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Abstract—Recent advancements in cloud computing have
driven rapid development in data-intensive smart city appli-
cations by providing near real time processing and storage
scalability. This has resulted in efficient centralized route plan-
ning services such as Google Maps, upon which millions of
users rely. Route planning algorithms have progressed in line
with the cloud environments in which they run. Current state
of the art solutions assume a shared memory model, hence
deployment is limited to multiprocessing environments in data
centers. By centralizing these services, latency has become the
limiting parameter in the technologies of the future, such as
autonomous cars. Additionally, these services require access
to outside networks, raising availability concerns in disaster
scenarios. Therefore, this paper provides a decentralized route
planning approach for private fog networks. We leverage recent
advances in federated learning to collaboratively learn shared
prediction models online and investigate our approach with a
simulated case study from a mid-size U.S. city.

Index Terms—Urban Mobility; Routing; Federated Learning;
Fog Computing

I. INTRODUCTION

Cities are evolving at a rapid pace. Over half the world’s
population currently lives in urban areas [1]. Along with
a growing population, new challenges are emerging as an
increase in housing density, population, and traffic strain city
services. To meet these demands, both cities and private com-
panies have turned to data-intensive applications to maximize
efficiency of existing resources.

Cloud environments provide near real-time scalability of
processing and storage resources, making cloud deployment
the standard model for data-intensive applications. One such
case is route planning services, which process millions of
queries a day to guide vehicles from point A to point B.
These services take into account the global transportation in-
frastructure and current traffic conditions to return the shortest
route to the end user. In this context, routing is done on a
time-dependent graph where the shortest path depends on the
departure time and the current location of the end user.

Current approaches consist of implementing classic shortest
path algorithms on either a single server or using a parallel
approach in which a full road network is partitioned into
multiple processes on a centralized cloud. There are numerous
disadvantages in deploying route planning services to the
cloud. First, the end user must send each request to a distant
data center through a WAN network, inducing significant
latency. This is satisfactory for current routing applications
in which it is assumed that latency can be sustained for each

request. However, latency demands of future technologies such
as autonomous vehicles are already showing the limitations of
centralized cloud-base route planning models. Additionally,
cities typically use third party services [2] for dispatching
emergency services. By relying on centralized services in
remote data centers, cities risk service availability issues
during disaster scenarios, precisely when such services are of
most importance.

One potential solution is to deploy routing services on a
private city owned sub-network of decentralized fog nodes
called road side units (RSUs). In this scenario RSUs are
low powered devices similar to Raspberry Pis [3] scattered
throughout a city along roads and highways. By linking these
devices together in a private sub-network, a reliable network
can be created for smart city route planning services that
can remain in operation without connection to outside cloud
services. Additionally, moving processing to the edge allows
end users to connect to nearby RSUs and potentially reduce
latency.

The primary concern in moving route services to a fog com-
puting model is that memory is not shared between processes
and communication between fog nodes is a primary source of
latency. Therefore, we aim to provide a decentralized route
planning approach that accounts for communication latency
between processes and is well-suited for deployment entirely
on private fog networks with intermittent access to remote
cloud services. We use prediction models to reduce the search
space and limit communication between RSUs at inference
time.

Typically, model training occurs offline in centralized cloud
environments. However, this process can induce significant
bandwidth demands as raw data is transferred to the cloud for
training. Therefore we use federated learning [4] to collabora-
tively learn shared prediction models online for the route plan-
ning problem. In our approach, all training occurs at the RSUs
and only the model weights are shared between processes
and with the central cloud, therefore reducing communication
overhead during training.

Contributions: The contributions of this work are as fol-
lows:

1) We provide a decentralized approach for route planning
on time-dependent transportation networks. All routing
occurs at the network edge within a private RSU fog net-
work where access to outside cloud services is assumed
to be intermittent.
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2) Prediction models are used to condense the search space
and limit communication between fog nodes.

3) We apply federated learning to collaboratively learn
shared prediction models online. All training occurs on
the RSUs and by sharing model weights our system
avoids costly transfer of raw data between processes.

4) We apply our approach using a simulated case study from
a mid-size U.S. city and compare it to current state of the
art methods.

