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Machine learning was utilized to efficiently boost the development of soft magnetic materials. The design
process includes building a database composed of published experimental results, applying machine learning
methods on the database, identifying the trends of magnetic properties in soft magnetic materials, and accel-
erating the design of next-generation soft magnetic nanocrystalline materials through the use of numerical
optimization. Machine learning regression models were trained to predict magnetic saturation (BS), coerciv-
ity (HC) and magnetostriction (λ), with a stochastic optimization framework being used to further optimize
the corresponding magnetic properties. To verify the feasibility of the machine learning model, several opti-
mized soft magnetic materials � specified in terms of compositions and thermomechanical treatments �
have been predicted and then prepared and tested, showing good agreement between predictions and
experiments, proving the reliability of the designed model. Two rounds of optimization-testing iterations
were conducted to search for better properties.

© 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. Motivation

The pursuit of increased efficiency in energy conversion and
transformation requires a new generation of energy materials. Soft
magnetic materials are capable of rapidly switching their magnetic
polarization under relatively small magnetic fields. They typically
have small intrinsic coercivity and are used primarily to enhance or
channel the flux produced by an electric current. These alloys are
used in a large number of electromagnetic distribution, conversion,
and generation devices, such as transformers, converters, inductors,
motors, generators, and even sensors.

In the current materials science community, the accelerated dis-
covery and design of new energy materials has gained considerable
attention in light of the many societal and environmental challenges
we currently face. Soft magnetic materials are crucial as they are
essential elements of electro-magnetic energy transformation tech-
nologies. For example, the power transformer is a critical component
of the solar energy conversion system, whose performance is ulti-
mately limited by the magnetic properties of the materials used to
build the cores. In 1988, Yoshizawa et al. presented a new nanocrys-
talline soft magnetic material referred to as FINEMET, which exhibits
extraordinary soft magnetic performance [1]. This alloy was prepared
by partially crystallizing an amorphous Fe-Si-B alloy with minor
addition of Cu and Nb. This unusual combination of chemistry and
processing conditions led to an ultrafine grain structure in an amor-
phous matrix resulting in excellent soft magnetic properties. The
resulting soft magnetic properties of FINEMET type alloys, relevant to
electromagnetic energy conversion devices, are a unique combina-
tion of low energy losses, low magnetostriction, and high magnetic
saturation, up to 1.3 T. This was achieved through an ultrafine com-
posite microstructure of cubic-DO3 structured Fe-Si grains with grain
sizes of 10-15 nm in a continuous amorphous matrix, providing a
new path for designing next-generation soft magnetic materials.

1.2. FINEMET-type soft magnetic materials

The target material system in this work is FINEMET-type soft mag-
netic nanocrystalline alloys whose properties are categorized into
two groups, intrinsic and extrinsic properties. Intrinsic properties
include magnetic saturation (BS), magnetocrystalline anisotropy (K1),
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magnetostriction (λ), and Curie temperature (TC). K1 and λ indirectly
influence the hysteretic behavior (B�H loop) for each type of core
material by influencing coercivity and core losses of the material.
Extrinsic properties include permeability (m), susceptibility (x), coer-
civity (HC), remanence (Mr), and core losses (Pcv). These are influ-
enced not only by the microstructure, but also the geometry of
materials, the different forms of anisotropy, and the effect of switch-
ing frequency of the applied fields[2].

Among these soft magnetic properties, most can be obtained from
its unique hysteresis loop - known as the B�H curve, shown in Fig. 1
(a), where B is the flux density generated by an electromagnetic coil
of the given material as a function of applied magnetic field strength,
H. From this curve the following terms can be defined:

(a) Coercivity (HC) is the intensity of the applied magnetic field
required to reduce the residual flux density to zero after the magneti-
zation of the sample has been driven to saturation. Thus, coercivity
measures the resistance of a ferromagnetic material to be demagne-
tized. (b) Magnetic saturation (BS) is the limit to which the flux den-
sity can be generated by the core as the domains in the material
become fully aligned. It can be determined directly from the hystere-
sis loop at high fields. Large values of flux density are desirable since
most applications need a device that is light in mass and/or small in
volume. (c) Permeability (m): m ¼ B=H ¼ 1þ x; is the parameter that
describes the flux density, B, produced by a given applied field, H.
Permeability can vary over many orders of magnitude and should be
optimized for a given application. For example, EMI filters usually
require large values to produce substantial changes in magnetic flux
density in small fields. For other applications, such as filter inductors,
permeability does not necessarily need to be high but needs to be
constant so that the core does not saturate readily. (d) Core loss is
one of the most essential properties of the material as it is a direct
measure of the heat generated by the magnetic material in A/C appli-
cations. It is the area swept out by the hysteresis loop, which should
be minimized to provide a high energy efficiency for the core. Contri-
butions to the core loss include hysteretic sources from local and uni-
form anisotropies and eddy currents at high frequencies.

Maximizing BS and minimizing HC are the most important design
objectives for most applications requiring soft magnetic materials
and therefore were the design goals in this study. Since m heavily
depends on the application and can range over several orders of mag-
nitude, even for a fixed composition, depending on secondary proc-
essing conditions, it was therefore not a parameter that was
optimized or considered in this study. Based on the nature of FINE-
MET-type nanocrystalline alloys, several constraints have been incor-
porated in this study. The magnetic transition metal element has
been set to Fe in this work and other elements, such as Co and Ni are
excluded, because at relatively small additions they will tend to
Fig. 1. (a) B�H loop. (b) Coercivity HC vs. grain size D for various soft magnetic metallic alloy
for grains embedded in an ideally soft ferromagnetic matrix. The double arrows indicate the
relation volume determined by the exchange length Lex. Reprinted from Ref. [3].
decrease BS. The composition of Fe ranged from 60%-90%. The percen-
tages of the remaining elements in total varied from 10%-40%.
Although the early transition metal element is Nb in current com-
mercial FINEMET alloys, other elements, such as Zr, Hf, Ta, Mo or
even combinations of different early transition metal elements were
considered. In commercial alloys, metalloids B and Si are added to
promote glass formation in the precursor and we also allowed for P.
The noble metal elements are selected from Cu, Ag, or Au serving as
nucleating agents for the ferromagnetic nanocrystalline phase.

