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a b s t r a c t

We present a set of linear, second order, unconditionally energy stable schemes for
the Allen–Cahn model with nonlocal constraints for crystal growth that conserves
the mass of each phase. Solvability conditions are established for the linear systems
resulting from the schemes. Convergence rates are verified numerically. Dynamics
obtained using the Allen–Cahn model with nonlocal constraints are compared with the
one obtained using the classic Allen–Cahn model as well as the Cahn–Hilliard model,
respectively, demonstrating slower dynamics than that of the Allen–Cahn model but
faster dynamics than that of the Cahn–Hilliard model. Thus, the Allen–Cahn model with
nonlocal constraints can serve as an alternative to the Cahn–Hilliard model in simulating
crystal growth while conserving the mass of each phase. Two Benchmark examples
are presented to contrast the predictions made with the four models, highlighting the
accuracy and effectiveness of the Allen–Cahn model with nonlocal constraints.

© 2019 Published by Elsevier Ltd.

1. Introduction

Phase field crystal (PFC) growth model, developed as an extension to the phase field formalism [1–5], has been
successfully applied to various applications in materials science across different time scales [6–8], capturing the interaction
between material defects [1] and modeling the microstructure evolution [1,2,6,9–15]. It is a challenge to develop
efficient and stable numerical algorithms to faithfully simulate dynamics described by PFC models. The PFC model is
thermodynamically consistent in that the free energy of the thermodynamic model is dissipative. Numerical algorithms
that respect the free energy dissipation property at the discrete level are known as energy stable schemes.

The Cahn–Hilliard equation is a popular phase field model for crystal growth because of its mass (or volume) preserving
property. However, the Cahn–Hilliard equation for the crystal growth problem is of up to the 6th order spatial derivative.
For most crystal growth models, transient dynamics is less important than the correct crystal growth pattern that the
model yields, which is dominated by the free energy of the model. Searching for a lower order phase field model that can
also preserve mass and free energy dissipation properties is therefore a viable alternative. Allen–Cahn equation is a popular
phase field model which normally has lower spatial derivatives than the Cahn–Hilliard model. It describes relaxation
dynamics of the thermodynamical system to equilibrium. However, in the case of a phase field description, when the
phase variable represents the mass density, fraction or the volume fraction of a material component, this model does not
warrant the conservation of mass or volume of that component. In order to conserve mass, the free energy functional has
to be augmented by a mass preserving penalty term or with a Lagrange multiplier [16–20]. This henceforth modifies the

∗ Corresponding author at: Department of Mathematics, University of South Carolina, Columbia, SC 29028, USA.
E-mail address: qwang@math.sc.edu (Q. Wang).

https://doi.org/10.1016/j.camwa.2019.07.030
0898-1221/© 2019 Published by Elsevier Ltd.

https://doi.org/10.1016/j.camwa.2019.07.030
http://www.elsevier.com/locate/camwa
http://www.elsevier.com/locate/camwa
http://crossmark.crossref.org/dialog/?doi=10.1016/j.camwa.2019.07.030&domain=pdf
mailto:qwang@math.sc.edu
https://doi.org/10.1016/j.camwa.2019.07.030


X. Jing and Q. Wang / Computers and Mathematics with Applications 79 (2020) 764–788 765

Allen–Cahn equation into a nonlocal equation. We call this the nonlocal Allen–Cahn model or the Allen–Cahn model with
nonlocal constraints.

Rubinstein and Sternberg studied the Allen–Cahn model with a mass constraint analytically and compared it to the
Cahn–Hilliard model [18]. Their result seems to favor using the Allen–Cahn model with a mass constraint in place of
the Cahn–Hilliard model when studying interfacial dynamics of incompressible, immiscible multi-component material
systems.

For the classical Allen–Cahn equation as well as the Cahn–Hilliard equation, there have been several popular numerical
approaches to construct energy stable schemes for the equations, including the convex splitting approach [21–27],
the stabilizing approach [28–30], the energy quadratization (EQ) approach [31–34] and the scalar auxiliary variable
approach [35–37]. Recently, the energy quadratization (EQ) and its reincarnation in the scalar auxiliary variable (SAV)
method have been applied to a host of thermodynamic and hydrodynamic models owing to their simplicity, ease of imple-
mentation, computational efficiency, linearity, and most importantly their energy stability property [32–34,36–46]. It has
been shown that these strategies are general enough to be useful for developing energy stable numerical approximations
to any thermodynamically consistent models, i.e., the models satisfy the second law of thermodynamics or are derived
from the Onsager principle [31,47,48]. The convex splitting, stabilizing, scalar auxiliary variable, energy quadratization
approach and other methods have been applied to the Cahn–Hilliard model for crystal growth [24,31,49–57].

In this paper, we develop a set of linear, second order, unconditionally energy stable schemes using the energy
quadratization (EQ) and scalar auxiliary variable (SAV) approach to solve the Allen–Cahn equation with nonlocal
constraints numerically. The numerical schemes for the Allen–Cahn and the Cahn–Hilliard model are recalled in the paper
simply for introducing the nonlocal Allen–Cahn models and comparison purposes. In some of these schemes, both EQ and
SAV methods are combined to yield linear, energy stable schemes. We note that when a nonlocal Allen–Cahn model is
discretized, it is inevitable to yield an integral term which can be effectively treated with a scalar auxiliary variable. When
multiple integrals are identified as SAVs in the free energy functional of the Allen–Cahn model with nonlocal constraints,
new solution procedures are developed to solve the subproblems in which elliptic equations can be solved efficiently. All
these schemes are linear and second order accurate in time. On the other hand, when the EQ strategy is coupled with the
discretized integrals, the Sherman–Morrison formula can lead us to an efficient numerical scheme as well. In fact, this
can be equivalently dealt with using the SAV method, which will be discussed in the Appendix. The numerical schemes
developed in this study for the Allen–Cahn equation with nonlocal constraints preserve not only mass but also the energy
dissipation rate at the discrete level.

In the end, we conduct some numerical experiments to assess the performance of the schemes as well as the
comparison between dynamics of the nonlocal Allen–Cahn models and that of the Cahn–Hilliard. The results based on EQ
and those based on SAV methods perform equally well in preserving mass and the energy dissipation rate. In addition, the
computational efficiency of the schemes is comparatively studied in one of the benchmark examples as well. To simplify
the presentation, we present the temporal discretization of the models using EQ and SAV approaches in detail. Then, we
only briefly discuss the strategy to obtain fully discrete schemes by discretizing the semi-discrete schemes in space. We
refer readers to our early publications in [33,34] for details. We show that the linear systems resulting from the schemes
are all solvable uniquely if the time step size is suitable so that the solution existence and uniqueness in the full-discrete
system is warranted. With the free energy density for crystal growth, the Allen–Cahn model with nonlocal constraints
compares well with the Cahn–Hilliard model in yielding transient dynamics and steady state crystalline patterns. The
numerical schemes for the Allen–Cahn model with nonlocal constraints consistently perform better than those for the
Cahn–Hilliard model at larger time steps.

The rest of the paper is organized as follows. In Section 2, we present the mathematical models for the classical
Allen–Cahn, the Cahn–Hilliard, and the Allen–Cahn model with nonlocal constraints. In Section 3, we compare their near
equilibrium dynamics. In Section 4, we present a set of second order, linear, energy stable numerical schemes for the
models. In Section 5, we conduct mesh refinement tests on all the schemes and carry out two simulations on crystal
growth as well as its grain-boundary effects using the models. Finally, we give the concluding remark in Section 6.

2. Phase field models for crystal growth

We consider a phase field model for modeling crystal growth in solids with a focus on resolving the detail of transient
dynamics. The free energy of the phase field model for crystal growth is given by [2,4,54]

F =

∫
Ω

[
φ

2
(−ε + (∇2

+ 1)2)φ +
φ4

4
]dr, (2.1)

where φ represents an atomistic density field, which is the deviation of the density from the average density and is a
conserved field variable, ϵ is a parameter related to the temperature, that is, higher ϵ corresponds to a lower temperature,
and ∇ is the gradient operator (∇2 denotes the Laplacian). In this study, we use a more general form of the free energy
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given by

F =

∫
Ω

[
φ

2
(∇4

+ 2a∇2
+ α)φ +

φ4

4
]dr

=

∫
Ω

[
1
2
(∥∇2φ∥ + aφ)2 +

α − a2

2
φ2

+
φ4

4
]dr

=

∫
Ω

[
1
2
∥∇

2φ∥
2
− a∥∇φ∥

2
+

α

2
φ2

+
φ4

4
]dr,

(2.2)

where a = 1, α = 1 − ε recovers Eq. (2.1). In the above derivation, the following the boundary conditions are assumed

n · ∇φ = 0, n · ∇∇
2φ = 0. (2.3)

Based on the Onsager linear response theory [47,48], transient dynamics of such a system is customarily governed by
a time-dependent partial differential equation given by

∂φ

∂t
= −Mµ, rinΩ, t > 0,

µ =
δF
δφ

= (∇2
+ a)2φ + (α − a2)φ + φ3,

(2.4)

subject to appropriate boundary and initial conditions, where M and µ =
δF
δφ

are the mobility matrix and the chemical
potential, respectively.

