I,

module # 1

process #1 [T

region #1

region #1

,"/ (2) Check regions equivalence

VERIFICATION WRAPPER
region #i region #i
region #2 region #2 of Ty Sip

RTL Model Checker

== ||D channel / handshake

|:| LID interface

Fig. 2. An overview of the KAIROS verification methodology.

> KAIROS <
(1) Identify modified regions,
(2) Check regions equivalence..-1”

equivalent not equivalent
(formal proof) (counterexample)

used in Z,.¢, 7y, ..., Iy are all developed by exploiting LID.

Contributions. We propose KAIROS, a methodology for incre-
mental formal verification in HLS (Fig. 2). First, the designer
synthesizes a reference RTL implementation Z,..; from the ini-
tial high-level specification by exploiting LID. KAIROS assumes
that Z,..y has been validated by the designer. KAIROS supports
the verification of the successive modifications that the designer
may want to apply (Z1, ..., Zn). After the designer has modified
the specification and synthesized a new RTL implementation
Ty, with k € [1, N], KAIROS (1) identifies which regions of the
code have been modified in the new RTL implementation Zj,
and (2) tries to formally prove that such regions are equivalent
to the corresponding ones in the reference implementation Z,.. ;.
KAIROS uses latency-insensitive equivalence because regions
can have different latencies as result of the designer’s modi-
fications (e.g., code refactoring, loop unrolling, etc.). KAIROS
does not need to prove the correctness of the composition of
regions, processes and modules since it is guaranteed by LID.
We evaluate KAIROS by checking the equivalence of multiple
RTL implementations of a hardware module and a RISC-V
processor designed with HLS: KAIROS can quickly detect bugs
caused by wrong code manipulations and knob applications.

II. THE KAIROS METHODOLOGY

STEP #1: Identify Modified Regions. After 7, has been
synthesized, KAIROS identifies which regions of Z;, have been
affected by code manipulations or knob applications. Note that
only the affected regions have to be verified. The composition
of such regions in processes and modules is guaranteed to

LID [7]. To identify these regions, KAIROS analyzes the RTL
code synthesized by the HLS tool. A file is generated for
each region, and thus KAIROS can determine which files
present modifications with respect to Z,.r. Some HLS tools
support also Engineering Change Order [12], which simplifies
the identification of the modified regions by exploiting the
information in the control-data flow graphs (CDFGs) created
during the synthesis [13]. If some regions are merged or divided,
KAIROS can expand the verification from regions to processes or
modules. Once an implementation Z; has been verified, it can
be used (in place of Z,..r) to identify the regions affected by the
designer’s modifications for another implementation Z; with
k # j. Incrementally replacing the reference implementation
with the new verified one can speed up the verification process.
STEP #2: Check Regions Equivalence. After identifying a
pair of regions in Zj, and Z,.. r, KAIROS verifies their equivalence.
KAIROS generates a verification wrapper (in RTL Verilog) that
encloses the two regions (Fig. 2). The block diagram of the
wrapper for single-input and single-output regions is shown on
the left of Fig. 3. The wrapper exploits clock gating [14] to
make the regions stallable, so that they can be "stopped" when
it is needed (this is required to apply LID). KAIROS creates the
wrapper by using only the interface of the RTL code of the
two regions synthesized by the HLS tool. The wrapper has a
controller to enable and disable the clock-gating logic used to
manage the encapsulated regions. The wrapper performs 4 steps:

(1) it waits for one region to complete its execution, i.e., it
waits either for out_valid, or out_valid, to be equal to 1;
it disables the clock of the region that completed (clk_en;
or clk_ens), so that it can then wait for the other region;
it waits for the other region to complete its computation;
it sets equiv to 0 if out; # outy and to 1 otherwise.

2)

3)

“4)

The verification wrapper synchronizes the two regions. To
check the equivalence, KAIROS applies model checking [15]
to prove that equiv is always equal to 1. While it is common
practice to check cycle-by-cycle equivalence of two RTL de-
signs, here we use model checking to prove latency-insensitive
equivalence between two RTL designs synthesized with HLS.

