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Abstract— Monitoring coral reef populations as part of
environmental assessment is essential. Recently, many marine
science researchers are employing low-cost and power efficient
Autonomous Underwater Vehicles (AUV) to survey coral reefs.
While the counting problem, in general, has rich literature, little
work has focused on estimating the density of coral population
using AUVs. This paper proposes a novel approach to identify,
count, and estimate coral populations. A Convolutional Neural
Network (CNN) is utilized to detect and identify the different
corals, and a tracking mechanism provides a total count for
each coral species per transect. Experimental results from
an Aqua2 underwater robot and a stereo hand-held camera
validated the proposed approach for different image qualities.

I. INTRODUCTION

Coral reefs are an essential part of the marine ecosystem
and support a rich diversity of life [1], [2] with significant
economic value and social amenity. Projected increases in
global temperatures of 2 — 4.5°C by 2100 [3] indicate that
mass coral bleaching events are likely to become an annual
phenomenon by 2050 [4], [5]. The widespread mortality of
corals following mass bleaching events reduces the structural
complexity of reefs, thus eliminating the 3-D habitat. This
habitat loss affects diversity and population of coral reef
fish and invertebrates communities adversely. Therefore, the
monitoring of health of coral ecosystems by scuba divers and
new technologies, such as underwater robots [6], has become
increasingly significant. As a result, millions of images are
being collected. While image acquisition has evolved, reef
monitoring still requires the identification and counting of
different coral species, a task primarily performed by human
experts.

Underwater and surface autonomous vehicles have been
used for a variety of monitoring tasks, mainly focusing
coral reef inspections, [7]-[9] even in deep waters [10].
Furthermore, floating cameras have also been employed [11],
[12] to collect visual data with reduced cost. In this paper
we have utilized an Aqua2 [13] Autonomous Underwater
Vehicle (AUV) [14] and a hand-held stereo GoPro camera'.

Object counting is an active research field, and in par-
ticular, the coral counting problem is challenging for many
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Fig. 1. Aqua2 AUV collecting visual and acoustic data over a coral reef,
Barbados.

reasons. Firstly, visibility, color suppression and hazing un-
derwater make detection extremely difficult. Objects within
the field of view are often so obscure that both deep mod-
els and humans cannot identify. Moreover, coral counting
encompasses both spatial and temporal domains. Once an
object is detected, it is imperative to prevent recount after
detection in the subsequent image frames. Finally, perform-
ing detection and counting on a low-powered AUV poses
significant constraints on the choice of the detection model
and the frequency of the detection process.

To analyze coral reef visual data, marine biologists cover
certain transects, such as straight lines or rectangles, over
the coral reef. Afterwards, domain experts analyze the video
to count or annotate coral species to estimate population
density. This paper proposes a novel technique to automate
this process. In this work we have slightly modified a recent
deep learning network, RetinaNet [15], to account for the
much-reduced number of training examples, in the presence
of high-class imbalance among coral samples in the dataset.
The modified network identifies and localizes different coral
species in an image. The complete system has a constant
stream of images as input, either from an AUV or a hand-
held camera; images are fed into the Convolutional Neural
Network (CNN), and different coral species are identified
and localized in the image by a bounding box. Then each
bounding box is tracked in successive images using the KCF
tracker [16] from OpenCVz. If a new detection occurs in
the vicinity of a tracked bounding box, then the bounding
box coordinates are updated, but the coral count does not
increase.

It is worth noting that the proposed methodology for coral
identification and counting, even when performed off-line,

2http://www.opencv.org
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automates the process of identifying the biodiversity for a
fixed trajectory using data collected by a robot. Different
hardware architectures have been evaluated [17] to port the
detection and tracking system on-line, a task that is beyond
the scope of this paper.

Experimental verification over two datasets collected at the
coral reefs of Barbados has demonstrated the accuracy of the
proposed system. To our knowledge, there has not been any
other work on automated coral counting.

The next section provides an overview of related work.
Section III describe the proposed methodology for au-
tonomous coral identification and counting. Experimental
results from an AUV and a hand-held stereo camera are
discussed in Section IV. We conclude this paper with a
discussion of experimental results and directions for future
research.