The time rate of change of the free energy is given by
dF
dt

= −

∫
Ω

µMµdr +

∫
∂Ω

n · [(
∂ f

∂∇φ
− ∇

∂ f
∂∇2φ

)φt +
∂ f

∂∇2φ
∇φt ]ds. (2.5)

The following boundary conditions will annihilate the boundary terms in the energy dissipation functional

n · ∇φ = 0, n · (
∂ f

∂∇φ
− ∇

∂ f
∂∇2φ

) = 0. (2.6)

In the crystal growth model, ∂ f
∂∇φ

= 0. So, the boundary conditions reduce to

n · ∇φ = 0, n · ∇
∂ f

∂∇2φ
= n · ∇∇

2φ = 0, (2.7)

which is boundary conditions given in (2.3).
An alternative set of boundary conditions that annihilate the boundary contribution to energy dissipation is given by

∂ f
∂∇2φ

= 0, n · (
∂ f

∂∇φ
− ∇

∂ f
∂∇2φ

) = 0. (2.8)

This is equivalent to

(∇2
+ a)φ = 0, n · (

∂ f
∂∇φ

− ∇
∂ f

∂∇2φ
) = 0. (2.9)

This is different from the previous one.
We can also assign dissipative boundary conditions to the model as follows

n · ∇φt = 0, φt = −βn · (
∂ f

∂∇φ
− ∇

∂ f
∂∇2φ

), (2.10)

where β > 0 is inversely proportional to a relaxation time. The boundary contribution to the energy dissipation is then
given by

−

∫
∂Ω

β[n · (
∂ f

∂∇φ
− ∇

∂ f
∂∇2φ

)]2ds. (2.11)

The total energy dissipation rate or energy dissipation functional is given by
dF
dt

= −

∫
Ω

µMµdr −

∫
∂Ω

β[n · (
∂ f

∂∇φ
− ∇

∂ f
∂∇2φ

)]2ds. (2.12)

If β → ∞, we recover (2.7). In this study, we will focus on the boundary conditions given in (2.3).
Two well-known dynamic models for φ are the Allen–Cahn and the Cahn–Hilliard equation, whose mobility is given

respectively by

M =

{
M0, Allen–Cahn,

−∇ · M0∇, Cahn–Hilliard, (2.13)
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where M0 is a prescribed mobility coefficient matrix, which can be a function of φ. The Allen–Cahn equation does not
conserve the total mass

∫
Ω

φdr if φ is the mass density while the Cahn–Hilliard equation does. However, these two
models predict similar near equilibrium dynamics. On the other hand the Allen–Cahn equation is an equation of lower
spatial derivatives, and presumably costs less when solved numerically. Thus, one can impose the mass conservation as
a constraint to the Allen–Cahn equation for it to be used to describe dynamics in which the mass is conserved. Next, we
will briefly recall several ways to enforce mass conservation to dynamics described by the Allen–Cahn equation.

2.1. Allen–Cahn model

The classical Allen–Cahn equation with the non-flux Neumann boundary conditions is given by

∂φ

∂t
= −Mµ, inΩ,

∂φ

∂n
= 0,

∂∇
2φ

∂n
= 0, in ∂Ω,

φ|t=0= φ(0, x),

(2.14)

where M is the mobility coefficient and µ is the chemical potential given by

µ =
δF
δφ

= (∇2
+ a)2φ + (α − a2)φ + φ3. (2.15)

The energy dissipation rate of the Allen–Cahn equation is given by

dF
dt

=

∫
Ω

δF
δφ

φtdr = −

∫
Ω

µ(Mµ)dr ≤ 0, (2.16)

provided nonnegative M . The Allen–Cahn model does not conserve the mass if the mass is denoted as
∫

Ω
φdr.

2.2. Cahn–Hilliard model

The Cahn–Hilliard equation with the non-flux Neumann boundary condition is given by

∂φ

∂t
= ∇ · (M∇µ), inΩ,

∂φ

∂n
= 0,

∂∇
2φ

∂n
= 0,

∂µ

∂n
= 0 in ∂Ω,

φ|t=0= φ(0, x),

(2.17)

where M is the mobility coefficient and µ is the chemical potential given by (2.15). The energy dissipation rate of the
equation is given by

dF
dt

=

∫
Ω

δF
δφ

φtdr = −

∫
Ω

∇µM∇µdr ≤ 0, (2.18)

provided nonnegative M . The Cahn–Hilliard model conserves the mass. We next discuss Allen–Cahn equations with
nonlocal constraints that conserve the mass.

2.3. Allen–Cahn models with nonlocal constraints

We present two methods to impose mass conservation. One is called the Allen–Cahn model with a penalizing potential
and the other the Allen–Cahn model with a Lagrange multiplier. The former enforces the mass conservation approximately
while the latter does it exactly.

2.3.1. Allen–Cahn model with a penalizing potential
In the Allen–Cahn model with a penalizing potential model, a penalizing term is augmented to the free energy to

enforce the mass conservation by the model as follows

F =

∫
Ω

[
1
2
∥∇

2φ∥
2
− a∥∇φ∥

2
+

α

2
φ2

+
φ4

4
]dr +

η

2
(
∫

Ω

φ(t)dr − M0)2, (2.19)

where η is penalizing parameter, M0 =
∫

Ω
φ(0)dr is the initial mass.
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The transport equation for φ is given by the Allen–Cahn equation

∂φ

∂t
= −Mµ̃,

∂φ

∂n
= 0,

∂∇
2φ

∂n
= 0, in ∂Ω,

φ|t=0= φ(0, x)

(2.20)

where M is the mobility coefficient and µ̃ is the chemical potential given by

µ̃ = µ +
√

ηζ , ζ =
√

η(
∫

Ω

φ(t)dr − M0). (2.21)

The energy dissipation rate is given by
dF
dt

=

∫
Ω

δF
δφ

φtdr =

∫
Ω

µ̃(−Mµ̃)dr ≤ 0, (2.22)

provided M ≥ 0. The modified Allen–Cahn equation is approximately mass preserving depending on the size of η. We
next discuss another approach to obtain mass conservation.

2.3.2. Allen–Cahn model with a Lagrange multiplier
In this model, the free energy is augmented by a penalty term with a Lagrange multiplier L as follows.

F̃ = F − L(
∫

Ω

φ(t)dr − M0). (2.23)

The transport equation for φ is given by the Allen–Cahn equation

∂φ

∂t
= −Mµ̃,

∂φ

∂n
= 0,

∂∇
2φ

∂n
= 0, in ∂Ω,

φ|t=0= φ(0, x),

(2.24)

where M is the mobility coefficient and µ̃ is the chemical potential given by

µ̃ = µ − L, L =
1∫

Ω
Mdr

∫
Ω

[Mµ]dr. (2.25)

The energy dissipation rate is given by
dF
dt

=

∫
Ω

δF
δφ

φtdr =

∫
Ω

µ̃(−Mµ̃)dr ≤ 0, (2.26)

provided M ≥ 0.

3. Near equilibrium dynamics of the models

To understand dynamics of the model near an equilibrium solution φss, we consider a small perturbation of the steady
state given by δv(t, r):

φ = φss
+ δv. (3.1)

For the Allen–Cahn model, substituting (3.1) into (2.14), we obtain
∂δv

∂t
= −M[(∇2

+ a)2δv − a2δv + (α + 3(φss)2)δv]. (3.2)

We seek the solution of the linearized partial differential equation system given by

δv =

∞∑
k=0,l=0

aklcos(kx)cos(ly), (3.3)

in the domain Ω = [−π, π]
2. Then, we have

ȧkl(t) = −Makl(t)[(k2 + l2)2 − 2a(k2 + l2) + (α + 3(φss)2)]. (3.4)

Instability can emerge if (k2 + l2)2 − 2a(k2 + l2) + (α + 3(φss)2) < 0, for some wave numbers k, l.
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For the Allen–Cahn model with a penalizing potential, substituting (3.1) into the transport equation, we obtain the
linearized system as follows

∂δv

∂t
= −M[(∇2

+ a)2δv − a2δv + (α + 3(φss)2)δv + η

∫
Ω

δvdr]. (3.5)

Using ansatz (3.3), we have

ȧkl(t) = −Makl(t)[(k2 + l2)2 − 2a(k2 + l2) + α + 3(φss)2 + 4π2ηδk0δl0]. (3.6)

If (k2 + l2)2 − 2a(k2 + l2)+α + 3(φss)2 + 4π2ηδk0δl0 < 0, instability will occur. In comparison, the Allen–Cahn model with
a penalizing potential at zero wave number is more stable than the classical Allen–Cahn model.

For the Allen–Cahn model with a Lagrange multiplier, substituting Eq. (3.1) into the transport equation, we get the
linearized system

∂δv

∂t
= −M[(∇2

+ a)2δv − a2δv + (α + 3(φss)2)δv −

∫
Ω
g ′(φss)δvdr∫

Ω
Mdr

], (3.7)

where g(φ) = M((∇2
+ a)2φ + (α − a2)φ + φ3). Solving the linear system using ansatz (3.3), we have

ȧkl(t) = −Makl(t)[(k2 + l2)2 − 2a(k2 + l2) + α + 3(φss)2 −

∫
Ω
M(α + 3(φss)2)dr∫

Ω
Mdr

δk0δl0]. (3.8)

If M is a constant and (k2 + l2)2 − 2a(k2 + l2)+ α + 3(φss)2(1− δk0δl0) < 0, instability may ensue. The contribution of the
Lagrange multiplier is to introduce a destabilizing mechanism depending on steady state solution φss.