The random anisotropy model [4] provides a concise and explicit
picture for understanding the soft magnetic properties of nanocrys-
talline ferromagnetic materials, such as FINEMET. As illustrated in
Fig. 1, the microstructure is characterized by a random distribution of
structural units or grains in a ferromagnetic matrix with an effective
magnetic anisotropy with a scale D. For a finite number (N) of grains
within the ferromagnetic correlation volume (V ¼ L3ex), the corre-
sponding average anisotropy constant ⟨K1⟩ is given by

hK1 i � K1ffiffiffiffi
N

p ¼ K1
D
Lex

� �3=2

; ð1Þ

which is determined by the statistical fluctuations from averaging
over the grains. If there are no other anisotropies, the coercivity HC

and the magnetic saturation BS are directly related to the average
anisotropy constant ⟨K⟩ by

HC ¼ pc
hK i
BS

; ð2Þ

where pc is a dimensionless pre-factor. These relations were initially
derived for coherent magnetization rotation in conventional fine par-
ticle systems. In the regime D< Lex, however, they also apply for
domain wall displacements. Accordingly, coercivity was shown to
vary with grain size as HCaD

6 for very fine grained materials (Fig. 1
(b)). For large grain sizes, it shows the typical 1/D-dependence and
thus great soft magnetic properties require large grain sizes [5]. How-
ever, for small grain sizes, HC shows an extraordinary D6-dependence
behavior, which provides another path to realize excellent soft mag-
netic performance, through the generation of nanocrystalline micro-
structures [6,7].

1.3. FINEMET materials design

Machine learning as one of the most popular and efficient statisti-
cal techniques has enormous potential to bring the discovery and
design of soft magnetic alloys to the next level. Recently, Rajesh et al.
[8] presented a combined CALPHAD and machine learning approach
to predict nanocrystalline size and volume fraction from inputs such
as composition and heat treatment conditions, demonstrating that
s. Reprinted from Ref. [3]. (c) Schematic representation of the random anisotropy model
random fluctuating anisotropy axis, the hatched area represents the ferromagnetic cor-
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Fig. 2. Diagram of machine learning and experimental design framework.

Table 1
List of soft magnetic papers from which the experimental data were
mined.

References Year References Year

Yoshizawa et al. [1] 1988 Saad et al. [9] 2002
Kataoka et al. [10] 1989 Skorvanek et al. [11] 2002
Herzer et al. [12] 1990 Mitrovic et al. [13] 2002
Suzuki et al. [14] 1990 Marin et al. [15] 2002
Yoshizawa et al. [16] 1991 Zorkovska et al. [17] 2002
Suzuki et al. [18] 1991 Sulictanu et al. [19] 2002
Fujii et al. [20] 1991 Cremaschi et al. [21] 2002
Makino et al. [22] 1991 Chau et al. [23] 2003
Lim et al. [24] 1993 Ponpandian et al. [25] 2003
Tomida et al. [26] 1994 Kwapulinski et al. [27] 2003
Makino et al. [28] 1994 Crisan et al. [29] 2003
Kim et al. [30] 1995 Sovak et al. [31] 2004
Inoue et al. [32] 1995 Cremaschi et al. [33] 2004
Vlasak et al. [34] 1997 Ohnuma et al. [35] 2005
Lovas et al. [36] 1998 Chau et al. [37] 2006
Grossinger et al. [38] 1999 Ohta et al. [39] 2007
Yoshizawa et al. [40] 1999 Lu et al. [41] 2008
Kopcewicz et al. [42] 1999 Pavliket al. [43] 2008
Frost et al. [44] 1999 Makino et al. [45] 2009
Franco et al. [46] 1999 Ohnuma et al. [47] 2010
Turtelli et al. [48] 2000 Butvin et al. [49] 2010
Xu et al. [50] 2000 Lu et al. [51] 2010
Todd et al. [52] 2000 Makino et al. [53] 2011
Borrego et al. [54] 2000 Kong et al. [55] 2011
Kemeny et al. [56] 2000 Urata et al. [57] 2011
Ilinsky et al. [58] 2000 Makino et al. [59] 2012
Varga et al. [60] 2000 Sharma et al. [61] 2014
Vlasak et al. [62] 2000 Liu et al. [63] 2015
Zorkovska et al. [64] 2000 Wen et al. [65] 2015
Solyom et al. [66] 2000 Xiang et al. [67] 2015
Lovas et al. [68] 2000 Sinha et al. [69] 2015
Kwapulinski et al. [70] 2001 Wan et al. [71] 2016
Borrego et al. [72] 2001 Dan et al. [73] 2016
Franco et al. [74] 2001 Li et al. [75] 2017
Mazaleyrat et al. [76] 2001 Jiang et al. [77] 2017
Wu et al. [78] 2001 Li et al. [79] 2017
Borrego et al. [80] 2001 Jia et al. [81] 2018
Gorria et al. [82] 2001 Cao et al. [83] 2018
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machine learning is a promising tool for modeling soft magnetic
alloys. Although our work is in a similar material space, we have
been focusing on predicting magnetic properties from experimental
data mined from the literature. In this work, machine learning was
used as the primary technique to expand the boundaries of Fe-based
FINEMET-type material space and design the next-generation of soft
magnetic materials. As a first step, we built an experimental database
compiled from 76 journal articles published starting in 1988. The
database was carefully curated to only include data entries in the
nanocrystalline regime. Feature engineering was applied so that the
original inputs have been transformed into more general atomic
properties. We built separate models to predict each magnetic prop-
erty and the number of predictive features were reduced to between
5 and 20 for each property. Various machine learning algorithms
were applied to the selected data sets, and the prediction evaluated
using 20-fold cross-validation based on the coefficient of determina-
tion (R2). Stochastic optimization framework was used to guide the
design of new and better soft magnetic nanocrystalline materials.
The overall framework is shown in Fig. 2.

