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b Department of Mathematics, University of South Carolina, Columbia, SC, 29208, USA
c Beijing Computational Science Research Center, Beijing 100193, China

a r t i c l e i n f o a b s t r a c t

Article history:
Received 8 September 2018
Received in revised form 26 April 2019
Accepted 11 June 2019
Available online 13 June 2019

Keywords:
Binary compressible fluid flows
Energy quadratization
Energy stable schemes
Finite difference methods

We present a linear, second order fully discrete numerical scheme on a staggered grid for 
a thermodynamically consistent hydrodynamic phase field model of binary compressible 
fluid flows, derived from the generalized Onsager Principle. The hydrodynamic model pos-
sesses not only the variational structure in its constitutive equation, but also warrants the 
mass, linear momentum conservation as well as energy dissipation. We first reformulate 
the model using the energy quadratization method into an equivalent form and then dis-
cretize the reformulated model to obtain a semidiscrete partial differential equation system 
using the Crank-Nicolson method in time. The semi-discrete numerical scheme preserves 
the mass conservation and energy dissipation law in time. Then, we discretize the semi-
discrete PDE system on a staggered grid in space to arrive at a fully discrete scheme using 
2nd order finite difference methods, which respects a discrete energy dissipation law. We 
prove the unique solvability of the linear system resulting from the fully discrete scheme. 
Mesh refinements and numerical examples on phase separation due to spinodal decom-
position in binary polymeric fluids and interface evolution in the gas-liquid mixture are 
presented to show the convergence property and the usefulness of the new scheme in 
applications, respectively.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Material systems comprising of multi-components, some of which are compressible while others are incompressible, are 
ubiquitous in nature and industrial applications. For example, in growing tissues, cell proliferation makes the material vol-
ume changes so that it can not be described as incompressible [25]. Another example of the mixture of compressible fluids 
is the binary fluid flows of non-hydrocarbon (e.g. C O 2) and hydrocarbons encountered in the enhanced oil recovery (EOR) 
process. Since gas (e.g. C O 2) injection offers considerable potential benefits to oil recovery attracting the most new market 
interest since 1972, properties (viscosity, density et al.) of multi-component compressible mixtures of nonhydrocarbon and 
hydrocarbons have been studied by a number of investigators [12,31,40].

Phase field methods have been used successfully to formulate models for fluid mixtures in many applications ranging 
from biological sciences [43,44,51,67], including cell biology [27,38,61,68,69], biofilms [56–58], cell adhesion and motility 
[6,33,37–39], cell membrane [2,3,18,49,52], tumor growth [51]), to materials science [5,7,14], fluid dynamics [34,35,48], and 
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image processing [4,30,65] et al. The most widely studied phase field model for binary fluid mixtures is the one for fluid 
mixtures of two incompressible fluids of identical densities [1,26,32]. While modeling binary fluid mixtures using phase 
field models, one commonly uses a phase variable φ, either a volume fraction or a mass fraction of a fluid component, to 
distinguish between distinct material phases. For instance φ = 1 indicates one fluid phase while φ = 0 denotes another fluid 
phase in the immiscible, binary fluid mixture. For immiscible mixtures, the interfacial region between different phases is de-
scribed by 0 < φ < 1. A transport equation for phase variable φ along with conservation equations of mass and momentum 
and the constitutive equation constitute the governing system of equations for the binary incompressible fluid mixture.

In the compressible fluid flow, we use the mass density ρi or molar density ni in place of volume fraction φi (i = 1, 2), 
to represent the distribution of each compressible component in the fluid mixture. The material compressibility comes from 
two sources. One is the material compressibility itself and the other is the mass-generating source. In general, the transport 
equation for the mass density of each component is given by

∂ρi
∂t + ∇ · (ρivi) = ji, i = 1, · · · , N, (1.1)

or the transport equation for the molar density is given by

∂ni
∂t + ∇ · (nivi) = ji, i = 1, · · · , N, (1.2)

where vi is the velocity of the ith component, ji is the mass source or molar source of the ith component. The transport 
equations for the mass or molar densities, constitutive equation for the stress, the conservation laws of mass and momentum 
constitute the governing equations of the hydrodynamic phase field models of the compressible fluid mixtures.

Distinguishing properties of the compressible hydrodynamic phase field models include that the density of each com-
pressible material component is a variable, the mass average velocity of the fluid flow is most likely not solenoidal, and 
the pressure is determined by the equation of state or the free energy of the mixture system (at least in the isothermal 
case). In [35], Truskinovsky and Lowengrub derived the Navier–Stokes–Cahn–Hilliard (NSCH) system for a binary mixture 
of two incompressible fluid flows with unmatched densities in the fluid components, in which the mass concentration of 
one fluid component in the binary fluid flow is used as the phase variable. They named the hydrodynamic phase field 
model the quasi-incompressible model. They also discussed the compressible model of binary fluids briefly. Guo and Lin 
gave a systematic derivation of a nonisothermal hydrodynamic model for binary compressible fluids in [24]. In [28,29], Sun 
et al. propose a general diffuse interface model with a given equation of state (e.g. Peng-Robinson equation of state) to 
describe the multi-component fluid flow based on the principles of the NVT-based framework. In [64], we systematically 
derived a thermodynamically consistent hydrodynamic phase field model for multi-component compressible fluid mixtures 
through a variational approach coupled with the generalized Onsager Principle [55] and discussed various means to arrive at 
the quasi-incompressible limit and the fully incompressible limit. In this paper, we develop an unconditionally energy sta-
ble numerical algorithm to solve the thermodynamically consistent, hydrodynamic phase field model for multi-component 
compressible fluid flows.

The hydrodynamic phase field model for compressible fluid flows is nonlinear, exemplified in its free energy, mobility co-
efficients and in the transport equations. High order approximation, unconditional energy stability as well as computational 
efficiency are desired properties to attain in developing its numerical approximation. To preserve the energy dissipation 
property in numerical approximations, several time-marching approaches have been developed in the past: convex split-
ting method [8,10,15,16], stabilization method [46,66], and energy quadratization (EQ, including SAV) approach [21,60,63]. 
The convex splitting method has been used to obtain a series of first order energy stable schemes for various PDE models 
exhibiting energy dissipation properties. However, the convex-splitting scheme is usually nonlinear and therefore can be 
expensive to solve from time to time. On the other hand, even though it is possible to construct a second order convex 
splitting scheme in some cases, it was usually done on a case by case basis and a general formulation is not yet available. 
The stabilization method is another method for obtaining energy stable numerical approximations, which is equivalent to a 
convex splitting method in some cases. By adding a linear, stabilizing operator in the order of the truncation error, one can 
obtain an energy stable algorithm. In general, a second order stabilizing scheme can be derived to preserve energy decay 
at the discrete level but not the energy dissipation rate. The energy quadratization(EQ), also known as the invariant energy 
quadratization (IEQ), method was proposed recently [22,53,54] and extended to various gradient flows and hydrodynamic 
phase field models [21,60,63]. By introducing intermediate variables, one can rewrite the nonlinear free energy functional 
in an arbitrary form into a quadratic form and recast the governing system of equations into an equivalent form. For the 
transformed system with a quadratic free energy, a linear second order or even higher order numerical scheme can be 
constructed [19,59,62].

Recently, Sun et al. [28,29] used the convex splitting approach and the scalar auxiliary variable method [47], respectively, 
to solve a binary compressible hydrodynamic phase field model. They obtained some first order semi-discrete schemes. In 
this paper, we focus on developing a linear, second order, fully discrete numerical scheme for the hydrodynamic phase field 
model for binary compressible fluid flows based on the energy quadratization strategy. We will show that this scheme is 
second order, unconditionally energy stable and the linear system resulting from the numerical scheme is uniquely solvable. 
At each time step, the linear algebraic system is solved using a pre-conditioner. Two examples on phase separation dynamics 
in viscous polymeric blends and interface evolution in gas-liquid mixtures are presented to show the usefulness of the new 
schemes in some practical applications.
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The paper is organized as follows. In §2, we briefly recall the derivation of the compressible hydrodynamic phase field 
model. Its non-dimensionalization is given in §3. In §4, we reformulate the model using the energy quadratization method. 
The fully discrete numerical scheme, where we use second order finite difference in space and “linearized” Crank-Nicolson 
method in time, is given in §5. The unique solvability of the linear system resulting from the scheme and preservation of 
the energy dissipation rate are proved as well. In §6, we show several numerical experiments that validate the accuracy, 
stability and efficiency of the numerical scheme. We give concluding remarks in §7.