II. RELATED WORK

A large number of algorithms has been proposed to tackle
the counting problem in the visual domain. These algorithms
mostly fall into either regression-based methods or detection
based methods. Regression-based methods [18]-[23] use
CNN based models to predict the number of objects in
the image without explicitly classifying and localizing the
objects. Recent works on regression based methods generate
density maps for image patches and later integrate over the
map to produce the object count. However, most of these
regression based methods aimed at solving counting the
problem in a single image, thus have no mechanism for track-
ing over successive images. On the other hand, in detection
based methods [24]-[26], a detector (usually CNN based) is
utilized to localize the objects in the image with bounding
boxes. These bounding boxes are counted to estimate the
number of objects present in the image. In CNN based
detectors, there exist two distinct approaches: two-stage
detectors (region proposal based) and one-stage detectors.
In the two-stage approach, the first stage generates a sparse
set of object proposals and the second stage classifies the
proposals into foreground classes and background. R-CNN
[27] significantly improved two-stage detectors using a CNN
to generate proposals. The Faster-RCNN [24] integrated the
region proposal generation and the proposal classification
into a single CNN, achieving higher speed and accuracy
gains in object detection. On the other hand, one stage
detectors uses Feature Pyramid Networks [28] to enable
object detection at multiple scale. In one-stage detectors,
OverFeat [29], SSD [30], [31] and YOLO [25], [32] showed
tremendous speed improvements but with accuracy trade-
off. Even with large computational resource available, the
single stage detectors trail in accuracy behind the two stage
detectors.

Recent work by Lin et al. [15] significantly advanced the
one-stage detection network matching state-of-the-art results
of the two-stage detectors. Lin et al.indicated that the class
imbalance during training of one-stage detectors is the main
reason for low accuracy performance. This class imbalance
is usually handled in two-stage detectors by using different

sampling heuristics such as a fixed foreground-to-background
ratio or On-Line Hard Example Mining (OHEM). To better
train detector models in the presence of class imbalance, Lin
et al. [15] proposed a new loss function that is a dynamically
scaled cross entropy loss. Our work is inspired by the model
proposed by Lin et al. [15] as it closely matches our problem
domain.

Visual tracking is an active research area in computer
vision. Numerous works utilize correlation filter (CF) for
robust visual tracking. The popularity of CF based trackers
are due to their rapid speed and efficient learning techniques.
With low computational load, CF can learn a large number
of samples. The early CF-based trackers used a single
channel feature as input with tremendous tracking speed.
The MOSSE [33] tracker exploited adaptive correlation filter.
Henriques et al. [34] introduced kernel trick in the correlation
filter formula. Later, Henriques et al. [16] further improved
CF by integrating multi-channel input and introduced KCF.
Inspired by the improvement on multi-channel correlation
filters, many CF based trackers employing deep learning fea-
tures [35]-[38] achieved state-of-the-art performance. How-
ever, even with GPU acceleration, most of these CNN based
trackers cannot track in real-time (15-30 fps) which is a
requirement for tracking and counting coral objects in AUVs.

III. METHODOLOGY

Automated collection of visual data has an advantage
that images are acquired in a sequence, so the location of
the camera together with the structure of the scene can be
recovered. Therefore, a coral detected in an image can be
effectively tracked over successive images, while in the field
of view, and not over-counted. Furthermore, tracking the
location of the different corals reduces the rate of detection,
resulting in a more efficient algorithm.

There are two steps to automate the coral population
estimation process: detection and tracking. Detection of
coral species allows the localization of coral objects in the
image. Later, tracking is essential to prevent the recount in
subsequent detection. Our system integrates both of these
steps as shown in Fig. 2. When processing a stream of
images from either Aqua2 or hand-held camera, the first
frame, fy is fed to the detection model which produces
labels and bounding boxes for coral objects in the image.
These bounding boxes are used as the Region Of Interest
(ROJ) to initialize a tracker that keeps updating the location
of those detected coral species in frames f; to f,_1. The
system keeps count of the ROIs with labels. Then the coral
detector model runs again on frame f,, and produces another
set of bounding boxes (ROIs) with labels. At this point,
the ROIs are compared with the earlier tracked ROIs and
only the new ROIs with overlap (intersection over union)
less than a threshold are counted as new coral objects and
tracked in the subsequent frames along with earlier ROIs.
This step ensures that no coral is counted more than once.
For the coral detector model, we utilize a deep convolutional
neural network inspired by the RetinaNet model [15], and as
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Proposed system with detection and tracking. For n frames, detection is performed on fy. Then jointly fo and detected object bounding boxes

are used to initialize the tracker. From Frames f; to f,,_1 are sent only to the tracker to update object locations.

a tracker, we use the KCF [16]. Next we will explain the
coral detector model and the KCF tracker.