Example IL.1. The trace of Fig. 3 (right) shows how to check
equivalence. The colors indicate the steps the wrapper performs.
a’ is a generic input value, while b} and b}, are the output
values produced by rReGION#1 and REGION#2 corresponding to
input a’, respectively. The wrapper synchronizes the regions,

be correct by construction thanks to the results proven for so that the model checker can verify if bi = b} V i. O
steps: (1)) 3) “
clock ik en, cycles |0 1 2 3 4 5 6 7 8 9
in gating v) out, in (10 - - - al - - - aQ -
in_valid : REGION #1 out_valid,

out_ready : (from Imj‘) in_ready, - equiv outy - - b(l) b(l) bg - b% b% bi

L out, N iﬂ' —> outz - - B B bQ - - - b2 B

L] recton w2 [owvalg | & ckeny 1 1 0 0 1 L 0 o0 1 1

4 \from) in_ready, clk_ens 1 1 1 1 1 1 1 1 1 1

clock e out_valid, 0 0 1 1 0 0 1 1 0 0

S — out_valids 0 0 0 0 1 0 0 0 1 0

[ek equiv. 1 1 1 1 1 1 1 1 1 1

Fig. 3. The block diagram of the verification wrapper (left) and an example of latency-insensitive equivalence checking (right). Here, we assume that (i) the
regions are not pipelined, and (ii) we do not have backpressure (KAIROS can handle these cases). The regions have a single input (in) and a single output (out).

in_valid out_valid

in out_ready out 4 4 4 in ready

A4 A y

out

FASTER REGION controller

outivalid'
(from I or I)

in_ready'

A
clock
gating clk_en

clk

regs

Fig. 4. Verification wrapper for data-independent regions.
ITI. IMPROVING SCALABILITY

RTL equivalence checkers [16] are usually faster than model
checkers for checking the equivalence of two RTL descriptions.
Theoretically, model checkers can be used for equivalence
checking. From a practical perspective, however, equivalence
checkers are faster because they can exploit the structural
similarities of the two RTL descriptions. In fact, many formal
tools, e.g., Cadence JasperGold, have distinct “Apps” for
the two tasks. Unfortunately, equivalence checkers cannot be
directly used in our context because they do not allow one
of the two descriptions to access the signals of the other one
(we would need to access the signal out valid to synchronize
the regions). We can observe, however, that accessing the
out_valid signal is not needed in case of data-independent
regions: i.e., regions that have a fixed latency and whose latency
does not depend on the particular values of the inputs. For
these regions, KAIROS creates a specialized version of the
verification wrapper that enables the use of an equivalence
checker. The wrapper encapsulates only the faster of the two
regions (Fig. 4). Then, KAIROS uses an equivalence checker to
verify the equivalence between the "wrapped" faster region and
the slower region. The wrapper uses a counter that accounts
for the difference in latency of the two regions that are being
verified. KAIROS extracts the initialization value of this counter
from the CDFG created by the HLS tool [13]. In fact, the
HLS tool can easily estimate the number of clock cycles
required to execute a data-independent region. In this way,
KAIROS can slow down the faster region and synchronize
its outputs with the outputs of the slower region. To verify
the equivalence, identical inputs are given to the "wrapped"
faster region and the slower region at every cycle and the
equivalence checker verifies that the corresponding outputs
of the regions match only when the valid signals of the
wrapper (out_valid;) and the slower region (out_valids) are
both 1. This wrapper can be used only in the case of data-
independent regions. If the regions are data-dependent, the
more general solution reported in Fig. 3 should be adopted.

IV. EXPERIMENTAL EVALUATION

Experimental Setup. We designed a hardware module in
SystemC, called GRAY, that converts a N x N RGB image into a
grayscale image. The architecture of the module is organized in
three processes: the load process reads the input data and stores
it in a private array of size IN; the compute process performs
the computation; the store process produces the output data.
The three processes are pipelined with ping-pong buffering [3].