2. Data set overview

To start the soft magnetic materials design process, the first step
was to build a database by collecting available properties from the
relevant literature. There are hundreds of accessible publications in
the literature base, which describe different types of soft magnetic
nanocrystalline alloys in single or a small range of alloy compositions
given one or several types of thermal treatments or other types of
secondary processing, with some relevant measure of various proper-
ties. Due to the limitation of not being able to access the original data
directly, it was challenging to collect and organize all the data from
the literature to interpret the relations between processing, composi-
tions, structures, and properties. Nevertheless, it is a valuable task to
create, maintain and preserve such a data set to share in the materials
science community for collaborative research purposes. The sources
of our data set are academic literature and patent information, from
published experimental work. All publications assembled in the data-
base are listed in Table 1.



Fig. 3. Elemental components of FINEMET-like-soft magnetic alloys including magnetic transition metal (MTM), early transition metal (ETM), post-transition metal (PTM), late tran-
sition metal (LTM) elements.
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The essential components of the database are chemical compositions,
thermal processing conditions applied to the amorphous precursor rib-
bon, and soft magnetic properties. Data contained in plots were
extracted using WEBPLOTDIGITIZER [84]. The soft magnetic properties of
nanocrystalline materials are heavily dependent on the chemical compo-
sition and the different elements in the composition can be split into four
different categories: magnetic transition metal (MTM), early transition
metal (ETM), post-transition metal (PTM) and late transition metal
(LTM) as shown in Fig. 3. MTM includes Fe, Co, and Ni, but in this first
attempt to model behavior, we focused on Fe-based materials, therefore,
Co- and Ni-containing alloys were not considered in the database. ETM
elements normally act as grain refiners, which help slow down the diffu-
sion process during the thermal crystallization step and help maintain a
fine grain size. PTM elements form the glassy phase. In addition, Si serves
the critical role of producing the Fe3Si crystalline phase in FINEMET,
which has a negative magnetostriction and reduces the overall magneto-
striction of the alloy by balancing out the positive magnetostriction in
the glassy phase. LTM elements like Cu, Ag, and Au can act as nucleants,
which form clusters in the glassy phase, responsible for nucleating a
high density of grains.

The distribution of Fe in the FINEMET data set is shown in Fig. 4(a),
the dominating composition is 73.5, which is the original atomic per-
centage of Fe in FINEMET. The distribution of nucleant elements is
shown in Figs. 4(b) and 4(c). It is shown that only 33 data entries con-
tain Au which is around 2% of overall entry count. Cu occupies the
majority of our studied compositions, and most of the entries contain
1% of Cu. For ETM elements, the distribution of our study is shown in
Figs. 4(h), 4(j), 4(k), and 4(l). The majority of our studied composi-
tions contain Nb as grain refiners and most of them have a Nb frac-
tion around 3%. The distribution of PTM elements are shown in
Figs. 4(d), 4(e), 4(f), 4(g), and 4(i). B occurs in most of the entries, and
sometimes appears along with P or Ge. The dominant composition
for B is 9%. Si also occurs most of the time because of the need to gen-
erate the Fe3Si crystalline phase with a negative magnetostriction
and to serve as a potential glass former.

We also visualize the distribution of selective magnetic properties
of interest in Fig. 5.

Because the distribution of coercivity is heavily skewed with a
large skewness g1 ¼ 5:1; we thus applied a log transformation to
transform skewed data to approximately conform to normality. The
log-transformed data give a much smaller skewness g1 ¼ 0:6; which
can greatly help with the originally observed bias. It is also evident
that people tend to report good results, such as high magnetic satura-
tion (larger than 1.5 T) and low magnetostriction (close to 0), rather
than “unattractive” results. In our case, high magnetic saturation data
larger than 1.5 T is about 49% and lowmagnetostriction data between
�3 and 3 is 47%. However, in terms of the machine learning process,
the unattractive results can be just as beneficial to the overall process.
Due to this reason, we decided not to leave out any “bad” data. The
rest of data (51% for magnetic saturation and 53% for magnetostric-
tion) can help with reducing the corresponding biases to a great
extent.

In the course of constructing the database, several difficulties,
which afflict most materials design problems, need to be clearly
stated. First, we chose FINEMET-type nanocrystalline alloys as the
material design space, and there is a vast composition parameter
space where few researchers have done measurements. Several clus-
ters of data in the material database represent trendy materials,
which are only a small percentage of all candidate material composi-
tions. Second, given the different research habits of various groups
and diversity of equipment, some researchers did not clarify every-
thing, such as manner in which magnetic saturation was defined.
Finally, not all publications include every soft magnetic property of
interest. For example, compared to coercivity, magnetic saturation is
more difficult to measure, which leads to the fact that we have many
data points for the former and less for magnetic saturation. As a
result, considering the primary target is to optimize both coercivity
and magnetic saturation, it is helpful to split the database into sepa-
rate sets, each for a different magnetic property as the objective. All
features are listed in Table 2.

