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Abstract
We present a set of linear, second order, unconditionally energy stable schemes for the
Allen-Cahn equation with nonlocal constraints that preserves the total volume of each phase
in a binary material system. The energy quadratization strategy is employed to derive the
energy stable semi-discrete numerical algorithms in time. Solvability conditions are then
established for the linear systems resulting from the semi-discrete, linear schemes. The fully
discrete schemes are obtained afterwards by applying second order finite difference methods
on cell-centered grids in space. The performance of the schemes are assessed against two
benchmark numerical examples, in which dynamics obtained using the volume-preserving
Allen-Cahn equations with nonlocal constraints is compared with those obtained using the
classical Allen-Cahn as well as the Cahn-Hilliard model, respectively, demonstrating slower
dynamics when volume constraints are imposed as well as their usefulness as alternatives
to the Cahn–Hilliard equation in describing phase evolutionary dynamics for immiscible
material systemswhile preserving thephasevolumes. Someperformance enhancing, practical
implementation methods for the linear energy stable schemes are discussed in the end.
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1 Introduction

Thermodynamically consistent models for material systems represent a class of models that
respect the thermodynamical laws and thereby obey the energy dissipation law in isothermal
cases. One particular class of the models is known as the gradient flow model, in which the
time derivative of thermodynamical variables is proportional to the variation of the system
free energy. When the thermodynamic variable is a phase variable, it’s known as the Allen-
Cahn equation. This class of models describe relaxation dynamics of the thermodynamical
system to equilibrium. There aremany applications of such gradient flowmodels, particularly
in the materials science, life science and fluid dynamics [1–15]. However, in the case of a
phase field description of the Allen-Cahn model, when the phase variable represents the
volume fraction of a material component, this model does not warrant the conservation of
the volume of that component. In order to preserve the volume, the free energy functional
has to be augmented by a volume preserving mechanism with a penalizing potential [16,17]
or a Lagrange multiplier [18–20]. This often results in a nonlocal term in the modified Allen-
Cahn equation. In this paper, we call these nonlocal Allen-Cahn equations or Allen-Cahn
equations with nonlocal constraints. Both methods preserve the volume of each phase at a
special definition of the volume. The volume-preserving property of the first method depends
on the choice of a suitable penalizing pre-factor, which we will discuss in more details in the
paper.

The Cahn–Hilliard equation is an alternative model for the gradient flow model [21,22].
One of its features is its volume preserving property. Rubinstein and Sternberg studied the
Allen-Cahn model with a volume constraint analytically and compared it with the Cahn–
Hilliard model [18]. Their result seems to be in favor of using the Allen-Cahn model with a
volume constraint in place of the Cahn–Hilliard model when studying interfacial dynamics
of immiscible multi-component material systems.

For theAllen-Cahn equation aswell as theCahn–Hilliard equation, there have been several
popular numerical approaches to construct energy stable schemes for the equations, including
the convex splitting approach [12,23–28] , the stabilizing approach [29–34], the energy
quadratization (EQ) approach [6,8,35,36] and the scalar auxiliary variable (SAV) approach,
which is a special form of the EQ strategy [37–40]. Recently, the energy quadratization
and the scalar auxiliary variable method have been applied to a host of thermodynamical
and hydrodynamic models owing to their simplicity, ease of implementation, computational
efficiency, linearity, and most importantly their energy stability property [6,8–11,36,40–46].
This has been an active research area in numerical methods for gradient flowmodels recently.
Interested readers are referred to two review papers on this topic [35,38]. We have shown
that the EQ and SAV strategy are general enough to be useful for developing energy stable
numerical approximations to any thermodynamically consistent models, i.e., the models
derived using the second law of thermodynamics or equivalently the Onsager principle [35,
47,48].

In this paper, we develop a set of linear, second order, unconditionally energy stable
schemes using both the energy quadratization (EQ) and the scalar auxiliary variable (SAV)
approach to solve the Allen-Cahn equation, nonlocal Allen-Cahn equations and the Cahn–
Hilliard equation numerically. The numerical schemes for the Allen-Cahn and the Cahn–
Hilliard model are not new. There have been some papers on numerical methods for the
model equations cf. [35,37–39]. They are presented here simply for comparison purposes.
However, the schemes developed here for the nonlocalAllen-Cahnmodels are newanduseful.
In some of these new schemes, both EQ and SAV approaches are combined to yield linear,
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energy stable schemes. We note that when a nonlocal Allen-Cahn model is discretized using
the EQ strategy in time, it is inevitable to yield a scheme in which an scalar auxiliary variable
(SAV) is present due to the volume constraint. Whenmultiple integrals are identified as SAVs
in the free energy functional, new iterative procedures are proposed to solve the subproblems
in which elliptic equations are solved efficiently using fast solvers. All these schemes we
present in this paper are linear and second order accurate in time. The linear system resulting
from the schemes are all solvable uniquely so that the solution existence and uniqueness of
the semi-discrete linear systems is warranted at least for small time step sizes. When the
EQ method is coupled with discretized integrals, the Sherman-Morrison formula can lead us
to efficient numerical implementations. This can be equivalently dealt with using the SAV
method as well pioneered by Jie Shen et al. [37].

The numerical schemes developed for the Allen-Cahn equation with nonlocal volume-
preserving constraints are ensured to preserve the volume of each phase at the discrete level
in addition to preserving the energy dissipation rate. To demonstrate the usefulness of the
schemes, we conduct two numerical experiments to assess the performance of the schemes.
The results based on EQ and those based on SAV perform equally well in preserving the
volume and the energy dissipation rate. In addition, the computational efficiency of the
schemes is comparatively studied in one of the benchmark examples. Some performance
enhancing, practical implementations of the schemes are discussed to improve the accuracy
of the schemes at large time step sizes. To simplify our presentation, we present the temporal
discretization of the models using EQ and SAV approaches in detail. Then, we briefly discuss
our strategy to obtain fully discrete schemes by discretizing the semi-discrete schemes in
space on cell centered grids, and refer readers to our early publications in [6,8] for more
details.

The rest of paper is organized as follows. In Sect. 2,we present themathematicalmodels for
the Allen-Cahn, the Allen-Cahn with nonlocal constraints, and the Cahn–Hilliard equation.
In Sect. 3, we study their near equilibrium dynamics. In Sect. 4, we present a set of second
order, linear, energy stable numerical schemes for the models. In Sect. 5, we conduct mesh
refinement tests on all the schemes and carry out two simulations on drop merging as well
as phase coarsening experiments using the models. Finally, we give the concluding remark
in Sect. 6.

2 Phase Field Models for Binary Materials

We briefly review two simple phase field models for a binary material system: the Allen-
Cahn and the Cahn–Hilliard model, in which the free energy density of the binary material
system is given by a functional of phase variable φ ∈ [0, 1] and its gradients. For instance,
to study drops of one fluid within the matrix of the other immiscible fluid while ignoring
hydrodynamic effects, the free energy is customarily chosen as the following double-well
potential:

E =
∫

�

γ

[
ε

2
|∇φ|2 + 1

ε
φ2(1 − φ)2

]
dx, (2.1)

where� is the material domain, ε is a parameter describing the width of the interface and γ is
the surface tension parameter. In general, the generic form of commonly used free energies
is given by
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E =
∫

�

[
γ1

2
|∇φ|2 + f (φ)

]
dx, (2.2)

where γ1 parametrizes the conformational entropy and f (φ) is the bulk potential. We denote
the free energy density as fd = γ1

2 |∇φ|2 + f (φ).
Dynamics of the binary material system is customarily governed by a time dependent

partial differential equation model resulting from the Onsager’s linear response theory [47,
48],

∂φ

∂t
= −Mμ, in �,

μ = δE

δφ
= −γ1∇2φ + f ′(φ),

(2.3)

subject to appropriate boundary and initial conditions, where M is the mobility matrix con-
sisting of spatial differential operators of even order and μ is the chemical potential.

The time rate of change of the free energy, known as the energy dissipation rate functional,
is given by

d E

dt
= −

∫
�

μMμdx +
∫

∂�

n · ∂ fd

∂∇φ
φt ds. (2.4)

The no-flux boundary condition

n · ∂ fd

∂∇φ
= −γ1n · ∇φ = 0 (2.5)

annihilates the energy flux across the boundary, where n is the unit external normal of
the boundary. This is the commonly used boundary condition. Another less-used boundary
condition is

φ(x, t)|∂� = φ(x, 0)|∂�. (2.6)

This boundary condition also annihilates the energy flux across the boundary. A dynamic
boundary condition named generalized Navier slip boundary has been used in contact line
problems [49,50]

φt = −βn · ∂ fd

∂∇φ
. (2.7)

This specifies a decay rate of the phase variable at the boundary for β ≥ 0, resulting an energy
loss at the boundary due to the exchange with the surrounding.

The phase field model equation system is dissipative with respect to all three boundary
conditions provided M is a positive definite operator. The commonly used phase field models
such asAllen-Cahn andCahn–Hilliard are two special cases,where M is a prescribedmobility
coefficient, which can be a function of φ. However, in some cases, a constant mobility is used
as an approximation instead. The Allen-Cahn equation defined this way does not conserve
the volume defined by

∫
�

φdx if φ is the volume-fraction while the Cahn–Hilliard equation
does. However, these two models predict similar near equilibrium dynamics revealed in their
linear stability analyses below. On the other hand, the Allen-Cahn equation is an equation of
lower spatial derivatives, and presumably costs less when solved numerically. However, in
order for the Allen-Cahn equation to be useful in the context where volume of each phase
is conserved, one has to impose the volume conservation as a constraint. In the following,
we will briefly recall several ways to impose volume conservation to dynamics described by
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the Allen-Cahn equation, then discuss how to design efficient and energy stable numerical
algorithms for the resulting models.

2.1 Allen-CahnModel

The Allen-Cahn Eq. [1] with the no-flux Neumann boundary condition and initial condition
in a domain � is given as follows:

∂φ
∂t = −Mμ, x ∈ �, t > 0,
∂φ
∂n = 0, x ∈ ∂�,

φ(x, t)|t=0 = φ(x, 0), x ∈ �.

(2.8)

The energy dissipation rate of the Allen-Cahn equation is given by (2.4). We denote the
volume of � by

V (t) =
∫

�

φdx. (2.9)

Then,

dV

dt
= −

∫
�

Mμdx. (2.10)

It is normally nonzero when M �= 0, which implies that V (t) is not conserved. One simple
fix is to impose the volume constraint V (t) = V (0) and couple it to the Allen-Cahn equation.
The resulting model is termed the Allen-Cahn model with nonlocal constraints.