We find that our approach reduces latency and memory
requirements compared to current state of the art parallel route
planning approaches. The outline of this work is as follows:
fundamental notation and background is provided in Section
II and related research is provided in Section III. Section IV
covers the system model and deployment while V outlines our
decentralized route planning approach. Lastly a simulated case
study is provided in Section VI.

II. PROBLEM STATEMENT

In this section we provide necessary background on model-
ing transportation networks. Table I summarizes the symbols
used throughout this paper and Figure 1 represents available
resources.

A. Transportation Networks as a Graph

Transportation networks are naturally modelled as time-
dependent graphs [5]. Let Gτ = (Vτ , Eτ ) be the time-
dependent directed graph where Vτ is the set of vertices and
Eτ ⊆ Vτ × Vτ is the set of edges of a road network at time
interval τ .

Since the graph Gτ is time-dependent, the travel time on an
edge e ∈ Eτ varies with time. The edges in the network are
weighted by a periodic time-dependent travel time function
T (e, τ) : Π → N0 where Π depicts a set of time points or
time-periods.

The function T (e, τ) is dependent on the network state and
can be modeled as a latency function [6] which can be learned
from historical states of the network {G0, G1, ..., Gτ−1}.
Given the current state of the network we can find the expected
travel time for intervals {τ + 1, τ + 2, · · · , τ + f} where f is
the number of time intervals in the future. To differentiate this
from the actual travel time function, we denote the learned
travel time function as T̂ (e, τ).

Using this model, routing is a problem of finding the short-
est path between two nodes. In time-dependent graphs, the
shortest path depends on the departure time at the source node.
Hence the route query is defined by a tuple (s, d, τs), where
s ∈ Vτs is the source, d ∈ Vτd is the destination, τs is the
departure time from s and τd is the arrival time at destination
d. In contrast to the time-independent graph, here the directed
route R for the query (s, d, τs) involves finding a sequence
of edges along the time [(e1, τ1), (e2, τ2), · · · , (en, τn)] from
source s at time τs to reach destination d at time τd. The
cost of the route len(R) is defined as the sum of the time-
dependent weights from the function T (e, τ) for each edge in
route such that len(R) =

∑
(e,τ)∈R T (e, τ).

TABLE I: List of symbols

Symbol Description
R Real Numbers
N0 Natural numbers
G Static graph, G = (V,E)

V Set of network vertices
E Set of network edges
τi Actual time interval i of a day
τ̂i Estimated time interval i of a day
Π Set of time points or time-period (seconds, minutes or hours

of a day)
RSUi Road Side Unit i
R Directed path from source vertex s ∈ V to destination vertex

d ∈ V , at time interval from source τs
Rsd Partial route from source vertex s ∈ V to destination vertex

d ∈ V , at time interval from source τs
len(R) Travel time of the route R
Gτ State of time-dependent graph (V,E) at time τ
Vτ Set of vertices at at time interval τ
Eτ Set of edges at at time interval τ
T Travel time function
T̂ Travel time predictor
Ê Equivalent Grid Routing predictor

GetRoute Shortest path algorithm that uses Travel time predictor T̂ to
find route with minimum travel time

gi Grid i
Gi Subgraph whose each vertices and edges maps to grid i
t̂uv Estimated travel time from vertex u ∈ V to vertex v ∈ V

using Travel time predictor T̂

B. The Decentralized Routing Problem
We are primarily concerned with routing on decentralized

fog networks. We assume there is a set of fog nodes (RSUs)
located along highways and roadways which are scattered
throughout the transportation network. We also assume that
the connection between RSUs and central cloud services is
intermittent, therefore all routing occurs at the RSUs.

Ultimately we must divide the transportation graph G =
(V,E) into subgraphs G1, G2, · · · , Gk which can be mapped
to an RSU. We first divide the city into a set of grids
g1, g2, · · · , gk where each grid represents a small square
region of the city. Each grid gi corresponds to a subgraph
Gi which is the portion of the transportation graph G within
this region. Then one or more subgraphs G1, G2, · · · , Gk are
mapped to a single RSU.

This results in a hierarchical structure as shown in Figure
1. At the base level there are the grids. At the next level each
RSU is responsible for a set of grids in the network. At the top
level there is a centralized cloud responsible for coordination
and deployment of the network.

