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In experiments searching for axionic dark matter, the use of the standard threshold-based data analysis
discards valuable information. We present a Bayesian analysis framework that builds on an existing
processing protocol [B. M. Brubaker, L. Zhong, S. K. Lamoreaux, K.W. Lehnert, and K. A. van Bibber,
Phys. Rev. D 96, 123008 (2017)] to extract more information from the data of coherent axion detectors such
as operating haloscopes. The analysis avoids logical subtleties that accompany the standard analysis
framework and enables greater experimental flexibility on future data runs. Performing this analysis on the
existing data from the HAYSTAC experiment, we find improved constraints on the axion-photon coupling
gγ while also identifying the most promising regions of parameter space within the 23.15–24.0 μeV mass
range. A comparison with the standard threshold analysis suggests a 36% improvement in scan rate from
our analysis, demonstrating the utility of this framework for future axion haloscope analyses.
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I. INTRODUCTION

Dark matter axion detection experiments generically
entail searching for a weak signal at an unknown frequency
νa ¼ mac2=h, where the axion mass ma is a free parameter
whose possible values span many orders of magnitude [1].
A near-optimal search strategy [2] requires a resonant
detector whose frequency is tuned slowly over a range
much larger than its bandwidth, with the spectral scan rate
being the figure of merit [3]. The technology enabling
axion detection is most mature at rf and microwave
frequencies [3–10], where haloscope [11] experiments,
such as ADMX [12–21] and HAYSTAC [22–26], have
achieved sensitivity to the QCD axion model band; ADMX
is now sensitive to the Dine-Fischler-Srednicki-Zhitnitsky
(DFSZ) benchmark coupling [18,19,27,28]. If DFSZ sen-
sitivity is necessary to detect the axion, the scaling of a
single-cavity haloscope’s scan rate R with νa as approx-
imately R ∝ ν−14=3a [25] becomes particularly foreboding. It
implies that HAYSTAC and ADMX would each require
roughly 20,000 years to scan the 1–10 GHz frequency
decade, generously assuming noise at the quantum limit
and 100% live time [3]. It is therefore important to
introduce improved detection and analysis protocols

applicable across the full landscape of axion detector
platforms [2,29–37].
An optimization of the statistical analyses that haloscopes

have historically used is readily available. The standard
threshold-based confidence tests used in haloscope analyses
transform continuous measurements of power into binary
outcomes, discarding knowledge of what power was mea-
sured, and, with it, sensitivity to the axion. Because halo-
scopes are in practice statistics-limited experiments, for
which additional data continues to enhance sensitivity, a
more informative analysis will translate into tangible time
savings during operation.
In this article, we introduce an analysis framework which

simplifies the operational constraints placed on experimen-
talists while making use of more of the information content
of coherent axion detection data. This framework builds on
the existing HAYSTAC processing procedure [22] and may
be readily adapted to other experiments. We begin in Sec. II
by reviewing the standard threshold analysis, devoting
particular attention to its discarding of valuable information
and the difficulty of adhering to its rigid logical require-
ments. In Sec. III, we present our new framework, which
we refer to as Bayesian power measured (BPM). We test the
BPM framework in Sec. IV by reanalyzing the HAYSTAC
phase 1 data, and find that the BPM analysis puts tighter
constraints on the axion within the HAYSTAC window. In
addition, it spotlights within the HAYSTAC dataset the*daniel.palken@colorado.edu
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group of frequencies “least unlikely” to contain the axion.
The most prominent among these, though still unlikely to
contain an axion, nonetheless stands out relative to any
other frequency within the scan range.

II. FREQUENTIST THRESHOLD FRAMEWORK

The majority of existing axion haloscope exclusion has
been obtained using a thresholding framework against
which the alternative framework presented here is directly
compared. The purpose of this section is to contextualize
our analysis framework by explaining what has historically
been meant by exclusion.1

Axion haloscopes place limits on the axion-photon
coupling strength gγ

2 by repeatedly measuring the power
decaying out of a tunable resonant cavity and statistically
evaluating its consistency with an axion-induced excess.
A typical search involves averaging power spectra
obtained from the fluctuations of the quadrature observ-
ables for an integration time of order minutes, before tuning
the apparatus to a nearby frequency and repeating. A

processing protocol [22] appropriately filters and combines
these spectra.
This article starts where that data processing ends: with a

grand spectrum of normalized power excesses predomi-
nantly from thermal fluctuations of the electromagnetic
field. These normalized excesses xð1Þi are obtained by
subtracting off the mean of the grand spectrum power
distribution and dividing by its standard deviation. They are
measured at frequencies νi, with i ¼ 1;…; N indexing the
N ≫ 1 frequency bins. The superscript (1) denotes data
taken on an initial scan. Bins displaying large excesses on
an initial scan are rescanned, potentially multiple times,

yielding rescan spectra xðjÞi indexed as j ¼ 2;…;M, where
many frequency bins i will not be measured in rescans.
Figure 1 shows how a realistic grand spectrum’s frequency
bins might be populated with measured power excess data.
For bins not containing an axion, acquisitions of the order
of a millionfold times longer than the inverse bin bandwidth
yield, via the central limit theorem, normalized power
excesses drawn from the standard Gaussian probability
density function (PDF), obtained by setting μ ¼ 0, σ ¼ 1 in

fxðx; μ; σÞ ¼
1ffiffiffiffiffiffi
2π

p
σ
exp

�
−
ðx − μÞ2
2σ2

�
: ð1Þ

This distribution is shaded green in Fig. 2. For a discussion
of the consequences of practical departures from the
Gaussian idealization, see the Appendix E.

FIG. 1. Illustrative, fictitious grand spectrum data for a standard haloscope subject to a frequentist threshold (FT) analysis allowing
M ¼ 4 scans. The initial scan data from a typical haloscope [18,26] consists of a normalized power excess in each of N ∼ 105–106

frequency bins, represented above by the boxes in the first row. At frequencies where the excess is above a predetermined threshold (red
boxes), additional scans are conducted until a measurement below threshold is recorded. Only if all M scans exceed threshold is failure
to reject the axion hypothesis reported. If any scan comes in below threshold (black boxes), the axion hypothesis is rejected for the bin in
accordance with Eq. (6) and further scanning need not be conducted (empty boxes). For the FT framework of Sec. II, both the threshold
and the number of scans M must be predetermined, and the exclusion therefore may take into account scans that were not performed.
Here, scan 4 was not performed for any bins, but still impacts the final reported exclusion. Because the haloscope bandwidth is typically
larger than the expected axion linewidth, bins adjacent to those exceeding threshold are automatically rescanned (gray boxes). However,
the FT framework discards these data regardless of the power measured. Conversely, the BPMmethod discussed in Sec. III is able to use
the information.

1The story is complicated by the fact that not all exclusion
historically uses the framework described in this section. For an
example of an alternative framework, see Ref. [31]. A compari-
son to other, less common frameworks is beyond the scope of this
work.

2Physically, gγ can take positive or negative values, but since
only g2γ contributes to the axion signal power, we use gγ to stand
in for jgγj throughout this article.
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A bin νi that falls at the axion frequency νa will have its
power excess drawn from what we term the axion dis-
tribution. There is in fact a family of such distributions
parametrized by the axion-photon coupling gγ , but it will
suffice to consider just one. The axion distribution’s
standard deviation in the limit of weak axion signal power
is approximately that of the no-axion distribution (i.e., 1)
but its mean is offset to

μðjÞa;i ¼ g2γ;iη
ðjÞ
i : ð2Þ

The sensitivity parameter ηðjÞi is the independently cali-
brated signal-to-noise ratio for an axion with coupling
strength gγ ¼ 1 in the ith bin of the jth spectrum.3 The PDF
of the axion distribution for the ith bin (blue in Fig. 2) is

thus Eq. (1) with μ ¼ μðjÞa;i , σ ¼ 1.
A power excess threshold xðjÞT is then set for each scan j

and this threshold is used to determine first whether or not
to proceed with rescans, and second whether or not to
exclude the axion hypothesis at each frequency. The logic
of this exclusion is prescribed as follows. First, the

experimentalist establishes a null hypothesis. In this case,
the null hypothesis for each bin is that there is an axion at
the bin’s frequency.4 Second, the experimentalist estab-
lishes and follows a procedure for acquiring data. This
procedure may include conditional steps: e.g., “acquire
more data in a given bin via a rescan if and only if the initial
scan power exceeds the threshold set for that bin.” All
possible paths of action eventually terminate either in a
rejection of the null or a failure to reject the null, forming a
decision tree. Exclusion is set for all bins i where the null is
rejected at a confidence level of

E ¼ 1 − Fn; ð3Þ

where Fn is the bin-i false-negative rate of the entire
procedure: the total probability that the null would have
been rejected, were it true. This approach is equivalent to
defining a test statistic

ts ¼
�
1 xðjÞ ≥ xðjÞT ∀ j

FnðgγÞ otherwise
ð4Þ

from the total false-negative rate treated as an explicit
function of gγ . Couplings where ts goes below some
predetermined target rate Fn;target are rejected at
1 − Fn;target confidence level via Eq. (3).5 We refer to this
class of methods as frequentist threshold (FT) frameworks.
FT frameworks answer the question, “assuming the axion
exists, what is the probability of failing to observe it?”
A FT search procedure [26] is prepared to perform as

many as M scans at each frequency νi, reporting exclusion
subject to its predetermined false-negative rate. At a given
νi, no additional scans are performed once any scan’s

measured power excess xðjÞi fails to exceed its predeter-

mined threshold xðjÞT , the vertical, dashed line in Fig. 2. For
the general case where each scan may use a different false-
negative rate (dark blue region of Fig. 2), given from
integrating Eq. (1) by

fðjÞn ¼
Z

xðjÞT

−∞
fxðx; μðjÞa ; 1Þdx; ð5Þ

the total false-negative rate is

FIG. 2. Gaussian probability density functions fxðxÞ for a
single-bin normalized power excess x owing to noise alone
(green) and noise plus-axion signal for a particular value of the
axion-photon coupling gγ and haloscope sensitivity (blue). In the
low-prior limit, the single-scan prior update uðxÞ (red) is simply
the ratio of the two distributions. The exponential dependence of
u upon x captures the information content of the measurement. In
threshold-based inference frameworks, conversely, an excess
power threshold (black dashed line) is predetermined, and the
only information analyzed is whether the measurement is above
threshold. The light green (blue) region denotes to a true-negative
(-positive) indication, while the dark green (blue) denotes a false-
positive(-negative).

3The parameters ηðjÞi account for the scaling of the haloscope
sensitivity with integration time, experimental parameters, and
the dark matter density ρa. By normalizing the signal-to-noise
ratio to gγ ¼ 1 and treating the multiplicative coupling factor g2γ
as a parameter of the axion distribution, we are following the
convention in the axion search literature of assuming a fixed
value of ρa and setting limits on gγ . The i index on the coupling
factor indicates that we need not consider the same axion
distribution in each bin.

4The axion hypothesis is chosen as the null so that it might be
rejected, or excluded, later. Because of the unconventional choice
to make the interesting (i.e., axion) hypothesis the null, the
language of false negatives and positives will adopt the uncon-
ventional usage where a positive (negative) refers to the null
being true (false).

