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Abstract— Monitoring coral reef populations as part of
environmental assessment is essential. Recently, many marine
science researchers are employing low-cost and power efficient
Autonomous Underwater Vehicles (AUV) to survey coral reefs.
While the counting problem, in general, has rich literature, little
work has focused on estimating the density of coral population
using AUVs. This paper proposes a novel approach to identify,
count, and estimate coral populations. A Convolutional Neural
Network (CNN) is utilized to detect and identify the different
corals, and a tracking mechanism provides a total count for
each coral species per transect. Experimental results from
an Aqua2 underwater robot and a stereo hand-held camera
validated the proposed approach for different image qualities.

I. INTRODUCTION

Coral reefs are an essential part of the marine ecosystem

and support a rich diversity of life [1], [2] with significant

economic value and social amenity. Projected increases in

global temperatures of 2 − 4.5◦C by 2100 [3] indicate that

mass coral bleaching events are likely to become an annual

phenomenon by 2050 [4], [5]. The widespread mortality of

corals following mass bleaching events reduces the structural

complexity of reefs, thus eliminating the 3-D habitat. This

habitat loss affects diversity and population of coral reef

fish and invertebrates communities adversely. Therefore, the

monitoring of health of coral ecosystems by scuba divers and

new technologies, such as underwater robots [6], has become

increasingly significant. As a result, millions of images are

being collected. While image acquisition has evolved, reef

monitoring still requires the identification and counting of

different coral species, a task primarily performed by human

experts.

Underwater and surface autonomous vehicles have been

used for a variety of monitoring tasks, mainly focusing

coral reef inspections, [7]–[9] even in deep waters [10].

Furthermore, floating cameras have also been employed [11],

[12] to collect visual data with reduced cost. In this paper

we have utilized an Aqua2 [13] Autonomous Underwater

Vehicle (AUV) [14] and a hand-held stereo GoPro camera1.

Object counting is an active research field, and in par-

ticular, the coral counting problem is challenging for many
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Fig. 1. Aqua2 AUV collecting visual and acoustic data over a coral reef,
Barbados.

reasons. Firstly, visibility, color suppression and hazing un-

derwater make detection extremely difficult. Objects within

the field of view are often so obscure that both deep mod-

els and humans cannot identify. Moreover, coral counting

encompasses both spatial and temporal domains. Once an

object is detected, it is imperative to prevent recount after

detection in the subsequent image frames. Finally, perform-

ing detection and counting on a low-powered AUV poses

significant constraints on the choice of the detection model

and the frequency of the detection process.

To analyze coral reef visual data, marine biologists cover

certain transects, such as straight lines or rectangles, over

the coral reef. Afterwards, domain experts analyze the video

to count or annotate coral species to estimate population

density. This paper proposes a novel technique to automate

this process. In this work we have slightly modified a recent

deep learning network, RetinaNet [15], to account for the

much-reduced number of training examples, in the presence

of high-class imbalance among coral samples in the dataset.

The modified network identifies and localizes different coral

species in an image. The complete system has a constant

stream of images as input, either from an AUV or a hand-

held camera; images are fed into the Convolutional Neural

Network (CNN), and different coral species are identified

and localized in the image by a bounding box. Then each

bounding box is tracked in successive images using the KCF

tracker [16] from OpenCV2. If a new detection occurs in

the vicinity of a tracked bounding box, then the bounding

box coordinates are updated, but the coral count does not

increase.

It is worth noting that the proposed methodology for coral

identification and counting, even when performed off-line,
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automates the process of identifying the biodiversity for a

fixed trajectory using data collected by a robot. Different

hardware architectures have been evaluated [17] to port the

detection and tracking system on-line, a task that is beyond

the scope of this paper.

Experimental verification over two datasets collected at the

coral reefs of Barbados has demonstrated the accuracy of the

proposed system. To our knowledge, there has not been any

other work on automated coral counting.

The next section provides an overview of related work.

Section III describe the proposed methodology for au-

tonomous coral identification and counting. Experimental

results from an AUV and a hand-held stereo camera are

discussed in Section IV. We conclude this paper with a

discussion of experimental results and directions for future

research.