The features mainly contain two different categories: chemical
components and experimental measurements.

The purpose of the study was to evaluate nanocrystalline FINE-
MET type alloys. These alloys are generally produced by partial crys-
tallization of an amorphous precursor by an annealing treatment,
which also significantly increases the complexity of the problem. To
ensure data consistency, some data points in the data sets were mod-
ified by the following procedures:

1. Data which were missing an annealing temperature or annealing
time, all as-quenched data, and all data processed below room
temperature were removed.

2. Annealing Temperatures were rounded to every 5th degree Cel-
sius.

3. Annealing Times were rounded to the nearest hour or half hour
depending on the magnitude of the value.

4. Data points out of the nanocrystalline regime. -i.e., grain diame-
ters over 60 nm, were removed.

5. Any features, which are unused after data reduction were
removed.

3. Machine learning model

The next stage in our analysis was to build a series of predictive
models using machine learning techniques to relate the magnetic



Fig. 4. Distribution of various element atomic percentage (at.%) in the database.
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properties with chemical components and processing conditions. The
approach consisted of two main steps: feature selection and model
selection.

3.1. Feature selection

We employed a five step process to identify features that
could be removed in order to simplify the model, without incur-
ring a significant loss of information. The procedure includes
[85]: (a) Remove the features that have over 50% missing values.
(b) Remove the features containing only one unique value. (c)
Identify collinear features and remove them. (d) Remove zero
importance features using gradient boosting decision tree algo-
rithm. (e) Remove cumulative low importance features using gra-
dient boosting decision tree algorithm.
Specifically, step c) utilizes the Pearson correlation coefficient to
identify pairs of collinear features. For each pair above the specified
threshold (in absolute value), it finds one of the variables to be
removed. Steps d) and e), required a supervised learning problem
with labels to estimate the importance of features and in this work, a
gradient boosting machine implemented in the LightGBM library
[86] was utilized. A gradient boosting machine works by utilizing
multiple ”weak learners” (in our case, decision trees) and combining
them into a strong learner. Trees are constructed in a greedy manner
sequentially and the subsequent predictors can learn from the mis-
takes of the previous predictors. In a single tree, a decision node splits
data into two parts each time based on one of the features, and the
relative rank (i.e. depth) of a feature can be used to assess the relative
importance of that feature with respect to the target value. Features
used at the top level of the tree have a larger contribution to the final
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Fig. 5. Distribution of selective magnetic properties in the database. Solid lines are kernel density estimations to estimate the probability density function of data entries.

Table 3
Remaining features after feature selection for different materials properties.Tc,0, Tc,1,
and Tc,2 represent Primary Crystallization Onset, Primary Crystallization Peak, and
Secondary Crystallization peak, respectively. DT0 and DT1 are the difference of Tc,0
and Tc,1 with annealing temperature, respectively.

Coercivity Curie Temperature Grain Size

Fe Si Fe
Si Nb Si
B Annealing temperature

(K)
B

P Tc,0 (K) Nb
Ge Ribbon Thickness (mm) Annealing temperature

(K)
Cu DT0 Ribbon Thickness (mm)
Au
Nb
Mo
Annealing temperature

(K)
Tc,1 (K)
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prediction based on the input samples. The expected fraction of the
samples they contribute to can thus be used as an estimate of the rel-
ative importance of the features. In a gradient boosting machine, one
can average the importance of the features over a sequence of deci-
sion trees to reduce the variance of the estimation in order to use it
for feature selection [87]. For step d), features with zero importance
were removed. Step e) builds off the feature importance from step d)
and removes the lowest important features not needed to reach a
specified cumulative total feature importance specified by users. For
example, if we input a cumulative total feature importance value
0.99, it can find the lowest important features that are not needed to
reach 99% of the total feature importance and remove them.

After the feature selection procedure, the remaining features are
shown in Table 3.

There are 13 features for coercivity; 6 features for Curie tempera-
ture; 6 features for grain size; 10 features for magnetic saturation; 7
features for magnetostriction and 6 features for Permeability. Note
that initially we tried to add atomic properties to our feature space
but later decided to remove them during the feature selection pro-
cess. It is due to the relatively limited range of element selection we
have and the strong correlation between the atomic properties and
the chemical compositions. Furthermore, using elemental fraction is
more straightforward in the inverse modeling process during optimi-
zation, avoiding additional steps in mapping atomic properties back
to composition. The following machine learning models were built
based on the selected feature sets for each property.

3.2. Machine learning algorithms and results

Five different machine learning algorithms including linear
regression, support vector machines, decision trees, k-nearest neigh-
bors and random forest, were utilized and compared with each other
in the process of building predictive models [87]. The comparison of
the coefficient of determination (R2) score from 20-fold cross-
Table 2
Table of all features from the soft magnetic data set.

Chemical Elements Fe, Si, C, Al, B, P, Ga, Ge, Cu, Ag, Au, Zn, Ti, V, Cr, Zr,
Nb, Mo, Hf, Ta, W, Ce, Pr, Gd, U.