For the Cahn–Hilliard model, repeating the above analysis, we have the dynamical equation for the Fourier coefficients:

ȧkl(t) = −Makl(t)[(k2 + l2)2 − 2a(k2 + l2) + (α + 3(φss)2)](k2 + l2). (3.9)

The window of instability in the Cahn–Hilliard model is identical to that in the Allen–Cahn model. However, the two
growth rates differ.

The linear stability results dictate initial transient dynamics of the solution towards or away from the given steady
state. We will resort to numerical computations for long time transient behavior of the solution.

4. Numerical approximations to the phase field models

We design numerical schemes to solve the above nonlocal phase field equations to ensure that the energy dissipation
property as well as mass conservation are respected. We do it by employing the energy quadratization (EQ) and the scalar
auxiliary variable method (SAV) developed recently [35,40,43,44]. Both methods depend on a reformulation of the models
into equivalent ones with a quadratic energy. From the latter, we have effective ways to design linear numerical schemes.
For a full review on EQ methods for thermodynamical models, readers are referred to a recent review article [31]. All
schemes presented below are firstly given as semi-discretized ones in time and then followed by full discretizations in
space. In fact, we have shown recently that BDF and Runge–Kutta methods can be used to design energy stable schemes for
thermodynamical systems up to arbitrarily high order in time [38]. For comparison purposes, we also present analogous
schemes for the classical Allen–Cahn and the Cahn–Hilliard model as well.

4.1. Temporal discretization

4.1.1. Numerical schemes for the Allen-Cahn model by EQ methods
We reformulate the free energy density by introducing an intermediate variable:

q = φ2. (4.1)

Then, the free energy recast into

F =

∫
Ω

[
φ

2
(∇4

+ 2a∇2
+ α)φ +

q2

4
]dr. (4.2)

We rewrite (2.14) as
∂φ

∂t
= −Mµ,

∂q
∂t

= q′φt , q′
=

∂q
∂φ

, (4.3)

where

µ =
δF
δφ

= ∇
4φ + 2a∇2φ + αφ +

1
2
qq′. (4.4)

We now discretize it using the linear Crank–Nicolson method in time to arrive at a second order semi-discrete scheme.



770 X. Jing and Q. Wang / Computers and Mathematics with Applications 79 (2020) 764–788

Scheme 4.1. Given initial conditions φ0, q0, we first compute φ1, q1 by a first order scheme. Having computed φn−1, qn−1,
and φn, qn, we compute φn+1, qn+1 as follows.

φn+1
− φn

= −∆tM
n+1/2

[(∇4φ + 2a∇2φ + αφ)
n+1/2

+
1
2
qn+1/2q′

n+1/2
],

qn+1
− qn = q′

n+1/2
(φn+1

− φn),
(4.5)

where

(•)
n+1/2

=
3
2
(•)n −

1
2
(•)n−1, (•)n+1/2

=
1
2
[(•)n+1

+ (•)n]. (4.6)

The numerical implementation can be done as follows

φn+1
= A−1bn,

qn+1
= qn + q′

n+1/2
(φn+1

− φn).
(4.7)

where A = I +∆tM
n+1/2

[
∇

4

2 +a∇2
+

α
2 +

(q′
n+1/2

)
2

4 ], bn = φn
−∆tM

n+1/2
[
∇

4

2 φn
+a∇2φn

+
α
2 φn

+
1
2q

nq′
n+1/2

−
(q′

n+1/2
)
2

4 φn
].

So, φn+1 is solved independent of qn+1.
We define the discrete energy as follows

F n
=

∫
Ω

[
φn

2
(∇4

+ 2a∇2
+ α)φn

+
(qn)2

4
]dr. (4.8)

4.1.2. Numerical schemes for the Allen-Cahn model by SAV methods

Introducing an intermediate variable r =

√∫
Ω

φ4

4 dr + C0 as the scalar auxiliary variable, the free energy recast into

F =

∫
Ω

[
φ

2
(∇4

+ 2a∇2
+ α)φ]dr + r2 − C0. (4.9)

We rewrite (2.14) as

∂φ

∂t
= −Mµ, µ =

δF
δφ

= ∇
4φ + 2a∇2φ + αφ + 2rg,

∂r
∂t

=

∫
Ω

gφtdr, g =
δr
δφ

=
φ3

2
√∫

Ω

φ4

4 dr + C0

.
(4.10)

We then discretize it using the linear Crank–Nicolson method in time to arrive at a second order semi-discrete scheme.

Scheme 4.2. Given initial conditions φ0, r0, we first compute φ1, r1 by a first order scheme. Having computed φn−1, rn−1,
and φn, rn, we compute φn+1, rn+1 as follows.

φn+1
− φn

= −∆tM
n+1/2

µn+1/2,

rn+1
− rn =

∫
Ω

gn+1/2(φn+1
− φn)dr,

(4.11)

where

µn+1/2
= ∇

4φn+1/2
+ 2a∇2φn+1/2

+ αφn+1/2
+ 2rn+1/2gn+1/2

. (4.12)

We define the discrete energy as follows

F n
=

∫
Ω

[
φn

2
(∇4

+ 2a∇2
+ α)φn

]dr + (rn)2 − C0. (4.13)

The numerical scheme can be recast into

Aφn+1
+ (c, φn+1)d = bn,

rn+1
− rn =

∫
Ω

gn+1/2(φn+1
− φn)dr. (4.14)

where A = I + ∆tM
n+1/2

[
∇

4

2 + a∇2
+

α
2 ], c = gn+1/2

, d = ∆tM
n+1/2

gn+1/2 and bn = φn
− ∆tM

n+1/2
[
∇

4

2 φn
+ a∇2φn

+
α
2 φn

+2gn+1/2rn − gn+1/2 ∫
Ω
gn+1/2

φndr]. Multiplying the inverse of A firstly and taking the inner product of the equation
with c secondly, we have

(c, φn+1) + (c, φn+1)(c, A−1d) = (c, A−1bn). (4.15)
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Then, the solution in the scheme is solved in the following steps,

A[x, y] = [d, bn],

φn+1
= y −

(c, y)
1 + (c, x)

x,

rn+1
= rn +

∫
Ω

gn+1/2(φn+1
− φn)dr.

(4.16)

4.1.3. Numerical schemes for the Cahn–Hilliard model by EQ methods
The free energy density is reformulated by introducing an intermediate variable:

q = φ2. (4.17)

Then, the free energy recast into

F =

∫
Ω

[
φ

2
(∇4

+ 2a∇2
+ α)φ +

q2

4
]dr. (4.18)

We rewrite (2.17) as

∂φ

∂t
= ∇ · (M∇µ),

∂q
∂t

= q′φt .

(4.19)

where

µ =
δF
δφ

= ∇
4φ + 2a∇2φ + αφ +

1
2
qq′, q′

=
∂q
∂φ

. (4.20)

We then discretize it using the linear Crank–Nicolson method in time to arrive at a second order semi-discrete scheme.

Scheme 4.3. Given initial conditions φ0, q0, we first compute φ1, q1 by a first order scheme. Having computed φn−1, qn−1,
and φn, qn, we compute φn+1, qn+1 as follows.

φn+1
− φn

= ∆t∇ · (M
n+1/2

∇[(∇4φ + 2a∇2φ + αφ)
n+1/2

+
1
2
qn+1/2q′

n+1/2
]),

qn+1
− qn = q′

n+1/2
(φn+1

− φn).
(4.21)

The discrete energy is defined as follows

F n
=

∫
Ω

[
φn

2
(∇4

+ 2a∇2
+ α)φn

+
(qn)2

4
]dr. (4.22)

The numerical implementation can be done as follows

φn+1
= A−1bn,

qn+1
= qn + q′

n+1/2
(φn+1

− φn).
(4.23)

where A = I −∆t∇ · (M
n+1/2

∇[
∇

4

2 +a∇2
+

α
2 +

(q′
n+1/2

)
2

4 ]), bn = φn
+∆t∇ · (M

n+1/2
∇[

∇
4

2 φn
+a∇2φn

+
α
2 φn

+
1
2q

nq′
n+1/2

−

(q′
n+1/2

)
2

4 φn
]).

4.1.4. Numerical schemes for the Cahn–Hilliard model by SAV methods

An intermediate variable r =

√∫
Ω

φ4

4 dr + C0 is introduced to reformulate the free energy as follows

F =

∫
Ω

[
φ

2
(∇4

+ 2a∇2
+ α)φ]dr + r2 − C0. (4.24)

We rewrite (2.17) as

∂φ

∂t
= ∇ · (M∇µ), µ =

δF
δφ

= ∇
4φ + 2a∇2φ + αφ + 2rg,

∂r
∂t

=

∫
Ω

gφtdr, g =
δr
δφ

=
φ3

2
√∫

Ω

φ4

4 dr + C0

.
(4.25)

Linear Crank–Nicolson method is used in time to arrive at a second order semi-discrete scheme.
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Scheme 4.4. Given initial conditions φ0, r0, we first compute φ1, r1 by a first order scheme. Having computed φn−1, rn−1,
and φn, rn, we compute φn+1, rn+1 as follows.