2.2 Allen-CahnModels with Nonlocal Constraints

In addition to the volume defined above by V (t) = ∫
�

φ(t)dx, we can introduce a more
general definition using a function h(φ), which is (i) monotonically increasing for φ ∈ [0, 1]
(h′(φ) ≥ 0), and (ii) h(0) = 0, h(1) = 1 as follows,

V (t) =
∫

�

h(φ)dx. (2.11)

We next discuss methods to enforce volume conservation for the Allen-Cahn model. First,
we consider the method that minimizes (V (t) − V (0))2 by penalizing it in the free energy
functional.

2.2.1 Allen-Cahn Model with a Penalizing Potential

Here, we augment the free energy with a penalizing potential as follows [16,17]

E =
∫

�

[
γ1

2
|∇φ|2 + f (φ)

]
dx + η

2
(V (t) − V (0))2, (2.12)

where η is the penalizing parameter, a large positive constant. The transport equation for φ

is given by the Allen-Cahn equation in (2.8) with the modified chemical potential

μ̃ = δE

δφ
= μ + √

ηζh′(φ), ζ = √
η(V (t) − V (0)). (2.13)

123



Journal of Scientific Computing (2019) 80:500–537 505

The energy dissipation rate is given by

d E

dt
=

∫
�

δE

δφ
φtdx = −

∫
�

μ̃(Mμ̃)dx. (2.14)

It is negative if M ≥ 0. ThemodifiedAllen-Cahnmodel is approximately volume-conserving
depending on the size of penalizing potential. In principle, an appropriate η > 0 can make
V (t) close to V (0). The choice of η is, however, up to the user.

2.2.2 Allen-Cahn Model with a Lagrange Multiplier

To impose the volume conservation in the Allen-Cahn model exactly, we use a Lagrange
multiplier L to enforce constraint V (t)−V (0) = 0. This can be accomplished by augmenting
a penalty term with a Lagrange multiplier L in the free energy functional [18–20] as follows:

Ẽ = E − L(V (t) − V0), E =
∫

�

[
γ1

2
|∇φ|2 + f (φ)

]
dx. (2.15)

The transport equation for φ is given by the Allen-Cahn equation in (2.8) with a modified
chemical potential μ̃:

μ̃ = δẼ

δφ
= μ − Lh′(φ), (2.16)

where μ = δE
δφ

and V (t) − V (0) = 0 is the imposed volume constraint. Since the volume is
conserved,

d

dt
V (t) =

∫
�

[
h′(φ)

dφ

dt

]
dx =

∫
�

[h′(φ)Mμ̃]dx = 0. (2.17)

It yields

L = 1∫
�

h′(φ)Mh′(φ)dx

∫
�

[h′(φ)Mμ]dx. (2.18)

The volume conservedAllen-Cahnmodel is nonlocal because an integral is in the chemical
potential as well as in the equation. The choices of h(φ) considered in this paper include the
following two families.

h(φ) = φ,

h′(φ) = (m+1)(2m+1)
m [φ(1 − φ)]m, m is a positive integer.

(2.19)

The energy dissipation rate of the model is again given by (2.14) formally.

2.3 Cahn–Hilliard Model

In the Cahn–Hilliard model [2], the transport equation for φ is given by

∂φ
∂t = ∇ · (M∇μ), x ∈ �
∂φ
∂n = 0, ∂μ

∂n = 0, x ∈ ∂�

φ|t=0 = φ(x, 0).
(2.20)

The energy dissipation rate of the Cahn–Hilliard equation is given by

d E

dt
=

∫
�

δE

δφ
φtdx = −

∫
�

(∇μ)M(∇μ)dx ≤ 0, (2.21)

123



506 Journal of Scientific Computing (2019) 80:500–537

provided M is nonnegative definite. We next examine near equilibrium dynamics of the
Allen-Cahn, the nonlocal Allen-Cahn and the Cahn–Hilliard equation, respectively.

3 Near EquilibriumDynamics

For the Allen-Cahn models, including the nonlocal ones, a constant steady state is given by

f ′(φss) = 0, (3.1)

whereas for the Cahn–Hilliard equation, any constant φss is a steady state. We conduct the
linear stability analysis about the constant steady state in a rectangular domain to demonstrate
near equilibrium dynamics of the phase fieldmodels presented above.We present the analysis
only for the case where the mobility is a constant. Specifically, we perturb the constant steady
state φss of the equations by a small disturbance δφ,

φ = φss + δφ (3.2)

subject to zero Neumann boundary condition

n · ∇φ = 0. (3.3)

For the Allen-Cahn model, substituting Eq. (3.2) into Eq. (2.8) and retaining only the linear
terms in δφ, we obtain the linearized equation

∂δφ

∂t
= −M[−γ1∇2

δφ + f ′′(φss)δφ] (3.4)

together with the boundary condition

n · ∇δφ = 0, x ∈ ∂�. (3.5)

We solve it using the Fourier series method consistent with the no-flux Neumann boundary
condition in domain � = [−π,π]2 given by

δφ =
∞∑

k,l=0

akl(t)cos(kx)cos(ly). (3.6)

Then we obtain the following ordinary differential equation system for each single mode in
the Fourier coefficients:

ȧkl(t) = −Makl(t)[γ1(k2 + l2) + f ′′(φss)], k, l = 0, . . . ,∞. (3.7)

We note that instability may occur only if f ′′(φss) < 0 and when γ1(k2 + l2)+ f ′′(φss) < 0
for some small k, l. This is a well-known result. We present it here to compare with the result
obtained from the nonlocal Allen-Cahn equations next.

For the Allen-Cahn model with a penalizing potential, substituting Eq. (3.2) into the
transport equation, we get the linearized equation

∂δφ

∂t
= −M

(−γ1∇2
δφ + f ′′(φss)δφ

+η

[
h′′(φss)δφ

(∫
�

h(φss)dx − V (0)

)
+ h′(φss)

∫
�

h′(φss)δφdx
])

. (3.8)

We solve it analogously and obtain governing system of equations for the Fourier coefficients:
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ȧkl(t) = −Makl(t)

[
γ1(k

2 + l2) + f ′′(φss)

+ηh′′(φss)

(∫
�

h(φss)dx − V (0)

)
+ ηh′(φss)

∫
�

h′(φss)dxδk0δl0

]
. (3.9)

If γ1(k2 + l2) + f ′′(φss) + ηh′′(φss)(
∫
�

h(φss)dx − V (0)) + η
∫
�
(h′(φss))2dxδk0δl0 <

0 for some small k, l, instability may occur. Compared with the Allen-Cahn model, this
nonlocal Allen-Cahn model introduces a stabilizing mechanism at the zero wave number
k = l = 0 due to η

∫
�
(h′(φss))2dx > 0, and a potentially destabilizing mechanism if

h′′(φss)(
∫
�

h(φss)dx − V (0)) < 0 and stablizing mechanism if h′′(φss)(
∫
�

h(φss)dx −
V (0)) > 0 at any wave numbers. For the case where h(φ) = φ, the only contribution is
the stabilizing mechanism at k = l = 0. For the other cases h′′(φ) �= 0. So, potentially
stabilizing or destabilizing effect can occur unless

∫
�

h(φss)dx − V (0) = 0.
This simple analysis shows that the augmented volume penalization in the free energy in

the modified Allen-Cahn model alters the linear stability for the longest wave mode, the zero
wave number mode when in the volume constraint h(φ) = φ. In addition, if an alternative
definition is employed and the volume constraint is not met at the steady state, an additional
stabilizing or destabilizing mechanism can show up in all modes depending on the sign of
h′′(φss)(

∫
�

h(φss)dx − V (0)).
For the Allen-Cahn model with a Lagrangian multiplier, we denote g(φ) = h′(φ)M

(−γ1∇2φ+ f ′(φss)). Substituting Eq. (3.2) into the transport equation, we get the linearized
equation

∂δφ

∂t
= −M

[
−γ1∇2

δφ + f ′′(φss)δφ − h′′(φss)δφ
∫
�

g(φss)dx∫
�
[h′(φss)]M[h′(φss)]dx

− h′(φss)
∫
�

g′(φss)δφdx∫
�
[h′(φss)]M[h′(φss)]dx

+2
h′(φss)

∫
�

g(φss)dx

(
∫
�
[h′(φss)]M[h′(φss)]dx)2

∫
�

[h′′(φss)]M[h′(φss)]δφdx
]

. (3.10)

The dynamic equations for the Fourier coefficients are

ȧkl(t) = −Makl(t)

[
γ1(k

2 + l2) + f ′′(φss) − h′′(φss) f ′(φss)

h′(φss)

−( f ′′(φss) − h′′(φss) f ′(φss)

h′(φss)
)δk0δl0

]

=
{−Makl(t)[γ1(k2 + l2)], k = l = 0,

−Makl(t)
[
γ1(k2 + l2) + f ′′(φss) − h′′(φss ) f ′(φss )

h′(φss )

]
, otherwise.

(3.11)

For the simple case h(φ) = φ, the equations reduce to

ȧkl(t) = −Makl(t)[γ1(k2 + l2) + f ′′(φss) − f ′′(φss)δk0δl0]. (3.12)

If γ1(k2 + l2) + ( f ′′(φss) − h′′(φss ) f ′(φss )

h′(φss )
)(1 − δk0δl0) < 0, for small k, l, instability

may occur. Compared with the Allen-Cahn model, the only contribution of the Lagrange
multiplier is to make the zeroth mode neutrally stable. For the other cases, it is stabilizing
if h′′ f ′ < 0 and destabilizing otherwise. For example, if h′(φ) = (m+1)(2m+1)

m (φ(1 − φ))m

and f (φ) = γ2φ
2(1 − φ)2, h′′ f ′ > 0. So, the augmented term is destabilizing.
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For the Cahn–Hilliard model, substituting Eq. (3.2) into Eq. (2.20), we get the linearized
equation

∂δφ

∂t
= M[−γ1∇4

δφ + f ′′(φss)∇2
δφ)]. (3.13)

Repeating the analysis, we have

ȧkl(t) = −Makl(t)[γ1(k2 + l2) + f ′′(φss)](k2 + l2). (3.14)

If γ1(k2 + l2) + f ′′(φss) < 0, instability may ensure. We note that the window of instability
in the Cahn–Hilliard model is identical to that in the Allen-Cahn model. However, the rate of
growth is different. These linear stability results dictate the initial transition of the solution
towards or away from the constant steady state. Bothmodified nonlocalAllen-Cahn equations
carry additional stabilizing or destabilizing mechanisms depending on the base steady state.
For long time transient behavior of the solution, we have to resort to numerical computations.

We next discuss how to numerically approximate the model equations efficiently with
high order, linear, energy stable schemes.

4 Numerical Approximations of the Phase Field Models

We next design numerical algorithms to solve the above equations to ensure that the energy
dissipation property of all models as well as the total volume conservation of the modified
models are respected, employing the energy quadratization strategy (EQ) and the scalar
auxiliary variable approach (SAV) developed recently [10,37,43,44]. These methods require
a reformulation of the model into one with a quadratic energy, providing effective ways to
design linear and energy stable numerical schemes. For a full review on EQ and SAVmethods
on thermodynamical systems, readers are referred to recent review articles [35,38].

