
An information-theoretic approach to study hydrodynamic

interactions in schooling fish

Peng Zhanga, Elizabeth Krasnera, Sean D. Petersona,b, and Maurizio Porfiria,c

aDepartment of Mechanical and Aerospace Engineering, New York University Tandon School

of Engineering, Six MetroTech Center, Brooklyn, NY 11201, USA
bMechanical and Mechatronics Engineering, University of Waterloo, 200 University Avenue

West, Waterloo, ON N2L 3G1, Canada
cDepartment of Biomedical Engineering, New York University Tandon School of Engineering,

Six MetroTech Center, Brooklyn, NY 11201, USA

ABSTRACT

Understanding the role of hydrodynamic interactions in fish swimming may help explain why and how fish
swim in schools. In this work, we designed controlled experiments to study fish swimming in a disturbed flow.
Specifically, we recorded the tail beat frequency of a fish swimming in the presence of an actively-controlled
airfoil pitching at varying frequencies. We propose an information-theoretic approach to quantify the influence
of the motion of the pitching airfoil on the animal swimming. The theoretical framework developed in this work
may inform future investigations on the mechanisms underlying schooling in groups.
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1. INTRODUCTION

Schooling behavior is prevalent among fish species.1,2 Swimming in schools can help individual fish escape from
predators, search for food, and mate. The emergence of fish schools has often been associated with the energetic
advantages of coordinated swimming.3,4 The advantage of swimming in schools was first explained theoretically
by Weihs.3 Within Weihs’ explanation, fish swimming in a school would preferentially form a diamond pattern,
in which fish in a following position could reduce the cost of swimming through interaction with vortices. The
ability of fish interacting with vortices has been supported by experimental evidence.4,5

However, conflicting findings have challenged our understanding of the role of hydrodynamic interactions in
coordinated swimming.6,7 In particular, a recent study has demonstrated that, at high swimming speed, fish
adopt a phalanx pattern, in which they align their body laterally and there is no leader or follower,7 thereby
challenging the possibility of interaction through vortices.

The lack of data-driven techniques has hindered our ability to disentangle causes from effects in coordinated
swimming. Information theory can offer a model-free framework for the quantification of interactions between
fish. Since the seminal work of Shannon,8 information theory has been applied to a wide range of research areas,
facilitating the study of the effect of drug exposure in social behavior,9 analysis of financial markets,10 and energy
flow in the climate system,11 to name a few.

Here, we propose a series of controlled experiments to study fish swimming in the presence of an actively-
controlled airfoil. Specifically, we examine live fish swimming against a water flow in the presence of a pitching
airfoil positioned in the upstream, simulating the tail beating of a leading fish. Both airfoil pitching and fish
swimming are recorded using a high speed camera. The information-theoretic construct of transfer entropy is
employed as a quantitative measure for the influence of the airfoil on fish swimming. The theoretical framework
examined in this study may help elucidate the role of hydrodynamics in fish swimming, which could inform
future investigations on the hydrodynamic advantage of swimming in schools.
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Figure 1. Schematic of the experimental setup. For visualization purposes, the top panel and the metal meshes on the
side walls are not shown in the schematic.

2. EXPERIMENTAL METHOD

2.1 Experimental setup

The experimental setup was built on a water tunnel with a 240×15×15 cm (length×height×width) test section.
A swimming area with a length of L = 30 cm was book-ended by two honeycomb flow straighteners, as shown in
Fig. 1. To mitigate potential confounds due to undesired low fluid velocity regions near the wall, metal meshes
were placed on both side walls of the swimming area. The top of the test section was sealed with a white acrylic
board, maintaining the height of the test section at approximately 10 cm. The panel created a uniform white
background to facilitate image analysis.

A 3D-printed NACA 0012 airfoil with a chord length of 5 cm and a span of 8 cm was placed in the tunnel,
upstream of the swimming area. The chord length of the airfoil was chosen to be approximately the body length
of the fish used in our experiments. A servomotor was connected to the airfoil through a metal rod to actuate
the pitching of the airfoil. The servomotor was controlled by an Arduino Uno microcontroller (Arduino Uno,
Arduino, Italy), which was programmed in MATLAB (version R2018a).

A fluorescent light was used to illuminate the test section from the top of the swimming area. All experimental
trials were recorded by a Nikon D7000 camera at 30 frames per second with a resolution of 1280 × 720 pixels
and a field of view of 37× 21 cm2.

Prior to the experimental trials, particle image velocimetry (PIV) was conducted to visualize the flow field
in the test section in the absence of the airfoil and the fish. PIV results showed uniform velocity profiles for flow
speed tested at 5.0 cm/s.