φn+1
− φn

= ∆t∇ · (M
n+1/2

∇µn+1/2),

rn+1
− rn =

∫
Ω

gn+1/2(φn+1
− φn)dr,

(4.26)

where

µn+1/2
= ∇

4φn+1/2
+ 2a∇2φn+1/2

+ αφn+1/2
+ 2rn+1/2gn+1/2

. (4.27)

The discrete energy is defined as follows

F n
=

∫
Ω

[
φn

2
(∇4

+ 2a∇2
+ α)φn

]dr + (rn)2 − C0. (4.28)

The numerical scheme can be rewritten into

Aφn+1
+ (c, φn+1)d = bn,

rn+1
− rn =

∫
Ω

gn+1/2(φn+1
− φn)dr. (4.29)

where A = I − ∆t∇ · (M
n+1/2

∇[
∇

4

2 + a∇2
+

α
2 ]), c = gn+1/2

, d = ∆tM
n+1/2

gn+1/2 and bn = φn
+ ∆t∇ · (M

n+1/2
∇[

∇
4

2 φn
+

a∇2φn
+

α
2 φn

+ 2gn+1/2rn − gn+1/2 ∫
Ω
gn+1/2

φndr]). Multiplying the first equation by the inverse of A firstly and taking
the inner product of the equation with c secondly, we have

(c, φn+1) + (c, φn+1)(c, A−1d) = (c, A−1bn) (4.30)

So we solve the solution in the scheme in the following steps,

A[x, y] = [d, bn],

φn+1
= y −

(c, y)
1 + (c, x)

x,

rn+1
= rn +

∫
Ω

gn+1/2(φn+1
− φn)dr.

(4.31)

4.1.5. Numerical schemes for the Allen-Cahn model with a penalizing potential by EQ methods
In the Allen–Cahn model with a penalizing potential, we reformulate the free energy density by introducing two

intermediate variables

q = φ2, ζ =
√

η(
∫

Ω

φ(t)dr − M0). (4.32)

Then, the free energy recast into

F =

∫
Ω

[
φ

2
(∇4

+ 2a∇2
+ α)φ +

q2

4
]dr +

ζ 2

2
. (4.33)

We rewrite the nonlocal Allen–Cahn equation as follows:

∂φ

∂t
= −Mµ̃,

∂ζ

∂t
=

√
η

∫
Ω

∂φ

∂t
dr,

∂q
∂t

= q′φt .

(4.34)

where

ũ = u +
√

ηζ , µ =
δF
δφ

= ∇
4φ + 2a∇2φ + αφ +

1
2
qq′, q′

=
∂q
∂φ

. (4.35)
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We then discretize it using the linear Crank–Nicolson method in time to arrive at a new scheme as follows.

Scheme 4.5. Given initial conditions φ0, q0, we first compute φ1, q1 by a first order scheme. Having computed φn−1, qn−1,
and φn, qn, we compute φn+1, qn+1 as follows.

φn+1
− φn

= −∆tM
n+1/2

µ̃n+1/2,

ζ n+1
− ζ n

=
√

η

∫
Ω

(φn+1
− φn)dr,

qn+1
− qn = q′

n+1/2
(φn+1

− φn),

(4.36)

where

µ̃n+1/2
= (∇4φ + 2a∇2φ + αφ)

n+1/2
+

1
2
qn+1/2q′

n+1/2
+

√
ηζ n+1/2. (4.37)

The discrete energy is defined as follows

F n
=

∫
Ω

[
φn

2
(∇4

+ 2a∇2
+ α)φn

+
(qn)2

4
]dr +

(ζ n)2

2
. (4.38)

From the scheme, it follows that

(I + ∆tM
n+1/2

[
∇

4

2
+ a∇2

+
α

2
+

1
2
(q′

n+1/2
)
2
])φn+1

+ ∆tM
n+1/2 η

2

∫
Ω

φn+1dr = bn,

bn = (I − ∆tM
n+1/2

[
∇

4

2
+ a∇2

+
α

2
+ qnq′

n+1/2
−

1
2
(q′

n+1/2
)
2
])φn

−
√

ηζ n
+ ∆tM

n+1/2 η

2

∫
Ω

φndr.
(4.39)

It can be written into a compact form,

Aφn+1
+ (c, φn+1)d = bn, (4.40)

where A = I + ∆tM
n+1/2

[
∇

4

2 + a∇2
+

α
2 +

1
2 (q

′
n+1/2

)
2
], c = 1, d =

∆tMn+1/2

2 and bn = (I − ∆tM
n+1/2

[
∇

4

2 + a∇2
+

α
2 +

qnq′
n+1/2

−
1
2 (q

′
n+1/2

)
2
])φn

−
√

ηζ n
+∆tM

n+1/2 η

2

∫
Ω

φndr. Then, the linear equation system is solved in the following steps,

A[x, y] = [d, bn],

(c, φn+1) =
(c, y)

1 + (c, x)
,

φn+1
= −(c, φn+1)x + y.

(4.41)

4.1.6. Numerical schemes for the Allen-Cahn model with a penalizing potential by SAV methods
In the Allen–Cahn model with a penalizing potential, we reformulate the free energy density by introducing two

intermediate variables

r =

√∫
Ω

φ4

4
dr + C0, ζ =

√
η(

∫
Ω

φ(t)dr − M0). (4.42)

Then, the free energy recast into

F =

∫
Ω

[
φ

2
(∇4

+ 2a∇2
+ α)φ]dr + r2 − C0 +

ζ 2

2
. (4.43)

We rewrite the nonlocal Allen–Cahn equation as follows:

∂φ

∂t
= −Mµ̃,

∂ζ

∂t
=

√
η

∫
Ω

∂φ

∂t
dr,

∂r
∂t

=

∫
Ω

g
∂φ

∂t
dr,

(4.44)

where

µ̃ =
δF
δφ

= ∇
4φ + 2a∇2φ + αφ + 2rg +

√
ηζ , g =

δr
δφ

=
φ3

2
√∫

Ω

φ4

4 dr + C0

. (4.45)
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We then discretize it using the linear Crank–Nicolson method in time to arrive at a new scheme as follows.

Scheme 4.6. Given initial conditions φ0, r0, we first compute φ1, r1 by a first order scheme. Having computed φn−1, rn−1,
and φn, rn, we compute φn+1, rn+1 as follows.

φn+1
− φn

= −∆tM
n+1/2

µ̃n+1/2,

ζ n+1
− ζ n

=
√

η

∫
Ω

(φn+1
− φn)dr,

rn+1
− rn =

∫
Ω
gn+1/2(φn+1

− φn)dr,

(4.46)

where
µ̃n+1/2

= µn+1/2
+

√
ηζ n+1/2,

µn+1/2
= (∇4φ + 2a∇2φ + αφ)n+1/2

+ 2rn+1/2gn+1/2
.

(4.47)

The discrete energy is defined as follows

F n
=

∫
Ω

[
φn

2
(∇4

+ 2a∇2
+ α)φn

]dr + (rn)2 +
(ζ n)2

2
− C0. (4.48)

The scheme can be recast into

Aφn+1
+ (φn+1, c1)d1 + (φn+1, c2)d2 = bn, (4.49)

where

A = I + ∆tM
n+1/2

[
∇

4

2
+ a∇2

+
α

2
],

c1 = gn+1/2
,

d1 = ∆tM
n+1/2

gn+1/2
,

c2 = 1, d2 =
∆tM

n+1/2

2
η,

bn = φn
− ∆tM

n+1/2
[
∇

2

2
φn

+ a∇2φn
+

α

2
φn

+ 2rngn+1/2
−

gn+1/2
∫

Ω

gn+1/2
φndr] − ∆tM

n+1/2√
ηζ n

+ ∆tM
n+1/2 η

2

∫
Ω

φndr.

(4.50)

It implies that

(φn+1, c1) + (φn+1, c1)(A−1d1, c1) + (φn+1, c2)(A−1d2, c1) = (A−1bn, c1),
(φn+1, c2) + (φn+1, c1)(A−1d1, c2) + (φn+1, c2)(A−1d2, c2) = (A−1bn, c2).

(4.51)

We solve for (φn+1, c1) and (φn+1, c2) from the above equation after we obtain

A[x, y, z] = [d1, d2, bn]. (4.52)

So, the solution is solved in the following steps,

φn+1
= z − [(φn+1, c1)x + (φn+1, c2)y],

rn+1
= rn + (φn+1

− φn,
gn+1/2

2
),

ζ n+1
= ζ n

+
√

η((φn+1, 1) − (φn, 1)).

(4.53)

4.1.7. Numerical schemes for the Allen-Cahn model with a Lagrange multiplier by EQ methods
We reformulate the free energy density by introducing an intermediate variable

q = φ2. (4.54)

Then, the free energy recast into

F =

∫
Ω

[
φ

2
(∇4

+ 2a∇2
+ α)φ +

q2

4
]dr − L(

∫
Ω

φ(t)dr −

∫
Ω

φ(0)dr). (4.55)

We rewrite (2.24) as
∂φ

∂t
= −Mµ̃,

∂q
∂t

= q′φt , (4.56)
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where

µ̃ =
δF
δφ

= ∇
4φ + 2a∇2φ + αφ +

1
2
qq′

− L, L =
1∫

Ω
Mdr

∫
Ω

Mµ̃dr, q′
=

∂q
∂φ

. (4.57)

We then discretize it using the linear modified Crank–Nicolson method in time as follows.