III. RELATED WORK

In this section we cover related research and limitations of
existing solutions.

A. Current State of the Art Routing
Current state of the art route planning is typically deployed

in centralized cloud-based systems [7], [8], [9]. In this archi-
tecture, data is stored in distributed databases while a travel
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Fig. 1: Hierarchical representation of decentralized routing archi-
tecture. The city is divided into grids which are mapped to an
RSU. All routing occurs at the RSU level. RSUs can intermittently
communicate with a central cloud.

time model represents the current state of the transportation
network. Vehicles query a central router for routes.

We draw on two bodies of work in routing algorithms that
heavily influence the central architecture for route planning.
The first is single server routing where it is assumed that the
routing network resides entirely in a single physical node or
server which handles all routing queries. The second is parallel
routing where the network is partitioned between multiple
nodes and routing queries are processed concurrently using
multiple processes.

The single server approach relies on work from Dijkstra
[10] and Bellman and Ford [11], [12], who proposed some of
the first algorithms to solve the routing problem in a single
server. Many advanced route planning algorithms that exist
today are variants of these works. While these algorithms
compute optimal shortest paths, they are too slow to process
real-world data sets such as those derived from large-scale road
networks. To address this issue, there are many techniques
aimed at speeding up these algorithms. Such techniques often
are based on clever heuristics that accelerate the basic shortest
paths algorithms by reducing their search space. Bi-directional
search [13], [9] not only computes the shortest path from
the source s to the target t, but simultaneously computes the
shortest path from t to s on the backward graph. Guided search
approaches such as A∗ [14] use heuristics to guide the search
and limit the search space. Goldberg et al. proposed the ALT
approach in which they enhance A∗ by introducing landmarks
to compute feasible potential functions using the triangle
inequality [9], [15]. In other work, contraction techniques are
used to speed-up the shortest path computation. This includes
highway hierarchies [16], [7] which exploits the hierarchical
in road networks, while contraction hierarchies [8] contract
the graph in a pre-processing stage.

To parallelize the routing problem, a full road network
is typically partitioned into multiple processes and the edge
expansion proceeds similarly to Dijkstra. In parallel versions
of Dijkstra, the priority queue is based on a shared mem-
ory model where it is assumed that communication between
processors is constant [17], [18]. The parallel priority queue
supports simultaneous insertion and deletion of an arbitrary
sequence of elements ordered according to key, in addition to
find-minimum and single element delete operations [17], [19].
Techniques to parallelize advanced routing algorithms such as

contraction hierarchies are only limited to the pre-processing
step where the contraction of nodes can be done in parallel
[20].

B. Limitations of Centralized Route Planning

Cloud based route planning models assume near unlimited
processing and network availability. This makes current ap-
proaches poorly suited for deploying route planning services
on private fog networks where resources are constrained
and access to outside cloud resources can be intermittent,
particularly in disaster scenarios.

Many approaches to parallel route planning [17], [18],
[19] assume that the graph network has static weights which
doesn’t hold in real transportation networks where traffic
congestion changes with time. In a time-dependent network,
edge expansion depends on arrival/departure time at each edge,
hence processing is sequential. There are some approaches
[20] which model the time-dependent nature of the network
but the parallelization is only limited to the pre-processing
phase and not during real-time query.

All of these approaches use a parallel shared memory model
where an assumption is made that the shared memory allows
constant time direct communication between each pair of pro-
cessors. This holds in a multiprocessing system and possibly
in a data center, but this assumption is not realistic in a
decentralized setting where communication between processes
can add significant latency. While previous work of ours has
focused on data integrity in distributed RSU networks [21],
limited work has been done on routing in such networks.

IV. SYSTEM MODEL AND DEPLOYMENT

In this section we outline the system architecture, data
collection and deployment for decentralized route planning.

A. Architecture

Figure 2 shows our decentralized architecture for route plan-
ning. The fundamental components are outlined as follows:

1) Road Side Unit (RSU): low-powered compute nodes [3]
located near roads and highways throughout the trans-
portation network. These nodes are assumed to have
computational resources similar to Raspberry Pis. Linked
together, the RSUs form a private fog network.