Experimental measurements Annealing temperature, Annealing Time, Primary
Crystallization Onset, Primary Crystallization
Peak, Secondary Crystallization Peak, Longitu-
dinal Annealing field, Transverse Annealing
field, Ribbon Thickness, Magnetic Saturation
(BS), Coercivity (HC), Permeability (m), Magne-
tostriction (λ), Core Loss, Electrical Resistivity
(r), Curie Temp (TC), Grain Size (D).
validation is shown in Fig. 6. Note that we performed a natural log
transformation on coercivity to fix its skewness. Based on the R2

score, it is evident that the random forest model is the best. Random
forest regression(RFR) [88] is an ensemble of regression trees,
induced from bootstrap samples of the training data, using random
feature selection in the tree induction process. Prediction is then
made by averaging the outputs of the ensemble of trees. Random for-
est generally exhibits a substantial performance improvement over
the single tree classifier, such as CART and C4.5. It yields a generaliza-
tion error rate that compares favorably to AdaBoost, yet is more
robust to noise [89].

Predicted values of magnetic saturation, coercivity and magneto-
striction from random forest models are compared with actual exper-
imental values in Fig. 7. The resulting RFR achieves a good agreement
with the experimentally measured properties. Investigating the
Ribbon Thickness (mm)
DT1
Magnetic Saturation Magnetostriction Permeability
Fe Fe Fe
Si Si Cu
B B Nb
P Zr Annealing temperature

(K)
Zr Nb Annealing Time (s)
Nb Ta Ribbon Thickness (mm)
Annealing temperature

(K)
Annealing temperature

(K)
Annealing Time (s)
Tc,2 (K)
Ribbon Thickness (mm)



Fig. 6. R2 value of different machine learning algorithms.
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regression data closer, it is apparent that the RFR model underesti-
mates coercivity within the low coercivity region. This is potentially
due to the high sensitivity of coercivity to the processing conditions.
Furthermore, for all three properties, the data is not perfectly uni-
formly distributed across the entire range of interest. The discrepancy
between predictions and measurements likely arises from a lack of
data within the corresponding regions.
4. Material design and optimization

Based on the predictive models built above, we attempted to find
optimized material compositions and heat treatment conditions that
can achieve large magnetic saturation and minimum loss in the pres-
ence of trade-offs between these two conflicting objectives. In the
materials informatics field, machine learning models often have limi-
tations when predicting beyond the limits of training data [90,91],
and furthermore the random forest model is mathematically unable
to extrapolate. Therefore, our main goal here is to achieve better bal-
ance between incompatible properties near the Pareto front and dis-
cover novel materials that can achieve similar or better performance
to FINEMET. To achieve this objective, we performed two rounds of
optimizations incrementally using the differential evolution algo-
rithm. Experimental measurements conducted after the first round of
optimization was added to the data set to try to improve the results
in the second round. For the first round, the input space of the
Fig. 7. Comparison between predicted values from the machine learning model and expe
optimization process was the combination of features in the coerciv-
ity model, magnetostriction model, and magnetic saturation model,
which are shown in Table 3. For the second round, the input space of
the optimization process was the combination of features in the coer-
civity model and magnetic saturation model.

4.1. Differential Evolution

Differential Evolution (DE) [92] is a stochastic population based
method that is useful for global optimization problems. It utilizes NP
D-dimensional parameter vectors

xi;G; i ¼ 1;2; :::;NP ð3Þ
as a population for each generation G. The initial vector population is
chosen randomly, assuming a uniform probability distribution. DE
generates new parameter vectors by adding the weighted difference
between two population vectors to a third vector, which is called
mutation. The mutated solution is mixed with other candidate solu-
tions to create a trial candidate. In this study, the “best1bin” strategy
was utilized. In this strategy, two members of the population are ran-
domly chosen. Their difference is used to mutate the trial candidate

mi;Gþ1 ¼ xr1 ;G þ F ¢ ðxr2 ;G�xr3 ;GÞ; ð4Þ
while r1; r2; r3 2 f1;2; :::;NPg are random different indexes and F is a
constant parameter 2 [0, 2] that controls the amplitude of the differ-
ential variation ðxr2 ;G�xr3 ;GÞ. In order to increase the diversity of the
perturbed parameter vectors, a crossover is introduced. To this end,
the trial candidate

ni;Gþ1 ¼ ðn1i;Gþ1;n2i;Gþ1; :::; nDi;Gþ1Þ ð5Þ
is formed, where nji;Gþ1 ðj ¼ 1;2; :::;DÞ is determined by a binomial
distribution. A random number 2 [0, 1) is generated, if this number is
less than the recombination constant that is determined by the user,
then nji;Gþ1 is loaded frommji;Gþ1; otherwise it is loaded from the orig-
inal candidate xji;Gþ1. It is ensured that ni;Gþ1 gets at least one parame-
ter from mi;Gþ1. The choice of whether to use trial candidate ni;Gþ1 or
the original candidate xi;Gþ1 is made using the greedy criterion. Once
the trial candidate is built, its fitness is assessed. If the trial is better
than the original candidate, then it takes its place. If it is also better
than the best overall candidate, it replaces that value too.
4.2. Optimization Results

Our primary goal in designing improved Fe-based soft magnetic
alloys is to minimize the core loss to help reduce the energy waste
during operation. A secondary goal is to maximize the magnetic satu-
ration. To ensure the existence of Fe-Si phase, a constraint was
employed to ensure the atomic percentage of Si was no less than 3%.
rimental values for (a) magnetic saturation, (b) coercivity, and (c) magnetostriction.



Table 6
Second round problem formulation.

Feature space Fe, Si, Cu, Mo, Nb, B, Ge, P, Ta, ts, ln(HC), BS
Objective function V ¼�BS

Constraints Si > 3%; Fe > 75%; ln(Hc) < 0 or 0.5;
Mo, Ge, P could be constrained to zero in certain cases.
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Both design targets can contribute to the design of high energy effi-
ciency. Properties like coercivity and magnetostriction, which
directly affect the core loss could serve as our targets for loss minimi-
zation.