Scheme 4.7. Given initial conditions φ0, q0, we first compute φ1, q1 by a first order scheme. Having computed φn−1, qn−1,
and φn, qn, we compute φn+1, qn+1 as follows.

φn+1
− φn

= −∆tM
n+1/2

µ̃n+1/2,

qn+1
− qn = q′

n+1/2
(φn+1

− φn).
(4.58)

where

µ̃n+1/2
= (∇4φ + 2a∇2φ + αφ)

n+1/2
+

1
2
qn+1/2q′

n+1/2
− Ln+1/2,

Ln+1/2
=

1∫
Ω
M

n+1/2
dr

∫
Ω

M
n+1/2

µn+1/2dr.
(4.59)

Remark. Ln+1/2
̸=

Ln+Ln+1

2 .

Then, we have the following theorem

Theorem 4.1. The mass of each phase is conserved, i.e.,∫
Ω

φn+1dr =

∫
Ω

φndr. (4.60)

Proof. Substituting the Ln+1/2 into the equation below, we have∫
Ω

φn+1
− φn

∆t
dr

=

∫
Ω

−M
n+1/2

(µn+1/2
− Ln+1/2)dr = 0.

(4.61)

This implies the mass-conservation property.

We define the discrete energy as follows

F n
=

∫
Ω

[
φn

2
(∇4

+ 2a∇2
+ α)φn

+
(qn)2

4
]dr. (4.62)

The solution is solved in the following steps

A[x, y] = [d, bn],

(φn+1, c) =
(y, c)

1 + (x, c)
,

φn+1
= y − (φn+1, c)x,

qn+1
= qn + q′

n+1/2
(φn+1

− φn),

(4.63)

where

A = I + ∆tM
n+1/2

[
∇

4

2
+ a∇2

+
α

2
+

1
4
(q′

n+1/2
)
2
],

c = M
n+1/2

[
∇

4

2
+ a∇2

+
α

2
+

1
4
(q′

n+1/2
)
2
],

d = −
∆tM

n+1/2∫
Ω
M

n+1/2
dr

,

bn = φn
− ∆tM

n+1/2
(
∇

4

2
φn

+ a∇2φn
+

α

2
φn

+
1
2
qnq′

n+1/2
−

1
4
(q′

n+1/2
)
2
φn

−∫
Ω
M

n+1/2
(∇

4

2 φn
+ a∇2φn

+
α
2 φn

+
1
2q

nq′
n+1/2

−
1
4 (q

′
n+1/2

)
2
φn)dr∫

Ω
M

n+1/2
dr

)

(4.64)
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4.1.8. Numerical schemes for the Allen-Cahn model with Lagrange multipliers by SAV methods
We reformulate the free energy density by introducing an intermediate variable

r =

√∫
Ω

φ4

4
dr + C0. (4.65)

Then, the free energy recast into

F =

∫
Ω

[
φ

2
(∇4

+ 2a∇2
+ α)φ]dr + r2 − C0 − L(

∫
Ω

φ(t)dr −

∫
Ω

φ(0)dr). (4.66)

We rewrite (2.24) as

∂φ

∂t
= −Mµ̃,

∂r
∂t

=

∫
Ω

gφtdr, (4.67)

where

µ̃ =
δF
δφ

= ∇
4φ + 2a∇2φ + αφ + 2rg − L, L =

1∫
Ω
Mdr

∫
Ω

Mµdr, g =
∂r
∂φ

=
φ3

2
√∫

Ω

φ4

4 dr + C0

. (4.68)

We then discretize it using the modified Crank–Nicolson method in time as follows.

Scheme 4.8. Given initial conditions φ0, r0, we first compute φ1, r1 by a first order scheme. Having computed φn−1, rn−1,
and φn, rn, we compute φn+1, rn+1 as follows.

φn+1
− φn

= −∆tM
n+1/2

[(∇4φ + 2a∇2φ + αφ)
n+1/2

+ 2rn+1/2gn+1/2
− Ln+1/2

],

rn+1
− rn =

∫
Ω

gn+1/2(φn+1
− φn)dr.

(4.69)

where

µ̃n+1/2
= (∇4φ + 2a∇2φ + αφ)

n+1/2
+ 2rn+1/2gn+1/2

− Ln+1/2,

Ln+1/2
=

1∫
Ω
M

n+1/2
dr

∫
Ω

M
n+1/2

µn+1/2dr. (4.70)

Then, we have the following theorem

Theorem 4.2. The mass of each phase is conserved, i.e.,∫
Ω

φn+1dr =

∫
Ω

φndr. (4.71)

Proof. The proof is similar to that of Theorem 4.1 and is thus omitted.

We define the discrete energy as follows

F n
=

∫
Ω

[
φn

2
(∇4

+ 2a∇2
+ α)φn

]dr + (rn)2 − C0. (4.72)

This scheme can be recast into

Aφn+1
+ (φn+1, c1)d1 + (φn+1, c2)d2 + (c3, (φn+1, c1))d2 = bn, (4.73)

So we have

(φn+1, c1) + (φn+1, c1)(A−1d1, c1) + (φn+1, c2)(A−1d2, c1) + (c3, (φn+1, c1))(A−1d2, c1) = (A−1bn, c1),
(φn+1, c2) + (φn+1, c1)(A−1d1, c2) + (φn+1, c2)(A−1d2, c2) + (c3, (φn+1, c1))(A−1d2, c2) = (A−1bn, c2).

(4.74)

We solve for (φn+1, c1) and (φn+1, c2) from the above equations after we obtain

A[x, y, z] = [d1, d2, bn], (4.75)
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where

A = I + ∆tM
n+1/2

(
∇

4

2
+ a∇2

+
α

2
),

c1 = gn+1/2
, d1 = ∆tM

n+1/2
gn+1/2

,

c2 = M
n+1/2

(∇
4

2 + a∇2
+

α
2 ),

d2 = −∆tM
n+1/2 1∫

Ω
M

n+1/2
dr

,

c3 = M
n+1/2

,

bn = φn
− ∆tM

n+1/2
(
∇

4

2
φn

+ a∇2φn
+

α

2
φn

+ 2rngn+1/2
− gn+1/2

∫
Ω

gn+1/2
φndr)

−(M
n+1/2

,
∇

4

2
φn

+ a∇2φn
+

α

2
φn

+ 2rngn+1/2
− gn+1/2

∫
Ω

gn+1/2
φndr)d2.

(4.76)

Finally, the solution is obtained as follows

A[x, y, z] = [d1, d2, bn],
φn+1

= z − (φn+1, c1)x − (φn+1, c2)y − (c3, (φn+1, c1))y,
rn+1

= rn + (gn+1/2
, (φn+1

− φn)).
(4.77)

4.2. Spatial discretization

We use the finite difference method to discretize the equations with the Neumann boundary condition in space for
all models. The linear spatially dependent PDE systems resulting from all semi-discrete schemes are spatially discretized
by compact second order finite difference methods at the cell center. We divide the 2D domain Ω = [0, Lx] × [0, Ly] into
rectangular meshes with mesh sizes hx = Lx/Nx and hy = Ly/Ny, where Lx, Ly are two positive real numbers and Nx, Ny are
the number of meshes in each direction. After this, the sets of the cell center points Cx and Cy for the uniform partition
are defined as follows

Cx = {xi|i = 0, 1, . . . ,Nx} , Cy =
{
yj|j = 0, 1, . . . ,Ny

}
, (4.78)

where xi = (i − 1
2 )hx and yj = (j − 1

2 )hy.
We define the east–west-edge-to-center and center-to-east–west-edge difference operators dx and Dx as follows

dxφij =

φi+ 1
2 ,j − φi− 1

2 ,j

hx
, Dxφi+ 1

2, j
=

φi+1,j − φi−1,j

hx
. (4.79)

Similarly, we define the north–south-edge-to-center and center-to-north–south-edge difference operators dy and Dy as
follows

dyφij =

φi,j+ 1
2

− φi,j− 1
2

hy
, Dyφi,j+ 1

2
=

φi,j+1 − φi,j−1

hy
. (4.80)

The fully discrete Laplacian and fourth order gradient operator are given by

∇
2
h = ∆h = dx(Dxφ) + dy(Dyφ), ∇4

h = ∆2
h = dx(Dx∆h) + dy(Dy∆h). (4.81)

The discrete inner product is defined as follows

⟨f , g⟩ = hxhy

∑
i,j

fi,jgi,j, (4.82)

where fij and gij are given at the cell center. In particular,

⟨f , 1⟩ = hxhy

∑
i,j

fi,j, ∥f ∥d =

√
⟨f , f ⟩. (4.83)

With the notations, we replace the continuous differential operators in the semi-discrete schemes by the discrete
difference operators to arrive at the corresponding fully discrete schemes. To save space, we will not enumerate them
here.
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4.3. Energy dissipation property and solvability of the linear systems resulting from the schemes

We summarize the energy dissipation law and unique solvability for all linear systems resulting from the semidiscrete
schemes presented in this section into two theorems. The proofs of the energy dissipation property and solvability for
the fully discrete schemes are similar, we only prove the theorems for the Allen–Cahn model with a Lagrange multiplier
discretized using EQ methods below and omit others for simplicity. Based on Scheme 4.7 and the spatial discretization,
the fully discrete scheme corresponding to Scheme 4.7 is summarized below.