2) Central Server: The central server is assumed to be a
cluster of compute and storage nodes with horizontal on
demand scaling. The primary role of the central server is
as the central administrator for the RSU network meta-
data and resources. It is assumed that access to the central
server is intermittent and can fail in disaster scenarios.

3) Vehicle: Vehicles are assumed to be GPS equipped and
network enabled. They provide two functions. First, they
periodically send location data and travel speed to the
RSU network. Second, vehicles can query the network
for routes from their current location to a destination.

4) Admin: Maintains the global transportation network graph
G = (V,E) and helps divide the network into sub-graphs
as outlined in Section IV-C.
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Fig. 2: Decentralized architecture and services for route planning.

B. Data collection

Our system consists of the following types of data:

1) Location data: This data is periodically
collected from vehicles and is stored as a set
{(e1, τ1, t1), · · · , (en, τn, tn)}, where ei is the edge
traversed, τi is the time interval of the day.

2) Trip data: This data consists of a set of route plans
{R1, · · · , Rn} where each route is a sequence of edges
Ri = [(e1, τ1), (e2, τ2), · · · , (ep, τp)] from the location of
the vehicle to its destination.

3) Network data: Each RSU maintains a list of subgraphs
of the global routing graph G = (V,E). Location data
and trip data from vehicles travelling on this subgraph is
maintained at that RSU.

C. System Deployment

In this section we outline the procedure for deploying the
system using Algorithm 1.

1) Central Server Setup: First, Admin sends the full graph
G = (V,E) and a geohash precision prec to the Network
Partitioner in Central Server. The geohash precision value
determines the resolution or area of the desired grids. For
this we use geohash encoding [22] to encode the geographical
coordinates.

The Network Partitioner receives the graph G = (V,E) and
prec from the Admin and partitions the network into grids
{g1, g2, · · · , gk} using Algorithm 1. The algorithm proceeds
by first annotating each vertex v with the grid they belong
to using the geohash encoding function gh.encode(v, prec),
where prec represents the precision of the encoding. Then
for each edge eu,v it checks if both the vertices u and
v are in the same grid. If they are in different grids a
boundary vertex w is found at the intersection between the
two grids through which the edge passes using the function
intersection(eu,v, u.grid, v.grid). Vertex w splits edge eu,v
into edges eu,w and ew,v . We then add vertex w and edges
eu,w and ew,v to the graph G and remove edge eu,v .

2) Deployment to RSUs: Each RSU requests the subgraphs
for a set of grids {g1, g2, · · · , gk} from the Central Server.
The Central Server receives the set of grids {g1, g2, · · · , gk}
and returns the set of subgraphs {G1, G2, · · · , Gk} to the
requesting RSU to be used for decentralized routing in Section
V.

Algorithm 1: Partition Network
Data: A graph G = (V,E), g = {g1, g2, · · · , gn}, prec =

geohash precision value.
1 begin
2 foreach v ∈ V do
3 v.grid = gh.encode(v, prec);

4 foreach eu,v ∈ E do
5 eu,v = edge between vertices u and v;
6 if u.grid 6= v.grid then
7 w = intersection(eu,v, u.grid, v.grid)
8 w.grid = (u.grid, v.grid)
9 G.add(w, eu,w, ew,v)

10 G.remove(eu,v)

V. DECENTRALIZED ROUTING

Our system needs to provide a shortest route from an origin
location to destination. Any RSU can receive a route query
between two points, which may be within one of the RSU’s
subgraphs or require communication with neighboring RSUs.

In this section we outline prediction models for estimating
both travel times throughout the network as well as predicting
which next RSU should be contacted to find the current short-
est path for that query. We then provide the full decentralized
routing algorithm and an example execution procedure on a
single routing query.

A. Training With Federated Learning

Model training occurs on the RSUs. We achieve this by
leveraging recent advances in federated learning [23] which
enable the RSUs to collaboratively learn a shared prediction
model without transferring raw data from the devices to the
centralized cloud.