Entire Module Compute Process
] Name FFs Gates Lines FFs Gates Lines Outputs
REF 7716 ~33K ~60K 3420 ~14K ~TK 64
UROL32 16374 ~410K ~61K 12438 ~390K ~8K 64
Name Area Latency Bounded Exhaustive
REF 51831 um’ 497500 ns - -
Q UROL2 55927 um® 481500 ns proven - 1 min proven - 22 min
X UROLA4 63895 um® 457500 ns proven - 1 min proven - 25 min
> UROLS 79955 um® 409500 ns proven - 1 min proven - 28 min
> UROLI6 111632 um® 313500 ns proven - | min proven - 33 min
g UROL32 169949 um’ 177250 ns proven - 1 min proven - 33 min
Name Area Latency Equivalence Bug Description
UROL#2 55927 um® 481500 ns - -
BUG#1 51189 um® 497500 ns cex - <l min + instead of *
BUG#2 99600 um® 581500 ns cex - <1 min aggressive loop unrol.
BUG#3 51831 um® 493250 ns cex - <1 min wrong index initial.
— BUG#4 51851 um® 497500 ns cex - <1 min stuck-at-0 (16 bits)
BUGH#5 49880 um® 497500 ns cex - <1 min stuck-at-1 (16 bits)
— Entire Module Compute Process
Name FFs Gates Lines FFs Gates Lines Outputs
2 REF 14489 ~52K ~116K 6478 ~15K ~12K 128
X UROL64 32867 ~820K ~120K 24856 ~787K ~15K 128
©°
2 Name Area Latency Bounded Proof
& REF 95869 wm® 1914500 ns -
BUG#1 95226 um’ 1914500 ns cex - 2 min
7 UROL64 336192 um’ 665250 ns proven - 3 min
- Entire Module Compute Process
0 Name FFs Gates Lines FFs Gates Lines Outputs
Q
o) REF 28034 ~T79K ~186K 12588 ~64K ~22K 256
& UROL128 65136 ~1600K ~193K 49690 ~1560K ~28K 256
: Name Area Latency Bounded Proof
% REF 179457 wn® 7532500 ns -
BUG#1 179244 um® 7532500 ns cex - 2 min
T UROLI128 664151 um® 2601250 ns proven - 10 min

Fig. 5. Results for GRAY 32x32, 64x64 and 128x128.
We focused the DSE and verification on the compute process
because the load and store processes contain only regions that
have a fixed latency. We synthesized three versions with private
arrays of size N = 32, 64 and 128. Larger values of N increase
the verification complexity. For all these experiments, we use
the verification wrapper shown in Fig. 4 (the wrapper in Fig. 3
is used for the results in Section V). We used Stratus HLS for
synthesis and JasperGold for equivalence and model checking.
Experimental Results. Fig. 5 shows the experimental results.
The first three tables report the results for the case N = 32.
The first table reports the characteristics of two representative
RTL implementations (the largest and the fastest) in terms
of number of flip-flops, gates and lines of synthesized RTL
Verilog code, by considering the entire module or only the
compute process. For the compute process we also indicate
the number of outputs, i.e., the number of properties that need
to be proven for equivalence. By considering the compute
process only, KAIROS significantly reduces the amount of code
to check (the lines of code are reduced by up to 88.3%). The
second table reports the results of the DSE in terms of area
and effective latency (as reported by Stratus HLS) and average
verification time per property (as reported by JasperGold) for
bounded and exhaustive proofs. For the bounded proofs [16],
we set the bound equal to the number of clock cycles necessary
to compute one iteration of the compute process. First, we
synthesized and validated a reference implementation Z,..
called REF: we verified its correctness by using a combination
of formal and semi-formal methods. We synthesized five correct
implementations in addition to REF. These implementations
unroll the loops for different numbers of iterations (we checked

them against REF). There is a difference of ~100 clock cycles
between the slowest and the fastest implementation for the
execution of a single iteration of the compute process. The
results are reported in the second table of Fig. 5. KAIROS finds
an exhaustive proof for all the cases. We also synthesized some
bugged RTL implementations (checked against UROL#2) by
manipulating the code (BUG#1, BUG#3), by injecting faults
(BUG#4, BUG#5) or by applying wrong HLS knobs (BUG#2).
The bugs in BUG#4 and BUGH#5 are very unlikely to be detected
with simulation-based approaches because they are activated
only when specific values are observed in input. We introduced
these bugs to represent (1) possible errors that the designer
could introduce with manual manipulations or applications of
knobs, and (2) faults that could be introduced by the HLS
tool. In all cases, KAIROS finds a counterexample in less than
a minute. The last four tables of Fig. 5 report the results for
the cases N = 64 and N = 128. In both cases, we considered
one correct implementation and one bugged implementation in
addition to REF. Again, KAIROS finds bounded proofs in few
minutes and detects the bugs in less than two minutes.
Remarks. The results reported in Fig. 5 use the same reference
implementation to check the equivalence of all implementations
(worst case). By minimizing the difference in latency between
Zer and Iy, it is possible to reduce the verification time. In
the case of GRAY, the verification of UROL#16 and UROL#32
against REF takes 33 minutes each (see Fig. 5), while verifying
UROL#16 against UROL#32 takes only 20 minutes. We observed
similar results for other combinations of implementations.