2. Thermodynamically consistent hydrodynamic phase field models for binary compressible viscous fluid flows

A general thermodynamically consistent hydrodynamic phase field model for fluid flows of n viscous fluid components 
has been derived in [64]. Here, we briefly recall the basic ingredients in the binary fluid model and discuss its energy 
dissipation property. We consider flows of binary compressible viscous fluids with densities ρ1 and ρ2, respectively. The 
mass conservation equation for each fluid component is respectively given by

∂ρi

∂t
+ ∇ · (ρivi) = 0, i = 1,2, (2.1)

where vi is the velocity of the ith fluid component, i = 1, 2. We define the total mass of the fluid mixture as ρ = ρ1 + ρ2

and the mass average velocity as v = 1
ρ (ρ1v1 + ρ2v2). Then, the mass conservation equation for the total mass density ρ is 

given by

∂ρ
∂t + ∇ · (ρv) = 0. (2.2)

Using the mass average velocity, we rewrite the mass transport equation as follows

∂ρi
∂t + ∇ · (ρiv) = ji = ∇ · Ji, i = 1,2, (2.3)

where Ji = ρi(v − vi) is the excessive mass flux of fluid i = 1, 2, and j1 + j2 = 0 according to the total mass conservation 
law. The linear momentum conservation law of the fluid mixture is given by

∂(ρv)
∂t + ∇ · (ρvv) = ∇ · σ + b (2.4)

derived from the momentum conservation for each fluid component, where b is the body force, σ is the total stress tensor, 
σ = σ s + σ e , σ s is the symmetric viscous stress tensor, and σ e is the Ericksen stress tensor. Both Ji , i = 1, 2 and σ s would 
be determined by constitutive relations later.

For the compressible fluid mixture, we assume the free energy of the system is given by

F = ∫
V f (ρ1,ρ2,∇ρ1,∇ρ2)dx, (2.5)

where f is the free energy density function and V is the domain in which the fluid mixture occupies. The total energy of 
the fluid system is given by the sum of the kinetic energy and the free energy:

E = ∫
V [ 1

2ρ||v||2 + f ]dx. (2.6)

Considering the conservation laws of mass and linear momentum, we calculate the energy dissipation rate as follows

dE
dt = ∫

V [−σ s : D + (b + ∇ · σ e + ρ1∇μ1 + ρ2∇μ2) · v + μ1 j1 + μ2 j2]dx

+ ∫
∂V [(σ s · v) · n − 1

2 (ρv‖v‖2) · n + (−μ1ρ1v − μ2ρ2v + ∂ f
∂(∇ρ1)

∂ρ1
∂t + ∂ f

∂(∇ρ2)
∂ρ2
∂t ) · n]dS,

(2.7)

where D = 1
2 (∇v + ∇vT ) is the rate of strain tensor, n is the unit external normal of the domain boundary ∂V , μ1 =

∂ f
∂ρ1

− ∇ · ∂ f
∂∇ρ1

, μ2 = ∂ f
∂ρ2

− ∇ · ∂ f
∂∇ρ2

are the chemical potentials with respect to ρ1 and ρ2, respectively. We identify the 
Erickson stress by the equation

∇ · σ e = −ρ1∇μ1 − ρ2∇μ2. (2.8)

The energy dissipation rate reduces to
dE
dt = ∫

V [b · v − σ s : D + μ1 j1 + μ2 j2]dx + ∫
∂V [(σ s · v) · n − 1

2 (ρv‖v‖2) · n

+(−μ1ρ1v − μ2ρ2v + ∂ f
∂(∇ρ1)

∂ρ1
∂t + ∂ f

∂(∇ρ2)
∂ρ2
∂t ) · n]dS.

(2.9)

In the bulk integral, we propose the following constitutive relations following the generalized Onsager principle

σ s = 2ηD + ηtr(D)I,

j = −∑2 ∇ · M · ∇μ , i = 1,2,
(2.10)
i k=1 ik k
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where η, η̄ are the shear and volumetric viscosity respectively, and M = (Mik)2×2 ≥ 0 is the symmetric mobility matrix. 
Since 

∑2
i=1 ji = 0 according to the mass conservation law, this imposes a constraint M ·1 = 0, where 1T = (1, 1). Examining 

the surface integral, we notice that if we assume the following conditions

v|∂V = 0, n · ∇μi |∂V = 0, n · ∂ f
∂(∇ρi)

|∂V = 0, ( or ρi = ρi(x)), i = 1,2, (2.11)

on the boundary, the surface integral vanishes in the energy dissipation function. So, at the absence of the body force b = 0, 
the total energy dissipation rate reduces to

dE
dt = −∫

V [2ηD : D + ηtr(D)2 + (∇μ1,∇μ2) ·M · (∇μ1,∇μ2)
T ]dx ≤ 0, (2.12)

provided η, η ≥ 0, M ≥ 0.

Remark 2.1. If we choose the boundary conditions as follows

v · n = 0, σs · n = −β(I − nn) · v, n · ∂ f
∂(∇ρ1)

= −γ1
∂ρ1
∂t , n · ∂ f

∂(∇ρ2)
= −γ2

∂ρ2
∂t , (2.13)

where β, γ1, γ2 ≥ 0, the energy dissipation rate is given by

dE
dt = −∫

V [2ηD : D + ηtr(D)2 + (∇μ1,∇μ2) ·M · (∇μ1,∇μ2)
T ]dx

− ∫
∂V [β(I − nn)‖v‖2 + γ1(

∂ρ1
∂t )2 + γ2(

∂ρ2
∂t )2]ds.

(2.14)

These boundary conditions allow fluid flows slip at the boundary and mass fluxes to move through the boundary, which 
leads to additional energy dissipation at the surface. We will not pursue these boundary conditions in this study, which 
worthy of a complete study of its own.

We summarize the governing system of equations of the compressible binary fluid system as follows:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρ1
∂t + ∇ · (ρ1v) = ∇ · M11 · ∇μ1 + ∇ · M12 · ∇μ2,

∂ρ2
∂t + ∇ · (ρ2v) = ∇ · M21 · ∇μ1 + ∇ · M22 · ∇μ2,

∂(ρv)
∂t + ∇ · (ρvv) = 2∇ · (ηD) + ∇(η∇ · v) − ρ1∇μ1 − ρ2∇μ2,

(2.15)

where 
∑2

i,k=1 ∇ · Mik · ∇μk = 0. One particular mobility matrix satisfying the constraint consists of the entries M1 = M11 =
−M12 = −M21 = M22. In this case, the governing equations reduce to⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂ρ1
∂t + ∇ · (ρ1v) = ∇ · M1 · ∇(μ1 − μ2),

∂ρ2
∂t + ∇ · (ρ2v) = −∇ · M1 · ∇(μ1 − μ2),

∂(ρv)
∂t + ∇ · (ρvv) = 2∇ · (ηD) + ∇(η∇ · v) − ρ1∇μ1 − ρ2∇μ2.

(2.16)

For the viscosity coefficients, we denote η1, η2 as the shear viscosities of the fluid component 1 and 2 respectively, and 
η1, η2 as the volumetric viscosities of the two components. η, η are chosen as the mass average viscosities of the two 
components:

η = 1

ρ
[ρ1η1 + ρ2η2], η = 1

ρ
[ρ1η1 + ρ2η2]. (2.17)

In this study, we focus on the free energy density function f in the following form

f (ρ1,ρ2,∇ρ1,∇ρ2, T ) = h(ρ1,ρ2, T ) + 1

2
[κρ1ρ1(∇ρ1)

2 + 2κρ1ρ2(∇ρ1,∇ρ2) + κρ2ρ2(∇ρ2)
2], (2.18)

where h(ρ1, ρ2, T ) is the homogeneous or the bulk free energy density, T is the absolute temperature, assumed a constant 
in this study, and κρiρ j , i, j = 1, 2 are model parameters measuring the strength of the conformational entropy (which are 
assumed constants in this study).

Sometimes, we have to use molar densities ni as the fundamental variables in the model i = 1, 2, system (2.16) can be 
rewritten as follows⎧⎪⎪⎪⎨

⎪⎪⎪⎩
m1(

∂n1
∂t + ∇ · (n1v)) = ∇ · M1 · ∇( 1

m1
μn1 − 1

m2
μn2),

m2(
∂n2
∂t + ∇ · (n2v)) = −∇ · M1 · ∇( 1

m1
μn1 − 1

m2
μn2),

∂(ρv) + ∇ · (ρvv) = 2∇ · (ηD) + ∇(η∇ · v) − n ∇μ − n ∇μ ,

(2.19)
∂t 1 n1 2 n2
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where ni = ρi
mi

, mi is the molar mass of the ith component and μni = δ f
δni

= δ f
δρi

mi , i = 1, 2. Correspondingly, the shear and 
volumetric viscosities are given respectively by η = ∑2

i=1
nimi

n1m1+n2m2
ηi and η = ∑2

i=1
nimi

n1m1+n2m2
ηi .

With molar densities ni, i = 1, 2 as the primitive variables, we rewrite free energy density f as follows

f (n1m1,n2m2,m1∇n1,m2∇n2, T ) = h(m1n1,m2n2, T )

+ 1
2 [κn1n1(∇n1)

2 + 2κn1n2(∇n1,∇n2) + κn2n2(∇n2)
2],

(2.20)

where κnini = m2
i κρiρi , i = 1, 2 and κn1n2 = m1m2κρ1ρ2 .

The free energy density function is specific to the binary fluid system studied.