All schemes presented below are semi-discretized by the Crank–Nilcolsonmethod in time
firstly and then fully discretized in space using finite difference methods. In fact, we have
shown recently that BDF and Runge-Kutta methods can be used to design energy stable
schemes for thermodynamically consistent models up to arbitrarily high order in time [41].
These high order energy stable schemes are normally nonlinear. So, we will not present them
in this paper. For simplicity, we present the schemes in their semi-discrete forms in time in
detail and discuss briefly the full discretization in space. For comparison purposes, we also
present analogous schemes for the classical Allen-Cahn and the Cahn Hilliard model as well,
which have been studied before [35,38,39].

4.1 Temporal Discretization

For each model, we present a couple of energy stable schemes derived either using the EQ or
the SAVmethod, and show that they preserve the energy dissipation rate. For the Allen-Cahn
model with a Lagrange multiplier, we also prove that derived energy stable schemes also
preserve the volume of each phase.
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4.1.1 Numerical Methods for the Allen-Cahn Model Using EQ

We reformulate the free energy density by introducing an intermediate variable q , a constant
parameter γ2 > 0 and a constant C0 ≥ 0 such that q is a real variable,

q =
√

[ f (φ) − γ2φ
2 + C0]. (4.1)

Then, the free energy is recast into a quadratic form:

F =
∫

�

[
γ1

2
|∇φ|2 + γ2φ

2 + q2 − C0

]
dx. (4.2)

The chemical potential is given by

μ = δF

δφ
= −γ1∇2φ + 2γ2φ + 2qq ′, q ′ = δq

δφ
. (4.3)

We rewrite the Allen-Cahn equation given in (2.8) using the new variable q together with
a new equation for q as follows

∂φ
∂t = −Mμ,

∂q
∂t = q ′φt .

(4.4)

The initial condition of q must be calculated from that of φ. We denote

(·)n+1/2 = (·)n+1 + (·)n

2
, (·)n+1/2 = 3(·)n+1 − (·)n

2
. (4.5)

A linear, second order numerical algorithm for model (4.4) is given below.

Scheme 4.1 Given initial conditions φ0 and q0 (calculated from φ0), we compute φ1, q1 by
a first order scheme. Having computed φn−1, qn−1, and φn, qn , we compute φn+1, qn+1 as
follows.

φn+1 − φn = −δt M
n+1/2

μn+1/2,

μn+1/2 = −γ1∇2φ
n+1/2 + 2γ2φn+1/2 + 2qn+1/2q ′n+1/2

,

qn+1 − qn = q ′n+1/2
(φn+1 − φn).

(4.6)

We define the discrete energy at tn = nδt as follows

Fn =
∫

�

[
γ1

2
|∇φn |2 + γ2(φ

n)
2 + (qn)2 − C0

]
dx. (4.7)

The numerical implementation of the algorithm is done in the following steps:
(
I + δt M

n+1/2
[
− γ1

2 ∇2 + γ2I + (q ′n+1/2
)
2
])

φn+1 = bn,

bn =
(

φn − δt M
n+1/2

[
− γ1

2 ∇2φn + γ2φ
n + 2qnq ′n+1/2 − (q ′n+1/2

)
2
φn

])
,

qn+1 = qn + q ′n+1/2
(φn+1 − φn).

(4.8)

φn+1 is solved firstly and then qn+1 is updated subsequently. So, the equation of φn+1

decouples from the equation of qn+1.
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4.1.2 Numerical Method for the Allen-Cahn Model Using SAV

The scalar auxiliary variable (SAV) method provides yet another energy quadratization
approach to arrive at linear numerical schemes. We define E1(φ) = ∫

�
[ f (φ) − γ2φ

2]dx
and choose a constant C0 such that E1(φ) ≥ −C0. Setting U = δE1

δφ
, and introducing

r = √
E1 + C0 as the scalar auxiliary variable, we reformulate the free energy as follows

F =
∫

�

[
γ1

2
|∇φ|2 + γ2φ

2
]
dx + r2 − C0. (4.9)

The Allen-Cahn model in new variables (φ, r) is recast into an extended equation system

∂φ
∂t = −Mμ, μ = −γ1∇2φ + 2γ2φ + rg,

∂r
∂t = ∫

�
g
2φtdx, g = 2 δr

δφ
= U√

E1+C0
.

(4.10)

We then design a new linear, second order scheme as follows.

Scheme 4.2 Given initial conditionsφ0 and r0, we computeφ1 and r1 by a first order scheme.
Having computed φn−1, rn−1, φn and rn , we compute φn+1, rn+1 as follows.

φn+1 − φn = −δt M
n+1/2

μn+1/2,

μn+1/2 = (−γ1∇2φ + 2γ2φ)
n+1/2 + rn+1/2gn+1/2,

rn+1 − rn = ∫
�

gn+1/2

2 (φn+1 − φn)dx, gn+1/2 =
(

U (φ)√
E1(φ)+C0

)n+1/2

.

(4.11)

We define the discrete energy at tn = nδt as follows

Fn =
∫

�

[
γ1

2
|∇φn |2 + γ2(φ

n)2
]
dx + (rn)2 − C0. (4.12)

We next examine how to implement the scheme efficiently. The SAV scheme at the nth
time step can be written into the following form

Aφn+1 + (cn,φn+1)dn = bn, (4.13)

where

A = I − δt M
n+1/2 ( γ1

2 � − γ2I
)
,

cn = gn+1/2, dn = δt M
n+1/2

4 gn+1/2,

bn = φn − δt M
n+1/2 (− γ1

2 �φn + γ2φ
n + rncn

) + dn(cn,φn),

(cn,φ) = ∫
�

cnφdx.

(4.14)

This system can be solved efficiently using the following technique. We first multiply (4.13)
by A−1 and then take the inner product of the equation with cn to obtain

(cn,φn+1) + (cn,φn+1)(cn, A−1dn) = (cn, A−1bn). (4.15)

It follows that

(cn,φn+1) = (cn, A−1bn)

1 + (cn, A−1dn)
. (4.16)

Then, the solution of φn+1 and rn+1 are given by

φn+1 = −(cn,φn+1)A−1dn + A−1bn,

rn+1 − rn = ∫
�

gn+1/2

2 (φn+1 − φn)dx.
(4.17)
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So in each time step, we only need to solve two elliptic equations

A[x, y] = [dn, bn]. (4.18)

The solution in (φn+1, rn+1) is then calculated from (4.16) and (4.17). The scheme is decou-
pled.

4.1.3 Numerical Method for the Allen-Cahn Model with a Penalizing Potential Using EQ

In the Allen-Cahn model with a penalizing potential, we reformulate the free energy density
by introducing two intermediate variables

q =
√

f (φ) − γ2φ
2 + C0, ζ = √

η

(∫
�

h(φ(r, t))dx − V0

)
. (4.19)

Then, the free energy is recast into

F =
∫

�

[
γ1

2
|∇φ|2 + γ2φ

2 + q2 − C0

]
dx + ζ2

2
. (4.20)

We rewrite the nonlocal Allen-Cahn equation together with the equations for the new
variables as follows:

∂φ
∂t = −Mμ̃,

∂q
∂t = q ′φt ,

∂ζ
∂t = √

η
∫
�

h′(φ)
∂φ
∂t dx,

(4.21)

where

μ̃ = −γ1∇2φ + 2γ2φ + 2qq ′ + ζζ′, q ′ = ∂q

∂φ
, ζ′ = ∂ζ

∂φ
= √

ηh′(φ). (4.22)

We now discretize it using the Crank-Nicolson method to arrive at a new linear, second order
scheme as follows.

Scheme 4.3 Given initial conditions φ0, q0, we compute φ1, q1 by a first order scheme.
Having computed φn−1, qn−1, and φn, qn , we compute φn+1, qn+1 as follows.

φn+1 − φn = −δt M
n+1/2

μ̃n+1/2,

qn+1 − qn = q ′n+1/2
(φn+1 − φn),

ζn+1 − ζn = √
η

∫
�

h′n+1/2
(φn+1 − φn)dx.

(4.23)

where

μ̃n+1/2 = −γ1∇2φ
n+1/2 + 2γ2φ

n+1/2 + 2qn+1/2q ′n+1/2 + √
ηh′n+1/2

ζn+1/2,

h′n+1/2 = h′(φn+1/2
). (4.24)

We define the discrete energy at tn = nδt as follows

Fn =
∫

�

[
γ1

2
|∇φn |2 + γ2(φ

n)2 + (qn)2 − C0

]
dx + (ζn)2

2
. (4.25)

The new scheme can be recast into

Aφn+1 + (φn+1, cn)dn = bn, (4.26)
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where

A = I + δt M
n+1/2

(
− γ1

2 ∇2 + γ2I + (q ′n+1/2
)2

)
,

cn = h′n+1/2
, dn = δt M

n+1/2
ηh′n+1/2

2 ,

bn = φn − δt M
n+1/2

[
− γ1

2 ∇2φn + γ2φ
n + 2qnq ′n+1/2 − (q ′n+1/2

)
2
φn

]

−δt M
n+1/2√

ηh′n+1/2
ζn + δt M

n+1/2
η

2

∫
�

h′n+1/2
φndx

(4.27)

We can solve it efficiently in the following steps:

A[x, y] = [dn, bn],
(φn+1, cn) = (y,cn)

1+(x,cn)
,

φn+1 = −(φn+1, cn)x + y,

qn+1 = qn + q ′n+1/2
(φn+1 − φn),

ζn+1 = ζn + √
η((φn+1 − φn), cn).

(4.28)

This is clearly a decoupled scheme. (4.26) can also be solved using the Sherman-Morrison
formula to avoid calculating the function with a full rank coefficient matrix (See Appendix-
A).

4.1.4 Numerical Method for the Allen-Cahn Model with a Penalizing Potential Using
SAV

We derive linear schemes for the Allen-Cahn model with a penalizing potential utilizing the
SAV approach. We define E1(φ) = ∫

�
[ f (φ) − γ2φ

2]dx and choose a constant C0 such that
E1(φ) ≥ −C0. Setting U = δE1

δφ
and introducing r = √

E1 + C0 as the scalar auxiliary
variable, we arrive at a reformulated free energy as follows.

F =
∫

�

[
γ1

2
|∇φ|2 + γ2φ

2
]
dx + ζ2

2
+ r2 − C0. (4.29)

We then present the following linear, second order scheme.

Scheme 4.4 Given initial conditionsφ0 and r0, we computeφ1 and r1 by a first order scheme.
Having computed φn−1, rn−1, φn and rn , we compute φn+1, rn+1 as follows.