V. THE RISC-V CASE STUDY

We evaluated KAIROS also on a RISC-V processor designed
in SystemC with HLS [17]. While processor design is not a
typical target of HLS, it offers insights on how KAIROS works
on control-dominated designs. We designed a pipelined 5-stage
in-order processor that implements the RV32IM subset of RISC-
V [18]. The design is organized in three modules (with a single
process each): fedec implements the fetch and decode stages,
execute implements the execution stage, and finally memwb
implements the memory and writeback stages. The use of LID
allows the processor to tolerate any latency variation in its
computation. We focused the DSE and the verification on the
execute module, and in particular on the division operations,
which in our case work on 8-bit integer values. We used the
same setup discussed in Section IV. We used the wrapper that
handles data dependencies (Fig. 3) since each instruction can
have a different latency.

Fig. 6 shows the results of the verification of the RISC-V
processor with the same format of the tables reported in Fig. 5.
We synthesized and validated a REF implementation. Then, we
synthesized other four correct implementations (checked against
REF). ARDIV relaxes the constraint on the latency for imple-
menting the division loop, resulting in a longer execution time;
PDIV1 and PDIV2 are pipelined implementations of the division
with initiation interval of one and two, respectively; UDIV4
unrolls the division loop four times. In all cases, KAIROS finds an
exhaustive proof showing that, independently from the latency

Original Design Execute Stage

Name FFs Gates Lines FFs Gates Lines Outputs
REF 3161 ~4700 ~16K 588 ~1000 ~4K 11
UDIV4 3160 ~4800 ~16K 587 ~1100 ~4K 11
Name Area Latency Exhaustive
REF 27138 um® 324780 ns -
ARDIV 27141 um® 485020 ns proven - 33 min
PDIVI 27108 um® 363840 ns proven - 1 min
PDIV2 27122 um® 384870 ns proven - 1 min
UDIV4 27499 um® 244660 ns proven - 1 min
Name Area Latency Equivalence Bug Description
REF 27138 um® 324780 ns = -
BUGH#1 27044 um® 324780 ns cex - < | min swap remainder/division
BUGH#2 27139 um® 324780 ns cex - < | min wrong loop comparison
BUGH#3 27119 um® 324780 ns cex - < 1 min wrong bit shifting (1 bit)
BUGH#4 27149 um® 304750 ns cex - < | min wrong loop condition
BUGH#S 27158 um® 324780 ns cex - < 1 min stuck-at on numerator

Fig. 6. Experimental results of the RISC-V processor core.

required for the division, the different implementations are
latency-insensitive equivalent. We designed also some bugged
implementations (checked against REF). Among them, BUG#5
contains a bug that is unlikely to be found with simulation.
KAIROS detects all the bugs in less than one minute per bug.

VI. RELATED WORK

KAIROS is inspired by the idea of incremental HLS [12],
which is about applying "incrementality" to reduce synthesis
times. In contrast, KAIROS combines it with LID composi-
tionality to verify the synthesis results. Several verification
methods can be adopted in HLS. Some methods can be used to
check the high-level specification before synthesis. For example,
there exist techniques for bounded model checking of C and
SystemC programs [19], [20], [21], [22] and for checking the
equivalence of C programs [23], [24]. All these techniques are
complementary to KAIROS. They can identify bugs in the high-
level specification, but they cannot guarantee the correctness
of the RTL code. Other methods can verify the correctness
of the synthesis step [25], [26], [27], [28], for example, by
using translation validation [9], [29], [30], [31] or intermediate
models [32], [33], [34]. There are also techniques to verify the
correctness of some specific HLS optimizations [35], [36]. All
these methods can be integrated in KAIROS. In fact, they can be
used to verify the correctness of the reference implementation
obtained from the high-level specification, while the successive
modifications to such implementation can be checked more
efficiently with KAIROS, which exploits LID compositionality.
Finally, there are methods for post-synthesis validation [16] to
check that the RTL implementations satisfy formal properties
or to check the equivalence of two implementations. KAIROS
leverages these methods by using a commercial equivalence
checker for RTL-to-RTL equivalence.