• For polymeric binary fluid mixtures while approximated as a viscous fluid, the Flory-Huggins type free energy density 
function can be used to describe fluid mixing [13,17,35]

h(ρ1,ρ2, T ) = kB T
m ρ( 1

N1

ρ1
ρ ln ρ1

ρ + 1
N2

ρ2
ρ ln ρ2

ρ + χ ρ1ρ2
ρ2 ), (2.21)

where kB is the Boltzmann constant, T is the absolute temperature and m the average mass of a molecule.
• For compressible gas-liquid mixtures, the semi-empirical Peng-Robinson free energy density is often used [28],

h(n1,n2, · · · ,nN ,n, T ) = f ideal + f repulsion + f attraction, (2.22)

where

f ideal = RT
∑

i=1 ni(ln(ni) − 1),

f repulsion = −nRT ln(1 − bn),

f attraction = a(T )n
2
√

2b
ln

( 1+(1−√
2)bn

1+(1+√
2)bn

)
.

(2.23)

Here n = ∑N
i=1 ni is the total molar density. The corresponding chemical potential of the ith component is given by

μni = ∂h
∂ni

− ∇ · ∂h
∂∇ni

= RT
(
ln(ni) + bin

1−bn − ln(1 − bn)
) + abin

b((
√

2−1)bn−1)(1+(1+√
2)bn)

+ 1
2
√

2
(

2
∑M

j=1 n j(aia j)
1/2(1−ki j)

bn − abi
b2 )ln(

1+(1−√
2)bn

1+(1+√
2)bn

) − κnini �ni − κnin j �n j, j �= i,
(2.24)

where b(n1, n2) is the volume parameter and a(n1, n2, T ) is the interaction parameter. This free energy was proposed 
to improve that of the Van der Waals’ to mitigate the deviation away from the ideal gas model.

3. Non-dimensionalization

For system (2.16), using characteristic time t0, characteristic length l0, and characteristic density ρ0, we nondimension-
alize the physical variables and parameters as follows

t̃ = t
t0

, x̃ = x
l0

, ρ̃i = ρi
ρ0

, i = 1,2, ṽ = vt0
l0

, M̃1 = M1
t0ρ0

, 1
Res

= η̃ = t0
ρ0l20

η,

1
Rev

= η̃ = t0
ρ0l20

η, μ̃i = t2
0

l20
μi, i = 1,2, κ̃ρiρ j = κρiρ j

ρ0t2
0

l40
, i, j = 1,2,

(3.1)

where Res , Rev are the Reynolds numbers. We rewrite the dimensionless governing equations, after dropping the s̃ for 
simplicity, as follows⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂ρ1
∂t + ∇ · (ρ1v) = ∇ · M1 · ∇(μ1 − μ2),

∂ρ2
∂t + ∇ · (ρ2v) = −∇ · M1 · ∇(μ1 − μ2),

∂(ρv)
∂t + ∇ · (ρvv) = 2∇ · ( 1

Res
D) + ∇( 1

Rev
∇ · v) − ρ1∇μ1 − ρ2∇μ2,

(3.2)

where

μ1 = ∂h

∂ρ1
− κρ1ρ1�ρ1 − κρ1ρ2�ρ2, μ2 = ∂h

∂ρ2
− κρ1ρ2�ρ1 − κρ2ρ2�ρ2. (3.3)

Similarly, for system (2.19) with molar density as fundamental variables, using characteristic molar density n0 (mol · m−d), 
characteristic mass density ρ0 = n0m2(kg ·m−d, d = 3) and characteristic temperature T0 (Kelvin), we nondimensionalize the 
physical variables and parameters as follows
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t̃ = t
t0

, x̃ = x
l0

, ρ̃ = ρ
ρ0

, ñ = n
n0

, T̃ = T
T0

, 1
Res

= η̃ = t0
ρ0l20

η, m̃1 = m1n0
ρ0

, m̃2 = m2n0
ρ0

,

1
Rev

= η̃ = t0
ρ0l20

η, μ̃ni = n0t2
0

ρ0l20
μni, i = 1,2, M̃1 = M1

t0ρ0
, ˜κnin j = κnin j

n2
0t2

0
ρ0l40

, i, j = 1,2.

(3.4)

Dropping ̃s for simplicity, we rewrite the dimensionless governing equations as follows

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

m1(
∂n1
∂t + ∇ · (n1v)) = ∇ · M1 · ∇( 1

m1
μn1 − μn2),

( ∂n2
∂t + ∇ · (n2v)) = −∇ · M1 · ∇( 1

m1
μn1 − μn2),

∂(ρv)
∂t + ∇ · (ρvv) = 2∇ · (ηD) + ∇(η∇ · v) − n1∇μn1 − n2∇μn2,

(3.5)

where we set m̃2 = m2n0
ρ0

= 1, then m1 is the ratio of the specific masses, a dimensionless model parameter. The dimension-
less chemical potentials are given by

μn1 = ∂h

∂n1
− κn1n1�n1 − κn1n2�n2, μn2 = ∂h

∂n2
− κn1n2�n1 − κn2n2�n2. (3.6)

In the following, we focus on developing an energy stable numerical scheme for system (3.2) on staggered grids in space. 
An energy stable numerical scheme for system (3.5) can be obtained analogously, but we will not present it in this paper.

4. Reformulation of the model

In order to use the Energy Quadratization (EQ) method to design numerical schemes, we need to reformulate the model 
equations. We first transform the energy of the system into a quadratic form

E = ∫
V [ 1

2ρvT v + f ]dx = ∫
V [ 1

2 uT u + fu]dx,

fu = q2
1 + α1

2 ρ2
1 + α2

2 ρ2
2 + 1

2 pT · K · p − A,
(4.1)

where u = √
ρv, α1 > 0 and α2 > 0 are two user-defined parameters,

q1 =
√

h(ρ1,ρ2, T ) − α1

2
ρ2

1 − α2

2
ρ2

2 + A, (4.2)

and A is a constant such that h(ρ1, ρ2, T ) − α1
2 ρ2

1 − α2
2 ρ2

2 + A > 0. We note that we can always find a constant A if the 
bulk free energy density function is bounded below. In addition, p = (∇ρ1, ∇ρ2)

T and K is the coefficient matrix of the 
conformational entropy

K =
(

κρ1ρ1 κρ1ρ2

κρ1ρ2 κρ2ρ2

)
> 0. (4.3)

Using identity

∂(
√

ρu)

∂t = 1
2
√

ρ
∂ρ
∂t u + √

ρ ∂u
∂t = − 1

2
√

ρ
∇ · (√ρu)u + √

ρ ∂u
∂t , (4.4)

we rewrite the governing equations into

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ1
∂t + ∇ · ( ρ1√

ρ
u) = ∇ · M1 · ∇(μ1 − μ2),

∂ρ2
∂t + ∇ · ( ρ2√

ρ
u) = −∇ · M1 · ∇(μ1 − μ2),

∂u
∂t + 1

2 ( 1√
ρ
∇ · (uu) + u · ∇ u√

ρ
) = 1√

ρ
∇ · σ ,

∂q1
∂t = ∂q1

∂ρ1

∂ρ1
∂t + ∂q1

∂ρ2

∂ρ2
∂t ,

(4.5)

where
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σ = σ s + σ e, σ s = 2 1
Res

D + 1
Rev

(∇ · u√
ρ
)I,

σ e = ( f − ρ1μ1 − ρ2μ2)I − ∂ f
∂∇ρ1

∇ρ1 − ∂ f
∂∇ρ2

∇ρ2,

∇ · σ = ∇ · (σ s + σ e) = 2∇ · ( 1
Res

D) + ∇( 1
Rev

∇ · u√
ρ
) − ρ1∇μ1 − ρ2∇μ2,

μ1 = δ f
δρ1

= ∂ fu
∂ρ1

− ∇ · ∂ fu
∂∇ρ1

= 2q1
∂q1
∂ρ1

− κρ1ρ1�ρ1 − κρ1ρ2�ρ2 + α1ρ1,

μ2 = δ f
δρ2

= ∂ fu
∂ρ2

− ∇ · ∂ fu
∂∇ρ2

= 2q1
∂q1
∂ρ2

− κρ2ρ2�ρ2 − κρ1ρ2�ρ1 + α2ρ2,

D = 1
2 (∇ u√

ρ
+ (∇ u√

ρ
)T ), 1

Res
= ρ1

ρ
1

Res1
+ ρ2

ρ
1

Res2
, 1

Rev
= ρ1

ρ
1

Rev1
+ ρ2

ρ
1

Rev2
.

(4.6)

Remark 4.1. We define the inner product of two functions f and g as follows:

( f , g) =
∫
V

f gdx. (4.7)

Remark 4.2. In (4.5), u is well defined only when ρ > 0. Therefore, we note that the reformulated system should not be 
applied to the case where ρ = 0.