φn+1 − φn = −δt M
n+1/2

μn+1/2,

μn+1/2 = (−γ1∇2φ + 2γ2φ)
n+1/2 + rn+1/2gn+1/2 + √

ηh′n+1/2
ζn+1/2,

ζn+1 − ζn = √
η

∫
�

h′n+1/2
(φn+1 − φn)dx,

rn+1 − rn = ∫
�

gn+1/2

2 (φn+1 − φn)dx, gn+1/2 =
(

U (φ)√
E1(φ)+C0

)n+1/2

.

(4.30)

We define the discrete energy at tn = nδt as follows

Fn =
∫

�

[
γ1

2
|∇φn |2 + γ2(φ

n)2
]
dx + (ζn)2

2
+ (rn)2 − C0. (4.31)

The scheme can be recast into

Aφn+1 + (φn+1, cn
1)d

n
1 + (φn+1, cn

2)d
n
2 = bn, (4.32)
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where

A = I + δt M
n+1/2 (− γ1

2 � + γ2I
)
, cn

1 = gn+1/2, dn
1 = δt M

n+1/2

4 gn+1/2,

dn
2 = δt M

n+1/2
ηh′n+1/2

2 , cn
2 = h′n+1/2

,

bn = φn − δt M
n+1/2

(
− γ1

2 φn + γ2φ
n + rngn+1/2 + √

ηh′n+1/2
ζn

)
+(φn, cn

1)d
n
1 + (φn, cn

2)d
n
2 .

(4.33)

We multiply (4.32) by A−1 and then form inner products with c1 and c2, respectively, to
arrive at the following equations:

(φn+1, cn
1) + (φn+1, cn

1)(A−1dn
1 , cn

1) + (φn+1, cn
2)(A−1dn

2 , cn
1) = (A−1bn, cn

1),

(φn+1, cn
2) + (φn+1, cn

1)(A−1dn
1 , cn

2) + (φn+1, cn
2)(A−1dn

2 , cn
2) = (A−1bn, cn

2).
(4.34)

We solve for (φn+1, cn
1) and (φn+1, cn

2) from the above equations after we obtain (x, y, z)
from

A[x, y, z] = [dn
1 , dn

2 , bn]. (4.35)

Finally, the solution is obtained from the following formula

φn+1 = z − [(φn+1, cn
1)x + (φn+1, cn

2)y],
rn+1 = rn +

(
φn+1 − φn,

gn+1/2

2

)
,

ζn+1 = ζn + √
η((φn+1 − φn), cn

2).

(4.36)

The scheme is decoupled and can be implemented efficiently. We remark that (4.34) is
solvable provided δt is small enough.

4.1.5 Numerical Method for the Allen-Cahn Model with a Lagrange Multiplier Using EQ

For the Allen-Cahn model with a Lagrange multiplier, we use q =
√

f (φ) − γ2φ
2 + C0 to

recast the free energy into

F =
∫

�

[
γ1

2
|∇φ|2 + γ2φ

2 + q2 − C0

]
dx. (4.37)

We rewrite (2.8) as

∂φ

∂t
= −Mμ̃,

∂q

∂t
= q ′φt , (4.38)

where

ũ = −γ1∇2φ + 2γ2φ + 2qq ′ − h′(φ)L,

L =
∫
�

h′(φ)Mμdx∫
�

h′(φ)Mh′(φ)dx
, q ′ = ∂q

∂φ
. (4.39)

Discretizing it using the linear Crank-Nicolson method in time, we obtain the following
scheme.

Scheme 4.5 Given initial conditions φ0, q0, we compute φ1, q1 by a first order scheme.
Having computed φn−1, qn−1, and φn, qn , we compute φn+1, qn+1 as follows.

φn+1 − φn = −δt M
n+1/2

μ̃n+1/2,

qn+1 − qn = q ′n+1/2
(φn+1 − φn),

(4.40)
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where

μ̃n+1/2 = (−γ1∇2φ + 2γ2φ)
n+1/2 + 2qn+1/2q ′n+1/2 − h′(φ)

n+1/2
Ln+1/2,

Ln+1/2 =
∫
� h′(φ)

n+1/2
M

n+1/2
μn+1/2dx∫

� h′(φ)
n+1/2

M
n+1/2

h′(φ)
n+1/2

dx
.

(4.41)

Note that Ln+1/2 �= Ln+Ln+1

2 .

Theorem 4.1 Scheme (4.5) preserves the volume of each phase in the case of h(φ) = φ,

∫
�

h(φn+1)dx =
∫

�

h(φn)dx. (4.42)

Proof Notice that h′n+1/2 = 1. Substituting Ln+1/2 into the equation below, we have

∫
�

h(φn+1) − h(φn)

δt
dx

=
∫

�

h′(φ)
n+1/2 φn+1 − φn

δt
dx

=
∫

�

−h′(φ)
n+1/2

M
n+1/2

(μn+1/2 − h′(φ)
n+1/2

Ln+1/2)dx = 0.

(4.43)

It implies that it preserves the volume in the case of h(φ) = φ.
For the other form of h(φ), the theorem can not be proved. 
�

We define the discrete energy under the volume constraint at tn = nδt as follows

Fn =
∫

�

[
γ1

2
|∇φn |2 + γ2(φ

n)
2 + (qn)2 − C0

]
dx. (4.44)

We can solve the linear system effectively in the following steps:

A[x, y, z] = [cn, dn, bn],
(φn+1, cn) = (z,cn)

1+(y,cn)
,

φn+1 = z − (φn+1, cn)x,

qn+1 = qn + q ′n+1/2
(φn+1 − φn),

(4.45)

where

A = I + δt M
n+1/2

(
− γ1

2 � + γ2I + (q ′n+1/2
)2

)
,

cn = h′n+1/2
M

n+1/2
(
− γ1

2 � + γ2I + (q ′n+1/2
)2

)
,

dn = − δt M
n+1/2

h′n+1/2

(h′n+1/2
,M

n+1/2
h′n+1/2

)
,

bn = φn − δt M
n+1/2

(
− γ1

2 �φn + γ2φ
n + 2qnq ′n+1/2 − (q ′n+1/2

)2φn
)

−(h′n+1/2
M

n+1/2
,− γ1

2 �φn + γ2φ
n + 2qnq ′n+1/2 − (q ′n+1/2

)
2
φn)d.

(4.46)

The unknownsφn+1 and qn+1 can be solved sequentially. So, this linear scheme is decoupled.
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4.1.6 Numerical Method for the Allen-Cahn Model with a Lagrange Multiplier Using
SAV

We define E1(φ) = ∫
�
[ f (φ) − γ2φ

2]dx and choose a constant C0 such that E1(φ) ≥ −C0.

Setting U = δE1
δφ

and introducing r = √
E1 + C0 as the scalar auxiliary variable, we rewrite

the free energy functional as follows.

F =
∫

�

[
γ1

2
|∇φ|2 + γ2φ

2
]
dx

+r2 − C0 − L

(∫
�

h(φ(x, t))dx −
∫

�

h(φ(x, 0))dx
)

. (4.47)

We reformulate the Allen-Cahn model with the volume constraint in the new variables as
follows

∂φ

∂t
= −Mμ̃,

∂r

∂t
= r ′φt , (4.48)

where

ũ = −γ1∇2φ + 2γ2φ + 2rr ′ − h′(φ)L, L =
∫
�

h′(φ)Mμdx∫
�

h′(φ)Mh′(φ)dx
, r ′ = δr

δφ
. (4.49)

From this model, we derive the following linear scheme.

Scheme 4.6 Given initial conditionsφ0 and r0, we computeφ1 and r1 by a first order scheme.
Having computed φn−1, rn−1, φn and rn , we compute φn+1, rn+1 as follows.

φn+1 − φn = −δt M
n+1/2

μ̃n+1/2,

μ̃n+1/2 = (−γ1∇2φ + 2γ2φ)
n+1/2 + rn+1/2gn+1/2 − h′(φ)

n+1/2
Ln+1/2,

Ln+1/2 =
∫
� h′(φ)

n+1/2
M

n+1/2
((−γ1∇2φ+2γ2φ)

n+1/2+rn+1/2gn+1/2)dx∫
� h′(φ)

n+1/2
M

n+1/2
h′(φ)

n+1/2
dx

,

rn+1 − rn = ∫
�

gn+1/2

2 (φn+1 − φn)dx, gn+1/2 =
(

U (φ)√
E1(φ)+C0

)n+1/2

.

(4.50)

Theorem 4.2 Scheme (4.6) preserves the volume of each phase in the case of h(φ) = φ,

∫
�

h(φn+1)dx =
∫

�

h(φn)dx. (4.51)

Proof The proof is similar to that of Theorem 4.1 and is thus omitted.
We define the discrete energy of the model at tn = nδt as follows

Fn =
∫

�

[
γ1

2
|∇φn |2 + γ2(φ

n)
2
]
dx + (rn)2 − C0. (4.52)

This scheme can be recast into

Aφn+1 + (φn+1, cn
1)d

n
1 + (φn+1, cn

2)d
n
2 + (φn+1, cn

1)(c
n
3 , 1)d

n
2 = bn, (4.53)
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where

A = I + δt M
n+1/2 (− γ1

2 � + γ2I
)
,

cn
1 = gn+1/2, dn

1 = δt M
n+1/2 gn+1/2

4 ,

cn
2 = h′n+1/2

M
n+1/2 (− γ1

2 � + γ2 I
)
,

dn
2 = −δt M

n+1/2 h′n+1/2

(h′n+1/2
,M

n+1/2
h′n+1/2

)
,

cn
3 = h′n+1/2

M
n+1/2 gn+1/2

4 ,

bn = φn − δt M
n+1/2

(
− γ1

2 �φn + γ2φ
n + rngn+1/2 − gn+1/2 ∫

�
gn+1/2

4 φndx
)

−(h′n+1/2
M

n+1/2
,− γ1

2 �φn + γ2φ
n + rngn+1/2 − gn+1/2 ∫

�
gn+1/2

4 φndx)d2.

(4.54)

We multiply (4.53) by A−1 and then take the inner product with respect to cn
1 and cn

2 , respec-
tively, to obtain the following equations

(φn+1, cn
1) + (φn+1, cn

1)(A−1dn
1 , cn

1) + (φn+1, cn
2)(A−1dn

2 , cn
1)

+(φn+1, cn
1)(c

n
3 , 1)(A−1dn

2 , cn
1) = (A−1bn, cn

1),

(φn+1, cn
2) + (φn+1, cn

1)(A−1dn
1 , cn

2) + (φn+1, cn
2)(A−1dn

2 , cn
2)

+(φn+1, cn
1)(c

n
3 , 1)(A−1dn

2 , cn
2) = (A−1bn, cn

2).