The goal of federated learning is to learn a model with
parameters embodied in a real matrix W ∈ Rd1×d2 from
vehicle data stored across the RSUs. Here W is a 2D matrix
representing the parameters of each layer in a fully-connected
feed-forward network [24]. d1 and d2 represents the output and
input dimensions respectively. The tasks proceed in rounds
and each round alternates between local and global model
updates. The general procedure for model training is outlined
as follows:

1) Distribute global model: Admin randomly initializes the
weights W0 of the prediction model and stores it in
Central Server. In round t ≥ 0, the Central Server
distributes the current model Wt to a subset St of nt
RSUs.

2) Local update: Each RSU then independently updates the
model based on its local data. Let the updated local
models be W1

t ,W
2
t , · · · ,W

nt
t , so the update of each

RSU i can be written as Hi
t := Wi

t −Wt, for i ∈ St.
For this update we use stochastic gradient descent (SGD)
[25]. Each RSU then sends the update back to the Central
Server.
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TABLE II: Input features for Travel Time and Equivalent Grid
predictors.

Feature Dim Description
From location 42 Geohash encoded binary of start loc
To location 42 Geohash encoded binary indication of

To coordinate of an edge
Week of year 52 One-hot encoded binary indication of

Week of year used to sample travel
time data

Day of week 7 One-hot encoded binary indication of
Day of week used to sample travel time
data

Hour of day 24 One-hot encoded binary indication of
Hour of day used to sample travel time
data

Minutes 60 One-hot encoded binary of Minutes of
hour used to sample travel time data

TABLE III: Target features for Travel Time and Equivalent
Grid predictors.

Feature Dim Description
Travel time 1 One-hot encoded binary indication of

the true travel time data collected from
HERE API

Next Grid 28 Geohash encoded binary indication of
a Grid

3) Global update: aggregation of local updates.

Ht :=
1

nt

∑
i∈St

Hi
t,Wt+1 := Wt + ηtHt.

Here ηt is learning rate. For simplicity we can choose
ηt = 1.

B. Prediction Models

Our decentralized routing approach requires two prediction
models described as follows.

1) Travel Time Predictor: A travel time predictor model
estimates travel time on an edge ei in time interval τi. Let
edge ei define a directed edge from vi to vi+1, then the travel
time function is defined as T (vi, vi+1, τi) where τi refers to
the departure time at vertex vi.

For training, we build an input feature set described in Table
II. The resulting feature space has 228 dimensions. We used
one-hot encoding to map the travel time τi to one-hot encoded
binary for Week of Year, Day of Week, Hour of Day and
Minutes of Hour. The output of this model is travel time as
shown in Table III which is a scalar value representing the
travel time on an edge.

Geohash encoding is used to map vi and vi+1 to the From
location and To location respectively. An important aspect of
the feature set is the geohash resolution. We used a resolution
of 9.5m which matches the width of most major road segments
in the United States. We found that reducing resolution to
greater than 9.5m caused some vertices to belong to the same
geohash while increasing resolution added complexity to the
model and did not noticeably improve model performance. A
resolution of 9.5m was represented by 42 bits.

2) Equivalent Grid Routing Predictor: The search proce-
dure can extend to multiple RSUs. As more RSU are included
in the search, it can incur huge delays from communication
costs. Hence, the goal is to minimize the number of message
exchanges required during the search. Therefore the equivalent
grid routing model predicts the best neighboring grid through
which the shortest path likely resides for a particular route.
By iteratively finding the next grid the optimal route will
pass through, the search space is reduced and communication
is optimized. Hence we learn an Equivalent Grid Routing
Predictor Ê such that Ê(s, d, τs) gives the next best possible
grid to travel to destination d and τs is the departure time from
s. For this model, we use the same feature set as shown in
Table II. The output of this model is the next grid as described
in Table III which represents the next grid in the route.

C. Decentralized Route Planning Algorithm

The goal of the decentralized route planning is to distribute
the query among different RSUs. One of the problems we
discussed earlier is that state of the art solutions for par-
allelizing the query fails in a time-dependent network. We
mitigate this problem by using Travel Time Predictor T̂ . To
minimize communication between RSUs during the search we
use Equivalent Grid Routing Predictor Ê.

Algorithm 2 handles decentralized routing queries from
vehicles as well as from other RSUs as the query is propagated
forward through the network. Algorithm 3 iteratively builds the
route as the results propagates back to the RSU from which
the query started.