Theorem 4.1. System (4.5) is dissipative, and the corresponding energy dissipation rate is given by

dE
dt = −2( 1

Res
,D : D) − ( 1

Rev
∇ · u√

ρ
,∇ · u√

ρ
) − (∇μ1,∇μ2) ·M · (∇μ1,∇μ2)

T ≤ 0, (4.8)

where Res, Rev ≥ 0, M =
(

M1 −M1
−M1 M1

)
≥ 0.

Proof. By the definition of E, we have

∂ E
∂t = ∫

V

[
uT ∂u

∂t + 2q1
∂q1
∂t + α1ρ1

∂ρ1
∂t + α2ρ2

∂ρ2
∂t + (∇ρ1,∇ρ2) · K · (∇ ∂ρ1

∂t ,∇ ∂ρ2
∂t )T

]
dx

= (u, ∂u
∂t ) + 2(q1,

∂q1
∂t ) + ((μ1 − 2q1

∂q1
∂ρ1

),
∂ρ1
∂t ) + ((μ2 − 2q1

∂q1
∂ρ2

),
∂ρ2
∂t )

= (u, ∂u
∂t ) + 2(q1,

∂q1
∂t − q1

∂q1
∂ρ1

∂ρ1
∂t − q1

∂q1
∂ρ2

),
∂ρ2
∂t ) + (μ1,

∂ρ1
∂t ) + (μ2,

∂ρ2
∂t )

= (u, ∂u
∂t ) + (μ1,

∂ρ1
∂t ) + (μ2,

∂ρ2
∂t ).

(4.9)

Taking the inner product of (4.5-3) with u and using integration by parts, we obtain

(u, ∂u
∂t ) = −2( 1

Res
,D : D) − ( 1

Rev
∇ · u√

ρ
,∇ · u√

ρ
) − (u,ρ1

1√
ρ
∇μ1 + ρ2

1√
ρ
∇μ2). (4.10)

Taking the inner product of (4.5-1,2) with μ1, μ2, respectively, and performing integration by parts, we obtain

(μ1,
∂ρ1
∂t ) + (μ2,

∂ρ2
∂t ) = −[∇(μ1 − μ2)M1∇(μ1 − μ2)] + (u,ρ1

1√
ρ
∇μ1 + ρ2

1√
ρ
∇μ2)

= −(∇μ1,∇μ2) ·M · (∇μ1,∇μ2)
T + (u,ρ1

1√
ρ
∇μ1 + ρ2

1√
ρ
∇μ2).

(4.11)

Combining (4.10) and (4.11), we obtain

∂ E
∂t = −2( 1

Res
,D : D) − ( 1

Rev
∇ · u√

ρ
,∇ · u√

ρ
) − (∇μ1,∇μ2) ·M · (∇μ1,∇μ2)

T ≤ 0 (4.12)

provided M ≥ 0. �
We next design a second order energy stable numerical scheme based on the reformulated governing system of equa-

tions.

5. Linear, second order energy stable numerical scheme

5.1. Notations and useful lemmas

We first introduce some notations, finite difference operators and useful lemmas. Here, we follow the notations in [11,
20]. Similar notations have also been used in [9,23,45,50]. Let � = [0, Lx] × [0, L y] be the computational domain with 
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Fig. 5.1. Staggered grid in 2D space. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

Lx = hx × Nx , L y = hy × N y , where Nx, N y are positive integers, and hx, hy are spatial step sizes in the x and y direction, 
respectively. We define three sets for the grid points as follows

Ex := {xi+1/2 = i · h | i = 0,1, · · · , Nx},
Cx := {xi = (i − 1

2 ) · h | i = 1, · · · , Nx},
Cx := {xi = (i − 1

2 ) · h | i = 0,1, · · · , Nx, Nx + 1},
(5.1)

where Ex is a uniform partition of [0, Lx] of size Nx in the x-direction and its elements are called edge-centered points. 
The elements of Cx and Cx are called cell-centered points. The two points belonging to Cx\Cx are called ghost points. 
Analogously, we define E y as the uniform partition of [0, L y] of size N y , called edge-centered points in the y-direction, and 
C y, C y the cell-centered points of the interval [0, L y]. In Fig. 5.1, we show the staggered grid in 2D space. In this paper, we 
discretize the variables with the Neumann boundary conditions at the cell-center and the ones with the Dirichlet boundary 
conditions at the edge-center. We define the corresponding discrete function space on this staggered grid as follows

Cx×y := {φ : Cx × C y → R}, Cx×y := {φ : Cx × C y → R}, Cx×y := {φ : Cx × C y → R},
Cx×y := {φ : Cx × C y → R}, Eew

x×y := {φ : Ex × C y → R}, Eew
x×y := {φ : Ex × C y → R},

Ens
x×y := {φ : Cx × E y → R}, Ens

x×y := {φ : Cx × E y → R}, Vx×y := {φ : Ex × E y → R}.
(5.2)

Cx×y, Cx×y, Cx×y and Cx×y are the sets for discrete cell-centered functions, and Eew
x×y, Ens

x×y east-west and north-south edge-
centered functions, respectively.

5.1.1. Average and difference operators
Assume u, r ∈ Eew

x×y ∪ Eew
x×y , v, w ∈ Ens

x×y ∪ Ens
x×y , φ, ψ ∈ Cx×y ∪ Cx×y ∪ Cx×y ∪ Cx×y and f ∈ Vx×y , we define the east-west-

edge-to-center average and difference operator as ax, dx : Eew
x×y ∪ Vx×y → Cx×y ∪ Ens

x×y component-wise as follows

axui, j := 1
2 (ui+ 1

2 , j + ui− 1
2 , j), dxui, j := 1

hx
(ui+ 1

2 , j − ui− 1
2 , j),

ax fi, j+ 1
2

:= 1
2 ( f i+ 1

2 , j+ 1
2

+ f i− 1
2 , j+ 1

2
), dx fi, j+ 1

2
:= 1

hx
( f i+ 1

2 , j+ 1
2

− f i− 1
2 , j+ 1

2
).

(5.3)

The north-south-edge-to-center average and difference operators are defined as ay, dy : Ens
x×y ∪ Vx×y → Cx×y ∪ Eew

x×y
component-wise as follows

ay vi, j := 1
2 (vi, j+ 1

2
+ vi, j− 1

2
), dy vi, j := 1

hy
(vi, j+ 1

2
− vi, j− 1

2
),

ay fi+ 1
2 , j := 1

2 ( f i+ 1
2 , j+ 1

2
+ f i+ 1

2 , j− 1
2
), dy fi+ 1

2 , j := 1
hy

( f i+ 1
2 , j+ 1

2
− f i+ 1

2 , j− 1
2
).

(5.4)

We denote the center-to-east-west-edge average and difference operators as Ax, Dx : Cx×y ∪ Ens
x×y → Eew

x×y ∪ Vx×y in 
component-wise forms:
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Axφi+ 1
2 , j := 1

2 (φi+1, j + φi, j), Dxφi+ 1
2 , j := 1

hx
(φi+1, j − φi, j),

Ax vi+ 1
2 , j+ 1

2
:= 1

2 (vi+1, j+ 1
2

+ vi, j+ 1
2
), Dx vi+ 1

2 , j+ 1
2

:= 1
hx

(vi+1, j+ 1
2

− vi, j+ 1
2
).

(5.5)

Analogously, the center-to-north-south-edge average and difference operator are defined as A y , D y : Cx×y ∪ Eew
x×y → Ens

x×y ∪
Vx×y in component-wise forms:

A yφi, j+ 1
2

:= 1
2 (φi, j+1 + φi, j), D yφi, j+ 1

2
:= 1

hy
(φi, j+1 − φi, j),

A yui+ 1
2 , j+ 1

2
:= 1

2 (ui+ 1
2 , j+1 + ui+ 1

2 , j), D yui+ 1
2 , j+ 1

2
:= 1

hy
(ui+ 1

2 , j+1 − ui+ 1
2 , j).

(5.6)

The standard 2D discrete Laplace operator is defined as �h : Eew
x×y ∪ Ens

x×y ∪ Cx×y → Eew
x×y ∪ Ens

x×y ∪ Cx×y :

�hu := Dx(dxu) + dy(D yu), �h v := dx(Dx v) + D y(dy v), �hφ := dx(Dxφ) + dy(D yφ). (5.7)

5.1.2. Boundary conditions
The homogenous Neumann boundary conditions of φ (φ = ρi, μi, i = 1, 2) are discretized as follows

φ0, j = φ1, j, φNx, j = φNx+1, j, j = 0,1,2, · · · , N y + 1,

φi,0 = φi,1, φi,N y = φi,N y+1, i = 0,1,2, · · · , Nx + 1.
(5.8)

We denote it as n · ∇hφ|∂V = 0.
The homogeneously Dirichlet boundary conditions of v = (u, v) are discretized as follows

u 1
2 , j = uNx+ 1

2 , j = 0, j = 1,2, · · · , N y,

A yui+ 1
2 , 1

2
= A yui+ 1

2 ,N y+ 1
2

= 0, i = 0,1,2, · · · , Nx,

vi, 1
2

= vi,N y+ 1
2

= 0, j = 1,2, · · · , Nx,

Ax v 1
2 , j+ 1

2
= Ax v Nx+ 1

2 , j+ 1
2

= 0, j = 0,1,2, · · · , N y .