2.2 Experimental procedure

Experiments were performed in accordance with relevant guidelines and regulations approved by the University
Animal Welfare Committee (UAWC) of New York University under protocol number 13-1424. The experimental
results described herein are part of a wider study, which will be published as a journal paper.

A total of 20 adult giant danios (Devario aequipinnatus) were used in our study, each with a body length
between 5 and 7 cm. To investigate the influence of a background mean flow, in our experiments, we considered
both the no flow condition, U0 = 0 cm/s, and a moderate background flow condition, U1 = 5.0 cm/s, correspond-
ing to approximately one body length per second. At the beginning of each trial, the flow speed (U) in the tunnel
was set to zero, and a fish was transported into the swimming area of the water tunnel, followed immediately by
a first session of habituation of 5min. The flow speed was then changed to the desired level of either U0 or U1,
and was maintained for a second habituation period of 2.5min. The airfoil was then actuated to pitch between
±5◦ for a third habituation session of 2.5min. The same condition was maintained for a testing period of 5min.
A total of 10 fish were randomly picked and tested at each flow speed.



Figure 2. Camera view of the swim tunnel during an experimental test, showing a fish swimming downstream of the
airfoil. The center line of the fish body is indicated by red connected dots. The trailing edge of the airfoil is marked by a
yellow dot.

To create an information-rich dynamic interaction with hydrodynamically-salient changes, the airfoil was
actuated to pitch in the following pattern. During each trial, the pitching frequency of the airfoil was randomly
varied among three possible values, {TBF − 3∆TBF,TBF,TBF + 3∆TBF}. The airfoil was actuated to pitch
10 cycles at each frequency, before switching to the next random value. TBF and ∆TBF are the mean and
standard deviation of the tail beat frequency of the fish swimming at the corresponding flow speed in the
absence of the airfoil, respectively. To determine the values of TBF and ∆TBF, we conducted pilot tests prior
to the experimental trials, which suggested TBF ≈ 3.00Hz and ∆TBF ≈ 0.25Hz.

2.3 Data analysis

The recorded videos of the 5min testing period of the experiment were analyzed using a custom-built MATLAB
program, from which time series of the airfoil pitching frequency and the fish tail beat frequency were extracted.
Briefly, each frame of the video was binarized based on predetermined thresholds, such that the dark fish body
and the trailing edge of the airfoil were converted to black, and the light background to white. The heading
and the tail orientation were identified from the tracked centerline of the fish body, and the tail beat angle of
the fish was defined as the angle between the heading and tail orientation. The pitching angle of the airfoil
was determined from the trailing edge position. Figure 2 displays an exemplary frame of the tracked fish body
centerline and the trailing edge position of the airfoil.

The two time series of the airfoil pitching and fish tail beat angles were then converted into series of pitching
and tail beat frequencies. The time series of the airfoil pitching angle was discretized into segments of 10 cycles,
and each segment was represented by an averaged frequency value. The tail beat angle of the fish was discretized
with the same time step as the airfoil pitching angle. Within each segment, we computed an average tail beat
frequency by dividing the total number of tail beats by the time span of the segment.

3. THEORETICAL BACKGROUND

Here, we illustrate the dynamics of the airfoil and the fish by their pitching and tail beat frequency, respectively.
We consider stationary discrete stochastic processes, X = {Xt}t∈Z+ and Y = {Yt}t∈Z+ , to describe the time
series of the airfoil pitching frequency and fish tail beat frequency, respectively.

Within information theory, the uncertainty of the fish tail beat frequency at time step t, Yt, can be measured
through the notion of entropy, originally defined by Shannon8 as

H(Yt) = −
∑

yt∈ΩY

Pr{Yt = yt} log2 Pr{Yt = yt}, (1)
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Figure 3. Venn diagram for key information-theoretic quantities.

where Pr{·} denotes probability, yt is a realization of Yt, and the set ΩY is the sample space that contains all
possible realizations of Yt. The entropy of the airfoil pitching frequency, H(Xt), can be defined similar to Eq. (1).
Large values of H(Yt) would indicate that fish randomly change its tail beat without a preferred beat frequency,
while small values of entropy could be associated with fish swimming at a preferred tail beat frequency. Similar
to Eq. (1), the joint and conditional entropy of the two random variables, Xt and Yt, can be defined as

H(Xt, Yt) = −
∑

xt∈ΩXt ,yt∈ΩYt

Pr{Xt = xt, Yt = yt} log2 Pr{Xt = xt, Yt = yt}, (2a)

H(Xt|Yt) = −
∑

xt∈ΩXt ,yt∈ΩYt

Pr{Xt = xt, Yt = yt} log2 Pr{Xt = xt|Yt = yt}. (2b)

Figure 3 illustrates a few exemplary values of entropy and conditional entropy based on the definitions in Eqs. (1)
and (2).