The first choice is to formulate the problem as a single-objective
optimization with the objective function being the magnetic satura-
tion. To satisfy the prerequisite of low core loss, we reformulated two
objectives as constraints to restrict the design space while maximiz-
ing the objective function. The constraints were described as ln (coer-
civity) not exceeding C0 (A/m) and magnetostriction not exceeding
M0 (�10�6).

The second choice is to formulate the problem as a multi-objec-
tive optimization. We only reformulate magnetostriction as the con-
straint and define a composite objective function to be minimized as:

V ¼�a1ðBSÞ þ a2 lnðHCÞ ð6Þ
where a1 and a2 values the importance of each of the properties to
achieve a balance between conflicting objectives. The first round of
optimization emphasized achieving a low coercivity and the second
round emphasized achieving a high magnetic saturation. For the first
round, the optimization ran on the composition space of Fe, Si, Cu Ta,
Mo, Nb, Zr, B, and P. We constrained our composition space further
so that Si was larger than 3% to ensure the existence of the Fe3Si
phase. We tried a total of four different strategies of single-objective
and multi-objective approaches. In single-objective methods, the
value of C0 was chosen to be�1:5 or�0:5 and M0 was chosen to be 3.
In multi-objective methods, M0 was also set to 3 and two different
weight combinations have been explored in our calculations: a1 ¼ a2

¼ 1 and a1 ¼ 4; a2 ¼ 1. For the second round, we added the addi-
tional experimental results, which we generated following the first
round of optimization to our database and re-trained the machine
learning model. The second round of optimization ran on a smaller
composition space of Fe, Si, Cu, Mo, Nb, B, Ge, and P where Si needed
to be larger than 3%. In this round, our model only ran on coercivity
and magnetic saturation because of the high correlation between
coercivity and magnetostriction. For the second round, we tried the
single-objective approach and focused on maximizing magnetic satu-
ration with constraints of C0 to be two separate values of 0.5 or 0. The
problem formulations of both first and second round optimizations
are shown in Tables 4 to 5,6.

Fig. 8 shows the different combination of trade-off surface plots
for the results of all the optimization methods we tried, including
both single-objective and multi-objective methods. Fig. 8(a)-(c) are
the plots of experimental measurements from the database and Fig. 8
(d)-(g) represent the optimization results achieved by applying DE
optimization to the RFR models. When there are two or more objec-
tives, solutions rarely exist that optimize all at once. The objectives
are normally measured in different units, and any improvement in
one is at the loss of another [93]. It can be seen in Fig. 8(d)-(g) that
Table 4
First round multi-objective strategy problem formulation. Where Ta is annealing tem-
perature (K) and ts is annealing time (s).

Feature space Fe, Si, Cu, Ta, Mo, Nb, Zr, B, P, Ta, ts, ln(HC), λ, BS

Objective function V ¼�a1ðBSÞ þ a2 lnðHCÞ
Constraints Si > 3%; λ < 3 (�10�6);

Ta, Mo, Nb, Zr could be constrained to zero in certain cases.

Table 5
First round single-objective strategy problem formulation.

Feature space Fe, Si, Cu, Ta, Mo, Nb, Zr, B, P, Ta, ts, ln(HC), λ, BS
Objective function V ¼�BS

Constraints Si > 3%; λ < 3 (�10�6); ln(Hc) < -1.5 or 0.5;
Ta, Mo, Nb, Zr could be constrained to zero in certain cases.
there is a systematic trade-off between coercivity and magnetostric-
tion, versus magnetic saturation. Increasing coercivity and magneto-
striction generally led to an increase of magnetic saturation.

Solutions marked by numbers and shown in Table 7 and Table 8
are identified as optimum solutions based on the trade-off surface
described by the ln (coercivity)-magnetic saturation plot, as these
two are defined as our main objectives. Further selection in the opti-
mum set could be based on different application scenarios and differ-
ent weighting strategies of the two competing aspects.

Two-dimensional t-distributed stochastic neighbor embedding (t-
SNE) was used to visualize how the optimized alloys compare to the
ones presented in the published literature. Fig. 9 displays this t-SNE
mapping, which was conducted on the processing space of the litera-
ture database as well as the alloys found in the first and second
rounds of optimization, shown in Tables 7 and 8 respectively. In this
plot, the processing space was defined as the composition of every
element in each alloy as well as the annealing temperature and time,
scaled by their respective maximum and minimum values in the
database. For the purpose of visualization, “FINEMET-like” alloys
were defined as alloys containing greater than 3% Si while “Non-
FINEMET-like” alloys contain less Si. These groups seem rather sepa-
rable in Fig. 9, indicating that they represent two distinct classes of
materials in the literature. The alloys found in both rounds of optimi-
zation are shown among the FINEMET-like alloys, which is to be
expected given the constraints on Si and Fe shown in Tables 4, 5, and
6. While the optimized alloys are not shown to exist entirely separate
from literature data, they do not match any alloy from literature
exactly. Optimized alloys also appear to lie near the bounds of their
respective groups, indicating that further iterations of optimal exper-
imental design could expand the boundaries of current knowledge in
this space.

5. Experimental validation

To experimentally validate our machine learning model, several
predicted compositions near the Pareto front of the ln(coercivity) -
magnetic saturation plots have been synthesized. For the first round,
we chose three points No.14, No.17 and No.19 in the points region of
intermediate value of both coercivity and magnetic saturation as
shown in Fig. 8(d). While for the second round, we chose one point
from each of the three point regions, namely No.2, No.4 and No.5, to
try to test the behavior of different regions of point segregation in
Fig. 8(g).