Scheme 4.9. Given initial conditions φ0, q0, we first compute φ1, q1 by a first order scheme. Having computed φn−1, qn−1,
and φn, qn, we compute φn+1, qn+1 as follows.

φn+1
− φn

− ∆tM
n+1/2

[(∇4
hφ + 2a∇2

hφ + αφ)
n+1/2

+
1
2
qn+1/2q′

n+1/2
− Ln+1/2

],

qn+1
− qn = q′

n+1/2
(φn+1

− φn).
(4.84)

where

µ̃n+1/2
= (∇4

hφ + 2a∇2
hφ + αφ)

n+1/2
+

1
2
qn+1/2q′

n+1/2
− Ln+1/2,

Ln+1/2
=

1∫
Ω
M

n+1/2
dr

∫
Ω

M
n+1/2

µn+1/2dr.
(4.85)

We define the discrete energy as follows

F n
= ⟨

φn

2
(∇4

h + 2a∇2
h + α)φn

+
(qn)2

4
, 1⟩. (4.86)

Theorem 4.3. The fully discrete scheme obeys the following energy dissipation law

F n+1
− F n

= −∆t⟨µn+1/2
− Ln+1/2,M

n+1/2
(µn+1/2

− Ln+1/2)⟩. (4.87)

Proof. Taking inner product of (4.84) with −un+1/2, we obtain

−⟨
φn+1

− φn

∆t
, µn+1/2

⟩

= −⟨−M
n+1/2

[µn+1/2
− Ln+1/2

], µn+1/2
⟩

= ∥

√
M

n+1/2
(µn+1/2

− Ln+1/2)∥2
d + ⟨M

n+1/2
[µn+1/2

− Ln+1/2
], Ln+1/2

⟩.

(4.88)

Taking inner product of µn+1/2 with φn+1
−φn

∆t , we have

⟨(∇4
hφ + 2a∇2

hφ + αφ)
n+1/2

+
1
2
qn+1/2q′

n+1/2
,
φn+1

− φn

∆t
⟩

=
∥∇

2
hφ

n+1
∥
2
d − ∥∇

2
hφ

n
∥
2
d

2∆t
− a

∥∇hφ
n+1

∥
2
d − ∥∇hφ

n
∥
2
d

∆t
+

α

2∆t
(∥φn+1

∥
2
d − ∥φn

∥
2
d) + ⟨

1
2
qn+1/2q′

n+1/2
,
φn+1

− φn

∆t
⟩.

(4.89)

Taking inner product of qn+1
− qn with qn+1

+qn
∆t , we obtain

1
∆t

(∥qn+1
∥
2
d − ∥qn∥2

d) =
1

∆t
⟨q′

n+1/2
(φn+1

− φn), qn+1
+ qn⟩. (4.90)

Combining the above equations, we obtain

∥∇
2
hφ

n+1
∥
2
d − ∥∇

2
hφ

n
∥
2
d

2∆t
− a

∥∇hφ
n+1

∥
2
d − ∥∇hφ

n
∥
2
d

∆t
+

α

2∆t
(∥φn+1

∥
2
d − ∥φn

∥
2
d) +

1
4∆t

(∥qn+1
∥
2
d − ∥qn∥2

d)

= −∥

√
M

n+1/2
(µn+1/2

− Ln+1/2)∥2
d − (M

n+1/2
[µn+1/2

− Ln+1/2
], Ln+1/2).

(4.91)

Substituting the expression of Ln+1/2 into the equation, we have

−∥

√
M

n+1/2
(µn+1/2

− Ln+1/2)∥2
d − (M

n+1/2
[µn+1/2

− Ln+1/2
], Ln+1/2)

= −∥

√
M

n+1/2
(µn+1/2

− Ln+1/2)∥2
d.

(4.92)
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Remark. (i). This proof applies to the semi-discrete schemes as well. (ii). When the linear schemes of the nonlocal Allen–
Cahn model involve integrals discretized by a composite Trapezoidal rule, efficient numerical methods can be devised to
solve the resulting linear systems. Such methods are derived from the Sherman–Morrison formula (See Appendix).

Theorem 4.4. The linear system resulting from the above fully discrete scheme admits a unique solution at sufficiently small
∆t > 0.

Proof. Note that the solution in scheme (4.84) is solved via the following steps

Aφn+1
+ (φn+1, c)d = bn, qn+1

− qn = q′
n+1/2

(φn+1
− φn), (4.93)

where

A = I + ∆tM
n+1/2

[
∇

4
h

2
+ a∇2

h +
α

2
+

1
4
(q′

n+1/2
)
2
],

c = M
n+1/2

[
∇

4
h

2
+ a∇2

h +
α

2
+

1
4
(q′

n+1/2
)
2
],

d = −
∆tM

n+1/2

⟨

√
M

n+1/2
,

√
M

n+1/2
⟩

,

bn = φn
− ∆tM

n+1/2
(
∇

4
h

2
φn

+ a∇2
hφ

n
+

α

2
φn

+
qnq′

n+1/2

2
−

1
4
(q′

n+1/2
)
2
φn

−

⟨M
n+1/2

,
∇

4
h
2 φn

+ a∇2
hφ

n
+

α
2 φn

+
qnq′

n+1/2

2 −
1
4 (q

′
n+1/2

)
2
φn

⟩

⟨

√
M

n+1/2
,

√
M

n+1/2
⟩

).

(4.94)

From the Sherman–Morrison formula, we notice that the solution uniqueness of Aφn+1
+ (φn+1, c)d = bn depends on the

uniqueness of the corresponding linear system Aφn+1
= bn. Now we only need to prove the uniqueness of the solution

for

Aφn+1
= 0. (4.95)

If ∆t is small enough, we have

⟨Aφ, φ⟩ = ⟨φ, Aφ⟩ = ⟨φ, (I + ∆tM[
∇

4
h

2
+ a∇2

h +
α

2
+

1
4
(q′)

2
])φ⟩

= ⟨φ, φ⟩ + ⟨φ, ∆tM
∇

4
h

2
φ⟩ + ⟨φ, ∆tMa∇2

hφ⟩

+⟨φ, ∆tM
α

2
φ⟩ + ⟨φ, ∆tM

1
4
(q′)

2
φ⟩

≥ 0.

(4.96)

So, Aφ = 0 has only zero solution.

Remark. One can prove the uniqueness of the solution for any time step size if µn+1/2
= ∇

4
hφ

n+1/2
+ 2a∇2

hφ
n+1/2

+

αφn+1/2
+

1
2q

n+1/2q′
n+1/2

in Eq. (4.84). This discretization of the chemical potential also yields a second order unconditional
energy stable scheme.

5. Numerical results and discussions

In this section, we conduct mesh refinement tests to validate the accuracy of the proposed schemes and then present
some numerical examples to assess the schemes for the nonlocal Allen–Cahn models against those for the Cahn–Hilliard
model. For convenience, we refer the numerical schemes designed by EQ methods for the Allen–Cahn model, the Cahn–
Hilliard model, the Allen–Cahn model with a penalizing potential and the Allen–Cahn model with a Lagrange multiplier
as AC-EQ, CH-EQ, AC-P-EQ and AC-L-EQ, respectively. Similarly, we name the numerical schemes obtained using SAV
approaches for the models as AC-SAV, CH-SAV, AC-P-SAV, AC-L-SAV, respectively. In the following, we set the constant
in the free energy at C0 = 1 × 104 in all computations.

5.1. Mesh refinement test

We confirm the convergence rates of the proposed schemes for the PFC models through mesh refinement tests. The
computational domain is set as Ω = [0, 1]2. The model parameter values are chosen as a = 1, ε = 0.1,M = 1 × 10−3.
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Table 1
Mesh refinement tests in time for the proposed schemes using EQ methods.
Scheme AC-EQ CH-EQ AC-P-EQ AC-L-EQ

Coarse ∆t Fine ∆t L2 error Order L2 error Order L2 error Order L2 error Order

5.00E−02 2.5E−2 1.21E−06 – 1.23E−05 – 1.21E−06 – 1.21E−06 –
2.5E−2 1.25E−2 3.02E−07 2.00 3.12E−06 1.98 3.02E−07 2.00 3.02E−07 2.00
1.25E−2 6.25E−3 7.56E−08 2.00 7.84E−07 1.99 7.56E−08 2.00 7.56E−08 2.00
6.25E−3 3.125E−3 1.89E−08 2.00 1.96E−07 2.00 1.89E−08 2.00 1.89E−08 2.00
3.125E−3 1.5625E−3 4.72E−09 2.00 4.90E−08 2.00 4.72E−09 2.00 4.72E−09 2.00

Table 2
Mesh refinement tests in time for the proposed schemes using SAV methods.
Scheme AC-SAV CH-SAV AC-P-SAV AC-L-SAV