Information flow from the airfoil to the fish can be quantified using the notion of transfer entropy,12 which
is defined as

TEX→Y = H(Yt|Yt−1)−H(Yt|Yt−1, Xt−1)

= H(Yt, Yt−1)−H(Yt−1)−H(Yt, Yt−1, Xt−1) +H(Yt−1, Xt−1)

=
∑

yt,yt−1,xt−1

Pr{Yt = yt, Yt−1 = yt−1, Xt−1 = xt−1} log2
Pr{Yt = yt|Yt−1 = yt−1, Xt−1 = xt−1}

Pr{Yt = yt|Yt−1 = yt−1}
(3)

A graphical illustration of transfer entropy is shown in Fig. 3 (blue region). Transfer entropy in Eq. (3) measures
the reduction in the uncertainty in predicting the future state of fish tail beat frequency (Yt) from its present,
due to additional knowledge about the present of the airfoil pitching frequency (Xt). In alignment with Wiener’s
principle of causality,13 this reduction can be attributed to an information flow from X to Y . For example, if
the airfoil does not influence the fish, then additional information of Xt−1 does not help the prediction of Yt,
that is, H(Yt|Yt−1) = H(Yt|Yt−1, Xt−1), and TEX→Y would be zero. On the other hand, if the airfoil influences
the fish, then H(Yt|Yt−1) > H(Yt|Yt−1, Xt−1), and TEX→Y would be positive.

To estimate the probability mass functions in Eq. (3) , we adopt a symbolic representation of the data.14,15

Specifically, we introduce a set of binary symbols of 1 and −1, such that for a time series {yt}
N
t=1 of length

N , consecutive data points are associated with the symbol 1 if yt ≤ yt+1, and −1 if yt > yt+1. Using binary
symbols, the computation of transfer entropy in Eq. (3) requires the estimation for the probability of at most
23 = 8 possible triplets.

4. RESULTS

To examine the role of the pitching airfoil in predicting fish swimming, we computed transfer entropy from the
airfoil pitching to the fish swimming, TEX→Y . To test if the values of TEX→Y are significantly greater than
chance, we compare the values of TEX→Y with surrogate data sets. Specifically, under each flow speed, we
randomly pair the 10 time series of the airfoil data with the fish data by shuffling their order. We compute 10
values of TEX→Y from all random pairs, which are then averaged to obtain a surrogate data point. The same





[4] Herskin, J. and Steffensen, J. F., “Energy savings in sea bass swimming in a school: measurements of tail
beat frequency and oxygen consumption at different swimming speeds,” Journal of Fish Biology 53(2),
366–376 (1998).

[5] Pitcher, T., Magurran, A., and Edwards, J., “Schooling mackerel and herring choose neighbours of similar
size,” Marine Biology 86(3), 319–322 (1985).

[6] Liao, J. C., “A review of fish swimming mechanics and behaviour in altered flows,” Philosophical Transac-

tions of the Royal Society B: Biological Sciences 362(1487), 1973–1993 (2007).

[7] Ashraf, I., Bradshaw, H., Ha, T.-T., Halloy, J., Godoy-Diana, R., and Thiria, B., “Simple phalanx pattern
leads to energy saving in cohesive fish schooling,” Proceedings of the National Academy of Sciences 114(36),
9599–9604 (2017).

[8] Shannon, C. E., “A mathematical theory of communication,” Bell System Technical Journal 27 (1948).

[9] Paulus, M. P., Geyer, M. A., Gold, L. H., and Mandell, A. J., “Application of entropy measures derived from
the ergodic theory of dynamical systems to rat locomotor behavior,” Proceedings of the National Academy

of Sciences 87(2), 723–727 (1990).

[10] Marschinski, R. and Kantz, H., “Analysing the information flow between financial time series,” The European
Physical Journal B - Condensed Matter and Complex Systems 30(2), 275–281 (2002).

[11] Donges, J. F., Zou, Y., Marwan, N., and Kurths, J., “The backbone of the climate network,” Europhysics

Letters 87(4), 48007 (2009).

[12] Schreiber, T., “Measuring information transfer,” Physical Review Letters 85(2), 461–464 (2000).

[13] Wiener, N., “The theory of prediction,” Modern Mathematics for Engineers 1, 125–139 (1956).
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