(5.9)

We denote it as uh|∂V = 0 and vh|∂V = 0.
If f ∈ Vx×y satisfies homogenous Dirichlet boundary condition, we have

f 1
2 , j+ 1

2
= f Nx+ 1

2 , j+ 1
2

= f i+ 1
2 , 1

2
= f i+ 1

2 ,N y+ 1
2

= 0, (5.10)

where i = 0, 1, 2, · · · , Nx, j = 0, 1, 2, · · · , N y . We denote is as fh|∂V = 0.

5.1.3. Inner products and norms
We defined the inner products for discrete functions as follows

(φ,ψ)2 := hxhy
∑Nx

i=1

∑N y

j=1 φi, jψi, j, [u, r]ew := (ax(ur),1)2, [v, w]ns := (ay(uw),1)2,

( f , g)vc := (ax(ay( f g)),1)2, (∇φ,∇ψ)h := [Dx(φ), Dx(ψ)]ew + [D y(φ), D y(ψ)]ns.
(5.11)

The corresponding norms are defined by

‖φ‖2 := (φ,φ)
1
2
2 , ‖u‖ew := [u, u]

1
2
ew , ‖v‖ns := [v, v]

1
2
ns, ‖ f ‖vc := ( f , f )

1
2
vc . (5.12)

For φ = Cx×y , we define ‖∇φ‖2 as

‖∇φ‖2 :=
√

‖Dxφ‖2
ew + ‖D yφ‖2

ns. (5.13)

For the edge-centered velocity vector v = (u, v), u ∈ Eew
x×y, v ∈ Ens

x×y , we define ‖v‖2, ‖∇v‖2 as

‖v‖2 :=
√

‖u‖2
ew + ‖v‖2

ns, ‖∇v‖2 :=
√

‖dxu‖2
2 + ‖D yu‖2

vc + ‖Dx v‖2
vc + ‖dy v‖2

2,

‖D‖2 :=
√

‖dxu‖2
2 + 1

2 ‖D yu‖2
vc + 1

2 ‖Dx v‖2
vc + (D yu, Dx v)vc + ‖dy v‖2

2,

(φ,D : D)2 :=√
(φ, (dxu)2)2 + 1

2 (Ax(A yφ), (D yu)2)vc + 1
2 (Ax(A yφ), (Dx v)2)vc + (Ax(A yφ)D yu, Dx v)vc + (φ, (dy v)2)2,

(5.14)

where D = 1 (∇v + ∇vT ). From these definitions, we obtain the following lemmas [20]:
2
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Lemma 5.1. (Summation by parts): If φ ∈ Cx×y , u ∈ Eew
x×y , v ∈ Ens

x×y , and uh|∂V = 0 and vh|∂V = 0, then

[Axφ, u]ew = (φ,axu)2, [A yφ, v]ns = (φ,ay v)2,

[Dxφ, u]ew + (φ,dxu)2 = 0, [D yφ, v]ns + (φ,dy v)2 = 0,
(5.15)

Lemma 5.2. If f ∈ Vx×y , and fh|∂V = 0, u ∈ Eew
x×y , v ∈ Ens

x×y , then

[ay f , u]ew = ( f , A yu)vc, [ax f , v]ns = ( f , Ax v)vc. (5.16)

Lemma 5.3. If f ∈ Vx×y , u ∈ Eew
x×y , v ∈ Ens

x×y , and uh|∂V = 0 and vh|∂V = 0, then

[dy f , u]ew + ( f , D yu)vc = 0, [dx f , v]ns + ( f , Dx v)vc = 0. (5.17)

With these notations and lemmas, we are ready to introduce the fully-discrete numerical scheme in the following section.

5.2. Semi-discrete scheme in time

First, we discretize the governing equations using Crank-Nicolson method in time. We denote

δt(·)n+1/2 = 1
�t ((·)n+1 − (·)n), (·)n+1/2 = 1

2 (3(·)n − (·)n−1). (5.18)

The second order algorithm is given below.

Algorithm 1.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δtρ
n+1/2
1 + ∇ · (ρn+1/2

1
1√
ρ

n+1/2
un+1/2) = ∇ · M1 · ∇μ

n+1/2
1 − ∇ · M1 · ∇μ

n+1/2
2 ,

δtρ
n+1/2
2 + ∇ · (ρn+1/2

2
1√
ρ

n+1/2
un+1/2) = −∇ · M1 · ∇μ

n+1/2
1 + ∇ · M1 · ∇μ

n+1/2
2 ,

δtun+1/2 + 1
2 ( 1√

ρ

n+1/2∇ · (un+1/2un+1/2) + un+1/2 · ∇( 1√
ρ

n+1/2
un+1/2)) =

1√
ρ

n+1/2
(2∇ · ( 1

Res
Dn+1/2) + ∇( 1

Rev
∇ · ( 1√

ρ

n+1/2
un+1/2)) − ρ1

n+1/2∇μ
n+1/2
1

−ρ2
n+1/2∇μ2

n+1/2),

δtqn+1/2
1 = ∂q1

∂ρ1

n+1/2
δtρ

n+1/2
1 + ∂q1

∂ρ2

n+1/2
δtρ

n+1/2
2 ,

(5.19)

where

μ
n+1/2
1 = 2qn+1/2

1
∂q1
∂ρ1

n+1/2 − κρ1ρ1�ρ
n+1/2
1 − κρ1ρ2�ρ

n+1/2
2 + α1ρ

n+1/2
1 ,

μ
n+1/2
2 = 2qn+1/2

1
∂q1
∂ρ2

n+1/2 − κρ1ρ2�ρ
n+1/2
1 − κρ2ρ2�ρ

n+1/2
2 + α2ρ

n+1/2
2 ,

Dn+1/2 = 1
2 (∇( 1√

ρ

n+1/2
un+1/2) + ∇( 1√

ρ

n+1/2
un+1/2)T ),

1
Res

= ρ1
ρ

n+1/2 1
Res1

+ ρ2
ρ

n+1/2 1
Res2

, 1
Rev

= ρ1
ρ

n+1/2 1
Rev1

+ ρ2
ρ

n+1/2 1
Rev2

.

(5.20)

Remark 5.1. Given that (4.5) is well-defined when ρ > 0, the above scheme should be used only in this case.

For the scheme, we have the following theorem.

Theorem 5.1. Scheme (5.19) is unconditional energy stable, and satisfies the following discrete energy identity

En+1−En

�t = −2( 1
Res

,Dn+1/2 : Dn+1/2) − ( 1
Rev

∇ · ( 1√
ρ

n+1/2
un+1/2),∇ · ( 1√

ρ

n+1/2
un+1/2))

−(∇μ
n+1/2
1 ,∇μ

n+1/2
2 ) ·M · (∇μ

n+1/2
1 ,∇μ

n+1/2
2 )T < 0,

(5.21)

where
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En = ∫
V [ 1

2 ||un||2 + (qn
1)

2 + α1
2 (ρn

1)2 + α2
2 (ρn

2)2 + 1
2 (pn)T · Kn · pn − A]dx, (5.22)

and pn = (∇ρn
1 , ∇ρn

2 ).

Remark 5.2. We present a useful identity in the proof of the theorem as follows

(un+1/2, 1
2 ( 1√

ρ

n+1/2∇ · (un+1/2un+1/2) + un+1/2 · ∇( 1√
ρ

n+1/2
un+1/2))) = 0. (5.23)

Proof. By the definition of En , we have

En+1−En

�t = ∫
V [un+1/2δtun+1/2 + 2qn+1/2

1 δtq
n+1/2
1 + κρ1ρ1∇ρn+1/2δt∇ρ

n+1/2
1

+κρ2ρ2∇ρ
n+1/2
2 δt∇ρ

n+1/2
2 + κρ1ρ2(∇ρ

n+1/2
1 δt∇ρ

n+1/2
2 + ∇ρ

n+1/2
2 δt∇ρ

n+1/2
1 )+

α1ρ1δtρ1 + α2ρ2δtρ2]dx

= (un+1/2, δt un+1/2) + (2qn+1/2
1 , δtqn

1) + (μ
n+1/2
1 − 2qn+1/2

1
∂q1
∂ρ1

n+1/2
, δtρ

n+1/2
1 )+

(μ
n+1/2
2 − 2qn+1/2

1
∂q1
∂ρ2

n+1/2
, δtρ

n+1/2
2 )

= (un+1/2δtun+1/2) + [(2qn+1/2
1 , δtqn+1/2

1 ) − (2qn+1/2
1

∂q1
∂ρ1

n+1/2
, δtρ

n+1/2
1 )−

(2qn+1/2
1

∂q1
∂ρ2

n+1/2
, δtρ

n+1/2
2 )] + (μ

n+1/2
1 , δtρ

n+1/2
1 ) + (μ

n+1/2
2 , δtρ

n+1/2
2 )

= (un+1/2δtun+1/2) + (μ
n+1/2
1 , δtρ

n+1/2
1 ) + (μ

n+1/2
2 , δtρ

n+1/2
2 ).