5The piecewise definition of ts, Eq. (4), yields exclusion only
when at least one scan’s power excess xðjÞ comes in below its
threshold xðjÞT . When all scans exceed threshold, ts ¼ 1 indicates
the presence of (possibly axionic) excess power.
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Fn ¼
XM
j¼1

fðjÞn

Yj−1
k¼1

ð1 − fðkÞn Þ: ð6Þ

This total false-negative rate is what sets the confidence of
the reported exclusion E as in Eq. (3). For the special case
where all M scans have equal false-negative rates,

fðjÞn ¼ fn0, Eq. (6) reduces to

Fn0 ¼ 1 − ð1 − fn0ÞM: ð7Þ

In practice, the false-negative rates fðjÞn and power thresh-

olds xðjÞT are set to convenient values, removing the

frequency dependence of μðjÞa ¼ g2γ;iη
ðjÞ
i by forcing gγ to

compensate for the frequency dependence of the sensitivity.

The initial scan sensitivities ηð1Þi therefore determine the
minimum coupling gγ;i that is excluded (or not) at each
frequency. Subsequent (j > 1) scans, conversely, integrate

to a sensitivity ηðjÞi determined by the coupling gγ;i reached
on the initial scan. The result, in the case where the axion
hypothesis is rejected for all bins where it can be tested, is
an exclusion plot [26] whose spectral structure reflects that

of ηð1Þi .
The procedure for collecting data and reporting exclu-

sion in these FT frameworks must be rigidly defined and
laid out in advance. If, instead, the experimentalist is
allowed to alter the decision tree that leads to negative
or positive results while navigating that decision tree, the
result becomes susceptible to bias. To this point, the total
false-negative rate Fn, Eq. (6), directly responsible for
setting the exclusion E, grows with the total number M of
scans in the predetermined experimental procedure.
Suppose, then, that the experimentalist was willing to
perform as many as M scans at each frequency bin i
before failing to reject the axion hypothesis, but that in
practice some number m < M was all that was required to
get at least one negative result in every bin. The correct
exclusion to report, perhaps unintuitively, is that which
takes into account all M allowed scans, including even the
M −m unperformed scans. The number of such unper-

formed scans and their individual false-negative rates fðjÞn ,
Eq. (5), must be known to properly report exclusion. If not
written down in advance, these numbers are difficult to
estimate without inserting bias. In practice it is extremely
difficult to rigorously adhere to FT logic. For example, one
would expect that some exclusion would be reported for a
total number of scans M surpassing m, the exact number
performed, yet this never appears in the literature [12–
15,17,23,38–41]. Furthermore, exclusion has been reported
for a number of scans less than the number performed [22].
Though the preceding logic and inference is frequentist

in nature, an axion haloscope analysis can alternatively
be carried out using the language of Bayesian statistics.

In Appendix A, we describe a threshold-based Bayesian
analysis (denoted BT2) which is equivalent to the FT
framework, given simple assumptions applicable to all dark
matter axion experiments. That is, the two frameworks
share operational procedures, and they ultimately output
identical conditional probabilities. This correspondence
implies that we can quantitatively interpret FT axion
exclusion as decreased probability of the axion hypothesis.
Adopting a Bayesian perspective, we can now ask

whether a more informative analysis is possible. We
consider frameworks which operate by applying Bayes’
theorem,

PðYjZÞ ¼ PðZjYÞPðYÞ
PðZÞ ; ð8Þ

to an axion search data set [42,43]. Notationally, PðBÞ
denotes the probability of event B being true, while PðBjCÞ
denotes the same, conditional upon event C being true. In
Eq. (8), PðYÞ is the Bayesian prior probability of event Y
being true, and it is updated by the occurrence of event Z to
the posterior probability PðYjZÞ. Appendix A describes
two distinct Bayesian threshold (BT) frameworks in which
Z is taken to be a binary outcome, or set thereof. We show
that a more informative analysis is indeed possible, but that
thresholding always imposes some operational restrictions
and needlessly discards valuable information. Nonetheless,
the BT logic exemplifies how Bayes’ theorem may be
applied to axion detection. In doing so, it builds a bridge
between the threshold methods of this section and the BPM
framework of the next.

III. BAYESIAN POWER-MEASURED
FRAMEWORK

Bayes’ theorem, Eq. (8), may be applied to haloscope
data so as to preserve the information content of the
measurement. The information at each frequency may be
aggregated into a statement about the change in probability
of an axion of arbitrary coupling strength gγ;i existing
anywhere within the haloscope’s scan range. In the
common case where the data indicates the absence of an
axion, the Bayesian language of updated probability maps
onto the language of frequentist exclusion (Appendices A
and C, and Ref. [44]). In this section, we discuss the BPM
framework, and how its posteriors can be aggregated,
before applying it to the HAYSTAC phase 1 data in
Sec. IV. We address potential concerns about the inevitable
non-Gaussianity of real haloscope data in Appendix E,
about the seemingly subjective choice of priors in
Appendix F, and about the information content of the
grand spectrum data in Appendix G.
The BPM framework is readily motivated by the fact that

both the FT (Sec. II) and BT (Appendix A) frameworks
discard valuable information. Each power excess, measured
on a continuum, is reduced to a simple “click” or “no-click”
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response of an effective binary detector. A measurement
that comes in just below threshold on a higher-order rescan
after already exceeding threshold on previous scans is
orders of magnitude more likely to indicate the presence of
an axion than a typical, 0σ power excess. Yet the threshold
frameworks treat these events identically.
The BPM framework uses Bayes’ theorem to account for

the precise effect of any initial measured power xð1Þi on the

prior probability Pð0Þ
a;i that an axion resides in bin i. After

measurement, the prior is updated to the posterior,

Pð1Þ
a;i ¼ uð1Þi Pð0Þ

a;i , where uð1Þi denotes the first scan’s prior

update. If subsequent scans j > 1 are performed, Pðj−1Þ
a;i will

be further updated to PðjÞ
a;i ¼ uðjÞi Pðj−1Þ

a;i , and so forth. In the
appropriate limit of infinitesimal priors (Appendix F), the
single-scan prior update for bin i and scan j follows from
Eq. (8), independent of one’s choice of prior:

uðjÞi ≈
PðAijxðjÞi Þ
PðN ijxðjÞi Þ

¼ exp

�
−
ðμðjÞa;iÞ2

2
þ μðjÞa;ix

ðjÞ
i

�
: ð9Þ

The second equality uses the Gaussian probability densities
of Eq. (1), and Ai or N i denotes the event that an axion
does or does not reside in bin i, respectively. The
approximation in Eq. (9) identifies the prior update with
the Bayes factor, which compares the likelihood of two
hypotheses; it applies when the axion and other sources of
excess power are sufficiently unlikely. The assumption
underlying the validity of this approximation is made
quantitative in Appendix F, and in Appendix E we show
that this assumption is conservative with respect to axion
exclusion. The BPM analysis can therefore alternatively be
viewed as a Bayes factor analysis, but the interpretation of
the Bayes factor as a conservative approximation to the
prior update makes for a more intuitive and immediately
useful end result. Equation (9) also indicates that the update
to the probability of an axion’s existence, plotted in red in
Fig. 2, scales exponentially with the measured power

excess xðjÞi . Rather than assume a particular axion distri-

bution, we now consider the prior update uðjÞi as a function

of μðjÞa;i . Formally, uðjÞi is maximized at μðjÞa;i ¼ xðjÞi . Thus at

each frequency where a positive excess xðjÞi > 0 is mea-
sured, we can single out a maximum likelihood (ML) axion

distribution parametrized by μðjÞa;i ¼ xðjÞi .6 The update to the

prior probability in the ML axion scales sharply with μðjÞa;i ∝
g2γ as u

ðjÞ
i;ML ¼ exp ½ðμðjÞa;iÞ2=2�. Since the updates uðjÞi can be

mapped back to their measured power excesses xðjÞi and

sensitivities ηðjÞi , this use of Bayes’ theorem preserves the
information content of each individual measurement.
Applying Eq. (9) to all bins xðjÞi across all scans yields a

spectrum of total updates Ui, defined as

Ui ¼
PðMiÞ
a;i

Pð0Þ
a;i

¼
YMi

j¼1

uðjÞi ; ð10Þ

where Mi is the total number of scans performed on bin i.
Unlike in the FT framework of Sec. II, scans that are not
performed do not enter into the equation, and the number of
scans need not be specified in advance. Subject to its
equivalence to the Bayes factor (Appendices E and F), each
total update Ui is the change in probability that an axion of
a specified coupling gγ resides in the bin. For example,
Ui ¼ 0.1 implies that it is 10% as probable that an axion
resides in the bin after all Mi scans were performed than
it was prior to the experiment. A total prior update of
Ui ¼ 0.1 carries exactly the same meaning as 90% exclu-
sion (E ¼ 0.9) in the standard analysis framework, in the
limit of vanishing false-positive rates (Appendix A).
The individual PðjÞ

a;i , or Ui, regarded as functions of gγ ,
can be spectrally combined into an aggregate prior update7

function:

UðgγÞ ¼
P0

aðgγÞ
PaðgγÞ

¼
P

N
i¼1 P

ðMiÞ
a;i ðgγÞP

N
i¼1 P

ð0Þ
a;i ðgγÞ

≈
1

N

XN
i¼1

UiðgγÞ; ð11Þ

where P0
aðgγÞ and PaðgγÞ are the aggregate posterior and

prior probabilities, respectively, of that axion existing. The
aggregate update UðgγÞ does for the entire haloscope run
what the total update UiðgγÞ does for each bin: it expresses
the update to the probability that an axion of coupling gγ
resides anywhere within the scanned frequency window.
The final equality of Eq. (11) holds in the limit of

approximately uniform priors, Pð0Þ
a;i ≈ Pa=N, applicable

when the total frequency scan range is small compared
to any of the scan frequencies, νN − ν1 ≪ ν1, as is the case
for HAYSTAC [26] or ADMX [18]. For low-frequency
experiments such as ABRACADABRA [29] or DM Radio
[32], logarithmically uniform priors, Eq. (F4), should be
used [2].

6Conversely, measurement of a negative excess xðjÞi < 0
reduces the probability of any axion relative to the no-axion
hypothesis.

7In this text, we refer to four kinds of prior update. The single-
scan updates uðjÞi of Eq. (9) are multiplicatively combined into the
total updates of Eq. (10) at each frequency. The total updates are
subsequently aggregated via Eq. (11) into the aggregate update.
The subaggregated updates of Fig. 3(a) are likewise aggregated,
but over 1% of the HAYSTAC search window apiece. All updates
are functions of axion-photon coupling gγ , and are written
explicitly as such where relevant. The quantities as calculated
are Bayes factors, identifiable as updates subject to Appendices E
and F.
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Regardless of the measured excess powers xðjÞi and

sensitivities ηðjÞi , there will exist a coupling gγ;low below
which virtually nothing is learned about the presence or
absence of an axion, Uðgγ ≤ gγ;lowÞ ≈ 1. Likewise, there
will exist another coupling gγ;high above which the prob-
ability of an axion existing vanishes Uðgγ ≥ gγ;highÞ ≈ 0.
Between these two extremes, UðgγÞwill depend strongly on
the measured power spectra. In the context of a realistic
search, for which the experimental overhead is high, U > 1
suggests that at least some bins within the range should be
rescanned until either a cause of excess power is found or U
regresses to a lower value.
The aggregate prior update has several features that

account for the look-elsewhere effect—the linear growth
in expected number of excesses of a given, otherwise
significant size with number of independent hypotheses
tested (for dependent hypotheses, see Appendix D).
Because the denominator of Eq. (11) also grows linearly
with tests performed, these two linear factors cancel out.
Second, the typical coupling excluded will move upwards
(Appendix B) as more independent tests are conducted,

reflective of the increasing difficulty in ruling out a special
frequencywhen it hasmore imposters to hide among. Finally,
the ability to incorporate nonuniform priors is a key feature
for experiments sensitive over fractionally large spectral
windows. Since 90%of all independent axion tests in such an
experiment will occur in the highest decade, a standard
frequentist trials factor approach [44]would set an artificially
higher bar for discovery in lower decades than it would have
if the highest decade were not scanned; logarithmic priors
scale the height of that bar with the number of tests
performed.