We first list some utility functions that are used in the
algorithm and then discuss the algorithm in detail. The utility
functions are:

1) gh.encode(v, prec): Uses geohash encoding to find the
grid to which the vertex belongs to with geohash preci-
sion prec.

2) GetRSU(gi): Finds the RSU mapping for any grid i.
3) GetRoute(G, s, d, τs): This function uses network G,

Dijkstra [10] and Travel time Predictor T̂ to find the route
from source s at departure time τs to destination d with
minimum travel time.

4) msg(type,RSUi, val): An async call for communicating
the type of message (type) and actual message (val) to
an RSU i. There are two types of messages:

a) query: Upon receiving this message, Algorithm 2 is
executed. The message, represented by (val) is passed
as an argument to this function.

b) partial path: Upon receiving this message, Algorithm 3
is executed, with the message represented by (val) as
input. If the final route plan is returned as a response, it
is communicated to the client which made the routing
request.

D. Decentralized Route Planning Example

To demonstrate execution, Figure 3 shows an example
where a network is partitioned into 4 RSUs. Figure 4 shows
a sequence diagram for this example.
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Algorithm 2: Handle Query
Data: A graph G = (V,E), s ∈ V, d ∈ V , τs = departure

time from vertex s, RSUo = RSU from where the
query origins, id: Unique identifier to identify this
query.

1 begin
2 save(id, (s, d, τs));
3 gs = gh.encode(s);
4 gd = gh.encode(d);
5 if gs 6= gd then
6 gnext = Ê(s, d, τs);
7 RSUnext = GetRSU(gnext);
8 {v1, v2, · · · , vb} = gs.intersect(gd);
9 foreach v ∈ {v1, v2, · · · , vb} do

10 t̂sv = T̂ (s, v, τs);
11 msg(“query”, RSUnext, {id, v, d, τs +

t̂sv, RSUo});
12 foreach v ∈ {v1, v2, · · · , vb} do
13 Rp = GetRoute(G, s, v, τs);
14 msg(“partial path”, RSUo, {id, s, v, τs, Rsv});

15 else
16 Rp = SP (G, s, d, τs);
17 msg(“partial path”, RSUo, {id, s, d, τs, Rsd});

Algorithm 3: Handle Partial Path
Data: A graph G = (V,E), u ∈ V, v ∈ V , τu = departure

time from vertex u, R = Route from u to v,
starting at τu, id: Unique identifier to identify this
query.

Result: Final Route plan (id,Rfinal) or NULL
1 begin
2 (s, d, τs) = get(id);
3 if v == d then
4 Rfinal = GetRoute(Gid, s, d, τs);
5 return (id,Rfinal);
6 else
7 Gid = GetGraph(id);
8 if Gid == NULL then
9 Initialize Graph Gid;

10 foreach (ei, τi) ∈ R do
11 Gid.add(ei);
12 Gid[ei] = (τi, τi+1 − τi);
13 SaveGraph(id, Gid);
14 return NULL;

In this example, RSU1 receives a route query (id, s, d, τs)
from a client and calls Algorithm 2 to find the route. Since
the source s and destination d do not belong to the same
grid, Equivalent Grid Predictor is called to find the next best
possible grid to reach destination d. Then the algorithm finds
the nodes at the intersection of the current grid and the next

Fig. 3: Decentralized Route Planning example setup.

Fig. 4: Sequence Diagram of Decentralized Route Planning example.

best possible grid. After getting all the boundary vertices, for
each boundary vertex Travel Time Predictor estimates the time
it will take to reach that vertex. An asynchronous message
(“query”, id, v12, d, τ̂v12 , RSU1) is sent to RSU2.

After sending the message, RSU1 proceeds to find
the actual route from s to boundary vertex v12. Af-
ter getting the route, denoted by Rs12, a message
(“partialpath”, id, s, v12, τs, R

s
12) is prepared and sent to the

requesting RSU informing the starting RSU that the operation
resulted in a partial path, i.e. the destination is not located in
that RSU .

This message is meant to be sent to the RSU to which
the client sent the request. Since its RSU1, which is itself,
a function call is made to handle this message where the
function arguments are the same as the message. This function
implements Algorithm 3 which handles the partial routes or
paths. We call it partial route because this is still not the final
route that needs to be given to the client.