(5.24)

Taking the inner product of (5.19)-3 with un+1/2, using identity (5.23), and performing integration by parts, we obtain

(un+1/2, δt un+1/2) = −2( 1
Res

Dn+1/2 : Dn+1/2) − ( 1
Rev

∇ · ( 1√
ρ

n+1/2
un+1/2),∇ · ( 1√

ρ

n+1/2
un+1/2))

−(un+1/2, 1√
ρ

n+1/2
ρ1

n+1/2∇μ
n+1/2
1 + 1√

ρ

n+1/2
ρ2

n+1/2∇μ2
n+1/2)).

(5.25)

Taking the inner product of (5.19-1,2) with μn+ 1
2

1 , μn+ 1
2

2 , respectively, and performing integration by parts, we obtain

(μ
n+1/2
1 , δtρ

n+1/2
1 ) + (μ

n+1/2
2 , δtρ

n+1/2
2 ) = (un+1/2, 1√

ρ

n+1/2
ρ1

n+1/2∇μ
n+1/2
1 +

1√
ρ

n+1/2
ρ2

n+1/2∇μ2
n+1/2)) − (∇μ

n+1/2
1 ,∇μ

n+1/2
2 ) ·M · (∇μ

n+1/2
1 ,∇μ

n+1/2
2 )T .

(5.26)

Using (5.24), (5.25) and (5.26), we arrive at the conclusion

En+1−En

�t = −2( 1
Res

Dn+1/2 : Dn+1/2) − ( 1
Rev

∇ · ( 1√
ρ

n+1/2
un+1/2),∇ · ( 1√

ρ

n+1/2
un+1/2))

−(∇μ
n+1/2
1 ,∇μ

n+1/2
2 ) ·M · (∇μ

n+1/2
1 ,∇μ

n+1/2
2 )T ≤ 0

(5.27)

provided M ≥ 0. �

5.3. Fully discrete numerical scheme

We discretize the semidiscrete equations in (5.19) using the second order finite difference discretization on staggered 
grids in space to obtain a fully discrete scheme as follows



X. Zhao, Q. Wang / Journal of Computational Physics 395 (2019) 382–409 393
Algorithm 2.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
δtρ

n+1/2
1 + dx(Ax(ρ

n+1/2
1

1√
ρ

n+1/2
)un+1/2) + dy(A y(ρ

n+1/2
1

1√
ρ

n+1/2
)vn+1/2) =

M1�hμ
n+1/2
1 − M1�hμ

n+1/2
2

}|i, j, i = 1, · · · , Nx, j = 1, · · · , N y,{
δtρ

n+1/2
2 + dx(Ax(ρ

n+1/2
2

1√
ρ

n+1/2
)un+1/2) + dy(A y(ρ

n+1/2
2

1√
ρ

n+1/2
)vn+1/2) =

−M1�hμ
n+1/2
1 + M1�hμ

n+1/2
2

}|i, j, i = 1, · · · , Nx, j = 1, · · · , N y,{
δt un+1/2 + 1

2 (un+1/2 Dx(
1√
ρ

n+1/2
axun+1/2) + Ax(

1√
ρ

n+1/2
dx(un+1/2un+1/2)))

+ 1
2 (ax(Ax vn+1/2 D y(Ax(

1√
ρ

n+1/2
)un+1/2)) + Ax(

1√
ρ

n+1/2
)dy(A yun+1/2 Ax(vn+1/2))

= gv1
}|i+ 1

2 , j, i = 1, · · · , Nx − 1, j = 1, · · · , N y,

{
δt vn+1/2 + 1

2 (ax(A yun+1/2 Dx(A y(
1√
ρ

n+1/2
)vn+1/2))

+A y(
1√
ρ

n+1/2
)dx(A yun+1/2 Ax vn+1/2))

+ 1
2 (vn+1/2 D y(

1√
ρ

n+1/2
ay vn+1/2) + A y(

1√
ρ

n+1/2
dy(vn+1/2 vn+1/2))) = gv2

}|i, j+ 1
2
,

i = 1, · · · , Nx, j = 1, · · · , N y − 1,

{
δtqn+1/2

1 = ∂q1
∂ρ1

n+1/2
δtρ

n+1/2
1 + ∂q1

∂ρ2

n+1/2
δtρ

n+1/2
2

}|i, j, i = 1, · · · , Nx, j = 1, · · · , N y,

(5.28)

where

gv1 = Ax(
1√
ρ

n+1/2
)(2Dx(

1
Ren+1/2

s
dx(Ax(

1√
ρ

n+1/2
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Ren+1/2
s
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1√
ρ

n+1/2
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1√
ρ
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1
Ren+1/2

s
)Dx(A y(

1√
ρ

n+1/2
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1√
ρ
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)Dx(

1
Ren+1/2

v
dx(Ax(

1√
ρ

n+1/2
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1√
ρ
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Ren+1/2

v
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1√
ρ

n+1/2
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n+1/2 1√

ρ
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)Dx(μ

n+1/2
1 ) − Ax(ρ2

n+1/2 1√
ρ

n+1/2
)Dx(μ

n+1/2
2 ),

(5.29)

gv2 = A y(
1√
ρ

n+1/2
)(dx(Ax(A y

1
Ren+1/2

s
)Dx(A y(

1√
ρ

n+1/2
)vn+1/2))

+2D y(
1

Ren+1/2
s

dy(A y(
1√
ρ

n+1/2
)vn+1/2)))

+A y(
1√
ρ

n+1/2
)dx(Ax(A y

1
Ren+1/2

s
)D y(Ax(

1√
ρ

n+1/2
)un+1/2))

+A y(
1√
ρ

n+1/2
)D y(

1
Ren+1/2

v
dx(Ax(

1√
ρ
)un+1/2))

+A y(
1√
ρ

n+1/2
)D y(

1
Ren+1/2

v
dy(A y(

1√
ρ

n+1/2
)vn+1/2))

−A y(ρ1
n+1/2 1√

ρ

n+1/2
)D y(μ

n+1/2
1 ) − A y(ρ2

n+1/2 1√
ρ

n+1/2
)D y(μ

n+1/2
2 ).

(5.30)

For any time step tn , ρn
i , μn

i , i = 1, 2 satisfy discrete homogeneous Neumann boundary conditions (5.8) and un, vn satisfy 
the discrete homogeneous Dirichlet boundary conditions (5.9). The discrete Reynolds numbers are defined as follows
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{ 1
Ren+1/2

s
= (

ρ1
ρ )

n+1/2 1
Res1

+ (
ρ2
ρ )

n+1/2 1
Res2

}|i, j, i = 1, · · · , Nx, j = 1, · · · , N y,

{ 1
Ren+1/2

v
= (

ρ1
ρ )

n+1/2 1
Rev1

+ (
ρ2
ρ )

n+1/2 1
Rev2

}|i, j, i = 1, · · · , Nx, j = 1, · · · , N y .

(5.31)

Theorem 5.2. Scheme (5.28) is unconditionally energy stable, and the discrete total energy satisfies the following identity

En+1
h −En

h
�t = −2( 1

Res
,Dn+1/2

h : Dn+1/2
h )2 − ( 1

Rev
tr(Dn+1/2

h ), tr(Dn+1/2
h ))2

−M1(∇(μ
n+1/2
1 − μ

n+1/2
2 ),∇(μ

n+1/2
1 − μ

n+1/2
2 ))2 ≤ 0,

(5.32)

where the discrete total energy is defined by

En
h = 1

2 [un, un]ew + 1
2 [vn, vn]ns + (qn

1,qn
1)2 + α1

2 (ρn
1 ,ρn

1)2 + α2
2 (ρn

2 ,ρn
2)2 − (A,1)2

+ 1
2κρ1ρ1(∇ρn

1 ,∇ρn
1)h + 1

2κρ2ρ2(∇ρn
2 ,∇ρn

2)h + κρ1ρ2(∇ρn
1 ,∇ρn

2 )h,
(5.33)

and

Dn+1/2
h =

⎛
⎜⎝ dx(Ax(

1√
ρ

n+1/2
)un+1/2)) 1

2 S

1
2 S dy(A y(

1√
ρ

n+1/2
)vn+1/2))

⎞
⎟⎠ (5.34)

where S = Dx(A y(
1√
ρ

n+1/2
)vn+1/2) + D y(Ax(

1√
ρ

n+1/2
)un+1/2)).

Remark 5.3. We note that using Lemmas 5.1–5.3, we obtain the following identities

(un+1/2, 1
2 (ax(A yun+1/2 Dx(A y(

1√
ρ

n+1/2
)vn+1/2)) + A y(

1√
ρ
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+ 1
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ρ
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1√
ρ
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dy(vn+1/2 vn+1/2)))) = 0,

(vn+1/2, 1
2 (ax(A yun+1/2 Dx(A y(

1√
ρ

n+1/2
)vn+1/2)) + A y(

1√
ρ

n+1/2
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+ 1
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n+1/2
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ρ
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(5.35)

Proof. It follows from the definition of En
h that

En+1
h −En

h
�t = [ un+1+un
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�t ]ew + [ vn+1+vn
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2
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2
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1
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1
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2
�t )2.