IV. TEST USING HAYSTAC PHASE 1 DATASET

In order to test the BPM framework, we reanalyzed the
full dataset from phase 1 of the HAYSTAC experiment,
which includes at several frequencies as many as m ¼ 3
scans. Features specific to this dataset are discussed in
Ref. [26]. Notably, several frequency bins in the original
analysis were discarded for having excess rf power that
could with certainty be identified as at least partially
nonaxionic in nature. We set Ui ¼ 1 for these bins.

FIG. 3. (a) Reanalysis of HAYSTAC phase 1 data as a test of the Bayesian power measured (BPM) framework. The standard 90%
exclusion line (red) achieved with the FT framework [26] is equivalent to the 10% prior update contour of the second Bayesian threshold
(BT2) framework discussed in Appendix A. The 10% prior update contour (blue) achieved with the BPM analysis constrains more
aggressive couplings at nearly all frequencies. The logarithmic color scale indicates the subaggregated prior updates Us throughout the
full two-dimensional parameter space. Darker (lighter) shading corresponds to increased (decreased) probability of an axion of given
frequency ν and axion-photon coupling gγ existing. Frequencies where rescans were performed are marked with a black dot on the
threshold exclusion line. The five least unlikely (LU) axion candidates—those whose priors increased most—are marked at their
maximum likelihood couplings with orange circles. In the lower panel, corresponding orange bars indicate on a logarithmic axis the total

posterior probability Pð1Þ
LU within the BPM framework that an axion exists at each of the LU points normalized to the aggregate prior

probability Pa that an axion resides anywhere in the window at that coupling. The LU candidate at ν⋆LU ¼ 5.66417255 GHz, marked in
pink, is more than 2 times higher than the remainder of the top five combined. (b) Aggregate prior update U (equivalently, exclusion E)
taken as a function of coupling gγ over the entire HAYSTAC phase 1 frequency window for the FT and BT2 frameworks (solid red line),
BPM framework (solid blue line), and BPM framework with several adjustments made for a clean comparison with the performance of
the thresholding (dashed blue line; see main text). The dashed, gray line, zoomed in upon in the inset, indicates relative U ¼ 10%
(E ¼ 90%) scan time normalized to that achieved with the FT and BT2 frameworks [26]. Under typical experimental conditions, the
exclusion achievable with the BPM framework would take an estimated 36% longer to attain using thresholding.
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Otherwise, straightforward application of Eqs. (10) and
(11) yield the results in Figs. 3(a) and 3(b), respectively.
The heat map of Fig. 3(a) shows the updates to the

probability of the axion existing throughout the two-
dimensional parameter space. At high couplings (gγ ≥
gγ;high ≈ 3gKSVZγ ),8 the probability of an axion is greatly
diminished from what it was prior to collecting data. At low
couplings (gγ ≤ gγ;low ≈ gKSVZγ ), virtually no information
can been gleaned from the data about the presence or
absence of an axion. At intermediate couplings, gγ;low <
gγ < gγ;high, updates to the probability of an axion being
present depend sharply on the specific measured powers

xðjÞi , and also on the somewhat smoother haloscope

sensitivity profile ηðjÞi .
The FT framework has its 90% exclusion line plotted in

red in Fig. 3(a). This corresponds directly9 to the exclusion
plotted in Ref. [26], and equivalently to the 10% prior update
contour of the BT2 framework of Appendix A. The solid,
blue line is the BPM framework’s equivalent 10% prior
update contour. At almost all frequencies, it constrains more
pessimistic couplings than do the threshold frameworks.
At the few frequencies where the BPM framework

indicates weaker exclusion than the threshold frameworks,
it does so with good reason. Most of these “least unlikely”
(LU) axion candidate frequencies had excess power above
threshold on an initial scan and not far below threshold on a
rescan. This can be seen from the spectral coincidence of
several of these LU candidates, marked with orange dots at
their ML couplings, with the black dots indicating the
performance of at least one rescan. The LU candidates that
were not rescanned corresponded to initial scan powers
coming in just below threshold.
In the bottom panel of Fig. 3(a), the prior updates for the

five LU candidates are plotted normalized to the aggregate
prior probability that an axion resides in the HAYSTAC
phase 1 window. As discussed in Ref. [2], it is not obvious
how to distribute one’s prior probability of an axion’s
existence with respect to coupling gγ . However all five LU
candidates haveMLcoupling strengthswithin a factor-of-1.5
range, wherein priors should not differ greatly. Therefore, the
relative significance of the highest of these LU candidate
prior updates (frequency ν⋆LU ¼ 5.66417255 GHz) is note-
worthy: it is more than 2 times higher than the remaining LU
candidates combined.
It should be emphasized that despite its exceptionally

high prior update relative to the rest of the dataset, it
is overwhelmingly unlikely that this LU candidate is

an axion. A rough attempt at estimating priors
(Appendix F) puts an optimistic probability of an axion
in this bin still below part in 1,000, with more realistic
estimates well below that. Second, as discussed in
Appendix E, the BPM framework is inherently
conservative with respect to exclusion in a real dataset,
and consequently liberal in its identification of candidates.
In particular, nonaxionic rf power excesses caused other
spikes in the HAYSTAC phase 1 power spectra. Many of
these were manually removed from the dataset on the
grounds of supplementary evidence (e.g., failure to persist
when the auxiliary, weakly coupled antenna was pulled out
of the cavity) [26]. Since this LU candidate came in under
threshold on a third and final scan, it was rejected subject to
the FT framework. However, the more informative BPM
framework suggests that significantly more than any of the
other HAYSTAC phase 1 frequencies, it merits further
interrogation. Generously precluding the possibility of
nonaxionic excess power contamination, its probability
of containing an axion at its maximum likelihood coupling
is roughly the probability of 40 MHz of nearby, unscanned
parameter space, or Pð1Þ

LU=Pa ¼ 20% of the 200 MHz scan
window, containing an axion at that coupling.
The frequency-dependent update (or exclusion) data of

Fig. 3(a) has been aggregated in accordance with Eqs. (11)
and (C1) for the BPM and FT frameworks, respectively, in
Fig. 3(b). The solid, red line indicates aggregate updated
probability (left axis) or exclusion of (right axis) an axion
anywhere within the HAYSTAC phase 1 frequency window
as a function of coupling. The solid, blue line is the updated
probability for the BPM framework. Its upward bulge
around 2.5gKSVZγ is largely due to the LU candidate already
discussed. Had the knowledge from the BPM framework
been in hand before the HAYSTAC phase 1 decommission-
ing [25], little additional scan time would have been
required to either identify or promptly rule out an axion
signal. Therefore, an exclusion curve more representative
of the BPM framework for comparison purposes is given
by the dashed, blue curve, where the prior update of the
foremost least unlikely candidate is reset to unity. Other
more minor differences between the dashed and solid blue
curves due to particular features of the HAYSTAC phase 1
dataset not representative of typical haloscope data are
discussed in Appendix H.
The figure of merit of an axion haloscope is the rate R at

which it can scan a given frequency window to a specified
sensitivity [3]. The appropriate comparison to make
between two analysis frameworks is therefore the relative
amount of time τrel taken to perform a given scan. The
dashed, gray line in Fig. 3(b) represents the time that would
have been required to scan any coupling gγ to the standard
90% exclusion (10% prior update) level using the FT (BT2)
framework. The line derives from the τrel ∝ g−4γ relation [3]
of scan times to couplings, and is normalized to the run-
time of HAYSTAC phase 1. The inset of Fig. 3(b) shows all

8The benchmark Kim-Shifman-Vainshtein-Zakharov (KSVZ)
[45,46] axion has coupling gKSVZγ ¼ 0.97, making it a far more
optimistic benchmark than the DFSZ axion, with gDFSZγ ¼ 0.36.

9The correspondence comes with the caveat that the data here
has been subaggregated into bins of width ≈2 MHz, narrower
than would be of practical concern to any experimentalist
considering a haloscope run at nearby frequencies.
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three curves in the vicinity of this line. Had the BPM
framework been in place to recommend further scanning at
ν⋆LU, its U ¼ 10% aggregate prior update would have taken
≈36% longer to achieve with a threshold analysis. In the
context of detection efforts that take years to cover
unsatisfactorily little parameter space, this is a significant
enhancement available at no hardware or operational
expense across a broad array of platforms.

V. CONCLUSION

Haloscopes belong to a class of experiments that are
statistics limited. As such, optimizing the extraction of the
information content of their data is a high priority.
Analyzing haloscope data with threshold frameworks,
however, discards information pertinent to the presence
or absence of an axion. The BPM analysis framework
straightforwardly applies Bayes’ theorem to incorporate the
relevant information content of haloscope power spectra
into a posterior probability of an axion existing. Taken in
ratio with the prior probability of that axion, the updated
probability is seen to be completely equivalent to the
standard exclusion quoted in the literature. By applying
the BPM framework to the phase 1 data of the HAYSTAC
experiment, we show exclusion improved commensurate
with what under typical experimental conditions would
translate to a 36% improvement in scan time—within the
sensitivity error bounds for the HAYSTAC phase 1 dataset,
though independent of the contributing sources of error
[23]. Additionally, the BPM framework better spotlights
those regions of parameter space where the probability of
an axion increases. For HAYSTAC’s data, a single such
frequency worthy of (but not demanding) further attention
stands out.
The BPM framework may be straightforwardly applied

to future data from ADMX [18], HAYSTAC [26], and other
haloscopes and similar dark matter searches [2,29–37,47].
We expect that BPM will probe deeper couplings at no
experimental cost while permitting experimentalists to
operate nimbly, without the more strict constraints of
preordained scan protocols. This latter advantage is espe-
cially important for narrow band, tunable searches, in
which the question of how to optimize a scan protocol
by responding in real time to acquired data is of paramount
importance. Enhancements gained through operational
efficiency will readily compound with those intrinsically
available from BPM’s informational advantage over thresh-
old-based analyses.
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APPENDIX A: BAYESIAN THRESHOLD
FRAMEWORKS

One of the central claims of this article is that in a
haloscope analysis an apples-to-apples comparison may be
made between the widely quoted frequentist exclusion E of
Sec. II and the Bayesian prior update Ui of Sec. III. In
general, these two are in fact not equivalent. The equiv-
alence holds only between FT analyses with low false-
positive rates and Bayesian analyses using low priors. In
this Appendix, we consider two Bayesian threshold analy-
ses. The first framework, BT1, is more informative than the
second, BT2. In the dual limit of infinitesimal priors/low
false-positive rates, BT2 reveals the Bayesian prior update
to be completely equivalent to the frequentist exclusion.
Together, BT1 and BT2 motivate the BPM framework as a
more informative, less operationally constrained limit of
haloscope analyses.
The first of the threshold-based Bayesian analyses we

consider, BT1, updates its priors after each successive scan.
We are interested in the conditional probability that there is
an axion in the ith bin, given that the measured power in the

jth scan either did (xðjÞi ≥ xðjÞT ) or did not (xðjÞi < xðjÞT )
exceed threshold. For simplicity of notation, we will drop
all frequency indices i for the remainder of this and other
Appendices where not necessary, with it understood that
results can ultimately be aggregated via Eq. (11). We
denote the event of a measured power exceeding (not
exceeding) threshold as a binary detector going click (no-
click), and we denote the event that the measured power
excess came from the axion distribution (no-axion distri-
bution) as A (N ). The posterior probability of an axion
given a click is