The alloys produced for this study were melted from elemental
constituents and flipped and remelted several times to ensure homo-
geneity and then cast into cigar-shaped ingots. The ingots weighed
approximately 60 g. The ingots were then used as melt stock for melt
spinning using an Edward Buehler HV melt spinner using a planar
flow casting process and wheel speed of 25.9 m/s. The cast ribbons
were approximately 19.5 microns thick and » 16.5 mm wide. Com-
position of all melt-spun ribbons were confirmed by inductively cou-
pled plasma atomic emission spectroscopy (ICP-AES). The ribbon was
wound into small cores, wrapped with a piece of copper wire to hold
the core together and then heat-treated in argon after first pulling a
vacuum to approximately 1� 10�7 torr and heat-treated at the times/
temperatures specified. The heating rate was 3 BC/min and samples
were cooled at a rate of 8 BC/min after the specified treatment.



ig. 8. Trade-off surface of different combinations of magnetic properties. (a)-(c) are from the experimental data set and (d)-(g) are from the machine learning optimizations. (d)-(f)
e for first iteration and (g) is for second iteration. n is the number of points contained in the plots. The selected results marked by index are shown in Table 7. (h) and (i) are exper-
ental measurements of B�H loops for different samples and compared with a commercial FINEMET-like alloy composition processed similar to the experimental alloys investi-

ated. (h) is for first iteration and (i) is for second iteration.
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Table 7
Selected first round Optimization results obtained by DE using Random Forest model. Where Ta is annealing temperature (K) and ts is annealing time (s). a1,
a2, C0 are optimization parameters, Inf means there’s no constraint on coercivity. Constraint on magnetostriction(M0) is always set to be 3.

Index Fe Si Cu Ta Mo Nb Zr B P Ta ts ln(HC) λ BS a1 a2 C0

1 74.09 13.67 0.56 0 0 3.05 0.36 8.14 0.14 817 3959 - 2.53 2.52 1.25 4 1 Inf
2 74.12 13.38 0.71 0 0 2.69 0.76 8.25 0.09 816 4660 - 2.53 2.52 1.25 4 1 Inf
3 73.86 14.22 0.66 0 0 2.69 0 8.19 0.37 816 1206 - 2.48 2.40 1.25 4 1 Inf
4 73.93 14.22 0.62 0 0 2.79 0 8.14 0.30 816 121 - 2.48 2.40 1.25 4 1 Inf
5 73.74 14.18 0.52 0 0 2.95 0 8.14 0.48 817 4285 - 2.54 2.41 1.25 1 1 Inf
6 73.96 14.16 0.61 0 0 2.61 0 8.31 0.35 817 3609 - 2.54 2.41 1.25 1 1 Inf
7 73.53 13.35 0.68 0 0.17 3.43 0.24 8.51 0.09 816 5052 - 2.54 2.50 1.25 1 1 Inf
8 73.68 13.30 0.70 1.09 0.05 2.78 0.02 8.23 0.15 816 6086 - 2.53 2.45 1.25 1 1 Inf
9 74.01 13.47 0.65 0.50 0 2.75 0.20 8.30 0.11 817 3490 - 2.54 2.50 1.25 1 1 Inf
10 73.40 14.21 0.69 0.35 0.36 2.72 0 8.02 0.26 816 5091 - 2.53 2.44 1.25 1 1 Inf
11 77.13 9.04 0.29 0.97 0.01 3.29 1.17 7.92 0.19 783 907 �0:93 1.85 1.46 1 0 -0.5
12 78.04 9.19 0.31 0.59 0 3.45 0 8.15 0.28 784 4290 �0:82 1.85 1.47 1 0 -0.5
13 79.08 9.26 0.29 0 0.21 3.33 0 7.80 0.04 784 3196 �0:80 1.85 1.47 1 0 -0.5
14 76.67 8.45 0.37 0.58 0 3.12 2.81 7.59 0.42 786 3489 �0:84 2.02 1.45 1 0 -0.5
15 76.62 8.35 0.59 0 1.44 2.55 2.41 7.92 0.12 784 4356 �0:72 2.02 1.45 1 0 -0.5
16 78.49 8.53 0.47 1.56 0.28 2.57 0 8.04 0.06 783 991 �0:63 1.73 1.46 1 0 -0.5
17 79.90 8.96 0.61 0 0 2.54 0 7.98 0.02 785 1145 - 0.71 1.84 1.47 1 0 -0.5
18 79.79 8.92 0.57 0 0 2.47 0 7.99 0.26 784 1066 - 0.71 1.84 1.47 1 0 -0.5
19 78.69 8.80 0.54 0 0 2.50 1.32 7.92 0.23 784 6038 - 0.75 2.21 1.47 1 0 -0.5
20 79.16 8.87 0.63 0 0 2.57 0.52 7.92 0.34 783 5436 - 0.74 2.19 1.47 1 0 -0.5
21 83.08 4.23 1.11 0.91 0 0 0 7.09 3.58 723 1159 1.07 2.96 1.84 4 1 Inf



Table 8
Selected second round optimization results obtained by DE using Random Forest model.