(5.36)

Taking the inner product of (5.28-3,4) with un+1/2, vn+1/2 respectively and using identify (5.35), we obtain

[ un+1+un

2 , un+1−un

�t ]ew + [ vn+1+vn

2 , vn+1−vn

�t ]ns

= −2( 1
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ρ
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)Dx(μ
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1 ) + Ax(ρ2

n+1/2 1√
ρ
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)Dx(μ
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2 )]ew

−[vn+1/2, A y(ρ1
n+1/2 1√

ρ
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)D y(μ

n+1/2
1 ) + A y(ρ2

n+1/2 1√
ρ

n+1/2
)D y(μ

n+1/2
2 )]ns,

(5.37)

where we have used Lemmas 5.1 and 5.3. Taking the inner product of (5.28-1,2) with μn+1/2
1 , μn+1/2

2 , respectively, and 
performing “summation-by-parts”, we obtain
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2 ,
ρn+1
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2

�t )2 = [un+1/2, Ax(ρ1
n+1/2 1√
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n+1/2
)Dx(μ

n+1/2
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Ax(ρ2
n+1/2 1√
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ρ

n+1/2
)D y(μ
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1 )+

A y(ρ2
n+1/2 1√
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(5.38)

where we have used Lemma 5.1. Combining (5.36), (5.37) and (5.38), we obtain

En+1
h −En

h
�t = −2( 1

Res
,Dn+1/2

h : Dn+1/2
h )2 − ( 1

Rev
tr(Dn+1/2

h ), tr(Dn+1/2
h ))2

−M1(∇(μ
n+1/2
1 − μ

n+1/2
2 ),∇(μ

n+1/2
1 − μ

n+1/2
2 ))2 ≤ 0,

(5.39)

provided M1 ≥ 0. Having established unconditional energy stability, we now turn to the solvability issue of the linear system 
of equations. �
5.4. Unique solvability of the resulting linear system from the fully discrete scheme

We denote the linear system resulting from the fully discrete numerical scheme (5.28) as follows

A · X = G, (5.40)

where the coefficient matrix A is given in (A.6) in Appendix, X = (μ1, μ2, u, v, q1, ρ1, ρ2) is the unknown of the linear 
system, whose superscripts n + 1 are removed for simplicity, and G = (g1, g2, g3, g4, g5, g6, g7)

T denotes all the right hand 
side terms at the nth time step, where the superscripts n are removed for simplicity as well. Notice that each entry in X
and G is a large vector itself. The corresponding homogeneous system is given by

A · X = 0. (5.41)

Theorem 5.3. Linear system (5.40) admits a unique solution.

Proof. To prove the well-posedness of the system (5.40), it suffices to prove that the corresponding homogeneous system 
(5.41) admits only the zero solution. Let X = (μ1, μ2, u, v, q1, ρ1, ρ2) be a solution of A · X = 0. We form the inner product 
of the left hand side with X to obtain

0 = (A · X,X)2 = (M1∇(μ1 − μ2),∇(μ1 − μ2))2 + 2
�t [u, u]ew + 2

�t [v, v]ns + 4
�t (q1,q1)2

+2( 1
Res

,Dh : Dh)2 + ( 1
Rev

tr(Dh), tr(Dh))2 + 2
�t [κρ1ρ1(∇ρ1,∇ρ1)h + κρ2ρ2(∇ρ2,∇ρ2)h]

+ 4
�t κρ1ρ2(∇ρ1,∇ρ2)h + 2α1

�t (ρ1,ρ1)2 + 2α2
�t (ρ2,ρ2)2

≥ C((∇ρ1,∇ρ1)h + (∇ρ2,∇ρ2)h + [u, u]ew + [v, v]ns + ‖q1‖2
l2
) + 2α1

�t (ρ1,ρ1)2 + 2α2
�t (ρ2,ρ2)2,

(5.42)

where we have used K > 0, C is a positive constant and Dh is defined in (A.2). In the case of α1 = α2 = 0, the above 
inequality implies

Dxρ1 = D yρ1 = 0, Dxρ1 = D yρ2 = 0, u = v = 0, q1 = 0. (5.43)

In the last two equations of the homogeneous system in (A.9), using Dxρ1 = D yρ1 = 0, Dxρ1 = D yρ2 = 0 and q1 = 0, we 
obtain

μ1 = μ2 = 0. (5.44)

ρ1 = ρ2 = 0 (5.45)

follows from the first two equations of the homogeneous system (A.9) after substituting u = v = 0 and μ1 = μ2 = 0. So, 
X = 0. Thus, linear system (5.40) admits a unique solution.

In the case of α1 > 0, α2 > 0, the inequality implies directly

ρ1 = ρ2 = q1 = 0. (5.46)

It implies μ1 = μ2 = 0. Once again, the only solution is the zero solution of the homogeneous system. �
Remark 5.4. A second order, energy stable BDF scheme can be developed as well, which will not be presented in this paper.
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6. Numerical results and discussions

6.1. Accuracy test

We conduct a mesh refinement test to verify the convergence rate of the numerical scheme by considering (3.2) with a 
double-well bulk free energy

h(ρ1,ρ2, T ) = ρ2
1 (ρ1 − 1)2 + ρ2

2 (ρ2 − 1)2, (6.1)

in a rectangular domain � = [0, 1] × [0, 1]. We add forcing terms to the equation system such that it admits the following 
exact solution:

ρ1(x, y, t = 0) = 1 + 0.1cos(πx)cos(π y)e−t,

ρ2(x, y, t = 0) = 1 + 0.1cos(2πx)cos(2π y)e−t,

v = (0.1sin(πx)sin(π y)e−t, 0.1sin(πx)sin(π y)e−t).

(6.2)

We set Nx = N y = N , and the time step as �t . To test the convergence rate in time, we first fix N = 256 and change 
the time step from 4 × 10−3 to 0.125 × 10−3 to calculate the l∞ norm of the difference between the numerical solutions 
with consecutive grid sizes at T = 0.1, i.e. ‖(·)�t(T ) − (·)2�t(T )‖∞ . Then, we fix time step �t = 10−4, vary the spatial 
grid number from 8 to 256 and calculate the l∞ norm of the difference between the numerical solutions with consecutive 
grid sizes at T = 0.1, i.e. ‖(·)h(T ) − (·)2h(T )‖∞ . In both space and time, we calculate the convergence rate using p =
log2

( ‖(·)2h(T )−(·)4h(T )‖∞
‖(·)h(T )−(·)2h(T )‖∞

)
, where h is the mesh size in time or space. The refinement results are tabulated in Table 6.1 and 

Table 6.2. For comparison, we also present the mesh refinement results in l2 norm as well. We observe that the proposed 
scheme is indeed second-order accurate in both time and space for all variables.

6.2. Phase separation in binary compressible viscous fluids

To demonstrate stability and efficiency of the new scheme, we simulate phase separation dynamics using system (3.2)
with the Flory-Huggins mixing energy

h(ρ1,ρ2, T ) = kB T
m ρ( 1

N1

ρ1
ρ ln ρ1

ρ + 1
N2

ρ2
ρ ln ρ2

ρ + χ ρ1ρ2
ρ2 ), (6.3)

where we choose the characteristic scales so that kB T
m = 1 in the simulation, N1, N2 are the polymerization indices and χ

is the mixing coefficient, which are chosen respectively as in the simulation

N1 = N2 = 1, χ = 2.5. (6.4)

The plot of this energy density with the chosen parameter values as a function of ρ1
ρ is shown in Fig. 6.1-(a). The other 

dimensionless model parameters are chosen as follows

M1 = 10−3, Res = 100, Rev = 300, κρ1ρ1 = κρ2ρ2 = 4 × 10−4, κρ1ρ2 = 0. (6.5)

In order to identify the spinodal decomposition driving the phase separation in the binary polymer blends, we conduct 
a simple linear stability analysis on the hydrodynamic phase field model. We note that this compressible model admits a 
family of constant solutions:

v = 0, ρ1 = ρ0
1 , ρ2 = ρ0

2 , (6.6)

where ρ0
1 , ρ0

2 are constants. We perturb the constant solutions with a normal mode as follows:

v = εeαt+ik·xvc, ρ1 = ρ0
1 + εeαt+ik·xρ1

c, ρ2 = ρ0
2 + εeαt+ik·xρ2

c, (6.7)

where ε is a small parameter, representing the magnitude of the perturbation, and vc, ρc
1, ρ

c
2 are constants, α is the growth 

rate, and k is the wave number of the perturbation. Without loss of generality, we limit our study to 1 dimensional pertur-
bation in k in the (x, y) plane. Substituting these perturbations into the equations in (3.2) and truncating the equations at 
order O (ε), we obtain the linearized equations. The dispersion equation of the linearized equation system of the compress-
ible model [64] is given by an algebraic equation of α:

(η0k2 + αρ0){α3ρ0 + α2k2[η + ρ0M1(hρ1ρ1 + κρ1ρ1k2) + ρ0M1(hρ2ρ2 + κρ2ρ2k2)]
−α2k2[2ρ0M1(hρ1ρ2 + κρ1ρ2k2)] + α[pT · C · p + pT · K · pk2]k2

+αηM1[(hρ1ρ1 + κρ1ρ1k2) + (hρ2ρ2 + κρ2ρ2k2) − 2(hρ1ρ2 + κρ1ρ2k2)]k4

+k4M (ρ0 + ρ0)2[(h + κ k2)(h + κ k2) − (h + κ k2)2]} = 0,

(6.8)
1 1 2 ρ1ρ1 ρ1ρ1 ρ2ρ2 ρ2ρ2 ρ1ρ2 ρ1ρ2
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Table 6.1
Temporal refinement result for all variables. The model parameter values are chosen as Res = 100, Rev = 300, M1 =
10−7, κρ1ρ1 = κρ2ρ2 = 10−4, κρ1ρ2 = κρ2ρ1 = 0.