PðAjclickÞ¼ PðclickjAÞPðAÞ
PðclickjAÞPðAÞþPðclickjN ÞPðN Þ; ðA1Þ

where the denominator is equivalent to PðclickÞ.
Identifying PðclickjAÞ as the single-scan true-positive rate

1 − fðjÞn (Fig. 2, light blue) and PðclickjN Þ as the single-

scan false-positive rate fðjÞp (Fig. 2, dark green), abbreviat-
ing the prior (posterior) probability that there is an axion in

the bin as Pð0Þ
a ¼ PðAÞ [Pð1Þ

a;cl ¼ PðAjclickÞ], and noting

that PðN Þ ¼ 1 − Pð0Þ
a , Eq. (A1) simplifies to

uð1Þcl ¼ Pð1Þ
a;cl

Pð0Þ
a

≈
1 − fð1Þn

fð1Þp

≈
1

fð1Þp

: ðA2Þ

The first approximation holds in the appropriate limit of

infinitesimal priors, herePð0Þ
a ≪ fð1Þp , and the secondholds in

the limit of low single-scan false-negative rates, fð1Þn ≪ 1.
In the event of a no-click, the posterior probability

Pð1Þ
a;no ¼ PðAjno − clickÞ is given by an expression
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analogous to Eq. (A1) containing the true- (1 − fðjÞp ; Fig. 2,

light green) and false- (fðjÞn ; Fig. 2, dark blue) negative
rates. The expression simplifies as

uð1Þno ¼ Pð1Þ
a;no

Pð0Þ
a

≈
fð1Þn

1 − fð1Þp

≈ fð1Þn ; ðA3Þ

where the first approximation holds for low priors

Pð0Þ
a ≪ 1, and the second holds for low single-scan

false-positive rates, fð1Þp ≪ 1. Whereas single-scan false-
negative rates in haloscope searches are typically close to
5%, false-positive rates are often kept much lower, to
minimize the need for time-expensive rescans.
Applied to a sequence of M scans, the BT1 analysis will

be seen to provide a crucial operational freedom, shared by
the BPM framework, to the experimentalist. Since the
ordering of multiple updates is inconsequential, a series of

M identical (fðjÞn ¼ fn0, fðjÞp ¼ fp0) scans has M þ 1

possible outcomes, corresponding to observing c ∈
f0; 1;…;Mg clicks and M − c no-clicks. Using the sim-
plest forms of Eqs. (A2) and (A3), the final prior update,
obtained from Eq. (10), is

UBT1
c ≈

ðfn0ÞM−c

ðfp0Þc
: ðA4Þ

The prior is upgraded by 1=fp0 for every positive result,
and downgraded by fn0 for every negative result.
In the BT1 framework, the threshold and false-negative

rate for each scan must be set in advance, but the number of
scans M need not be. This crucial operational freedom
(which is shared by the BPM framework) is a consequence
of the fact that the expected value of the prior update before
performing a given scan is unity, and so the decision to
perform another scan or not can be made on the fly, without
biasing the outcome. In contrast, in the FT framework of
Sec. II, adding another scan midway through a multiscan
protocol and recalculating the false-negative rate for the
entire protocol, the experimentalist can manipulate the
expected value of the exclusion. This freedom has nothing
to do with the use of frequentist versus Bayesian inference.
We will see that Bayesian frameworks can be equally
restrictive.
Whereas the BT1 framework offers M þ 1 possible

outcomes for M scans and provides interscan operational
freedom to the experimentalist, the second BT framework
(BT2) that we consider is designed to be uninformative and
restrictive by comparison; its outcomes, tellingly, will map
precisely onto those of the FT framework of Sec. II. The
standard FT analysis permits two possible results at each
frequency, illustrated for a simple case in Fig. 4: a rejection
of the null (negative result) or a failure to reject it (positive
result). For an M-scan protocol, the negative result is

defined as the case where at least one scan no-clicks;
the positive result occurs only when all M scans click. The
multiscan false-negative rate, Fn from Eq. (6), sets the
exclusion via Eq. (3). False-positive rates do not enter
directly into the FT framework’s reported exclusion.10

The BT2 framework applies Bayes’ theorem, Eq. (8), to
this binary result landscape, obtaining a posterior either for
a positive result of Pð1Þ

a;pos or for a negative result of P
ð1Þ
a;neg.

For the positive case,

PðAjposÞ ¼ PðposjAÞPðAÞ
PðposjAÞPðAÞ þ PðposjN ÞPðN Þ ðA5Þ

yields

FIG. 4. The four possible outcomes of anM ¼ 2-identical-scan
threshold protocol. The conditional probabilities of each outcome
(1)–(4) subject to the axion (A) and no-axion (N ) hypotheses are
given in terms of true and false-positive and -negative rates
(Fig. 2). In both the FT framework of Sec. II and the BT2
framework of Appendix A, outcomes (2)–(4) (gray) are all treated
identically as the negative result: in the FT (BT2) framework, the
null is rejected (the prior is reduced). In this case, the exclusion

E ¼ 1 − Fn is trivially equivalent to the prior update U
ðBT2Þ
neg ≈ Fn

in the dual limit of low false-positive rates and priors. Only region
(1) (red) fails to reject the null (FT), or increases the prior (BT2).

10More completely, false-positive rates only enter indirectly, as
the global false-positive rate—the chance of at least one bin
achieving a positive result (i.e., a click on all M scans)—must be
set sufficiently low to account for the look-elsewhere effect.
Choosing a higher false-positive rate will achieve a deeper
exclusion if no positive results are recorded, but will increase
the probability of such an event.
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UBT2
pos ¼ Pð1Þ

a;pos

Pð0Þ
a

≈
1 − Fn

Fp
≈

1

Fp
; ðA6Þ

where the total false-negative rate Fn is that of Eq. (6) and

Fp ¼
YM
j¼1

fðjÞp ðA7Þ

is the total false-positive rate for the M scans. The first
(second) approximation in Eq. (A6) is valid for infinitesi-

mal priors, Pð0Þ
a ≪ Fp (low total false-negative rate,

Fn ≪ 1). Note that BT2’s positive prior update agrees in
the case of identical scans (the general cases agree as well)
precisely with the c ¼ M case of Eq. (A4) for BT1. The
agreement is due to the fact that they derive from the same
event—a series of M clicks. Since false-positive rates are
very small, UBT2

pos is a very large number, corresponding to
just how unlikely a positive result would be to observe,
without an axion present.
The negative result yields an update that will agree

precisely with the standard FT exclusion E. From the
equation for PðAjnegÞ analogous to Eq. (A5), we obtain

UBT2
neg ¼ Pð1Þ

a;neg

Pð0Þ
a

≈
Fn

1 − Fp
≈ Fn; ðA8Þ

where the two approximations assume low priors Pð0Þ
a ≪ 1

and low M-scan false-positive rates Fp ≪ 1. With these
conditions met, the BT2 negative prior update is the
complement of the frequentist exclusion, UBT2

neg ≈ 1 − E.
In the limit relevant for haloscope searches, the frequentist
exclusion is therefore equivalent to the Bayesian prior
update, an equivalence used in the context of other searches
for new physics [44]. Whether this update is obtained
through one of the BT frameworks or the BPM framework
is immaterial.
Finally, a pair of differences between the two BT

frameworks discussed in this Appendix hints at two
important operational advantages of the BPM framework.
The BT1 framework, by allowing M þ 1 possible results
with differing outcomes (or up to 2M for scans with
nonidentical false-negative and -positive rates), has an
informational advantage over the BT2 framework. The
BT2 framework deliberately blinds the experimentalist to
which scan(s) no-clicked, combining M of the M þ 1
possible outcomes into a single negative result. For an
experimentalist intent on discovering or excluding the
axion, there can be no benefit to discarding this informa-
tion. Taking the next logical step, the power-measured
information from each scan need not be discarded. The
BPM framework, unlike the BT frameworks, uses this
information.

The BT1 framework also proves operationally superior
to BT2. Whereas the BT2 framework locks in a commit-
ment to M scans, if necessary, BT1 allows the experimen-
talist to reinsert himself into the decision-making between
scans without biasing the outcome. This interscan freedom
is improved to intrascan freedom for BPM, as indicated in
Table I, which summarizes the informativeness and opera-
tional constraints imposed by each framework. Under
BPM, the expected prior update for the next iota of power
measured always being unity protects the experimentalist
from inserting bias. To the degree that the data processing
allows it, probability can be tracked in real time and used to
inform scan-protocol decisions on the fly. This capability
provides an opportunity for optimizing a BPM haloscope
search algorithm, a promising direction for future analysis
beyond the scope of this article.

APPENDIX B: OUTCOME DISTRIBUTIONS
FOR BAYESIAN ANALYSES

The reanalysis of the HAYSTAC phase 1 dataset in
Sec. IV indicates that the BPM framework achieves
superior exclusion to thresholding in the case of one real
dataset. In this Appendix, we demonstrate that this result is
typical by treating the prior updates in the BPM framework
and the BT1 and BT2 frameworks discussed in Appendix A
as random variables. We make an apples-to-apples com-
parison between the aggregate prior update probability
distributions obtained from an M ¼ 2-identical-scan pro-
tocol in these three frameworks. In particular, while the
mean aggregate prior update hUi ¼ 1 for any unbiased
analysis, we will see that the median aggregate prior update
in the BPM framework is a factor-of-2 smaller than in either
threshold framework. From this reduction in the median
aggregate prior update we predict a typical scan rate
enhancement of 30% for BPM relative to thresholding,
consistent with the enhancement observed in the
HAYSTAC phase 1 dataset. En route to this final result,

TABLE I. Comparison of the Bayesian threshold frameworks
(BT1 and BT2) of Appendix A with the Bayesian power
measured (BPM) framework of Sec. III for a protocol with M
possibly nonidentical scans performed. More informative frame-
works map the continuum of possible measurements onto a larger
number of reported outcomes. The more informative frameworks
also permit the experimentalist greater freedom to alter the scan
protocol without biasing the outcome. Interscan changes to
upcoming scans are allowed within all but the BT2 framework
[equivalently, the frequentist threshold (FT) framework of Sec. II],
while the BPM framework even permits intrascan adjustments as
information compiles.

BT2 (FT) BT1 BPM

Possible outcomes per bin 2 2M ∞
Interscan freedom No Yes Yes
Intrascan freedom No No Yes
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we obtain analytic expressions for the total prior update
probability distributions in each framework. Comparing the
three frameworks at this level likewise elucidates the
difference between the BPM and threshold exclusion lines
plotted in Fig. 3(a).