Coarse ∆t Fine ∆t L2 error Order L2 error Order L2 error Order L2 error Order

5.00E−02 2.5E−2 1.24E−06 – 1.22E−05 – 1.24E−06 – 1.24E−06 –
2.5E−2 1.25E−2 3.09E−07 2.00 3.10E−06 1.98 3.09E−07 2.00 3.09E−07 2.00
1.25E−2 6.25E−3 7.72E−08 2.00 7.78E−07 1.99 7.72E−08 2.00 7.72E−08 2.00
6.25E−3 3.125E−3 1.93E−08 2.00 1.95E−07 2.00 1.93E−08 2.00 1.93E−08 2.00
3.125E−3 1.5625E−3 4.83E−09 2.00 4.87E−08 2.00 4.82E−09 2.00 4.82E−09 2.00

Table 3
Mesh refinement tests in space for the proposed schemes using EQ methods.
Scheme AC-EQ CH-EQ AC-P-EQ AC-L-EQ

Coarse δt Fine δt L2 error Order L2 error Order L2 error Order L2 error Order

1/8 1/16 3.39E−03 – 3.39E−03 – 3.39E−03 – 6.06E−05 –
1/16 1/32 8.492E−04 2.00 8.492E−04 2.00 8.492E−04 2.00 1.36E−05 2.16
1/32 1/64 2.12E−04 2.00 2.12E−04 2.00 2.12E−04 2.00 3.31E−06 2.04
1/64 1/128 5.31E−05 2.00 5.31E−05 2.00 5.31E−05 2.00 8.21E−07 2.01
1/128 1/256 1.33E−05 2.00 1.33E−05 2.00 1.33E−05 2.00 2.05E−07 2.00

Table 4
Mesh refinement tests in space for the proposed schemes using SAV methods.
Scheme AC-SAV CH-SAV AC-P-SAV AC-L-SAV

Coarse δt Fine δt L2 error Order L2 error Order L2 error Order L2 error Order

1/8 1/16 3.39E−03 – 3.39E−03 – 3.39E−03 – 6.06E−05 –
1/16 1/32 8.492E−04 2.00 8.492E−04 2.00 8.492E−04 2.00 1.36E−05 2.16
1/32 1/64 2.12E−04 2.00 2.12E−04 2.00 2.12E−04 2.00 3.31E−06 2.04
1/64 1/128 5.31E−05 2.00 5.31E−05 2.00 5.31E−05 2.00 8.21E−07 2.01
1/128 1/256 1.33E−05 2.00 1.33E−05 2.00 1.33E−05 2.00 2.05E−07 2.00

Table 5
Efficiency of the schemes at 1000 time steps with respect to M = 0.001, 1 and 100 (from top to below).
Scheme AC-EQ AC-SAV CH-EQ CH-SAV AC-P-EQ AC-P-SAV AC-L-EQ AC-L-SAV

Time (s) 45.3 77.9 66.0 107.8 68.3 90.0 110.0 103.2
Time (s) 44.4 76 54.6 104 38.8 84.2 53.9 100.7
Time (s) 53.4 75.0 66.8 111.9 61.4 83.2 103.3 99.5

We solve the equations with the initial condition given by

φ(0, x, y) =
1
2

+
1
2
cos(πx) cos(πy). (5.1)

We choose the space step size hx = hy =
1

256 . By taking a linear refinement path ∆t =
0.05
2k

, k = 0, 1, . . . , 5, we calculate
the L2 errors of the phase variable with adjacent k at t = 1. The tables show the schemes are second order accurate in
time numerically (see Tables 1 and 2). Besides this, we also take a linear refinement path ∆h =

1
23+l , l = 0, 1, . . . , 5 to

test the accuracy in space numerically. Tables 3 and 4 show the schemes are also second order accurate in space.



X. Jing and Q. Wang / Computers and Mathematics with Applications 79 (2020) 764–788 781

We also compare the computational efficiency of all schemes designed by EQ and SAV methods with M = 1× 10−3, 1
and 1×102 in Table 5 . The AC-P-EQ/SAV schemes perform the best among the schemes for nonlocal Allen–Cahn models.
Besides this, AC-P-EQ/SAV schemes also perform better than CH-EQ/SAV schemes in most test cases. In fact, the accuracy
of the Cahn–Hilliard model relies on the mobility coefficient M more sensitively than the Allen–Cahn models do. Hence,
the accuracy of the schemes for the nonlocal Allen–Cahn models is better than that for the Cahn–Hilliard model if M is
large. We will discuss it in more details next (see Fig. 5.6).

5.2. Assessment of the numerical schemes on benchmark problems

To further assess the numerical schemes, we numerically solve the model equations using the schemes with respect to
two benchmark problems. Firstly we simulate the phase transition of crystal growth in 2D. We use time step ∆t = 1×10−3

and 256 × 256 meshes in space in 2D simulations. A solid crystallite with Hexagonal ordering in 2D is initially placed in
the center of the domain, which is assigned an average density φ. The initial condition is given by

φ0(r) = φ + w(r)(Aφs(r)), (5.2)

where

w(r) =

⎧⎨⎩(1 − (
|r − r0|

d0
)2)2 if

|r − r0|
d0

≤ 1,

0 otherwise.
(5.3)

φs(r) = cos(
q

√
3
y) cos(qx) −

1
2
cos(

2q
√
3
y), (5.4)

r0 is the center coordinate of the domain, and d0 is 1
6 of the domain length in the x-direction. The domain is given by

Ω = [0, 2π
q a]×[0,

√
3π
q b], a = 10 and b = 12. The other values are ε = 0.325, φ =

√
ε

2 , A =
4
5 (φ +

√
15ε−36φ2

3 ) and q =

√
3
2 .

Fig. 5.1 shows time evolution of the crystal growth process computed using AC-EQ, CH-EQ, AC-P-EQ and AC-L-EQ
schemes, respectively. In Fig. 5.1-(a), the crystal growth simulated by the Allen–Cahn model cannot preserve the Hexago-
nal ordering, different from the results simulated by the Cahn–Hilliard model in Fig. 5.1-(b) and the nonlocal Allen–Cahn
models in Fig. 5.1-(c) and (d). The time evolution of mass and free energy are shown in Fig. 5.2-(a) and (b) respectively. The
results computed by the EQ and SAV schemes for the same model (Allen–Cahn model, Cahn–Hilliard model and nonlocal
Allen–Cahn models) are identical. We do not see any differences between the results of the Allen–Cahn model with a pe-
nalizing potential and the Allen–Cahn model with a Lagrange multiplier either. The mass decays in the Allen–Cahn model
to nearly zero in finite time. In contrast, the mass in the Cahn–Hilliard model and the Allen–Cahn models with nonlocal
constraints is conserved in the simulations. Meantime, the free energies of the Cahn–Hilliard model and the nonlocal
Allen–Cahn models are larger than that of the Allen–Cahn model. Fig. 5.2-(b) shows that the free energy computed by the
Allen–Cahn model with nonlocal constraints reaches the steady state faster than that of the Cahn–Hilliard model.

Secondly we simulate another case of polycrystalline growth involving the grain boundary effect, where the two initial
crystallites with a hexagonal configuration oriented in different direction (or misorientation) are put in the domain. Grain
boundaries appear when the two crystals meet during the growth, which yields some orientational mismatch. The initial
condition is given by

φ0(r) = φ + w(x)(Aφs(r)), (5.5)

where

w(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(1 − (

|r1|
d0

)2)2 if
|r1|
d0

≤ 1,

(1 − (
|r2|
d0

)2)2 if
|r2|
d0

≤ 1,

0 otherwise,

(5.6)

r1 =

√
(x −

1
2x0)

2 + (y −
1
2y0)

2, r2 =

√
(x −

3
2x0)

2 + (y −
3
2y0)

2 and (x0, y0) is the center of the domain. The other
parameters and the domain are the same as in the first example. By doing an affine transformation of the Cartesian
coordinates (x, y) to produce a rotation θ in the domain, the modified coordinates (xθ , yθ ) can be used to generate the
crystallites in different directions,

xθ = cos(θ )x − sin(θ )y,
yθ = sin(θ )x + cos(θ )y. (5.7)

We put two crystallites in the domain, the first one is defined as Eq. (5.7) with θ = 0, the second is defined with θ =
π
8 .

Fig. 5.3 depicts the grain boundary effect during polycrystalline growth computed by AC-SAV, CH-SAV, AC-P-SAV and
AC-L-SAV schemes, respectively. The snapshots of the phase transitions computed by the Cahn–Hilliard and the nonlocal
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Fig. 5.1. Crystal growth simulated using the Allen–Cahn, Cahn–Hilliard and Allen–Cahn models with nonlocal constraints at M = 1. (a)–(d)
are computed using AC-EQ, CH-EQ, AC-P-EQ and AC-L-EQ schemes respectively. Snapshots of the atomistic density field φ are depicted at
T = 0, 7.5, 30, 150, respectively. Parameter η is set as 1× 103 in the AC-P-EQ/SAV schemes. We use time step ∆t = 1× 10−3 and 256 × 256 space
meshes in the 2D simulation. The Allen–Cahn model gives an erroneous result while the other models give comparable results.