A. RetinaNet

RetinaNet [15] is a one-stage detector comprising a back-
bone network and two subnetworks. The two subnetworks
are used for classification and bounding box regression.
Using the output of the backbone network the first subnet
computes class confidence and the second subnet regresses
bounding box coordinates. We choose the Feature Pyramid
Network (FPN) [28] as the backbone network. The FPN
creates multi-scale features from a single resolution image
by augmenting a standard CNN with top-down pathway
and lateral connections as shown in Fig. 2. This multi-scale
feature pyramid allows any level of features to be used to
detect objects at a different scale. We choose ResNet50 with
50 layers, a variant of deep Residual Networks [39] as the
base network for the FPN. We redesigned the final layers for
RetinaNet to reflect the eight classes of interested.

Focal Loss: We choose focal loss [15] to optimize clas-
sification subnet. Focal loss is designed to facilitate training
under high dataset imbalance. For estimated probability p; €
[0,1] for a target class t, the focal loss is defined as

loss(py) = —a (1 —pg)7 log(pe)

where v > 0 is a tunable focusing parameter and o € [0, 1]
is a weighting factor. The focal loss assigns a lower loss to
easily classified examples and focuses more on the misclassi-
fied data. Therefore, the network is better tuned to recognize
difficult samples. Moreover, v parameter controls the down-
weighting of easy examples smoothly. The weighting factor
« 1is chosen as the inverse of samples for classes in our
dataset.

Smooth L1 Loss: For bounding box regression, smooth
L1 loss is used. For bounding box prediction ¢ and v, the
loss is defined as

LoSSppor = Zie‘r’y}w’h smoothr,, (t; — v;)
where
0.5 22, if |z| < 1.
smoothy,. (z) = 1
(@) {|x| — 0.5, otherwise. )

Training: We initialize the ResNet50 [39] network with
the weights trained on imagenet [40], and all other layers are
randomly initialized to zero-mean Gaussian distribution with
a standard deviation of 0.01. Stochastic gradient descent was
used to optimize the parameters. The network is trained for
150 iterations on our dataset with an initial learning rate of
0.001 and a decay of le~5.

B. KCF Tracker:

The KCF [16] tracker improves generic correlation filter
by using multiple channel data of color images. Let y =
[Y1,Y2, -, Yx]T € R be the Gaussian shaped response and
let 24 € R**! be the input vector. The correlation filter
learns filter weights w by optimizing:

K D

. . 2
W = arg min D (k= > XEWas + MW
k=1 d=1

2

where X, g is the k-step circular shift of the input vector X,
Yy, is the k-th element of y, W = (W, W ... . WI]T where
Wy € RE*! refers to the filter of the d-th channel [41].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

For this paper, we have selected different approximately
straight line trajectories over open areas with sparse live
coral populations. We have trained our network to detect
seven different kinds of corals (Brain, Maze, Mustard, Finger,
Fire, Star, and Starlet) and sponges. The training samples are
annotated from several other underwater videos. Using the
system described above each sequence of the images is fed
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Fig. 3.
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Examples of different coral detections. First two rows ((a)-(f)) are collected with an Aqua2 AUV; second two rows ((g)-(1)) using a stereo GoPro

camera. Each two rows are separated by a couple of seconds: (a),(d) Single brain coral detection. (b),(e) Multiple corals (brains, and star) and a sponge
detected. (c),(f) Multiple brain corals detected in a single image. (g),(j) Single brain coral detection. (h),(k) Multiple corals (brain, mustard, and finger)

detected. (i),(1) Multiple mustard corals detected.

Brain Mustard | Finger | Star | Starlet | Maze | Fire | Sponge
T1:GoPro | 173/197 | 125/147 15/9 173 11/18 | 15/20 | 3/3 2/3
T1:Aqua2 57/66 5/9 0/0 0/0 22 0/0 0/0 12/9

TABLE I. CORAL IDENTIFICATION AND COUNTING FOR DIFFERENT TRAJECTORIES. CNN-PREDICTION/HUMAN-ANNOTATED

into the tracking system, and the total count for each class
is reported at the end.

Fig. 3 present representative images with different corals
tracked. The first two rows are images collected by the Aqua2
AUV in two different time instances. As can be seen in
Fig. 3(a) a single Brain coral is detected at the top of the
image; on the second row, Fig. 3(d), the same coral is tracked
when the AUV approached closer. The first column presents
a single coral tracked over several successive frames (only
two displayed). In the second column, several corals from
different classes are tracked, while the last column displays
tracking of several different corals belonging to the same
class. More specifically, Fig. 3(b) and Fig. 3(e) present the
detection and tracking of Brain and Star corals and a large

sponge (three classes); and Fig. 3(c) and Fig. 3(f) display
the tracking of multiple Brain corals. The images collected
from the AUV have lower resolution and display a certain
amount of blurriness. However, identification and tracking of
different coral species were feasible.