Throughout this Appendix, we assume an ideal, axion-
less haloscope dataset: the grand spectrum excesses are
independent, identically distributed random variables

xðjÞi ∼ Nð0; 1Þ. We compare prior update probability dis-
tributions for anM ¼ 2-identical-scan protocol in which an
initial scan is performed, followed by a rescan in each bin
whose measured power excess exceeds a predetermined
threshold.11 For definiteness, we assume scan parameters
similar to those used in HAYSTAC phase 1. For the BT1
and BT2 frameworks, we will first derive analytic expres-
sions for the prior updates in a more general M-identical
scan protocol, and then specify to M ¼ 2.
Starting with the least informative BT2 framework, the

total prior update in a single bin has probability mass
function (PMF):

PðUBT2 ¼ UBT2
pos Þ ¼ ðfp0ÞM

PðUBT2 ¼ UBT2
neg Þ ¼ 1 − ðfp0ÞM: ðB1Þ

In any scan of N independent frequency bins, k ¼ 0;…; N
of those will realize a positive result, where k is binomial
distributed k ∼ BðN; ðfp0ÞMÞ. The PMF for the aggregate
prior update is then

P

�
UBT2 ¼ UBT2

pos −UBT2
neg

N
kþ UBT2

neg

�

¼
�
N

k

�
½ðfp0ÞM�k½1 − ðfp0ÞM�N−k: ðB2Þ

Next we consider the BT1 framework, whose total prior
updateUBT1

c , Eq. (A2), is written in terms of the single-scan
updates ucl and uno for a click, Eq. (A2), and for a no-click,
Eq. (A3), respectively. Each click occurs with probability
fp0, hence the probability of obtaining exactly c ¼
f0; 1;…;Mg clicks is

Pc ¼ ðfp0Þcð1 − fp0Þ1−δMc ; ðB3Þ

where δab is the Kronecker delta function. The total prior
update PDF is therefore

PðUBT1 ¼ ½ucl�c½uno�1−δMcÞ ¼ Pc: ðB4Þ

For theM-identical-scan protocol overN independent bins,
the aggregate prior update [Eq. (11)] is parametrized by the

numbers nc of bins that click c times, which are multi-
nomial distributed with probabilities Pc given by Eq. (B3).
The aggregate prior update is

P

�
UBT1 ¼ 1

N

XM
c¼0

nc
ðuclÞc

ðunoÞδMc−1

�
¼ N!Q

M
c0¼0

nc0!

YM
c00¼0

ðPc00 Þnc00

ðB5Þ

if
P

M
c¼0 nc ¼ N, and 0 otherwise.

For the BPM framework, we restrict ourselves toM ¼ 2
identical scans, where the second occurs conditionally on
the first exceeding threshold, and derive only the expres-
sion for the total prior update. To derive the PDF for the
two-scan BPM prior update, we consider two mutually
exclusive cases.
First, with probability 1 − fp0, the initial scan does not

exceed threshold (x < xT ; a true-negative). In that case, the
prior update PDF is

fu;tnðutnÞ ¼ fxðxÞ
�
du
dx

�
−1

¼
� ð1 − fp0Þ−1fuðuÞ 0 ≤ utn < uT
0 otherwise;

ðB6Þ

where

fuðuÞ ¼
8<
:

�
exp½−μ2a=8�
μa

ffiffiffiffi
2π

p
	�

exp½−ðlog uÞ2=2μ2a�
u3=2

	
0 ≤ u

0 u < 0
ðB7Þ

and uT ¼ exp½−μ2a=2þ μaxT � is the single-scan prior
update achieved at threshold (x ¼ xT). The second line
of Eq. (B6) follows from Eqs. (1) and (9). The normali-
zation factor ð1 − fp0Þ accounts for the nonunit probability
of drawing from this distribution in the initial scan.
Next we consider the case where the first scan exceeds

threshold, (x ≥ xT ; a false positive), which occurs with
probability fp0. The total prior update for the initial false
positive is the product of two single-scan prior updates
Ufp ¼ ufpu. The PDF for the first scan prior update ufp is

fu;fpðufpÞ ¼
� ðfp0Þ−1fuðufpÞ uT ≤ ufp
0 ufp < uT;

ðB8Þ

and that for the second scan prior update u, which is not
restricted to being above or below threshold, is given
by Eq. (B7).

11As discussed in Appendix A, BPM provides freedoms to
deviate from such a rigid protocol, and can therefore outperform
the projections here.
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The PDF for Ufp is then

fU;fpðUfpÞ ¼
Z

∞

−∞
fuðuÞfu;fp

�
Ufp

u

�
du
juj

¼
8<
:

exp ½−ðμa=2Þ2−ðlog ½Ufp=2μa�Þ2�
fp0μaU

3=2
fp 4

ffiffi
π

p erfc

�
log ½u2T=Ufp�

2μa

�
0 ≤ U

0 U < 0;
ðB9Þ

where erfc is the complementary error function.
The total prior update U for the procedure is a probability-weighted sum of PDFs:

fUðUÞ ¼ ð1 − fp0Þfu;tnðUÞ þ fp0fU;fpðUÞ: ðB10Þ

Written out fully,

fUðUÞ ¼

8>>><
>>>:

exp ½−ðμa=2Þ2−ðlog ½U=2μa�Þ2�
μaU3=24

ffiffi
π

p erfc
�
log ½u2T=U�

2μa

	
þ exp½−μ2a=8−ðlogUÞ2=2μ2a�

μaU3=2
ffiffiffiffi
2π

p 0 ≤ U < uT

exp ½−ðμa=2Þ2−ðlog ½U=2μa�Þ2�
μaU3=24

ffiffi
π

p erfc
�
log ½u2T=U�

2μa

	
uT ≤ U

0 U < 0

ðB11Þ

is the two-identical-scan BPM total prior update PDF: that
is, the probability density for obtaining a prior update U in
a single axionless bin using the standard initial and
conditional-rescan procedure. The total updates for larger
numbers of scans and the aggregate updates for multiple
bins are too cumbersome to write out in closed form, but
may readily be simulated.
Equations (B11), (B4), and (B1) are respectively the total

prior update probability distributions for the BPM frame-
work and the two BT frameworks discussed in
Appendix A. These three equations are plotted as blue,
green, and red lines, respectively, alongside simulated total
prior updates for the three frameworks (blue, green, and red
dots) for a two-scan protocol without an axion present in
Fig. 5(a).
The simulations are performed by drawing Gaussian

random variables according to Eq. (1), with μ ¼ 0, σ ¼ 1,
and performing a second draw as well if x ≥ xT . Prior
updates are then applied according to Eqs. (9), (10), (A4),
(A6), and (A8). The simulations match the analytic
expressions, and together reveal that the vast majority of
bins will receive a downward update under all three
frameworks. In particular, the total prior updates for
BT1 and BT2 almost always take the precise values fn
and 1 − ð1 − fnÞ2, respectively. The price we pay for these
reliably low typical updates are rare false positives with
U ≫ 1 (far off the right side of the plot). The common
U < 1 and rare U ≫ 1 outcomes together ensure hUi ¼ 1,
the condition for an unbiased analysis. In contrast, mod-
erate positive and negative prior updates occur much more

frequently in the BPM framework, and hUi ¼ 1 is enforced
by a long tail of positive prior updates. The fact that the
median of the BPM distribution is lower than that of either
threshold distribution is noteworthy, as we will see pres-
ently in our discussion of the aggregate prior update.
Figure 5(b) shows the aggregate prior updates U for the

identical two-scan protocol when there are 215 independent
bins, not far from the actual number in HAYSTAC [22]. In
all cases, the total updates from all bins are averaged
according to Eq. (11) to obtain the aggregate prior update.
All three methods deliver an unbiased aggregate prior
update with mean hUi ¼ 1, yet the BPM framework
typically delivers a stronger exclusion in the absence of
an axion, i.e., its median aggregate prior update is smaller
than in either threshold framework by a factor of 2. The
improvement is a consequence of the informational ad-
vantage of the BPM framework.
The factor-of-2 typical improvement in aggregate

exclusion illustrated for typical HAYSTAC parameters in
Fig. 5(b) yields a scan rate enhancement consistent with the
36% speedup inferred from real data in Fig. 3(b), absent
an axion.12 If the time for the BT2 framework to achieve the
targeted 90% exclusion across the scan window (factor-of-
10 reduction in aggregate probability) is T90, the additional

12With an axion present, additional simulations (not shown)
reveal its presence in a manner consistent with the interpretation
of the global false-positive rate used in frequentist hypothesis
testing.
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factor of 2 should take approximately T95 ¼ T90 log10ð2Þ,
roughly 30% longer.

APPENDIX C: AGGREGATE EXCLUSION

The aggregation of the frequency-dependant Bayesian
prior updates, UiðgγÞ → UðgγÞ via Eq. (11) has a useful
frequentist counterpart for the FT framework discussed in
Sec. II. In this Appendix, we motivate and define the
aggregate exclusion EðgγÞ as the analog of UðgγÞ, extending
the apples-to-apples comparison of FT to BPM in
Appendix A to aggregated results. Additionally, we show
that EðgγÞ provides a more conservative, yet more faithful
assessment of the exclusion achieved by a haloscope than
does the standard practice of averaging the couplings at
which a given exclusion E is achieved.
The aggregate exclusion EðgγÞ answers the same ques-

tion that the exclusion EiðgγÞ, here written explicitly as
dependent upon coupling gγ and frequency bin i, does, but
for the entire frequency range. The exclusion EiðgγÞ
answers the question: “supposing an axion of coupling
gγ occupies bin i, what is the probability of observing a
predefined positive result there?” We therefore define the
aggregate exclusion EðgγÞ as the chance of observing a
predefined, aggregate positive result (defined below),
assuming an axion to exist within exactly one bin within
the range. In keeping with the uniform priors assumption of
Appendix F, the likelihood of an axion to be at any given

bin is equal for all bins, and for simplicity the powers in
bins are assumed otherwise uncorrelated (Appendix D).
Since it is not known which bin the axion is in, the
aggregate positive result is defined to mean at least one
positive result across the N frequency bins.13 In the logic of

Sec. II, the known sensitivities ηðjÞi and predetermined

power thresholds xðjÞT together preselect couplings gγ;i to
test at a uniform, desired false-negative rate Fn. This logic

can be partially inverted: assuming the same ηðjÞi and xðjÞT ,
now use a spectrally uniform coupling gγ to preselect
frequency-dependent total false-negative rates Fn;iðgγÞ at
which to test. This framing allows for the testing of a
uniform coupling gγ across the entire range to a confidence
level of

EðgγÞ ¼ 1 − ð1 − FpÞN
1

N

XN
i¼1

Fn;iðgγÞ

≈
1

N

XN
i¼1

EiðgγÞ; ðC1Þ

where the approximation is valid when the total false-
positive rate, Eq. (A7), satisfies Fp ≪ 1=N. The confidence

FIG. 5. Outcome probability distributions for prior updates for an axion that would produce a mean excess μa ¼ 5.1, assuming there is
in reality no axion present and using a standard M ¼ 2-identical-scan protocol with scan parameters similar to those of HAYSTAC:
threshold xT ¼ 3.455 (fn0 ¼ 5%, fp0 ¼ 0.03%). (a) Histograms of simulated total prior updates U, Eq. (10), for the BPM (blue dots),
BT1 (green dots), and BT2 (red dots) frameworks. 225 independent bins were simulated, and error bars estimated from binomial
statistics are smaller than the data points. The simulated probability distributions are in excellent agreement with the analytic predictions
of Eqs. (B11), (B4), and (B1) (blue, green, and red lines). The total updates described in (a) are combined via Eq. (11) to form the
aggregate prior updates U described in (b). The aggregate prior updates are numerically generated over 221 independent trials ofN ¼ 215

independent bins for each of the three analysis frameworks. For the frameworks for which we derive analytic predictions [green and red
lines for BT1, Eq. (B5), and BT2, Eq. (B2), respectively], the agreement with the simulations within binomial error bars confirms our
expectations. For all three frameworks, the (relatively few) bins which fall outside of the plotted windows do indeed balance the scales so
as to produce the unbiased expectation values hUi ¼ hUi ¼ 1 (Appendix D). The BPM framework displays by far the lowest median
outcomes in all cases, indicating that it will typically achieve superior exclusion when no axion is present.