(4.55)

We solve for (φn+1, cn
1) and (φn+1, cn

2) from the above equations after we obtain (x, y, z)
from

A[x, y, z] = [dn
1 , dn

2 , bn], (4.56)

Finally, the unknowns are calculated from

φn+1 = z − (φn+1, cn
1)x − (φn+1, cn

2)y − (φn+1, cn
1)(c

n
3 , 1)y,

rn+1 = rn +
(

gn+1/2

2 , (φn+1 − φn)
)

.
(4.57)

This is once again a decoupled, linear scheme. In order tomake a comparisonwith the volume
preserving Cahn–Hilliard equation for binary material systems, we present two energy stable
schemes for the Cahn–Hilliard equation using EQ and SAV method, respectively. 
�

4.1.7 Numerical Methods for the Cahn–Hilliard Model Using EQ

We use q =
√

f (φ) − γ2φ
2 + C0 to recast the free energy into

F =
∫

�

[
γ1

2
|∇φ|2 + γ2φ

2 + q2 − C0

]
dx. (4.58)

Then, the chemical potential is given by

μ = δF

δφ
= −γ1∇2φ + 2γ2φ + 2qq ′, q ′ = ∂q

∂φ
. (4.59)

We rewrite (2.20) as

∂φ
∂t = ∇ · (M∇μ),

∂q
∂t = q ′φt . (4.60)

We discretize it using the Crank-Nicolson method to arrive at a second order, linear semi-
discrete scheme.
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Scheme 4.7 Given initial conditions φ0, q0, we compute φ1, q1 by a first order scheme.
Having computed φn−1, qn−1, and φn, qn , we compute φn+1, qn+1 as follows.

φn+1 − φn = δt∇ · (M
n+1/2∇μn+1/2),

μn+1/2 = (−γ1∇2φ + 2γ2φ)
n+1/2 + 2qn+1/2q ′n+1/2

,

qn+1 − qn = q ′n+1/2
(φn+1 − φn).

(4.61)

We define the discrete energy at tn = nδt as follows

Fn =
∫

�

[
γ1

2
|∇φn |2 + γ2(φ

n)
2 + (qn)2 − C0

]
dx. (4.62)

The implementation of the scheme is as follows

Aφn+1 = bn,

A = I − δt∇ ·
(

M
n+1/2∇

[
− γ1

2 ∇2 + γ2I + (q ′n+1/2
)2

])
,

bn = φn + δt∇
·
(

M
n+1/2∇

[
− γ1

2 ∇2φn + γ2φ
n + 2qnq ′n+1/2 − (q ′n+1/2

)2φn
])

,

qn+1 = qn + q ′n+1/2
(φn+1 − φn).

(4.63)

It is a decoupled, linear scheme.

4.1.8 Numerical Methods for the Cahn–Hilliard Model Using SAV

We define E1(φ) = ∫
�
[ f (φ) − γ2φ

2]dx and choose a constant C0 such that E1(φ) ≥ −C0.
Setting U = δE1

δφ
, and introducing r = √

E1 + C0 as the scalar auxiliary variable, we rewrite
the energy functional as follows

F =
∫

�

[
γ1

2
|∇φ|2 + γ2φ

2
]
dx + r2 − C0. (4.64)

In the new variables (φ, r), The Cahn–Hilliard equation is reformulated into

∂φ

∂t
= ∇ · (M∇μ),

∂r

∂t
= r ′φt , (4.65)

where the chemical potential is given by

μ = δF

δφ
= −γ1∇2φ + 2γ2φ + 2rr ′, r ′ = δr

δφ
. (4.66)

We obtain a SAV scheme as follows.

Scheme 4.8 Given initial conditionsφ0 and r0, we computeφ1 and r1 by a first order scheme.
Having computed φn−1, rn−1, φn and rn , we compute φn+1, rn+1 as follows.

φn+1 − φn = δt∇ · (M
n+1/2∇μn+1/2),

μn+1/2 = (−γ1∇2φ + 2γ2φ)
n+1/2 + rn+1/2gn+1/2,

rn+1 − rn = ∫
�

gn+1/2

2 (φn+1 − φn)dx, gn+1/2 =
(

U (φ)√
E1(φ)+C0

)n+1/2

.

(4.67)
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We define the discrete energy at tn = nδt as follows

Fn =
∫

�

[
γ1

2
|∇φn |2 + γ2(φ

n)2
]
dx + (rn)2 − C0. (4.68)

We can solve it efficiently in the following steps

A[x, y] = [dn, bn],
(φn+1, cn) = (y,cn)

1+(x,cn)
,

φn+1 = −(φn+1, cn)x + y,

rn+1 = rn + ∫
�

gn+1/2

2 (φn+1 − φn)dx,

(4.69)

where

A = I − δt(∇M
n+1/2∇ + M

n+1/2
�)

(− γ1
2 � + γ2I

)
,

cn = gn+1/2

4 , dn = −δt(∇M
n+1/2∇ + M

n+1/2
�)gn+1/2,

bn = φn + δt(∇M
n+1/2∇ + M

n+1/2
�)((− γ1

2 � + γ2I
)
φn + rngn+1/2 − gn+1/2 ∫

�
gn+1/2

4 φndx
)

.

(4.70)

4.1.9 Energy Dissipation Properties of the Schemes

All the schemes presented above preserve energy dissipation properties of the reformulated
models, in which the free energies are quadratized.We summarize the result into one theorem
for all schemes. The proof of the energy dissipation property for each scheme is similar, we
only prove the theorem for the Allen-Cahn model with a penalizing potential using EQ here
and omit others for simplicity.

Theorem 4.3 Any one of the schemes presented above obeys the following energy dissipation
law

Fn+1 − Fn =
{

−δt
∫
�
[μ̃n+1/2M

n+1/2
μ̃n+1/2]dx, Allen-Cahn,

−δt
∫
�
[∇μ̃n+1/2 · M

n+1/2 · ∇μ̃n+1/2]dx, Cahn–Hilliard,
(4.71)

for any δt > 0, where the free energy is defined respectively in each scheme as a quadratic
functional. Hence, they are unconditionally energy stable.

Proof We prove the theorem for Scheme (4.23) here. Taking the L2 inner product of φn+1−φn

δt

with −μ̃n+1/2, we obtain

−
(

φn+1 − φn

δt
, μ̃n+1/2

)
= (M

n+1/2[μn+1/2 + √
ηζn+1/2], μn+1/2 + √

ηζn+1/2)

=
∥∥∥∥∥
√

M
n+1/2

(μn+1/2 + √
ηζn+1/2)

∥∥∥∥∥
2

,

(4.72)
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Taking the L2 inner product of μ̃n+1/2 with φn+1−φn

δt , we obtain

(
(−γ1∇2φ + 2γ2φ)

n+1/2 + 2qn+1/2q ′n+1/2 + √
ηζn+1/2,

φn+1 − φn

δt

)

= γ1

2δt
(‖∇φn+1‖2 − ‖∇φn‖2) + γ2

δt
(‖φn+1‖2 − ‖φn‖2)

+
(
2qn+1/2q ′n+1/2

,
φn+1 − φn

δt

)
+

(√
ηζn+1/2,

φn+1 − φn

δt

)
.

(4.73)

Taking the L2 inner product of qn+1 − qn with qn+1+qn

δt , we obtain

1

δt
(‖qn+1‖2 − ‖qn‖2) = 1

δt
(q ′n+1/2

(φn+1 − φn), qn+1 + qn). (4.74)

Taking the L2 inner product of ζn+1 − ζn with ζn+1+ζn

δt , we obtain

1

δt
(‖ζn+1‖2 − ‖ζn‖2) = 1

δt

(√
η

∫
�

(φn+1 − φn)dx, ζn+1 + ζn
)

. (4.75)

Combining the above equations, we have

γ1

2δt
(‖∇φn+1‖2 − ‖∇φn‖2) + γ2

δt
(‖φn+1‖2 − ‖φn‖2)

+ 1

δt
(‖qn+1‖2 − ‖qn‖2) + 1

2δt
(‖ζn+1‖2 − ‖ζn‖2)

= −
∥∥∥∥∥
√

M
n+1/2

(μn+1/2 + √
ηζn+1/2)

∥∥∥∥∥
2

. (4.76)

This leads to the energy stability equality. 
�

4.1.10 Solvability of the Linear Systems Resulting from the Schemes

We summarize the property of the unique solvability for all linear systems resulting from the
schemes for the Allen-Cahn model and the Allen-Cahn model with a penalizing potential
presented above into a theorem. A similar theorem for the Cahn–Hilliard model can be found
in [42]. We state another theorem for the linear systems resulting from the schemes for the
Allen-Cahn model with a Lagrange multiplier with a constraint on the small time step size.

Theorem 4.4 Assuming the mobility is a constant, the linear system resulting from any scheme
for the Allen-Cahn and nonlocal Allen-Cahn model with a penalizing potential admits a
unique weak solution.

Proof For simplicity,we assume M is a positive constantmobility coefficient.Weonly present
the detailed proof for the scheme of the Allen-Cahn model with a penalizing potential using
EQ since the proofs for the other schemes are similar. The scheme for the nonlocalAllen-Cahn
model can be generically written into:

Aφn+1 + (φn+1, cn)dn = bn, (4.77)
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where A = I + δt M(− γ1
2 � + γ2I + (q ′n+1/2

)2), bn is the given right hand side term,

cn = h′n+1/2
and dn = δt Mηh′n+1/2

2 . We rewrite the linear equation into

A φn+1 = bn, (4.78)

where A is a linear spatial operator. To prove the uniqueness of the solution, we need to
prove that the linear spatial operator A is symmetric and positive definite. 
�

In fact, ∃C > 0 such that

(A φ,φ) = (Aφ,φ) + (φ, cn)(dn,φ)

= (Aφ,φ) + (φ, cn)(cn,φ)
Mδtη

2
� (Aφ,φ) > C ‖φ‖2L2 . (4.79)

We can easily show that the operator A is bounded above by C̄‖φ‖2
L2 since ‖q ′n+1/2‖2

L2 is

bounded. The boundedness of ‖q ′n+1/2‖2
L2 stems from the fact that ‖qn‖2

L2 and ‖φn‖2
L2 are

bounded obtained from the quadratic energy dissipation law of each model.
Now we define ‖φ‖A = √

(A φ,φ) for any φ ∈ L2
N (�) and the subset � ={

φ ∈ L2
N (�) : ‖φ‖A < ∞}

, where L2
N (�) is a subspace of L2(�) satisfying the zero Neu-

mann boundary condition. It is obvious that ‖φ‖A is a norm for L2
N (�) and L2

N (�) is a
Hilbert subspace with the norm. Applying the Lax-Milgram theorem, the uniqueness of the
solution of the linear systems in � is established.

Theorem 4.5 The linear system resulting from any scheme for the Allen-Cahn model with a
Lagrange multiplier admits a unique weak solution at a sufficiently small time step size.