VII. CONCLUDING REMARKS

We described KAIROS, a formal methodology for automatic
incremental verification in HLS. We showed that KAIROS can
quickly detect bugs in a hardware module designed with HLS.
We also discussed a case study where we verified multiple
RTL implementations of a RISC-V processor core.

ACKNOWLEDGMENTS

We would like to thank Georgios Charitos for some pre-
liminary analysis, Michael Theobald, Paolo Mantovani and
Davide Giri for the helpful discussions and feedback, and
Robert Margelli for providing the RISC-V case study. This
work was supported in part by the NSF (A#: 1764000) and
DARPA (C#: HR0011-18-C-0122).

[1]
[2]

[3]

[4

[5]
[6]

=

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

REFERENCES

L. P. Carloni. From Latency-Insensitive Design to Communication-Based
System-Level Design. Proceedings of the IEEE, 2015.

B. Khailany, E. Krimer, R. Venkatesan, J. Clemons, J. S. Emer, M. Fojtik,
A. Klinefelter, M. Pellauer, N. Pinckney, Y. S. Shao, S. Srinath, C. Torng,
S. Xi, Y. Zhang, and B. Zimmer. A Modular Digital VLSI Flow for High-
Productivity SoC Design. In Proc. of the ACM/IEEE Design Automation
Conference (DAC), 2018.

L. Piccolboni, P. Mantovani, G. Di Guglielmo, and L. P. Carloni. COS-
MOS: Coordination of High-Level Synthesis and Memory Optimization
for Hardware Accelerators. ACM Transactions on Embedded Computing
Systems (TECS), 2017.

D. Black, J. Donovan, B. Bunton, and A. Keist. SystemC: From the
Ground Up (Second Edition). Springer, 2009.

MatchLib, NVIDIA Research. https://github.com/NVlabs/matchlib.

L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Latency
Insensitive Protocols. In Proc. of the International Conference on
Computer-Aided Verification (CAV), 1999.

L. P. Carloni, K. L. McMillan, and A. L. Sangiovanni-Vincentelli. Theory
of Latency-insensitive Design. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems (TCAD), 2001.

L. P. Carloni. The Role of Back-Pressure in Implementing Latency-
Insensitive Design. In Proc. of the International Workshop on Formal
Methods for Globally Asynchronous Locally Synchronous Architectures
(FMGALS), 2006.

S. Kundu, S. Lerner, and R. K. Gupta. Translation Validation of High-
Level Synthesis. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems (TCAD), 2010.

R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen,
H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels. A Survey
and Evaluation of FPGA High-Level Synthesis Tools. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems (TCAD),
2016.

A. Takach. High-Level Synthesis: Status, Trends, and Future Directions.
IEEE Design & Test, 2016.

L. Lavagno, A. Kondratyev, Y. Watanabe, Q. Zhu, M. Fujii, M. Tatesawa,
and N. Nakayama. Incremental High-level Synthesis. In Proc. of the
ACM/IEEE Asia and South Pacific Design Automation Conference (ASP-
DAC), 2010.

P. Coussy and A. Morawiec. High-Level Synthesis: from Algorithm to
Digital Circuit. Springer Science & Business Media, 2008.

V. G. Oklobdzija, V. M. Stojanovic, D. M. Markovic, and N. M. Nedovic.
Digital System Clocking: High-Performance and Low-Power Aspects.
IEEE Press, 2003.

E. Clarke, D. Kroening, and K. Yorav. Behavioral Consistency of C
and Verilog Programs Using Bounded Model Checking. In Proc. of the
ACM/IEEE Design Automation Conference (DAC), 2003.

C. Kern and M. R. Greenstreet. Formal Verification in Hardware Design:
A Survey. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 1999.

(17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

[28]

[29]

(30]

(31]

[32]

[33]

[34]

[35]

[36]

R. Margelli. System-level Design of a Latency-insensitive RISC-V
Microprocessor and Optimization via High-level Synthesis. Master’s
Thesis, Politecnico di Torino, 2017.