13In other words, in the case where any nonzero number of bins
click, we fail to reject the hypothesis that there is an axion
somewhere within the window.
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tested at, shown for the HAYSTAC phase 1 sensitivity
profile by the red curve in Fig. 3(b), increases monoton-
ically with the coupling gγ . The coupling coincident with a
desired percentile (e.g., 90%) can be determined from the

sensitivity profile ηðjÞi alone, and a standard confidence test

performed by comparing the measured power excesses xðjÞi

against the predetermined thresholds xðjÞT , with a positive
result defined as a click on all M scans in at least one bin.
Defined as such, the aggregate exclusion EðgγÞ bears
exactly the same relationship to the aggregate prior update
UðgγÞ that EiðgγÞ bears to UiðgγÞ, making it central to
comparing analysis frameworks.
The aggregate exclusion, by answering the question of

frequentist confidence testing, proves a more natural figure
of merit for FTexclusion over a given scan window than the
standard practice [26] of quoting the average coupling gavgγ

excluded to a given confidence E. If the aggregate coupling
Gγ is defined as that for which identical aggregate exclusion
EðGγÞ ¼ E is achieved, then a comparison will reliably
reveal Gγ > gavgγ .14 The standard metric, gavgγ , is not some-
how achieving deeper sensitivity, it is averaging in a space
inconvenient to the natural logic of frequentism, and biased
relative to it. More directly, an experiment that achieves
90% exclusion at a frequency-averaged coupling of gKSVZγ

has not rejected the hypothesis that a KSVZ axion lies
within its scan window with 90% confidence.

APPENDIX D: CORRELATIONS

In this Appendix, we argue that correlations between
grand spectrum powers at different frequencies do not bias
the BPM framework’s outputs, and are furthermore desir-
able. The main text and other Appendices treat the grand
spectrum power excesses as uncorrelated for simplicity. In
practice, this assumption is violated, as grand spectrum bin
spacing is intentionally made spectrally smaller than the
axion linewidth and the frequency window of the digital
high-pass SG filter applied to the data. The effect of
estimating power excesses based on the axion line shape
(step 8 in Appendix G) is to positively correlate nearby
bins, whereas the effect of the SG filtering (step 4) is to

negatively correlate bins over a somewhat longer frequency
scale [22]. These are the only two processing steps that will
correlate adjacent bins.15 The data processing introduces no
interscan correlations, as it handles separate scans independ-
ently. The single-scan prior updates uðjÞi ðgγÞ can therefore be
treated as unconditionally unbiased (huðjÞi i ¼ 1), scan-inde-
pendent, frequency-dependent random variables.
Given these properties of the single-scan prior updates

uðjÞi ðgγÞ, the result that the aggregate prior update UðgγÞ is
unbiased then follows from the fact that aggregation entails
multiplying across scans and summing across bins. The
total prior updates UiðgγÞ are defined in Eq. (10) as the
product of grand spectrum prior updates from Mi scans.
Using the fact that the expectation value of the product of
independent random variables is the product of the expect-
ation values, here

hUiðgγÞi ¼

YM

j¼1

uðjÞi ðgγÞ
�

¼
YM
j¼1

huðjÞi ðgγÞi ¼ 1; ðD1Þ

the total prior updates are seen to be unbiased, i.e., have
unit expectation. Aggregation then occurs through summa-
tion of the posteriors and priors via Eq. (11). The expect-
ation value of the sum of dependent random variables is the
sum of the expectation values, here

hUðgγÞi ¼

XN

i¼1

UiðgγÞ
�

¼
XN
i¼1

hUiðgγÞi ¼ 1; ðD2Þ

where the last equality uses the result of Eq. (D1) to
demonstrate that UðgγÞ is also unbiased. As we relax
assumptions of uniform or even low priors, the relevant
updates, treated as random variables, can be shown to have
unit expectation independent of grand spectrum correla-
tions, but the formulas used to compute and combine the
updates become less elegant.
The primary effect of grand spectrum correlations on the

prior updates is not to bias the analysis, but only to alter the
higher moments of the distribution that aggregate prior
updates are drawn from. In particular, the number NI of
independent grand spectrum bins is smaller than the
number N of grand spectrum excesses calculated. This
increases the spread of the distribution that aggregate prior
updates will be drawn from for a given haloscope scan
window. However, since the dominant correlations are
produced by the axion line shape (step 8, Appendix G),
the number of independent bins has as a rough lower bound
the number of axion linewidths Δa in the scan window ΔW,

14An example for a simple N ¼ 2-bin grand spectrum using an
M ¼ 1-scan protocol will suffice to illustrate how it is that
averaging in the space of confidence levels, Eq. (C1), may
produce inherently conservative results relative to averaging in
the space of couplings excluded at. If one bin has sensitivity to
test at 90% confidence for a gγ ¼ gKSVZγ axion (using distribution
mean μa ¼ 5.1) and a second has sensitivity to perform the same
test for a gγ ¼ 3gKSVZγ axion, then the average coupling tested at
90% is 2gKSVZγ . However, the bin with KSVZ sensitivity is tested
at 100% confidence (Fn ¼ 0) for the 2-KSVZ axion, whereas the
bin with 3-KSVZ sensitivity is tested at only 6% confidence
(Fn ¼ 94%) for the 2-KSVZ axion. Therefore the hypothesis that
a 2-KSVZ axion lies in either bin is tested not at 90% but at a far
weaker confidence of 53%.

15Systematic effects in themeasurementwill also correlate grand
spectrum power excesses. The identification and removal of
nonaxion power excesses and the Savitzky-Golay (SG) filtering
exist largely to undo such experimentally induced correlations. We
do not consider the effect of such correlations on the grounds that
these processing steps appear largely successful [22].
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and as an upper bound the number of bins used:
ΔW=Δa ≲ NI ≤ N. The fact that NI ≤ N broadens the
probability distributions of the aggregate outcomes
(Appendix B), but does not otherwise impact the analysis.
To see that correlations are indeed desirable, note that

their absence would imply a grand spectrum bin spacing
larger than the axion linewidth. As discussed in Ref. [22],
such a coarse bin spacing would effectively leave unprobed
a large fraction of the scan window. Since the correlations
produce no deleterious effects upon the BPM framework,
there is no reason not to oversample the space of possible
axion masses, and the correlations should be considered a
feature, not a bug.

APPENDIX E: PRACTICAL DEPARTURES
FROM GAUSSIANITY

The formula for updating priors using the BPM frame-
work, Eq. (9), assumes that the axion and no-axion distri-
butions are Gaussian, Eq. (1). In particular, measured
distributions often rise in their extreme tails over what is
ideally expected [48]. In the case of haloscopic axion
detection, the presence of spurious rf tones increases the
probability density of the high-power tail of the PDFs of
Fig. 2. In this Appendix, we argue that the interpretation of
the exclusion achieved with the BPM framework is robust to
the resultant bias towards discovery.Conversely, there is little
to be gained from Bayesian inference in the context of
manually interrogating a persistent signal with the goal of
reporting discovery. Efficiency is a far less important con-
sideration in this context, and test statistics such as those of
Refs. [31,49], in conjunction with manual interrogation
(footnote 17) arewell suited to the task of claiming discovery.
Sources of rf noise in the haloscope’s physical environ-

ment can couple into the receiver chain. Real haloscopes go
to significant effort to discriminate such artificial excesses
from real axion signals, but excesses sufficiently similar in
spectral profile to an axion necessarily contribute to the
measured power distributions, leading to an effective
increase in the high power probability density of both
the axion and no-axion distribution PDFs.
The effect of increased probability density in the high-

power tail in either distribution in Fig. 2 is to bias the BPM
analysis towards discovery of an axion. In any one frequency
bin, this effect is very unlikely because it only affects the
distribution tails. Indeed, for existing haloscopes, the mea-
sured power excesses seem very well approximated out to
several standard deviations by Gaussian distributions
[16,22], indicating that the consequences of non-Gaussian
features will be modest. However, with tens or hundreds of
thousands of independent frequency bins measured, there
may be a small augmentation of the BPM framework’s
aggregate prior update, Eq. (11).
In the context of reporting exclusion over axion param-

eter space—the only context in which data from haloscopic
searches has appeared to date—a bias towards discovery is

conservative, and hence acceptable. In the context of a FT
framework, the effect of a discovery bias is not to change
the reported exclusion, but rather to increase expected
rescan time and the chance of a false positive. Since, as
shown in Fig. 3(b), the BPM framework still achieves a 36%
scan rate enhancement relative to thresholding for the
HAYSTAC phase 1 dataset, the conservative bias is mani-
festly not large enough (at least for this dataset) to overwhelm
the improved exclusion over the whole scan range.
In the context of reporting the discovery of axionic dark

matter, conversely, a bias towards discovery would appear
to be harmful. However, the nature of axion detection
guards against adverse outcomes in practice. A power
excess presenting as an axion, once identified, is fairly
straightforwardly shown to persist or not by manual inter-
rogation. The role of the statistical analysis frameworks
discussed in this article is not to firmly identify the axion as
such once a persistent signal is found, but rather to indicate
with the highest fidelity where such a signal is likely to lie.
While a BPM analysis may bias the experimentalist
towards believing that a few nonaxionic excesses might
be axionic, the real certification of an axion signal would
look like that for other discoveries in fundamental physics:
a series of careful measurements precluding beyond doubt
that no other known physical phenomena could account
for the signal. In other words, the asymmetry between
the criteria for exclusion and discovery ensure that
BPM’s discovery-bias would never lead to accidental
discovery.

APPENDIX F: CHOICE OF PRIORS

For any choice of prior probability Pð0Þ
a;i in axionic dark

matter, Bayes’ theorem can be applied and updates Ui
calculated and reported. However, the utility of the BPM
framework rests on the fact that its prior updates Ui can be
treated as independent of the priors chosen for the axion and
competing hypotheses, i.e., as reasonably approximated by
Bayes factors. Additionally, as argued in Appendix A, it is
highly convenient that in the appropriate limit the prior
updates of the BT2 framework (Appendix A), itself directly
comparable to the BPM framework, become the conditional
probabilities quoted in frequentist exclusion. These conven-
iences hold only so long as one’s priors are infinitesimal but
nonzero.16 In this Appendix, we justify the assumption of
infinitesimal priors, providing a toy estimate of a prior for
illustrative purposes. Additionally, we discuss how the prior
update can be used to directly inform scan strategy in the
presence of nonaxionic rf power excesses.