Proof We first prove the result for the scheme of the Allen-Cahn model with a Lagrange
multiplier using EQ. FromScheme (4.40) we understand that in order to prove the uniqueness
of the solution of linear system

Aφn+1 + (cn,φn+1)dn = bn (4.80)

with the zero Neumann boundary condition, we only need to prove that

Aφn+1 + (cn,φn+1)dn = 0 (4.81)

has the zero solution only, where A, cn, dn, bn are given in (4.46).
It follows from (4.81) that

(cn,φn+1)(1 + (cn, A−1dn)) = 0. (4.82)

Notice that dn = − δt M
n+1/2

h′n+1/2

(h′n+1/2
,M

n+1/2
h′n+1/2

)
< 0.

(cn, A−1dn) = − δt

(h′n+1/2
, M

n+1/2
h′n+1/2

)
(cn, A−1(M

n+1/2
h′n+1/2

)). (4.83)

So, for sufficiently small δt > 0, 1 + (cn, A−1) > 0. It then follows that (cn,φn+1) = 0,
which in turn implies φn+1 = 0 from Aφn+1 = 0.

We then prove the result for the scheme derived using SAV.We notice that we need only to
prove the uniqueness of the solution for Eq. (4.55). So, we only need to prove the uniqueness
of its corresponding homogeneous system

B

[
(φn+1, cn

1)

(φn+1, cn
2)

]
=

[
0
0

]
, (4.84)

123



Journal of Scientific Computing (2019) 80:500–537 521

where B =
[
1 + (A−1dn

1 , cn
1) + (cn

3 , 1)(A−1dn
2 , cn

1) (A−1dn
2 , cn

1)

(A−1dn
1 , cn

2) + (cn
3 , 1)(A−1dn

2 , cn
2) 1 + (A−1dn

2 , cn
2)

]
.

The determinant of B is

det(B) = 1 + (A−1dn
1 , cn

1) + ((cn
3 , 1) − (A−1dn

1 , cn
2))(A−1dn

2 , cn
1)

+ (A−1dn
2 , cn

2)(1 + (A−1dn
1 , cn

1)). (4.85)

Notice that dn
1 = δt M

n+1/2 gn+1/2

4 , dn
2 = −δt M

n+1/2 h′n+1/2

(h′n+1/2
,M

n+1/2
h′n+1/2

)
. For sufficiently

small δt > 0,det(B) �= 0, which implies (φn+1, cn
1) = 0, (φn+1, cn

2) = 0. Then, Aφn+1 = 0
implies φn+1 = 0. This completes the proof. 
�

4.2 Spatial Discretization

We use the finite difference method to discretize the semidiscrete schemes presented above
in space. The Neumann boundary condition is adopted in the discretization.We divide the 2D
domain� = [0, Lx ]×[0, L y] into uniform rectangularmeshes withmesh sizes hx = Lx/Nx

and hy = L y/Ny , where Lx , L y are two positive real numbers and Nx , Ny are the number
of meshes in the x and y direction, respectively. The sets of the cell center points Cx and Cy

in the uniform partition are defined as follows

Cx = {xi |i = 0, 1, . . . , Nx } ,

Cy = {
y j | j = 0, 1, . . . , Ny

}
,

(4.86)

where xi = (i − 1
2 )hx and y j = ( j − 1

2 )hy . The phase field variable is discretized at the cell
center points Cx × Cy .

We define the east-west-edge-to-center and center-to-east-west-edge difference operators
dx and Dx , respectively,

dxφi j =
φi+ 1

2 , j − φi− 1
2 , j

hx
, Dxφi+ 1

2 , j = φi+1, j − φi−1, j

hx
. (4.87)

Similarly, we can get the north-south-edge-to-center and center-to-north-south-edge differ-
ence operators dy and Dy , respectively,

dyφi j =
φi, j+ 1

2
− φi, j− 1

2

hy
, Dyφi, j+ 1

2
= φi, j+1 − φi, j−1

hy
. (4.88)

The fully discrete Laplacian operator is defined by

�h = dx (Dxφ) + dy(Dyφ). (4.89)

In particular,

〈 f , g〉 = hx hy

∑Nx

i=1

∑Ny

j=1
fi, j gi, j ,

‖ f ‖d = √
< f , f >.

(4.90)

Replacing the differential operators in the semidiscrete schemes by the discrete operators
properly, we obtain the fully discrete schemes. The energy stability and volume-preserving
property are retained in the fully discrete schemes as well (SeeAppendix-B). Formore details
on the spatial discretization, we refer readers to the papers [6,8].

123



522 Journal of Scientific Computing (2019) 80:500–537

4.2.1 The Solvability of the Full-Discrete Scheme

From the Sherman-Morrison formula (See Appendix-A), we notice that the solution unique-
ness of

Aφn+1 +
N∑

i=1

< φn+1, ci > di = bn (4.91)

depends on the uniqueness of the corresponding linear system Aφn+1 = bn after the spatial
discretization at sufficiently small δt . Now we only need to prove the uniqueness of the
solution for

Aφn+1 = bn (4.92)

for small δt , where A = I + δt M
n+1/2

(− γ1
2 �h + γ2I + (q ′n+1/2

)2). Since A is symmetric
and positive definite, the uniqueness of the solution is apparent.

5 Numerical Results and Discussions

In this section, we conduct mesh refinement tests to validate the accuracy of the proposed
schemes and then present some numerical examples to assess the schemes for the nonlocal
Allen-Cahn models against those for the Allen-Cahn model and the Cahn–Hilliard model.
When considering the definition of the volume in the Allen-Cahn model with a Lagrange
multiplier, we use two different choices of h(φ). If h(φ) = φ, we call it model 1, otherwise
we name it model 2. For convenience, we refer the numerical schemes designed by EQ
strategy for the Allen-Cahn model, the Allen-Cahn model with the penalizing potential,
Lagrangian model 1 and 2, and the Cahn–Hilliard model as AC-EQ, AC-P-EQ, AC-L1-EQ,
AC-L2-EQ, CH-EQ, respectively. Similarly, we name the numerical schemes obtained using
SAV approaches for the models as AC-SAV, AC-P-SAV, AC-L1-SAV, AC-L2-SAV, CH-SAV,
respectively.

In the following, we set η = 1 × 105 in the EQ and SAV schemes for the Allen-Cahn
model with a penalizing potential unless noted otherwise. In addition, we set the constant in
the free energy at C0 = 1 × 105 in all computations.

5.1 Mesh Refinement

We refine the mesh systematically to test the accuracy by setting γ1 = γε = 1 × 10−1 and
γ2 = γ

ε = 10 with the double well potential given in (2.1)and the initial condition given by

φ(0, x, y) = 1

2
+ 1

2
cos(πx) cos(πy). (5.1)

The computational domain is set as � = [−1, 1]2. We choose the solution obtained at δt =
10−4 and�x = �y = 1

256 as the “exact solution”. InTables 1 and2,we list the L2 errors of the
phase variable between the numerical solutions and the “exact solution” at t = 2 with respect
to different time steps. In Tables 1 and 2, we show the convergence rates match second order
accuracy with respect to different time steps, δt = 5×10−4, 10−3, 5×10−3, 10−2, 5×10−2,
respectively. We note that the schemes are also second order accurate in space and omit the
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Table 3 Computational efficiency of the models in 1000 time steps with M = 1 × 10−4

Scheme AC-EQ/SAV AC-P-EQ/SAV AC-L1-EQ/SAV AC-L2-EQ/SAV CH-EQ/SAV

Time for EQ (s) 27 42 57 58 37

Time for SAV (s) 38 41 58 50 53

Table 4 Computational efficiency of the models in 1000 time steps with M = 1 × 10−2

Scheme AC-EQ/SAV AC-P-EQ/SAV AC-L1-EQ/SAV AC-L2-EQ/SAV CH-EQ/SAV

Time for EQ (s) 27 41 60 60 48

Time for SAV (s) 37 41 57 53 60

details of the mesh refinement tests in space. If readers are interested in the error estimate
for the Allen-Cahn equation with nonlocal constraints, please refer to [51].

We also test the performance of the schemes when implemented with respect to the initial
condition in terms of the computational efficiency. In Table 3, we list the performance of
the ten schemes computed in 1000 time steps. The performance depends on the mobility,
the other model parameters as well as the initial condition. In the tests conducted with the
chosen parameter values, we observe that the best performance, among the volume preserving
schemes, is given by the scheme for the Allen-Cahn model with a penalizing potential at
M = 1 × 10−4 for the initial condition given in Eq. (5.1). The performance of the schemes
computed using M = 1× 10−2 is given in Table 4. The scheme for the Allen-Cahn equation
with a penalizing potential once again performs better. The pre-factor of the penalizing term
for the Allen-Cahn model with penalizing potential is set at η = 1×105 in the computations.

In several tests, the performance of EQ is better than that of SAV. This is because that the
SAV scheme needs to solve one more linear equation than that of the EQ scheme does. In the
case where mobility is larger, the performance of the SAV schemes improves and some even
surpasses that of the corresponding EQ schemes. Overall, the performance of the schemes
between the EQ and the SAV schemes is comparable.

5.2 Assessment of the Numerical Schemes

In this section, we will assess the numerical schemes derived by using EQ and SAVmethods
on two benchmark problems. Firstly, we study merging of two drops using the numerical
schemes to examine the volume preserving property of the nonlocal models as well as energy
dissipation, where the double well potential (2.1) is adopted.

We put two drops, next to each other, in the computational domain. The drops and the
ambient are represented by φ = 1 and φ = 0, respectively. The parameter values of the
models are chosen as γ1 = 1 × 10−2, γ2 = 100. The initial condition is given by

⎧⎪⎪⎨
⎪⎪⎩

1, r1 ≤ 0.2 − δ or r2 ≤ 0.2 − δ,

tanh( 0.2−r1
δ

), 0.2 − δ < r1 ≤ 0.2,
tanh( 0.2−r2

δ
), 0.2 − δ < r2 ≤ 0.2,

0, other,

(5.2)

where r1 = √
(x − 0.3)2 + (y − 0.5)2, r2 = √

(x − 0.7)2 + (y − 0.5)2 and δ = 0.01.
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Fig. 1 Merging of two drops simulated using the Allen-Cahn and the Allen-Cahn models with nonlocal
constraints at M = 1. The drop dynamics of the Allen-Cahn model and the Allen-Cahn model with nonlocal
constraints are shown in a and b computed using the AC-EQ and AC-L1-SAV scheme, respectively. Snapshots
of the numerical approximation of φ are taken at T = 0, 0.8, 1.6, 2.4, 3.2, 4, respectively, in both cases. The
time evolution of the free energy and phase volume are shown in c and d, respectively. Since all other models
except for the Allen-Cahn model predict similar dynamical behavior, we only show the phase transition
dynamics computed using the AC-L1-SAV scheme in b. We compare the time evolution of the free energy
and volume computed by the EQ and SAV schemes in c and d. The volume computed using the Allen model
vanishes before T = 4 and in the meantime the energy hits zero as well. All nonlocal Allen-Cahn models
preserve the volume and dissipate energies in time. γ1 = 1 × 10−2, γ2 = 100 are used in the computations
and the temporal and spatial step sizes are set as δt = 1 × 10−5 and hx = hy = 1/256, respectively

We first simulate merging of two drops using the Allen-Cahn model as well as the Allen-
Cahn model with nonlocal constraints, respectively, where M = 1. The results computed
from the EQ and SAV schemes for the Allen-Cahn model are identical, likewise the results
computed using the EQ and SAV schemes for the nonlocal Allen-Cahn models are identical.
We don’t see any differences between the results of the Allen-Cahn model with a penalizing
potential and those of the Allen-Cahn model of a Lagrange multiplier. Figure 1a depicts
the results computed from AC-EQ scheme and Fig. 1b shows the results computed from
AC-L1-SAV. We show these two simulations as representative examples.