II. RELATED WORK

A large number of algorithms has been proposed to tackle

the counting problem in the visual domain. These algorithms

mostly fall into either regression-based methods or detection

based methods. Regression-based methods [18]–[23] use

CNN based models to predict the number of objects in

the image without explicitly classifying and localizing the

objects. Recent works on regression based methods generate

density maps for image patches and later integrate over the

map to produce the object count. However, most of these

regression based methods aimed at solving counting the

problem in a single image, thus have no mechanism for track-

ing over successive images. On the other hand, in detection

based methods [24]–[26], a detector (usually CNN based) is

utilized to localize the objects in the image with bounding

boxes. These bounding boxes are counted to estimate the

number of objects present in the image. In CNN based

detectors, there exist two distinct approaches: two-stage

detectors (region proposal based) and one-stage detectors.

In the two-stage approach, the first stage generates a sparse

set of object proposals and the second stage classifies the

proposals into foreground classes and background. R-CNN

[27] significantly improved two-stage detectors using a CNN

to generate proposals. The Faster-RCNN [24] integrated the

region proposal generation and the proposal classification

into a single CNN, achieving higher speed and accuracy

gains in object detection. On the other hand, one stage

detectors uses Feature Pyramid Networks [28] to enable

object detection at multiple scale. In one-stage detectors,

OverFeat [29], SSD [30], [31] and YOLO [25], [32] showed

tremendous speed improvements but with accuracy trade-

off. Even with large computational resource available, the

single stage detectors trail in accuracy behind the two stage

detectors.

Recent work by Lin et al. [15] significantly advanced the

one-stage detection network matching state-of-the-art results

of the two-stage detectors. Lin et al.indicated that the class

imbalance during training of one-stage detectors is the main

reason for low accuracy performance. This class imbalance

is usually handled in two-stage detectors by using different

sampling heuristics such as a fixed foreground-to-background

ratio or On-Line Hard Example Mining (OHEM). To better

train detector models in the presence of class imbalance, Lin

et al. [15] proposed a new loss function that is a dynamically

scaled cross entropy loss. Our work is inspired by the model

proposed by Lin et al. [15] as it closely matches our problem

domain.

Visual tracking is an active research area in computer

vision. Numerous works utilize correlation filter (CF) for

robust visual tracking. The popularity of CF based trackers

are due to their rapid speed and efficient learning techniques.

With low computational load, CF can learn a large number

of samples. The early CF-based trackers used a single

channel feature as input with tremendous tracking speed.

The MOSSE [33] tracker exploited adaptive correlation filter.

Henriques et al. [34] introduced kernel trick in the correlation

filter formula. Later, Henriques et al. [16] further improved

CF by integrating multi-channel input and introduced KCF.

Inspired by the improvement on multi-channel correlation

filters, many CF based trackers employing deep learning fea-

tures [35]–[38] achieved state-of-the-art performance. How-

ever, even with GPU acceleration, most of these CNN based

trackers cannot track in real-time (15-30 fps) which is a

requirement for tracking and counting coral objects in AUVs.

III. METHODOLOGY

Automated collection of visual data has an advantage

that images are acquired in a sequence, so the location of

the camera together with the structure of the scene can be

recovered. Therefore, a coral detected in an image can be

effectively tracked over successive images, while in the field

of view, and not over-counted. Furthermore, tracking the

location of the different corals reduces the rate of detection,

resulting in a more efficient algorithm.

There are two steps to automate the coral population

estimation process: detection and tracking. Detection of

coral species allows the localization of coral objects in the

image. Later, tracking is essential to prevent the recount in

subsequent detection. Our system integrates both of these

steps as shown in Fig. 2. When processing a stream of

images from either Aqua2 or hand-held camera, the first

frame, f0 is fed to the detection model which produces

labels and bounding boxes for coral objects in the image.

These bounding boxes are used as the Region Of Interest

(ROI) to initialize a tracker that keeps updating the location

of those detected coral species in frames f1 to fn−1. The

system keeps count of the ROIs with labels. Then the coral

detector model runs again on frame fn and produces another

set of bounding boxes (ROIs) with labels. At this point,

the ROIs are compared with the earlier tracked ROIs and

only the new ROIs with overlap (intersection over union)

less than a threshold are counted as new coral objects and

tracked in the subsequent frames along with earlier ROIs.

This step ensures that no coral is counted more than once.

For the coral detector model, we utilize a deep convolutional

neural network inspired by the RetinaNet model [15], and as
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Fig. 2. Proposed system with detection and tracking. For n frames, detection is performed on f0. Then jointly f0 and detected object bounding boxes
are used to initialize the tracker. From Frames f1 to fn−1 are sent only to the tracker to update object locations.

a tracker, we use the KCF [16]. Next we will explain the

coral detector model and the KCF tracker.

A. RetinaNet

RetinaNet [15] is a one-stage detector comprising a back-

bone network and two subnetworks. The two subnetworks

are used for classification and bounding box regression.