16The fact that the prior must be nonzero is justified by
Cromwell’s rule, which states that priors of exactly 0 or 1 should
be avoided generally. More directly, there would be no sense in
performing a haloscope search if the chance of success was truly
zero.
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The constraint that the prior be infinitesimal is only used
in simplifying the denominator of Bayes’ theorem, Eq. (8),
according to the law of total probability:

PðxðjÞi Þ ¼
Z

∞

0

PðxðjÞi jAiðgγÞÞPðAiðgγÞÞdgγ

þ PðxðjÞi jN iÞPðN iÞ
≈ PðxðjÞi jN iÞ; ðF1Þ

where the axion hypothesisAiðgγÞ is here written explicitly
as a family of hypotheses parametrized by gγ > 0. The case
of gγ ¼ 0 is indistinguishable from the no-axion hypothesis
N i. The approximation in Eq. (F1) is justified so long as
the total probability of there being an axion in any bin i,

PðAi;totÞ ¼
Z

∞

0

PðAiðgγÞÞdgγ; ðF2Þ

is considerably smaller than any prior update that would be
applied according to Eqs. (9) and (10).
To make a coarse estimate of PðAi;totÞ, we can write

down a Drake-like equation for axionic dark matter to
which a typical haloscope searching for QCD axions such
as HAYSTAC or ADMX might be sensitive:

PðAi;totÞ ¼ PðPQÞ × PðDMÞ × Pðma ≈ hνi=c2Þ; ðF3Þ
where PQ denotes the event of the Peccei-Quinn hypothesis
[50,51] being correct and the QCD axion field existing, DM
denotes the event of that axion field actually accounting for
an appreciable fraction of the galaxy’s dark matter [52–55],
ma ≈ hνi=c2 denotes the event that the axion is within
roughly a linewidth of the bin of interest, i, and the
probability of each event in parentheses is implicitly
conditional upon all leftward events. In practice several
other propositions must be true for an axion to be
detectable. For instance, the axion must not be coincident
with any other rf spikes and its line shape should roughly
match that used in the data processing [18,25].
It is beyond the scope of this article to attempt serious

estimates of these probabilities, but for the sake of justify-
ing the infinitesimal prior approximation, we only need to
consider the sample optimistic set of probabilities shown in
Table II. For logarithmically uniform distributed priors [2]

Pa;i ∝
1

νi
ðF4Þ

in a Qa ∼ 106 axion between mSN ∼ 1 μeV and mOC∼
1 meV, the approximate mass range not disfavored by
evidence from the SN1987a neutrino burst [56] or over-
closure arguments [52–54],Pðma≈hνi=c2Þ¼ logð1þQaÞ=
logðmSN=mOCÞ¼ 1.4×10−7. If overclosure arguments do
not apply [57], then a QCD axion could be far lighter than
mOC.Moreover, in practice, the prior probability for an axion

to be in any given narrow couplingwindowmust be less than
PðAi;totÞ. Hence, the rough estimate of PðAi;totÞ ∼ 6 × 10−8

should be considered a generous upper bound on the prior
probability as the term is used in this article.
In practice, one should not wait for a prior update of

order 1=PðAi;totÞ to manually interrogate a bin17; instead,
an approximate prior estimate of the prevalence of spurious
rf tones (Appendix E) should inform decision making. The
prevalence of these rf spikes is a priori unknown, but the
fact that in practice [18,22,26] the number of rescans
required agrees with the predictions from Gaussian sta-
tistics (i.e., the measured distribution of excess powers
looks Gaussian even in its right tail) indicates that only a
few rf spikes large enough to push a bin above threshold are
expected in a scan. For an initial scan with NI independent
bins, therefore, a prior update of U ∼ NI=Nrf should be
sufficient cause to manually interrogate the bin. Here,Nrf is
the experimentalist’s best guess for the expected number of
real rf spikes in the scan window. Insofar as this guess is
incorrect, the haloscope search will take longer than would
be optimal. Rescanning and eliminating spurious rf tones
ensures that the bias in the updates remains small, as well as
conservative.18

The prior probability PðAi;totÞ estimated in this
Appendix makes our approximation of infinitesimal priors
valid for any single-bin updatesU ≪ 1=PðAi;totÞ. Since the
prior update at which manual interrogation ought to begin,
NI=Nrf , is generally orders of magnitude less than
1=PðAi;totÞ, the approximation of infinitesimal priors will
always be valid.

TABLE II. Sample set of probabilities used to estimate prior
probability of an axion according to Eq. (F3). The probabilities
PðPQÞ and PðDMÞ are set to high (optimistic) values, such that
raising them would not qualitatively change the conclusion that
the priors are in the appropriate infinitesimal limit. The proba-
bility of the axion mass coinciding with a given bin assumes
logarithmic priors [2], and is itself optimistic in assuming that the
axion exists within a 3 mass decade window in which the
haloscope operates.

Event Optimistic probability

PQ 0.8
DM 0.5
ma ≈ hνi=c2 1.4 × 10−7

Ai;tot 6 × 10−8

17Manual interrogation means performing tests that would
discriminate between most spurious rf excesses and an axion:
for example tuning the spike well off cavity resonance
and/or ramping down the magnet and seeing if the signal persists.

18The conservative bias discussed in Appendix E results from
interpreting the no axion hypothesis, N i in Eq. (F1), to
incorporate spurious rf tones. This makes PðxðjÞi jN iÞ larger in
reality than as calculated from Eq. (1). Using a slightly under-
sized denominator in Eq. (9) results in a slight antiexclusion bias.
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APPENDIX G: EFFECTS OF DATA PROCESSING
ON INFORMATION CONTENT

The main text of this article takes as its motivation the
unacceptably long scan times that will likely be required to
verify or falsify the axionic dark matter hypothesis over any
meaningful fraction of the plausible parameter space.
However, our framework optimizes only the statistical
analysis of the already-processed data of a specific meas-
urement, raising two complementary questions: is the
measurement optimal, and is the data processing optimal?
The first question, of whether the measurement itself is
optimal—i.e., is the haloscope as typically operated the
most efficient tool for evaluating the axionic dark matter
hypothesis?—is beyond the scope of this article, and we
refer the reader to Ref. [2]. Subject to a haloscope or
haloscope-like search platform, however, this Appendix
addresses the effect of the data processing—the intermedi-
ate set of steps between measurement and statistical
analysis—on the information content of the haloscope
data. We show that the current data processing protocol
of the leading haloscope experiments [18,26] are already
highly optimized, with very little room for further improve-
ments, though this has not historically been the case.
We define the data processing as any numerical manipu-

lation of a measured quantity from the moment of its
digitization until it is put into a statistical analysis frame-
work [16,22]. The processing of real haloscope data
involves many steps for dealing with practical nonidealities
that are out of the scope of this Appendix. We do not
address issues such as the identification and removal of
persistent but nonaxionic spectral features, or the digital
high-pass filtering of the data. For a thorough treatment of
the HAYSTAC experiment’s processing protocol19 includ-
ing all these steps, see Ref. [22]. This Appendix evaluates
only the mathematical operations as performed on an ideal
dataset where the goal is to determine the presence or
absence of an axion at each frequency.
The data that may contain an axionic imprint arrives as a

pair (one for each quadrature)20 of discretely sampled,
identically distributed time streams of measured voltages.
Many such time streams are obtained, and they are broken
up and discretely Fourier transformed21 into so-called
subspectra, with frequency bin spacing Δb roughly 2 orders
of magnitude narrower than the axion linewidth Δa. The

subspectra are acquired in batches of Nb at each of Nt
distinct haloscope tuning steps. The Fourier frequencies in
each subspectrum can be mapped faithfully back to the Nf

rf frequencies22 of the fluctuations within the haloscope
cavity. Ultimately, each rf frequency is associated with a
single bin in each of a large number of distinct subspectra.
Therefore, the complex subspectrum voltages are denoted
vαQ;ijk, where Q ¼ X or Y denotes the quadrature, i ¼
1;…; Nf indexes the rf frequency, j ¼ 1;…; Nt the halo-
scope tuning step, and k ¼ 1;…; Nb the subspectrum at a
given tuning step.
At each of these tuning steps, sensitivity data are

acquired as well. The sensitivity data, in a simplified
picture, fully specify the expected thermal noise and
possible axion signal power at each frequency bin i. At
each tuning step and for each frequency, the sensitivity
parameters ηγij, defined as the ratio of signal power to noise
power for a axion with gγ ¼ 1 that delivers 100% of its
power at the ith rf frequency, can then be calculated.
This Appendix evaluates the consequences of each data

processing step on the axion-pertinent (AP) information
content of the data, where AP is understood to mean
“potentially bearing on the probability of the axion hypoth-
esis being true.” Using the terminology of Ref. [22], the
subspectrum data are processed ultimately into grand
spectrum data through the following steps:
(1) The real and imaginary parts of each subspectrum

quadrature voltage are summed in quadrature so as
to obtain the quadrature powers xαQ;ijk within each
bin:

xαQ;ijk ¼ ðℑ½vαQ;ijk�Þ2 þ ðℜ½vαQ;ijk�Þ2: ðG1Þ

(2) The quadrature powers are summed to obtain the
total power xαijk in each subspectrum bin:

xαijk ¼ xαX;ijk þ xαY;ijk: ðG2Þ

(3) All subspectrum powers at each tuning step and
frequency are summed to obtain the raw spectrum
powers:

xβij ¼
XNb

k¼1

xαijk: ðG3Þ

(4) The expected noise power, obtained from the appli-
cation of a Savitzky-Golay (SG) filter [58,59] at each
frequency, is subtracted from each raw spectrum to
obtain the processed spectra:

19The HAYSTAC processing protocol is in its essentials the
same as that presently used by ADMX [18].

20It is theoretically equally efficient to perform single-
quadrature measurement [3], in which case there is only one
quadrature time stream, but none of the conclusions of this
Appendix are altered.

21While in principle it is possible to evaluate the axionic dark
matter hypothesis in the time domain, we do not expect that this
would provide any benefit, given the unitarity of the Fourier
transform and the fact that the phase of the axion field at any
moment is unknown.

22The number of rf frequencies in earlier processing stepsNf is
generally larger than N, the number of frequencies in the grand
spectrum, as a later data processing step will average sets of
spectrally adjacent bins.
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xγij ¼ xβij − hxβiji: ðG4Þ

The processed spectra are power excesses: that is,
departures of measured powers from the values
expected absent an axion.

(5) The processed spectra are divided by the independ-
ently obtained sensitivities to obtain the rescaled
spectra:

xδij ¼ xγij=η
γ
ij: ðG5Þ

The rescaled spectra have the property that an axion
with gγ ¼ 1 unrealistically depositing all of its
power entirely within any one bin shifts the mean
power excess for that bin up from 0 to 1. Less axion-
sensitive bins are therefore drawn from distributions
with larger variances ðσδijÞ2.

(6) In each rf frequency bin i, the combined spectrum
power excess xϵi is taken as the ML-weighted sum of
all rescaled spectra power excesses:

xϵi
ðσϵi Þ2

¼
XNt

j¼1

xδij
ðσδijÞ2

: ðG6Þ

The variance of the ith combined spectrum bin is
obtained from the variance of all contributing
rescaled spectrum bins as

ðσϵi Þ2 ¼
�XNt

j¼1

1

ðσδijÞ2
�−1

; ðG7Þ

where ðσδijÞ2 ¼ ∞ at tuning steps that do not
contribute to a given frequency bin i.

(7) Sets of nc ≪ Δa=Δb adjacent combined spectrum
power excesses are rescaled, and the rebinned
spectrum power excesses xζi are formed from their
ML-weighted sums:

xζi
ðσζi Þ2

¼ 1

ncnr

Xnc
l¼1

xϵncði−1Þþl

ðσϵncði−1ÞþlÞ2
; ðG8Þ

where only every ncth rebinned power excess is
calculated and nr is the number of rebinned bins that
contribute to each grand spectrum bin (step 8). The
rebinned variances are the analogously scaled, ML-
estimated variances given by their combined spec-
trum counterparts:

ðσζi Þ2 ¼
1

ðncnrÞ2
�Xnc

l¼1

1

ðσϵncði−1ÞþlÞ2
�−1

: ðG9Þ

The rebinned bin frequencies are taken as the
average of the contributing combined bin frequencies.

For the rebinned spectrum and the subsequent grand
spectrum, i now indexes frequency in the more
sparsely populated space.