From the simulations, we observe that drops computed using the Allen-Cahn model first
merge into a single drop and then the drop dissipates until eventually vanishes at the end
of the simulation; while drops computed using the Allen-Cahn models with nonlocal con-
straints merge into a single drop and eventually rounded up at the end of the simulation.
Figure 1c and d depict the computed free energy and volume of drops using the two numer-
ical schemes. Obviously, the volume decays in the Allen-Cahn model while is conserved
in the simulation of the other models. The free energy decays in the Allen-Cahn model
with respect to time and vanishes as the drop disappears. In contrast, the free energy of the
Allen-Cahn model with a nonlocal constraint saturates at a nonzero value at the end of the
simulation.
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Fig. 2 Merging of two drops simulated using the Cahn–Hilliard and the Allen-Cahnmodels with nonlocal con-
straints at M = 1×10−4. The phase evolution of the drops using the CH-EQ andAC-L1-SAV scheme is shown
in a and b, respectively. Snapshots of the numerical solution of φ are taken at T = 0, 40, 80, 120, 160, 200,
respectively, in both simulations. The time evolution of the free energy and the volume are shown in c and
d, respectively. The Cahn–Hilliard model and the nonlocal Allen-Cahn models preserve the volume of each
phase and dissipate energies in time. Since the energy dissipates faster in the Cahn–Hilliard model than in
the nonlocal Allen-Cahn models initially, the energy profile predicted by the former is lower than the one
predicted by the latter in the simulations. We set γ1 = 1 × 10−2, γ2 = 100 in the simulations. The temporal
and spatial steps are set as δt = 1 × 10−5 and hx = hy = 1/256, respectively

Then, we repeat the simulations using the Allen-Cahn model with nonlocal constraints
and the Cahn–Hilliard model with mobility M = 1× 10−4. Since the coarsening rate in the
Cahn–Hilliardmodel ismuch faster than that in the nonlocalAllen-Cahnmodels.At T = 200,
the drops described by the Cahn–Hilliard model have merged into a single rounded drop,
while the drops described by the nonlocal Allen-Cahn model just begin fusing. Figure 2a
and b depict a representative drop merging simulation using the CH-EQ scheme for the
Cahn–Hilliard model and one using the AC-L1-SAV scheme for the Allen-Cahn model with
a Lagrange multiplier, respectively. The time evolution of the free energy computed from
the Cahn–Hilliard model and that from the nonlocal Allen-Cahn model is depicted in Fig. 2c
and d, respectively, in which the Cahn–Hilliard model yields a smaller free energy than the
nonlocal Allen-Model. This is because at T = 200 the Cahn–Hilliard dynamics has come
into a steady state comparing with the dynamics of the Allen-Cahn model with nonlocal
constraints.

Secondly we use a random initial condition to assess the property of volume preserving
nonlocal Allen-Cahn models in phase coarsening dynamics. Once again, The Allen-Cahn
model gives one phase diagram at t = 50, while the Allen-Cahn models with nonlocal
constraints yield another at the same parameter values and initial conditions. There is simply
no comparison between these twomodel predictions in the terminal phase diagram. Figure 3a
and b depict typical simulations using the AC-EQ scheme for the Allen-Cahn model and the
AC-L1-EQ scheme for the Allen-Cahnmodel with a Lagrangian multiplier, respectively. The
time evolution of the free energy and the volume computed from the numerical schemes for
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Fig. 3 Coarsening dynamics simulated using the Allen-Cahn and the Allen-Cahn models with nonlocal con-
straints at M = 1. The coarsening dynamics computed using the AC-EQ and AC-L1-EQ scheme are shown in
a and b, respectively. Snapshots of the numerical solution of φ are taken at T = 0, 0.5, 1, 10, 25, 50, respec-
tively, in both cases. The time evolution of the free energy and the volume are shown in c and d, respectively.
The Allen-Cahn model does not conserve the volume, while the nonlocal Allen-Cahn models preserve the
volume of each phase and dissipate energies in time. The energy obtained using the Allen-Cahnmodel is lower
than that using the nonlocal Allen-Cahn models. We set γ1 = 2 × 10−3, γ2 = 50 in the computations. The
temporal and spatial step sizes are set at δt = 1 × 10−5 and hx = hy = 1/256, respectively

the models are shown in Fig. 3c and d, respectively. Between the EQ and SAV schemes of
the same model, we have yet seen any visible differences from the numerical results.

The behavior of such coarsening dynamics is also compared between the Cahn–Hilliard
model and the nonlocal Allen-Cahn models. Since the coarsening rate in the Cahn–Hilliard
model is faster than that in the nonlocal Allen-Cahn models, we increase the magnitude of
the mobility coefficient in the Allen-Cahn model with nonlocal constraints by 1000 folds and
then repeat the simulations. This speeds up the coarsening dynamics of the nonlocal Allen-
Cahn system significantly, although the result from the Cahn–Hilliard model still reaches a
coarser grain than that of the Allen-Cahn models with nonlocal constraints. Figure 4a and
b depict two representative examples on phase coarsening dynamics using CH-SAV and
AC-L1-SAV schemes, respectively. Figure 4c and d show the decaying free energy and the
volume preserving results for the two selected simulations.

The results show the classical, non-volume-conserving Allen-Cahnmodel can’t be used to
simulate the merging of drops and the coarsening dynamics accurately, whereas the nonlocal
Allen-Cahn models and the Cahn–Hilliard model can (see Figs. 1–4). Compared with the
Allen-Cahn model and the Cahn–Hilliard model, the nonlocal Allen-Cahn models not only
conserves the volume of each phase, but also shows a slower dissipation rate. One can enlarge
the mobility of the nonlocal Allen-Cahn models to accelerate dynamics of merging. We also
compared the time evolution of the dissipation rates for the nonlocal Allen-Cahn models and
the Cahn–Hilliard model with the same mobility coefficient M . The result indicates that the
dissipation rate of the nonlocal Allen-Cahn models is slower than that of the Cahn–Hilliard
model (see Fig. 5).
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Fig. 4 Coarsening dynamics simulated using the Cahn–Hilliard model at M = 1× 10−6 and the Allen-Cahn
models with nonlocal constraints at M = 1 × 10−3. The coarsening dynamics of the Cahn–Hilliard model
and the Allen-Cahn model with nonlocal constraints are shown in a and b, simulated using corresponding
SAV schemes (CH-AV and AC-L1-SAV), respectively. Snapshots of the numerical solution of φ are taken
at T = 0, 10, 20, 30, 40, 50 in both cases. The time evolution of the free energy and volume are shown in c
and d, respectively. All models preserve the volume of each phase and dissipate energies in time. The faster
coarsening dynamics in the Cahn–Hilliard model makes its energy slightly lower than the one predicted using
the nonlocal Allen-Cahn models. We set γ1 = 2 × 10−3, γ2 = 50 in the computations. The temporal and
spatial step sizes are set at δt = 1 × 10−5 and hx = hy = 1/256, respectively

Fig. 5 Time evolution of the
magnitude of the dissipation rate
with the Cahn–Hilliard model
and the Allen-Cahn model with
nonlocal constraints, simulated
using CH-EQ and AC-L1-SAV,
respectively. The dissipation rate
of the energy is calculated from
Fig. 2. At t ≤ 0.02, the
dissipation rate in the
Cahn–Hilliard equation is larger
than that in the Allen-Cahn
equations with nonlocal
constraints. The strong energy
decay initially is a result of
enhanced mixing. This explains
why the Cahn–Hilliard dynamics
merges drops faster than that of
the Allen-Cahn model with
nonlocal constraints
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Fig. 6 Comparison on accuracy of numerical solutions of the Cahn–Hilliard model and the Allen-Cahn model
with a Lagrange multiplier. a The free energy computed using the Cahn–Hilliard model at four selected time
steps, respectively. b. The free energy computed using AC-L1-EQ and AC-L1-SAV schemes at four selected
time steps, respectively. The time step sizes used are 1 × 10−1, 1 × 10−2, 1 × 10−3, 1 × 10−5. We use
M = 1 × 10−4 for the Cahn–Hilliard model and M = 1 for the nonlocal Allen-Cahn model. The initial
condition and other model parameters are the same as those in Fig. 2. In the computation using the Cahn–
Hilliard model, the result converges at δt = 1 × 10−5. The outcome is slightly better for the Allen-Cahn
model with a lagrange multiplier

5.2.1 Practical Implementation of the Schemes

Although the schemes are shown unconditionally energy stable, the numerical results are not
guaranteed to be always accurate if the time step size is large due to the sequential decoupling
of the schemes in Fig. 6. In all these schemes based on the energy quadratization strategy, the
equations for the auxiliary variables or the intermediate variables are ordinary differential
equations, derived from the original algebraic equations (which define the intermediate vari-
ables) by taking time derivatives. Although the reformulated equation system is equivalent
to the original one, the numerical schemes devised to solve these differential equations may
not be accurate enough to warrant the solution is obtained accurately at large time steps. This
is an accuracy issue in the numerical simulation.

To remedy the inherent deficiency, we propose two methods to modify the schemes in
practical implementations to improve their numerical accuracy with a large time step. For
simplicity, we define f1(φn) as the non-quadratic, nonlinear term in the bulk potential, which
is f1(φn) = f (φn) − γ2(φ

n)2 in this paper. The two methods are given below.
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Fig. 7 Accuracy of EQ schemes when implemented using the tricks. a. Results computed using CH-EQ
scheme. b. Results computed using the AC-L1-EQ scheme. We use M = 1 × 10−4, α = 1, C = 5 × 10−5

for the Cahn–Hilliard model and M = 1, α = 1, C = 1.5 × 10−4 for the Allen-Cahn model with a
Lagrange multiplier in the simulations. The second numerical trick works better than the first one in the case
of the nonlocal Allen-Cahn model, but the first method works better for the Cahn–Hilliard model. The initial
conditions and the parameter values are the same as those used in Fig. 2

1. After obtaining φn+1, we update qn+1 using qn+1 =
√

f1(φn+1) + C0 instead of solving
the ordinary equation of q .