Using the output of the backbone network the first subnet

computes class confidence and the second subnet regresses

bounding box coordinates. We choose the Feature Pyramid

Network (FPN) [28] as the backbone network. The FPN

creates multi-scale features from a single resolution image

by augmenting a standard CNN with top-down pathway

and lateral connections as shown in Fig. 2. This multi-scale

feature pyramid allows any level of features to be used to

detect objects at a different scale. We choose ResNet50 with

50 layers, a variant of deep Residual Networks [39] as the

base network for the FPN. We redesigned the final layers for

RetinaNet to reflect the eight classes of interested.

Focal Loss: We choose focal loss [15] to optimize clas-

sification subnet. Focal loss is designed to facilitate training

under high dataset imbalance. For estimated probability pt ∈
[0, 1] for a target class t, the focal loss is defined as

loss(pt) = −α (1− pt)
γ log(pt)

where γ ≥ 0 is a tunable focusing parameter and α ∈ [0, 1]
is a weighting factor. The focal loss assigns a lower loss to

easily classified examples and focuses more on the misclassi-

fied data. Therefore, the network is better tuned to recognize

difficult samples. Moreover, γ parameter controls the down-

weighting of easy examples smoothly. The weighting factor

α is chosen as the inverse of samples for classes in our

dataset.

Smooth L1 Loss: For bounding box regression, smooth

L1 loss is used. For bounding box prediction t and v, the

loss is defined as

Lossbbox =
∑

i∈x,y,w,h smoothL1(ti − vi)

where

smoothL1(x) =

{
0.5x2, if |x| < 1.

|x| − 0.5, otherwise.
(1)

Training: We initialize the ResNet50 [39] network with

the weights trained on imagenet [40], and all other layers are

randomly initialized to zero-mean Gaussian distribution with

a standard deviation of 0.01. Stochastic gradient descent was

used to optimize the parameters. The network is trained for

150 iterations on our dataset with an initial learning rate of

0.001 and a decay of 1e−5.

B. KCF Tracker:

The KCF [16] tracker improves generic correlation filter

by using multiple channel data of color images. Let y =
[y1, y2, ..., yk]

T ∈ R be the Gaussian shaped response and

let xd ∈ R
k×1 be the input vector. The correlation filter

learns filter weights w by optimizing:

ẇ = arg min
w

K∑
k=1

(yk −
D∑

d=1

XT
k,dWd)

2
2 + λ ‖W‖22 (2)

where Xk,d is the k-step circular shift of the input vector Xd,

yk is the k-th element of y, W = [WT
1 ,WT

2 , ...,WT
D ]T where

Wd ∈ R
K∗1 refers to the filter of the d-th channel [41].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

For this paper, we have selected different approximately

straight line trajectories over open areas with sparse live

coral populations. We have trained our network to detect

seven different kinds of corals (Brain, Maze, Mustard, Finger,

Fire, Star, and Starlet) and sponges. The training samples are

annotated from several other underwater videos. Using the

system described above each sequence of the images is fed
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Fig. 3. Examples of different coral detections. First two rows ((a)-(f)) are collected with an Aqua2 AUV; second two rows ((g)-(l)) using a stereo GoPro
camera. Each two rows are separated by a couple of seconds: (a),(d) Single brain coral detection. (b),(e) Multiple corals (brains, and star) and a sponge
detected. (c),(f) Multiple brain corals detected in a single image. (g),(j) Single brain coral detection. (h),(k) Multiple corals (brain, mustard, and finger)
detected. (i),(l) Multiple mustard corals detected.

Brain Mustard Finger Star Starlet Maze Fire Sponge

T1:GoPro 173/197 125/147 15/9 1/3 11/18 15/20 3/3 2/3

T1:Aqua2 57/66 5/9 0/0 0/0 2/2 0/0 0/0 12/9

TABLE I. CORAL IDENTIFICATION AND COUNTING FOR DIFFERENT TRAJECTORIES. CNN-PREDICTION/HUMAN-ANNOTATED

into the tracking system, and the total count for each class

is reported at the end.
Fig. 3 present representative images with different corals