The goal of Algorithm 3 is to create a new graph with the
id of the request or if it already exists, add all partial routes
to the graph and finally, do a simple shortest path routing on
it.
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At this step, RSU1 waits for partial routes from the other
RSUs for this request, identified by its id, and executes Algo-
rithm 3 if it receives a message with the partial route in it. This
process continues until RSU1 gets a partial route which has the
destination in it. When a partial route contains the destination
vertex Algorithm 3 executes GetRoute(Gid, s, d, τs) to obtain
the final route.

E. Decentralized Route Planning Properties

As discussed in Section III, A∗ is a classic algorithm for
informed search, which relies on a heuristic function to guide
the search procedure. In this context, our approach for route
planning is an informed search procedure where Equivalent
Grid Routing Predictor acts as a heuristic function.

It is well established that if a graph G is finite and edge
weights are non-negative, then A∗ is guaranteed to terminate
and is complete, i.e. it will always find a route from source to
destination if one exists. Our approach is similar to A∗, but
it cannot give guarantees on its termination and hence may
not be complete. This is due to our use of learned models in
the Equivalent Grid Routing Predictor. Therefore as with all
machine learning models, the accuracy of our approach is tied
to the accuracy of the learned models.

VI. EXPERIMENTS AND RESULTS

In this section, we evaluate our decentralized architecture
for route planning with a case study from a mid-size U.S.
city.

A. Experiment Setup

1) RSUs: Cluster of 5 RSUs simulated by Docker [26]
containers. RSUs are static as their location does not
change with time.

2) Global Network Graph: We use OpenStreetMap to gen-
erate the underlying routing graph G = (V,E). For the
region in this study there are a total of 233, 123 nodes
and 474, 213 edges.

3) Graph Partitioning: We used a geohash precision value of
28 bits, which results in a grid area of 1.44km2. A total of
1034 grids are generated as a result of the partition. These
grids are assigned to the 5 RSUs as shown in Figure 5.

4) Location data: To simulate vehicle locations in the region,
we use historical traffic data collected at an interval of 1
minute from the HERE API [27] for the region. Traffic
data from January 1 to January 31, 2018 was used for
training and data from Feb 1 to Feb 7, 2018 was used
for testing.

5) Trip data: To simulate routing queries from vehicles, we
synthetically generate 1,000,000 source and destination
pairs which are chosen randomly within the region. For
the source-destination pairs, departure times were chosen
uniformly from 9am-5pm.

Fig. 5: Partition of city into grids of area 1.44km2 and placement of
grids in RSUs. Grids are represented by the 1034 square grids while
the RSU regions are represented by bolded black lines.

Fig. 6: MAE vs Epoch curve during training of Travel time predictor.

B. Evaluation of Prediction Models

1) Travel Time Predictor - Training Evaluation: For the
travel time predictor we used a deep feed-forward neural
network (DNN) [28] for regression to estimate travel time
of an edge. We used SGD [25] as the optimizer and a hid-
den layer configuration of [200, 190, 170, 150, 100, 50, 20, 10].
Early stopping criteria was implemented to avoid over-fitting.
Fig. 6 shows the change in validation Mean Absolute Error
(MAE) during the training. We found that the federated
learning model took longer to train than the central learning
model.

Table IV evaluates the resource consumption of the model
during training for federated learning and central learning. As
the central learning model was trained on a single large server,
we divided the resource consumption of the central model by
the number of fog nodes for a direct comparison with the

7



TABLE IV: Resource consumption for Travel time predictor.

CPU (%/RSU) Memory (MB/RSU) # Messages

Central
Learning

78% (median)
97% (max)

191 (median)
307 (max) N/A

Federated
Learning

67% (median)
84% (max)

51 (median)
88 (max) 6255

TABLE V: Resource consumption for Equivalent Grid Routing
predictor.

CPU (%/RSU) Memory (MB/RSU) # Messages

Central
Learning

81% (median)
93% (max)

217 (median)
336 (max) N/A

Federated
Learning

74% (median)
97% (max)

64 (median)
91 (max) 9543

federated training model. Results show that federated learning
used less CPU per node as well as 3.4 - 3.7 times less memory
per node than central learning. Lastly, federated learning sent
6255 messages while training.