Allen–Cahn models show the Hexagonal ordering are broken at the center at T = 400. The time evolution of mass and free
energy are shown in Fig. 5.4-(a) and (b), respectively. The mass in the Allen–Cahn model decays in time as expected. In
contrast, the mass in the Cahn–Hilliard model and the nonlocal Allen–Cahn models are conserved during the simulation.
Meanwhile, the free energies of the Cahn–Hilliard model and the nonlocal Allen–Cahn models are larger than that of
the Allen–Cahn model. In Fig. 5.4-(b), the nonlocal Allen–Cahn models and the Cahn–Hilliard model predict comparable
time evolution of the free energy but the nonlocal Allen–Cahn models reach the steady state first. The results computed
by the EQ and SAV schemes for the same model (the Allen–Cahn model, Cahn–Hilliard model and nonlocal Allen–Cahn
model) are nearly identical. We do not see any differences between the results of the Allen–Cahn model with a penalizing
potential and the Allen–Cahn model with a Lagrange multiplier either.

To illustrate the time evolutionary behavior of the models, we conduct another simulation with three spatially isolated
crystallites to begin with. Simulation results are shown in Fig. 5.5, where the free energy of the Allen–Cahn models with
nonlocal constraints shows smaller value during the transient dynamical simulations shown.

We note that the results computed by the Allen–Cahn model with a penalizing potential and the Allen–Cahn model
with a Lagrange multiplier in the above two examples at η = 1 × 103 are the same. However, the choice of η can
certainly affect the outcome. In principle, η should be chosen as large as possible. However, when η is too large, the
governing equation becomes very stiff, which forces one to use extremely small time-step size in order to resolve the
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Fig. 5.2. Time evolution of the mass and free energy from the simulations for Allen–Cahn (AC), Cahn–Hilliard (CH) and nonlocal Allen–Cahn (NAC)
models are shown in (a) and (b), respectively. Since the results computed by the Allen–Cahn model with nonlocal constraints are nearly identical, we
only show time evolution of the mass and free energy computed using the AC-L-EQ scheme. We compare time evolution of the mass and free energy
computed by the EQ and SAV schemes in (a) and (b). There is no difference between the results computed by the two methods. The mass computed
using the Allen model vanishes before T = 10, whereas it is conserved in the Cahn–Hilliard and the Allen–Cahn model with nonlocal constraints.
The free energy computed by all models are dissipative. The nonlocal Allen–Cahn models predict comparable free energy to the Cahn–Hilliard model
but reach the steady state faster than the Cahn–Hilliard model does.

detail correctly. On the other hand, as we have shown in the two examples, η = 1 × 103 is good enough to produce the
results that conserve mass very well.

Both Figs. 5.2 and 5.4 show that the free energy computed by the nonlocal Allen–Cahn models reach the steady
state faster than that of the Cahn–Hilliard model, which is different from our previous results on a different free energy
functional [58]. Especially, the simulations computed by the models with mobility coefficient M = 1 and time steps
1 × 10−2, 1 × 10−4 show the afore-mentioned time evolution behavior. When the mobility is large, say M = 10, and
∆t = 0.01, the CH-SAV produce an erroneous result while the others produce comparable ones. In practice, if the steady
state is more important than the transient dynamics, one can enlarge the mobility coefficient of the models to accelerate
the convergence to steady state. But, CH-SAV seems to have some accuracy issues with this approach at large time step
sizes. The results of the nonlocal Allen–Cahn models in 5.6-(a) and (b) show better performance than the Cahn–Hilliard
model does in Fig. 5.6-(c) and (d).

6. Conclusions

We have developed a set of linear, second order, energy stable schemes for the Allen–Cahn model with nonlocal
constraints that conserve mass and compared them with the energy stable, linear schemes for the Allen–Cahn and the
Cahn–Hilliard model. These schemes are devised based on the energy quadratization strategy in the form of EQ and SAV
formulation of original models, respectively. We show that they are unconditionally energy stable and uniquely solvable.
All schemes can be solved using efficient numerical methods, making the models alternatives to the Cahn–Hilliard model
to describe interface dynamics of immiscible materials while conserving mass. The nonlocal Allen–Cahn models show
a faster coarsening rate than that of the Cahn–Hilliard model at the same mobility, but one can enlarge the mobility
coefficient of the nonlocal Allen–Cahn model to accelerate their dynamics in case only steady states are of interest.
In addition, we have compared the two Allen–Cahn models with nonlocal constraints numerically. The computational
efficiency of the Allen–Cahn model with a penalizing potential is slightly better than the one with a Lagrange multiplier,
but the accuracy of the former depends on a suitable choice of model parameter η. If the steady state is desired rather than
the transient dynamical behavior, large time step size and mobility coefficient can be used to accelerate the simulation.
In the end, we show that the nonlocal Allen–Cahn models perform better that the Cahn–Hilliard model in the case of a
large time step and mobility coefficient.
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Fig. 5.3. Polycrystalline growth with the grain boundary effect simulated using the Allen–Cahn, Cahn–Hilliard and Allen–Cahn models with nonlocal
constraints at M = 1. (a)–(d) are computed using AC-SAV, CH-SAV, AC-P-SAV and AC-L-SAV scheme, respectively. Snapshots of the atomistic density
field φ are taken at T = 0, 4, 20, 400, respectively. Different growth patterns start affecting each other at T = 20 and the hexagonal ordering breaks
down eventually at the interface of the polycrystalline. The solid hexagonal ordering and dash non-hexagonal ordering are shown in (c). Parameter
η is set as 1 × 103 . We use time step ∆t = 1 × 10−3 and 256 × 256 space meshes in the 2D simulation.

Appendix. Shermann–Morrison formula and its application to solving integro-differential equations

Here we give a brief review over the Sherman–Morrison formula [59] and explain its applications in the practical
implementation of our various relevant schemes.

Suppose A is an invertible square matrix, and u, v are column vectors. Then A + uvT is invertible iff 1 + vTA−1u ̸= 0.
If A + uvT is invertible, then its inverse is given by

(A + uvT )−1
= A−1

−
A−1uvTA−1

1 + vTA−1u
. (A.1)

So if Ay = b and Az = u, (A + uvT )x = b has the solution given by

x = y −
vTy

1 + vT z
z. (A.2)

For the integral term(s) in the semi-discrete schemes in this study such as (4.58), we need to discretize it properly. ∀f ,
we discretize

∫
Ω
f dr using the composite trapezoidal rule and adding all the elements of the new matrix w1w

T
2 f , where
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Fig. 5.4. Time evolution of mass and free energy from the simulation for Allen–Cahn (AC), Cahn–Hilliard (CH) and nonlocal Allen–Cahn (NAC) models
are shown in (a) and (b), respectively. Since the dynamical behavior of the Allen–Cahn model with nonlocal constraints are the same, we only show
the time evolution of mass and free energy computed using the AC-L-EQ scheme. We compare the time evolution of mass and free energy computed
by the EQ and SAV schemes in (a) and (b). We do not see any differences between the results computed by the EQ and SAV methods. The mass
computed using the Allen–Cahn model vanishes before T = 50, whereas it is conserved by the Cahn–Hilliard and the Allen–Cahn model with nonlocal
constraints. Free energy computed by all models are dissipative. Similarly, the nonlocal Allen–Cahn and Cahn–Hilliard model predict comparable
results in the free energy, but the free energy in the nonlocal models reach the steady state faster than the Cahn–Hilliard model does.

Fig. 5.5. Polycrystalline growth with the grain boundary effect simulated using the Allen–Cahn, Cahn–Hilliard and Allen–Cahn models with
nonlocal constraints at M = 1. (a) Results computed using AC-L-SAV scheme, in which snapshots of the atomistic density field φ are shown at
T = 0, 40, 160, 800, respectively. Different growth patterns start affecting each other soon after start up and the hexagonal ordering breaks down at
the interface of the polycrystalline forming grain boundaries. Parameter η is set as 1× 103 . We use time step ∆t = 1× 10−3 and 256 × 256 space
meshes in the 2D simulation. (b). The free energy function of the four models as a function of time. The free energy of the Allen–Cahn model with
a Lagrange multiplier yields the smaller free energy during the transient dynamical simulations among the four models.

w1 =
hx
2 S, w2 =

hy
2 S, hx, hy are the spatial step sizes and S = [1, 2, 2, . . . , 2, 2, 1]T . For convenience, we use w1w

T
2 f to

represent the integral discretized by the composite trapezoidal rule.
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Fig. 5.6. Comparison among the nonlocal Allen–Cahn models and the Cahn–Hilliard model with large time step size and large mobility coefficients.
(a)–(d) are simulated by AC-L-EQ, AC-L-SAV, CH-EQ, CH-SAVscheme with ∆t = 1×10−4 , M = 1, ∆t = 1×10−2 , M = 1 and ∆t = 1×10−2 , M = 10,
respectively. The results show that the nonlocal Allen–Cahn model with a large time step size and large mobility coefficient (a) and (b) performs
better than that of the Cahn–Hilliard model (c) and (d). The initial conditions and other parameters are chosen the same as those in Fig. 5.1.

To solve equation (4.58), we discretize the integral or the inner product of functions (c, φn+1)d as uvTφn+1. The scheme
is recast to Aφn+1

+ uvTφn+1
= bn. After using the Sherman–Morrison formula, we get

φn+1
= A−1bn −

vTA−1bn

1 + vTA−1u
A−1u, (A.3)

In the inner product of vectors, (4.58) can be rewritten into

φn+1
= A−1bn −

⟨c, A−1bn⟩
1 + ⟨c, A−1d⟩

A−1d. (A.4)

So, indeed the approach we take in the study using the discrete inner product is essentially equivalent to applying the
Sherman–Morrison formula.
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