Index Fe Si Cu Mo Nb B Ge P Ta ts ln(HC) BS C0

1 76.23 11.95 0.30 0.00 2.25 8.83 0.41 0.04 785 2862 -0.37 1.42 0
2 76.31 11.96 0.33 0.21 2.21 8.99 0.00 0.00 783 2585 -0.36 1.42 0
3 76.66 11.88 0.46 0.00 2.25 8.70 0.00 0.04 783 2938 -0.35 1.42 0
4 76.97 11.51 0.45 0.00 2.29 8.78 0.00 0.00 663 3150 0.44 1.47 0.5
5 77.04 11.29 0.35 0.00 2.35 8.86 0.12 0.00 661 3078 0.44 1.47 0.5
6 76.62 11.43 0.49 0.00 2.43 8.58 0.44 0.01 662 3021 0.47 1.47 0.5
7 76.67 11.67 0.38 0.18 2.26 8.56 0.28 0.00 663 2766 0.47 1.47 0.5
8 76.88 11.43 0.42 0.14 2.34 8.80 0.00 0.00 662 3132 0.47 1.47 0.5
9 76.74 11.87 0.48 0.02 2.29 8.61 0.00 0.00 663 3201 0.47 1.47 0.5

Fig. 9. A t-SNE mapping of the compositions and processing conditions of the alloys in
the literature database as well as the alloys found from the first and second rounds of
optimization. Note that the precise positions of alloys in this plot are not quantitatively
meaningful.
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Properties of thewound coreswere determined by IEEE Standard 393-
1991: Standard for Test Procedures forMagneticMaterials. Testingwas
performedat1000Hz.

From the resulting B�H loops as shown in Figs. 8(h) and (i), mag-
netic properties were determined, including BS and HC. The compari-
son of predicted and experimental properties of selected samples
from both the first iteration and second iteration are shown in Table 9.
The compositions are recorded by experimental measurement of the
prepared samples and the heat treatment times and temperatures
are the same as the model predictions and listed in Tables 7 and 8. It
Table 9
Predicted and measured properties of soft magnetic al
tion. The index corresponds to the value in Tables 7 a
from samples. Heat treatment time and temperature ar

Index Composition ln(H

Round
Pre

14 Fe77.1Si8.5Cu0.4Nb3.1Ta0.6B7.3P0.3Zr2.8 -0.8
17 Fe80Si9Cu0.7Nb2.5B7.9 -0.6
19 Fe78.9Si8.9Cu0.6Nb2.5B7.7P0.2Zr1.2 -0.7

Round
Pre

2 Fe76.3Si12Cu0.3Nb3.1Mo0.2Nb2.2B9 -0.3
4 Fe77Si11.5Cu0.4Nb2.3B8.8 0.44
5 Fe77Si11.3Cu0.4Nb2.4B8.8Ge0.1 0.44
should be noted from Figs. 8(h) and (i) that sample No.19 in first
round and No.2 in second round have similar performance compared
to commercial FINEMET-like alloys, which shows that our approach
is effective in identifying other compositions with very good proper-
ties.

We collected a substantial portion of the reported experimental
data, which is shown in Fig. 8(a)-(c) as Ashby plots. Although there
are a large number of data points describing ln(coercivity)-magnetic
saturation property space in Fig. 8(a), it can still be observed that the
high-BS, low-HC area (top left corner) is completely empty. The ulti-
mate goal of the material design is to breach the boundary and reach
the target area. To improve the machine learning model, we need
more data, and an efficient way is to explore the property space that
is missing, if at all possible. Another potential strategy is to continue
to iterate the design process. By using experimental results of pro-
posed compositions associated with better properties it may be pos-
sible to continue to iterate until the target properties are obtained.

As a complex material system, soft magnetic nanocrystalline
alloys usually contain several elements, which makes it difficult to
decide what elements should be included. Several principles could be
considered: (a) For applications of soft magnetic materials, the prices
of elements are non-negligible factors. In our design process, the
selection of late transition metal is a typical issue due to the hefty
price difference between Au and Cu. The price of Cu is about 6 USD/kg,
Ag about 500 USD/kg and Au over 40,000 USD/kg. (b) If possible, we
try not to include too many different elements that serve the same
function in the alloy. (c) In this work, the only magnetic element
included is Fe, which can provide a pure a-Fe3Si nanocrystalline
phase. Based on these principles, we proposed the optimized compo-
sitions listed in Table 7 and Table 8 for potential experimental valida-
tions, in addition to the selected alloys confirmed in Table 9. Note
that, as shown in Table 9, there are discrepancies between predicted
and measured values, which probably arises due to several facts: (a)
We have been predicting properties in a high-dimensional space
loys from the first and second round of optimiza-
nd 8. Compositions are the experimental values
e referenced from Tables 7 and 8.

C) (A/m) BS (T)

1
dicted Measured Predicted Measured
2 2.19 1.455 0.915
9 3.39 1.471 0.913
6 1.79 1.466 1.146
2
dicted Measured Predicted Measured
6 2.58 1.42 1.195

3.25 1.47 1.088
3.64 1.47 1.014
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without adequate data; (b) Random forest models have limitations
for predicting extreme values. Modern development in machine
learning algorithms such as attention-based network [94] could be
employed to improve the performance. By running more iterations of
our optimized experimental design framework, the models will
become more robust in predicting outstanding magnetic properties.
6. Summary

In this work, we built a general database for Fe-based FINEMET-
type soft magnetic nanocrystalline alloys using experimental data
from all available literature. Based on this, machine learning techni-
ques were applied to analyze the statistical inference of different fea-
tures and then build predictive models to establish the relation
between materials properties and material compositions along with
processing conditions. We chose the random forest model as our
modeling tool due to its better performance compared with several
other machine learning methods. Optimization process has been per-
formed to establish and then solve the inverse problem that is to find
a suitable combination of element components and processing condi-
tions to achieve minimum loss and maximum magnetic saturation.
Experimental validations have been applied on several predicted
materials, which showed that the predicted novel material could
have similar performance as the commercial FINEMET-like alloys.
Furthermore, the collected data set and analysis procedure can create
more insight on how to design the next-generation optimized Fe-
based soft magnetic nanocrystalline alloys motivated by various
applications. The data set and analysis code are available on Github
[95].
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