2. After obtaining φn+1, if
∫
�
(qn+1 −

√
f1(φn+1) + C0)dx � ε for a prescribed ε > 0,

we update qn+1 using qn+1 = qn + q ′n+1/2
(φn+1 − φn), otherwise, using qn+1 =√

f1(φn+1) + C0 − 2−αδt
2+αδt (q

n − √
f1(φn) + C0).

In method 1, we update the value of qn+1 using the original definition of q after φn+1

is obtained each step. In method 2, we introduce an additional decay mechanism for the
quantify q − √

f1(φ) + C0 as follows(
q − √

f1(φ) + C0

)
t
= −α(q − √

f1(φ) + C0), α > 0. (5.3)

If α = 0, this equation recovers the reformulated equation for the intermediate variable q .
When α > 0, it serves as decay equation to reduce

√
f1(φ) + C0 in time. We note that,

in method 2, the result is insensitive to the choice of α > 0. Figure 6 depicts a pair of
comparative studies on drop merging simulations using the Cahn–Hilliard model and the
Allen-Cahn model with a Lagrange multiplier discretized using both EQ and SAV methods.
The benchmark results are obtained using small time steps. Using these two tricks, we can
alleviate the constraints imposed on the time step size for the EQ schemes considerably.
In Fig. 7, we show results of the numerical methods at a relatively large step size. The
improvement is significant. We also test the tricks on the SAV schemes, however we observe
that only method 1 performs well.

In the numerical experiments, we observe that the Allen-Cahn model with a penalizing
potential and the Allen-Cahn model with a Lagrange multiplier seem to render comparable
numerical results. In this study, we have used two different definitions of the phase volume
V (t) = ∫

�
h(φ(t))dx with two choices of h(φ):

h(φ) = φ,

h′(φ) = (m + 1)(2m + 1)

m
[φ(1 − φ)]m, m is a positive integer.

(5.4)
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Fig. 8 Two examples of failure for the Allen-Cahn model with a penalizing potential at M = 1, where η = 1
and η = 1× 1018 are chosen in the simulations. We plotted time evolution of the free energy and the volume,
respectively. Results in a and b are obtained using the AC-P-EQ scheme with η = 1. Results in c and d
are obtained using the AC-P-SAV scheme with η = 1 × 1018. The time step size and space time size are
chosen as δt = 1× 10−5, hx = hy = 1/256 in the simulations, respectively. The initial conditions and other
parameters are chosen the same as those in Fig. 2. These show that if η is not “properly chosen”, the results
are not volume-conserving nor energy stable

Our numerical experiments do not seem to be able to differentiate between the nonlocalAllen-
Cahn models using either definitions. Thus, both can be used at the discretion of the user in
practice. Physically, the second definition seems to be more sound because the compensation
to the time change of the volume fraction primarily takes place around the interface while
the first definition seems to compensate the phase variable globally [18].

The phase evolution, time evolution of the volume and the free energy of the two Allen-
Cahnmodelswith nonlocal constraints simulated byEQor SAVare essentially the same, if the
penalizing parameter η is chosen appropriately. The choice of η can be fairly arbitrary [17].
For very large η, however, the code does not perform well in that it slows down significantly
due to stiffness of the system.We thus believe there exists an “optimal” η that renders the best
result, which ought to be determined empirically in numerical implementations. We show
two examples of failure at either large η or a small η in Fig. 8, in which the energy is not
dissipative nor the volume conserved.

In the case with a double well potential, if we define q2 = γ2φ
2(1 − φ)2 rather than

the one in Sect. 4.1 in the schemes, we observe a significant improvement in convergence
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Fig. 9 Merging of two drops simulated by the AC-L1-EQ scheme in a and the AC-L1-SAV scheme in b. The
time step sizes used are 1× 10−4, 1× 10−3, 1× 10−2, 5× 10−2, respectively. The spatial mesh is 256× 256
in 2D. The initial conditions and other parameter values are the same as those in Fig. 2. At a relatively large
step size δt = 0.05, the scheme AC-L1-SAV yields an erroneous result

at large time steps. The same results are also observed in [43]. This is because q ′ = δq
δφ

=
√

γ2(1−2φ) is a linear function, the extrapolation q ′n+1/2 = 3
2 (q

′)n − 1
2 (q

′)n−1 or q ′n+1/2 =
q ′( 32φ

n − 1
2φ

n−1) is exact! Compared with the results computed by previous schemes with
large time steps for nonlocal models in Fig. 6, larger time steps can perform well in the newly
developed EQ or SAV schemes in Fig. 9. Notice that EQ schemes outperform SAV schemes
at δt = 5× 10−2 but under-perform SAV schemes at δt = 1× 10−2, where the SAV scheme
fails after some time. Their performance is therefore comparable on average.

6 Conclusions

We have developed an exhaustive set of linear, second order, energy stable schemes for the
Allen-Cahn equation with nonlocal constraints that preserve the phase volume and compared
themwith the energy stable, linear schemes for theAllen-Cahn and theCahn–Hilliardmodels.
These schemes are devised based on the energy quadratization strategy in the form of EQ
and SAV format. We show that they are unconditionally energy stable and linear systems
resulted from them are uniquely solvable. All schemes can be solved using efficient numerical
methods, making the models bona fide alternatives to the Cahn–Hilliard model to describe
interfacial dynamics of immiscible materials while preserving the volume. The nonlocal
Allen-Cahn models exhibit a slower coarsening rate than the Cahn–Hilliard model at the
same mobility, but one can increase the mobility coefficient of the nonlocal Allen-Cahn
model to accelerate their dynamics.

Two practical implementation tricks are introduced to enhance the accuracy of the numer-
ical schemes at a large step size, but the second method seems to be not working well on the
SAV schemes. In addition, we have compared the two Allen-Cahnmodels with nonlocal con-
straints numerically. The computational efficiency of theAllen-Cahnmodel with a penalizing
potential is slightly better than the one with a Lagrange multiplier, but the accuracy of the
former depends on a suitable choice of model parameter η. Through numerical experiments,
we show that the practical implementation using the defining algebraic functions for the
auxiliary variable makes the EQ scheme superior to the SAV scheme in the computational
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efficiency and accuracy. When the equation of the auxiliary variable can be solved more
accurately, large time step size can be applied. In the end, we note that the size of mobility
and the time step size are dominating factors that determine ultimately the efficiency and
accuracy of the schemes.

Acknowledgements This research is partially supported byNSFCAwards #11571032, #91630207 andNSAF-
U1530401.

Appendix

A Sherman-Morrison Formula and its Application to Solving the
Integro-Differential Equation

Here we give a brief review on the Sherman-Morrison formula [52] and explain its applica-
tions in the practical implementation of our various relevant schemes.

Suppose A is an invertible square matrix, and u,v are column vectors. Then A + uvT is
invertible iff 1 + vT A−1u �= 0. If A + uvT is invertible, then its inverse is given by

(A + uvT )−1 = A−1 − A−1uvT A−1

1 + vT A−1u
. (A.1)

So if Ay = b and Az = u, (A + uvT )x = b has the solution given by

x = y − vT y

1 + vT z
z. (A.2)

For the integral term(s) in the semi-discrete schemes in this study such as (4.26), we need
to discretize it properly. ∀ f , we discretize

∫
�

f dx using the composite trapezoidal rule and

adding all the elements of the new matrix w1w
T
2 f , where w1 = hx

2 S, w2 = hy
2 S, hx , hy

are the spatial step sizes and S = [1, 2, 2, ..., 2, 2, 1]T . For convenience, we use w1w
T
2 f to

represent the integral discretized by the composite trapezoidal rule.
To solve Eq. (4.26), we discretize the integral or the inner product of functions (c, φn+1)d

as uvT φn+1. The scheme is recast to Aφn+1 + uvT φn+1 = bn . After using the Sherman-
Morrison formula, we get

φn+1 = A−1bn − vT A−1bn

1 + vT A−1u
A−1u, (A.3)

In the inner product of vectors, (4.26) can be rewritten into

φn+1 = A−1bn − 〈c, A−1bn〉
1 + 〈c, A−1d〉 A−1d. (A.4)

So, indeed the approach we take in the study using discrete inner product is essentially
equivalent to applying the Sherman-Morrison formula.

B The Energy Dissipation Theorem in the Full Discrete Scheme

Here we only give the energy dissipation theorem in the full discrete scheme for the Allen-
Cahn model with a penalizing potential, since the others are similar.
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Theorem B.1 The full discrete scheme in (4.23) obeys the following energy dissipation law

Fn+1 − Fn = −δt〈μ̃n+1/2, M
n+1/2

μ̃n+1/2〉. (B.1)

Hence, it is unconditionally stable.

Proof Taking the l2 inner product of φn+1−φn

δt with −μ̃n+1/2, we obtain

−
〈

φn+1 − φn

δt
, μ̃n+1/2

〉
= 〈M

n+1/2[μn+1/2 + √
ηζn+1/2], μn+1/2 + √

ηζn+1/2〉

=
∥∥∥∥∥
√

M
n+1/2 (

μn+1/2 + √
ηζn+1/2)

∥∥∥∥∥
2

d

,

(B.2)

Taking the l2 inner product of μ̃n+1/2 with φn+1−φn

δt , we obtain
〈
(−γ1∇2

hφ + 2γ2φ)
n+1/2 + 2qn+1/2q ′n+1/2 + √

ηζn+1/2,
φn+1 − φn

δt

〉

= γ1

2δt
(‖∇hφn+1‖2d − ‖∇hφn‖2d) + γ2

δt
(‖φn+1‖2d − ‖φn‖2d)

+
〈
2qn+1/2q ′n+1/2

,
φn+1 − φn

δt

〉
+

〈√
ηζn+1/2,

φn+1 − φn

δt

〉
.

(B.3)

Taking the l2 inner product of qn+1 − qn with qn+1+qn

δt , we obtain

1

δt
(‖qn+1‖2d − ‖qn‖2d) = 1

δt
〈q ′n+1/2

(φn+1 − φn), qn+1 + qn〉. (B.4)

Taking the l2 inner product of ζn+1 − ζn with ζn+1+ζn

δt , we obtain

1

δt
(‖ζn+1‖2d − ‖ζn‖2d) = 1

δt
〈√η‖φn+1 − φn‖2d , ζn+1 + ζn〉. (B.5)

Combining the above equations, we have

γ1

2δt
(‖∇hφn+1‖2d − ‖∇hφn‖2d) + γ2

δt
(‖φn+1‖2d − ‖φn‖2d)

+ 1

δt
(‖qn+1‖2d − ‖qn‖2d) + 1

2δt
(‖ζn+1‖2d − ‖ζn‖2d)

= −
∥∥∥∥∥
√

M
n+1/2

(μn+1/2 + √
ηζn+1/2)

∥∥∥∥∥
2

d

.

(B.6)

This proves the energy stability equality. 
�
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