tracked. The first two rows are images collected by the Aqua2

AUV in two different time instances. As can be seen in

Fig. 3(a) a single Brain coral is detected at the top of the

image; on the second row, Fig. 3(d), the same coral is tracked

when the AUV approached closer. The first column presents

a single coral tracked over several successive frames (only

two displayed). In the second column, several corals from

different classes are tracked, while the last column displays

tracking of several different corals belonging to the same

class. More specifically, Fig. 3(b) and Fig. 3(e) present the

detection and tracking of Brain and Star corals and a large

sponge (three classes); and Fig. 3(c) and Fig. 3(f) display

the tracking of multiple Brain corals. The images collected

from the AUV have lower resolution and display a certain

amount of blurriness. However, identification and tracking of

different coral species were feasible.
The last two rows of Fig. 3 presents underwater images

from a GoPro camera over a coral reef. The image resolutions

are different, and the image quality is relatively higher. The

three columns contain results from single coral, multiple

corals from different classes, and multiple corals from the

same class, respectively. A single brain coral is detected in

Fig. 3(g) and then tracked across the image in Fig. 3(j).

Multiple corals belonging to the Brain, Mustard, and Finger

coral classes are tracked in Fig. 3(h) and Fig. 3(k). Finally,
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multiple corals all belonging to the Mustard coral class are

tracked in Fig. 3(i) and Fig. 3(l).

While most corals were localized, corals belonging to

the Finger coral presented a challenge as they are usually

distributed over a much larger area. If there are patches of

dead coral inside a large patch of Finger corals, then the

patch is counted as two different occurrences. Future work

will specifically target finger corals and how to identify all

the corals that belong to the same patch.

Quantitative results are presented in Table I for two sample

trajectories. For each of the seven coral species (Brain,

Maze, Mustard, Finger, Fire, Star, and Starlet), the number

of corals detected by our system against the number of corals

annotated by a human is presented, and the same numbers

are presented for the sponge class. The estimated number

of individual coral population is reasonably close to the

human annotated numbers for corals and sponge for hand-

held camera. For Aqua2 transact, there is close matches with

ground truth. We did not have any finger coral in the Aqua2

transact. However, for finger coral, there are more predictions

than actual instances. On the speed performance, the system

can run at 15 fps which will allow online detection and

tracking in Aqua2.

In our empirical analysis, there were fewer mispredictions

and the difference in number of coral species between

predicted and ground truth are due to detector’s incapability

to detect some coral species. Furthermore, although KCF

performed reasonably well, there were some instances of

track losses, which resulted in over-counting of several coral

objects. The detector model could be further be improved

by utilizing more data in the training process. Using a better

tracker will certainly improve the performance of the system.

We observed that for such system of counting, the ability to

correctly identify at close range is more important than the

ability to detect all coral objects within field of view for a

detector model. This is because once detected, a coral object

is being tracked and counted, therefore, earlier or subsequent

detection failure does not hamper the counting process. The

number of frames between subsequent detection plays crucial

role here. For hand-held camera which has more clarity

and higher resolution, 10 frames between detection provided

good result as tracking worked reasonably well. However,

for Aqua2 which has lower resolution, less illumination, and

less clear images, 5 frames between detection was chosen

and more than 5 frames reduced the counting performance

because of frequent tracking failure.

One future direction of this work is utilize vision-based

state estimation information to prevent recount. State esti-

mation is still a very challenging problem [42] especially

underwater. Fig. 4 sketches the main idea of utilizing state

estimation in counting corals, in which the AUV moves

over the coral reef; inertial, visual, depth, and acoustic data

are collected. Depending on the choice of software, all or

a subset of the data are used to estimate the pose of the

cameras and over time. From the pose of the camera for each

image, a simple projection can identify the 3D position of

each detected coral. Therefore, detected corals from different

Fig. 4. Sonar, Visual, Inertial Estimation underwater.

images are distinguished if they are projected in 3D locations

that are sufficiently apart.

V. CONCLUSIONS

In this paper, we presented an automated system for

identifying and counting the different corals encountered by

an AUV. A modification of a popular CNN architecture [15]

ensures improved performance with a limited dataset of

eight classes. The current performance of the proposed

system ensures near real-time performance on state of the

art GPU machines, without any optimization. Ongoing work

on porting the algorithm on a portable system such as the

NVidia TX2 or the Intel Neural Compute Stick will enable

the on-line deployment. The system as it is can achieve 12

fps on NVidia TX2.

Tighter integration of the camera position into the tracking

algorithm will enable the full 3D localization of the different

corals and prevent double counting when a coral exits

and then re-enters the camera’s field of view. Furthermore,

integrating a dense reconstruction of the observed corals

will enable the study of the structural complexity of reefs.

Modeling the 3D habitat, which is critical to maintaining

diversity and population of coral reef fish communities, will

allow for better health assessment of the reef ecosystem.
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