A. Waterman, Y. Lee, D. A. Patterson, and K. Asanovi¢. The RISC-V
Instruction Set Manual, Volume I: User-Level ISA, Version 2.0. Technical
Report UCB/EECS-2014-54, EECS Department, University of California,
Berkeley, 2014.

H. Rocha, H. Ismail, L. Cordeiro, and R. Barreto. Model Checking
Embedded C Software Using k-Induction and Invariants. Embedded
Software Verification and Debugging, 2017.

D. Kroening and M. Tautschnig. CBMC - C Bounded Model Checker.
In Proc. of the International Conference on Tools and Algorithms for
the Construction and Analysis of Systems (TACAS), 2014.

C-N. Chou, Y-S. Ho, C. Hsieh, and C-Y. Huang. Symbolic Model
Checking on SystemC Designs. In Proc. of the ACM/IEEE Design

Automation Conference (DAC), 2012.) .
A. Cimatti, A. Micheli, I. Narasamdya, and M. Roveri. Verifying

SystemC: A Software Model Checking Approach. In Proc. of the
ACM/IEEE International Conference on Formal Methods in Computer
Aided Design (FMCAD), 2010.

H. Yoshida and M. Fujita. Rule-based Equivalence Checking of System-
level Design Descriptions. In Proc. of the IEEE International Conference
on Communications, Circuits and Systems (ICCCAS), 2009.

N. Thole, H. Riener, and G. Fey. Equivalence Checking on ESL Utilizing
a Priori Knowledge. In Proc. of the IEEE Forum on Specification and
Design Languages (FDL), 2016.

D. Kroening and E. Clarke. Checking Consistency of C and Verilog
Using Predicate Abstraction and Induction. In Proc. of the ACM/IEEE
International Conference on Computer-aided Design (ICCAD), 2004.
S. Vasudevan, V. Viswanath, J. A. Abraham, and J. Tu. Sequential
Equivalence Checking Between System Level and RTL descriptions.
Design Automation for Embedded Systems, 2008.

P. Chauhan, D. Goyal, G. Hasteer, A. Mathur, and N. Sharma. Non-cycle-
accurate Sequential Equivalence Checking. In Proc. of the ACM/IEEE
Design Automation Conference (DAC), 2009.

R. Mukherjee, D. Kroening, T. Melham, and M. Srivas. Equivalence
Checking Using Trace Partitioning. In Proc. of the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI), 2015.

T. Li, Y. Guo, W. Liu, and C. Ma. Efficient Translation Validation of
High-Level Synthesis. In Proc. of the IEEE International Symposium on
Quality Electronic Design (ISQED), 2013.

T. Li, Y. Guo, S. Li, and Q. Tan. Equivalence Checking of Scheduling
in High-Level Synthesis. In Proc. of the IEEE International Symposium
on Quality Electronic Design (ISQED), 2015.

A. Leung, D. Bounov, and S. Lerner. C-to-Verilog Translation Validation.
In Proc. of the ACM/IEEE International Conference on Formal Methods
and Models for Codesign (MEMOCODE), 2015.

C. Karfa, C. Mandal, and D. Sarkar. Formal Verification of Code
Motion Techniques Using Data-flow-driven Equivalence Checking. ACM
Transactions on Design Automation of Electronic Systems (TODAES),
2012.

C. Karfa, D. Sarkar, C. Mandal, and P. Kumar. An Equivalence-Checking
Method for Scheduling Verification in High-Level Synthesis. [EEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems (TCAD), 2008.

S. Kundu, S. Lerner, and R. Gupta. Automated Refinement Checking of
Concurrent Systems. In Proc. of the ACM/IEEE International Conference
on Computer-Aided Design (ICCAD), 2007.

K. Hao, S. Ray, and F. Xie. Equivalence Checking for Behaviorally
Synthesized Pipelines. In Proc. of the ACM/IEEE Design Automation
Conference (DAC), 2012.

Z. Yang, S. Ray, K. Hao, and F. Xie. Handling Design and Implementation
Optimizations in Equivalence Checking for Behavioral Synthesis. In
Proc. of the ACM/IEEE Design Automation Conference (DAC), 2013.