The last two rows of Fig. 3 presents underwater images
from a GoPro camera over a coral reef. The image resolutions
are different, and the image quality is relatively higher. The
three columns contain results from single coral, multiple
corals from different classes, and multiple corals from the
same class, respectively. A single brain coral is detected in
Fig. 3(g) and then tracked across the image in Fig. 3(j).
Multiple corals belonging to the Brain, Mustard, and Finger
coral classes are tracked in Fig. 3(h) and Fig. 3(k). Finally,
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multiple corals all belonging to the Mustard coral class are
tracked in Fig. 3(i) and Fig. 3(1).

While most corals were localized, corals belonging to
the Finger coral presented a challenge as they are usually
distributed over a much larger area. If there are patches of
dead coral inside a large patch of Finger corals, then the
patch is counted as two different occurrences. Future work
will specifically target finger corals and how to identify all
the corals that belong to the same patch.

Quantitative results are presented in Table I for two sample
trajectories. For each of the seven coral species (Brain,
Maze, Mustard, Finger, Fire, Star, and Starlet), the number
of corals detected by our system against the number of corals
annotated by a human is presented, and the same numbers
are presented for the sponge class. The estimated number
of individual coral population is reasonably close to the
human annotated numbers for corals and sponge for hand-
held camera. For Aqua2 transact, there is close matches with
ground truth. We did not have any finger coral in the Aqua2
transact. However, for finger coral, there are more predictions
than actual instances. On the speed performance, the system
can run at 15 fps which will allow online detection and
tracking in Aqua2.

In our empirical analysis, there were fewer mispredictions
and the difference in number of coral species between
predicted and ground truth are due to detector’s incapability
to detect some coral species. Furthermore, although KCF
performed reasonably well, there were some instances of
track losses, which resulted in over-counting of several coral
objects. The detector model could be further be improved
by utilizing more data in the training process. Using a better
tracker will certainly improve the performance of the system.
We observed that for such system of counting, the ability to
correctly identify at close range is more important than the
ability to detect all coral objects within field of view for a
detector model. This is because once detected, a coral object
is being tracked and counted, therefore, earlier or subsequent
detection failure does not hamper the counting process. The
number of frames between subsequent detection plays crucial
role here. For hand-held camera which has more clarity
and higher resolution, 10 frames between detection provided
good result as tracking worked reasonably well. However,
for Aqua2 which has lower resolution, less illumination, and
less clear images, 5 frames between detection was chosen
and more than 5 frames reduced the counting performance
because of frequent tracking failure.

One future direction of this work is utilize vision-based
state estimation information to prevent recount. State esti-
mation is still a very challenging problem [42] especially
underwater. Fig. 4 sketches the main idea of utilizing state
estimation in counting corals, in which the AUV moves
over the coral reef; inertial, visual, depth, and acoustic data
are collected. Depending on the choice of software, all or
a subset of the data are used to estimate the pose of the
cameras and over time. From the pose of the camera for each
image, a simple projection can identify the 3D position of
each detected coral. Therefore, detected corals from different

Fig. 4. Sonar, Visual, Inertial Estimation underwater.

images are distinguished if they are projected in 3D locations
that are sufficiently apart.

V. CONCLUSIONS

In this paper, we presented an automated system for
identifying and counting the different corals encountered by
an AUV. A modification of a popular CNN architecture [15]
ensures improved performance with a limited dataset of
eight classes. The current performance of the proposed
system ensures near real-time performance on state of the
art GPU machines, without any optimization. Ongoing work
on porting the algorithm on a portable system such as the
NVidia TX2 or the Intel Neural Compute Stick will enable
the on-line deployment. The system as it is can achieve 12
fps on NVidia TX2.

Tighter integration of the camera position into the tracking
algorithm will enable the full 3D localization of the different
corals and prevent double counting when a coral exits
and then re-enters the camera’s field of view. Furthermore,
integrating a dense reconstruction of the observed corals
will enable the study of the structural complexity of reefs.
Modeling the 3D habitat, which is critical to maintaining
diversity and population of coral reef fish communities, will
allow for better health assessment of the reef ecosystem.
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