2) Equivalent Grid Routing Predictor - Training Evalua-
tion: We use a deep feed-forward neural network (DNN) [28]
for a binary classification that gives the next best possible
grid for a given pair of source, destination along with the
time interval. For binary classification, we used a sigmoid
function [29] for the output layer and an Adam optimizer
was used as the optimizer for the model. The configuration
for hidden layers was [250, 200, 170, 100, 50, 20, 10]. Fig. 7
shows the loss vs epoch curve during the training phase for
this predictor. Federated learning took more time to train than
central learning. The loss for a model trained with central
learning was 0.32 which is less than the model trained from
federated learning which was 0.37.

Table V evaluates the resource consumption of the federated
learning and central learning models during training. We find
that federated learning used less CPU than Central learning
per node on average. Additionally, federated learning used
3.3 - 3.6 times less memory per node than central learning.
Federated learning sent 9543 messages while training.

C. Evaluation of Decentralized Route Planner

During testing we monitored CPU and memory consump-
tion per node compared to current state of the art solutions.
The resource requirements of each method is presented in Ta-
ble VI. To evaluate performance of our approach we measured
the query response time per request as well as the accuracy
of the returned routes compared to the optimal route.

1) Resource Consumption: We find that our approach uses
more CPU than single server Dijkstra or parallel Dijkstra
because in our approach shortest paths are calculated between
boundary nodes in parallel when the request is received. In
terms of memory, we find that our approach uses less memory
per node than single server Dijkstra and slightly more memory
than parallel Dijkstra. We find that contraction hierarchies and
parallel contraction hierarchies use the most memory due to
caching shortcut edges.

Fig. 7: Loss vs Epoch curve during training of Equivalent Grid
Routing predictor

TABLE VI: Evaluation of routing algorithms.

Algorithm CPU per RSU
(% used)

Memory per
RSU (MB)

Query time per
trip request (s)

Single server Dijk-
stra

23% (median)
31% (max) 5.78 0.97 (median)

Parallel Dijkstra 27% (median)
36% (max)

0.76 (median)
1.14 (max)

9.2 (median)
19.13 (max)

Contraction Hierar-
chies

18% (median)
23% (max) 13.36 0.016 (median)

Parallel Contraction
Hierarchies

13% (median)
21% (max)

3.31 (median)
5.79 (max)

5.78 (median)
10.21 (max)

Our approach 52% (median)
67% (max)

0.94 (median)
1.31 (max)

2.43 (median)
5.81 (max)

2) Query Response Time: Single server Dijkstra and con-
traction hierarchies result in the lowest query response times
as expected since this simulation was done on one machine.
It is expected that in production cloud environments the
latency between vehicles and the cloud would factor into
this result. Parallel algorithms such as parallel Dijkstra and
parallel contraction hierarchies have higher query times than
our approach since their search proceeds sequentially.

3) Accuracy: We found that our approach returned no route
for 0.8% of the queries and a sub-optimal route (i.e. longer
than the shortest route) for 7.6% of the queries. Therefore we
found that 91.6% of routes from our model were the shortest
route. As our approach is reliant on trained models, it is
expected that our model improves as more data is available
for training.

VII. CONCLUSION AND FUTURE WORK

In this work we provided a decentralized route planning ap-
proach and deployment model for fog networks. Our approach
uses prediction models to limit communication between fog
nodes and thus improve latency and memory demands over
current parallel approaches to route planning. The core of our
architecture relies on data-driven models that estimates travel
times and guides the search procedure during query time.

Additionally, to limit communication during training we
used recent advances in federated learning to train the models.
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Through this approach all training occurs on the RSUs and
only model weights are shared between nodes. Therefore
costly transfer of raw traffic data is avoided, reducing band-
width stress during training. This work was evaluated through
a simulation using real traffic data for a mid-sized U.S. city.

Potential extensions of this work include investigating ways
to improve travel time and grid prediction models to mitigate
the impact of errors on user trips, as well as expanding the
architecture to handle node failures. Additionally, our approach
can be extended to allow multiple modes of transportation.
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