(8) The axion line shape faðνjνaÞ given an axion with
rest mass νa is calculated as the PDF of axion
particle energies given their Maxwellian velocity
distribution in the galactic rest frame, and our
planet’s velocity through that rest frame [60]. This
PDF is then discretized into a PMF p̄aðνjjνa;iÞ by
integration over rebinned spectrum bins.23 The grand
spectrum is then constructed. The grand spectrum
has the same frequency spacing as the rebinned
spectrum, but each grand spectrum bin i includes
contributions from the nr ¼ Δa=ncΔb rebinned
spectrum bins beginning at i. Sets of 2nr þ 1 grand
spectrum bins are thus by construction correlated
(Appendix D). The grand spectrum power excesses
xηi are constructed from the sets of nr adjacent
rebinned power excesses as

xηi
ðσηi Þ2

¼
Xnr
l¼1

p̄aðνiþl−1jνa;iÞxζiþl−1

ðσζiþl−1Þ2
; ðG10Þ

where νiþl−1 denote the rebinned frequencies. Equa-
tion (G10) provides the ML estimate of the power
delivered by an axion to the ith grand spectrum bin,
which has variance given by

ðσηi Þ2 ¼
�Xnr

l¼1

�
p̄aðνiþl−1jνa;iÞ

σζiþl−1

�
2
�−1

: ðG11Þ

(9) If the combined spectrum bins did not contain
correlations from the SG filtering (step 4), then the
division by the independently obtained sensitivities
(step 5) would ensure that xηi =σ

η
i is drawn from a

standard normal distribution (no axion) or a normal
distribution with unit mean and standard deviation
(axion with gγ ¼ 1). The negative correlations im-
printed by the SG filter (Appendix D), however,
reduce the grand spectrum standard deviations σηi
by a spectrally uniform factor ξ,24 which can be
extracted directly from the data and validated through
simulation.
Scaling the grand spectrum standard deviations

down to

σ̃ηi ¼ ξσηi ðG12Þ

makes the corrected grand spectrum excesses

23This conversion is made difficult by the fact that the axion
frequency will in general not align perfectly with any bin
frequency, an effect that matters less the smaller the rebinned
bin spacing ncΔb is. Reference [22] accounts for this uncertainty.

24For phase 1 of HAYSTAC, ξ ¼ 0.93 [22].
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xð1Þi ¼ xηi =σ̃
η
i ðG13Þ

standard normal random variables absent an axion.
The superscript (1) denotes that steps 1–9 have
applied for the initial scan, and must be repeated
for rescans. Equation (G13) represents the grand
spectrum excesses referred to in the main text.
The SG filter has the additional effect of attenuating

the visibility of a potentially present axion. The
frequency-independent magnitude of this attenuation
can be simulated as well, and is captured along with
other, frequency-dependent effects, in the sensitivity

parameters ηð1Þi of Eq. (2).
(10) Steps 1–9 are repeated, possibly multiple times, at

frequencies where rescans are deemed appropriate.
Information pertinent to the existence of the axion can

only be generated during the measurement, and may be
degraded by the subsequent data processing. Our aim is to
determine where in steps 1–10, if at all, AP information
could be lost. A guaranteed way to make use of all of the
AP information content would therefore be to express the
predictions of the axion and no-axion hypotheses, AQ;ijk
and N Q;ijk, respectively, in the space of the quadrature
voltages vαQ;ijk and apply Bayes’ theorem as

uα;ℜQ;ijk ¼
PðAQ;ijkjℜ½vαQ;ijk�Þ
PðN Q;ijkjℜ½vαQ;ijk�Þ

; ðG14Þ

where the standard infinitesimal prior limit has been
assumed and the same update applies for the imaginary
components ℑ½vαQ;ijk�. While this approach is impractical, it
nonetheless serves as an excellent baseline to compare the
effects of the data processing protocol against.
Step 1 includes two operations: squaring the real and

imaginary parts of each quadrature voltage, and then
adding them. The real and imaginary parts of each quad-
rature voltage can be approximated as the same indepen-
dent, identically distributed Gaussian random variables
with mean zero [31,61]. Absent an axion, we label the
variances of these random variables σ2v;ij. An axion,
assumed to be of a given coupling and at a given frequency,
increases the variance to λijσ

2
v;ij, where λij is extremely

close to but greater than unity. The prior update, Eq. (G14),
is the ratio of Gaussian PDFs given by Eq. (1):

uα;ℜQ;ijk ¼
1ffiffiffiffiffi
λij

p exp

�
1 − λ−1ij
2σ2v;ij

ðℜ½vαQ;ijk�Þ2
�
: ðG15Þ

Since ℜ½vQ;ijk� only occurs squared in this prior update
(likewise ℑ½vQ;ijk� in its identical equation), no AP infor-
mation is lost by squaring the real and imaginary quad-
rature voltage components. Furthermore, since Bayesian
updates are by their nature combined multiplicatively, the

update accounting for both components of the quadrature
voltage is

uα;vQ;ijk ¼
1

λij
exp

�
1 − λ−1ij
2σ2v;ij

ððℜ½vαQ;ijk�Þ2 þ ðℑ½vαQ;ijk�Þ2Þ
�
:

ðG16Þ

Because the voltage quadrature components appear in the
prior update only in their Eq. (G1) combination, step 1
preserves AP information content.
The same argument applies to steps 2 and 3.

Multiplicative prior updates have their powers add in the
exponent, hence steps 2 and 3 do not degrade AP
information content. For step 2, this argument assumes
that the axion and the thermal noise fluctuations distribute
power evenly between the X and Y quadratures. For a two-
quadrature measurement where the phase of the axion is
unknown, that assumption is valid.
Step 4 is among the more vulnerable steps to meaningful

information loss. If hxβiji in Eq. (G4) is treated as a number,
then Eq. (G4) amounts merely to the subtraction of a
constant from the raw spectrum random variables xβij,
which will not degrade the information content. In practice,
however, hxβijimust itself be estimated, making it in effect a
random variable. The estimation used by HAYSTAC and
ADMX is performed via SG filters, which estimate hxβiji at
each frequency bin i via the polynomial generalization of a
moving average. If a wide spectral window for the
generalized moving average is used, then hxβiji is estimated
with low variance, and acts like a constant. However, the
SG filtering creates undesired correlations between bins up
to two window-lengths apart, while also slightly attenuat-
ing an axion’s visibility, an effect accounted for in step 9.
The trade-off between the desired filtering effects and the
undesired correlations and attenuation is beyond the scope
of this article, but is discussed at length in Ref. [22]. So far,
no proof exists that SG is the optimal high-pass digital filter
for the data, and we therefore identify step 4 as potentially
admitting of meaningful optimization.
Calculating the processed spectrum sensitivity parame-

ters ηγij of step 5 relies on independent measurements of the
thermal and added noise, magnetic field, and cavity quality
factor and mode-structure properties of the haloscope, as
well as calculations of the power that a dark matter axion
would deliver. Subject to the accuracy of these measure-
ments and calculations, step 5 simply divides the processed
spectra power excess random variables xγij by constants,
preserving information content.
The ML weighting of step 6 is the information-preserv-

ing generalization of the straightforward addition of
steps 1–3, for the case where the random variables being
added have different variances. By the central limit theo-
rem, the rescaled power excesses xδij are Gaussian
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distributed with known variances σδij well approximated as
independent of the presence of any axion which delivers
power far less than vacuum. The pertinent effect of an axion
is to shift the mean of the rescaled power excess from 0 to
μδ, which has no bin or tuning step dependence by
construction. The appropriate prior update delivered by
each rescaled power excess xδij is thus

uδij ¼ exp

�−ðμδÞ2=2þ μδxδij
ðσδijÞ2

�
: ðG17Þ

When all Nt tuning steps’ updates are multiplied, the
result is

YNt

j¼1

uδij ¼ exp

�XNt

j¼1

�−ðμδÞ2=2þ μδxδij
ðσδijÞ2

��

¼ exp

�
−ðμδÞ2=2þ μδxϵi

ðσϵi Þ2
�
: ðG18Þ

Because the updates from all bin-i rescaled spectra power
excesses xδij and variances ðσδijÞ2 can thus be obtained using
the single bin-i combined spectrum power excess xϵi and
variance ðσϵi Þ2, given by Eqs. (G6) and (G7), respectively,
the ML estimation of step 6 preserves AP information
content.
The same argument about ML estimation guarantees that

steps 7 and 8 preserve AP information as well, in the limit
where the axion line shape is truly approximately constant
over spectral scales of ncΔb. Step 9 is in effect properly
accounting for the information loss suffered during step 4,
but is itself simply multiplication by a scalar, and causes no
additional information loss.
In summary, the use of ML estimation, not consistently

applied in previous haloscope analyses [16], makes the

grand spectrum excesses xðjÞi together with the sensitivity

parameters ηðjÞi nearly sufficient statistics for evaluating the
cold dark matter axion hypothesis. We identify only two
areas where the sensitivity can be improved. First, it is
possible that a high-pass filter with lower stop-band
attenuation that maintains acceptable pass-band perfor-
mance would improve the processing sensitivity. Second,
the rationale behind the rebinning (step 7)—that it will
reduce the expected number of axion candidates exceeding
threshold, mitigating the look-elsewhere effect—is unnec-
essary in the Bayesian power measured framework. By not
rebinning (setting nc → n0c ¼ 1 and nr → n0r ¼ ncnr), the
curvature of the expected axion line shape over ncΔb-sized
spectral scales is optimally accounted for. The expected

nc-fold growth of such candidates introduced by not
rebinning is precisely negated in the aggregate prior update,
Eq. (11), by the nc-fold growth in the number N of grand
spectrum bins.25

APPENDIX H: ADDITIONAL FEATURES OF THE
HAYSTAC PHASE 1 DATASET

In addition to the LU candidate at ν⋆LU discussed in
Sec. IV, the dashed, blue curve of Fig. 3(b) also neglects
two other features of the HAYSTAC phase 1 dataset that
appear in Fig. 3(a). First, the BPM reanalysis includes data
from rescans over the upper 100 MHz of the scan window
that were performed during phase 1, run 1 of HAYSTAC
[25]. These rescans were discarded, and new ones per-
formed over some of the same frequencies, because an error
in estimating the expected axion line shape lowered their
sensitivities below the levels required by the predetermined
confidence levels and initial scan sensitivities [22]. The
extra rescan data itself is valid, however, and is thus
included in Figs. 3(a) and 3(b), showcasing the flexibility
of BPM to integrate all available information. We do not
include this extra data in the comparison (dashed blue)
curve, as the existence of extraneous rescan data is not
ordinary in haloscope analyses.
Second, a 3.94σ grand spectrum excess at grand spec-

trum bin 550 (ν550 ¼ 5.59886155) GHz was recorded in the
initial scan. This excess occurs 0.3% of the way into the
scan window, where the number of contributing raw spectra
(Appendix G) was 14, considerably less than the typical 40.
The lower number of spectra implies at once an increased
susceptibility to systematic error and a reduced axion

sensitivity ηð1Þ550 ¼ 0.23. The reduced sensitivity implies
that an axion here has its prior update, Eq. (9), maximized
at gγ ≈ 4.1. This excess ought to have been rescanned
during phase 1 of HAYSTAC, but was not. As such, we
include its positive prior update in the BPM reanalysis. Its
presence is indicated by the dark column at the left of
Fig. 3(a), and is solely responsible for the failure of the
aggregate prior update (solid blue line, Fig. 3) to vanish at
high couplings ≳3.2jgKSVZj. Had the required rescans been
performed, a source of excess would likely have been
discovered or rejected in short order, as in the case of the
LU candidate at ν⋆LU. As such, we remove it from the
comparison (dashed blue) aggregate update curve.

25Future analyses may on the same principle set grand
spectrum bin spacings closer than those of the combined
spectrum. Doing so eliminates the need to account for misalign-
ment (footnote 23) of the axion rest mass with grand spectrum bin
frequency.
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