�t ‖ρ1
�t − ρ1

2�t‖∞ Order ‖ρ2
�t − ρ2

2�t‖∞ Order ‖u�t − u2�t‖∞ Order

0.004
0.002 0.4763 ×10−5 0.4762 ×10−5 0.4220 ×10−5

0.001 0.1183 ×10−5 2.0100 0.1183 ×10−5 2.0090 0.1042 ×10−5 2.0179
0.0005 0.2948 ×10−6 2.0047 0.2948 ×10−6 2.0047 0.2591 ×10−6 2.0080
0.00025 0.7333 ×10−7 2.0072 0.7334 ×10−7 2.0073 0.6460 ×10−7 2.0080
0.000125 0.1829 ×10−7 2.0034 0.1829 ×10−7 2.0034 0.1613 ×10−7 2.0010

�t ‖ρ1
�t − ρ1

2�t‖2 Order ‖ρ2
�t − ρ2

2�t‖2 Order ‖u�t − u2�t‖2 Order

0.004
0.002 0.1911 ×10−5 0.1930 ×10−5 0.1571 ×10−5

0.001 0.4782 ×10−6 1.9988 0.4829 ×10−6 1.9991 0.3895 ×10−6 2.0121
0.0005 0.1196 ×10−6 1.9992 0.1207 ×10−6 1.9995 0.9707 ×10−7 2.0049
0.00025 0.2989 ×10−7 2.0005 0.3017 ×10−7 2.0008 0.2422 ×10−7 2.0023
0.000125 0.7475 ×10−8 1.9998 0.7546 ×10−8 1.9996 0.6054 ×10−8 2.0007

Table 6.2
Spatial refinement result for all variables. The model parameter values are chosen as Res = 1, Rev = 3, M1 = 10−4, 
κρ1ρ1 = κρ2ρ2 = 10−4, κρ1ρ2 = κρ2ρ1 = 0.

N ‖ρ1
h − ρ1

2h‖∞ Order ‖ρ2
h − ρ2

2h‖∞ Order ‖uh − u2h‖∞ Order

4
8 0.5997 ×10−3 0.2182 ×10−2 0.3790 ×10−2

16 0.2463 ×10−3 1.2836 0.4933 ×10−3 2.1454 0.1133 ×10−2 2.0168
32 0.6697 ×10−4 1.8792 0.1043 ×10−3 2.2407 0.2877 ×10−3 1.9779
64 0.1664 ×10−4 2.0084 0.2464 ×10−4 2.0826 0.7288 ×10−4 1.9814
128 0.4160 ×10−5 2.0003 0.6088 ×10−5 2.0168 0.1828 ×10−4 1.9946

N ‖ρ1
h − ρ1

2h‖2 Order ‖ρ2
h − ρ2

2h‖2 Order ‖uh − u2h‖2 Order

4
8 0.3115 ×10−3 0.1160 ×10−2 0.2105 ×10−2

16 0.8228 ×10−4 1.9210 0.1605 ×10−3 2.8536 0.5237 ×10−3 2.0071
32 0.1894 ×10−4 2.1186 0.3081 ×10−4 2.3814 0.1309 ×10−3 1.9994
64 0.4626 ×10−5 2.0340 0.7136 ×10−5 2.1102 0.3284 ×10−4 1.9958
128 0.1151 ×10−5 2.0065 0.1747 ×10−5 2.0299 0.8259 ×10−5 1.9916

Fig. 6.1. (a) Flory-Huggins mixing energy density function with respect to the mass density fraction ρ1
ρ at the chosen parameter values. The two minima 

are labeled by dots in the curve. (b) The unstable mode with parameter values: N1 = N2 = 1, χ = 2.5, M1 = 10−3, Res = 100, Rev = 300, κρ1ρ1 = κρ2ρ2 =
0.0004, κρ1ρ2 = 0.

where η = 2η0 + η0, p = (ρ0
1 , ρ0

2 )T is the steady state solution of the system. In the following, we set ρ0
1 = ρ0

2 = 0.5. K is 
the coefficient matrix of the conformational entropy and C is the Hessian of bulk energy h(ρ1, ρ2, T ) with respect to ρ1 and 
ρ2,
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Fig. 6.2. (a-d) Snapshots of ρ1 at different times as a solution of system (3.2) with the Flory-Huggins mixing energy (6.3) without hydrodynamics. (e) The 
total energy (5.33) of system (3.2). Two major coarsening events bring the phase of the binary system into the final state shown in (d). ρ2 is given by 
1 − ρ1. The total mass of both phases are conserved as shown in (f-g).

K =
(

κρ1ρ1 κρ1ρ2

κρ1ρ2 κρ2ρ2

)
,C =

(
hρ1ρ1 hρ1ρ2

hρ1ρ2 hρ2ρ2

)
. (6.9)

Obviously, α = − η0

ρ0 k2 < 0 is a solution of the dispersion equation (6.8), which contributes a stable mode. Since we can 
not get the closed forms of the solutions, we use numerical calculations to investigate the potential unstable modes in 
this model. Based on the model parameters listed above, we obtain only one unstable mode, shown in Fig. 6.1-(b). This 
unstable mode is dominated by the mixing energy, independent of hydrodynamics, in the model. Next, we will numerically 
simulate phase separation phenomena due to the unstable perturbation on the constant steady state without and with 
hydrodynamics, respectively.

6.2.1. Phase separation without hydrodynamics
Based on unstable mode shown in Fig. 6.1-b, we add a 1D perturbation with wave number k = 10π to the steady state 

and observe its ensuing nonlinear dynamics. Since the eigenvector corresponding to the unstable mode shown in Fig. 6.1-b 
is (ρc

1, ρ
c
2) = (1, −1), we impose the initial conditions specifically as follows

ρ1(x, y, t = 0) = 0.5 + 0.005 × cos(10π y), ρ2(x, y, t = 0) = 0.5 − 0.005 × cos(10π y). (6.10)

Since ρ1 + ρ2 = 1 in the thermodynamic model without hydrodynamics, we show the phase behavior of ρ1 only. The 
time evolution of ρ1 at a few selected times are shown in Fig. 6.2. Firstly, we observe that the growth rate of the numerical 
solutions ρ1 near the equilibrium state is α = 0.2077, which matches with linear stability analysis result shown in Fig. 6.1-b. 
In the long-time behavior, we observe that ρ1 develops small-scale structures and then coarsens to large-scale structures 
eventually. In Fig. 6.2, we show numerical solutions at several time slots and the corresponding total energy up to t = 15000. 
The system goes through three coarsening events which are captured by the phase morphology at different times shown in 
the Fig. 6.2(a-d), leading to a four-band structure.

6.2.2. Phase separation with hydrodynamics
When hydrodynamics is coupled with the thermodynamical phase evolution, its role must show up somewhere. Here, we 

would like to investigate how hydrodynamic will impact on phase separation dynamics. Since the eigenvector corresponding 
to the unstable mode shown in Fig. 6.1-b is (ρc

1, ρ
c
2) = (1, −1, 0), we adopt the same initial conditions for ρ1 and ρ2 as 

before and a zero velocity condition:
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Fig. 6.3. (a-h) Snapshots of ρ1 at different times as a solution of system (3.2) with the Flory-Huggins mixing energy (6.3) and hydrodynamic interaction. 
(i) Total energy (5.33) of system (3.2) with the Flory-Huggins mixing energy (6.3); (j, k) Difference of the total mass of component 1 and 2 compared with 
the initial mass, indicating mass conservation of both phases in the simulation. The path of phase separation dynamics and the final phase morphology 
differ drastically from those without hydrodynamics.

ρ1(x, y,0) = 0.5 + 0.005 × cos(10π y), ρ2(x, y,0) = 0.5 − 0.005 × cos(10π y),

v(x, y,0) = (0,0).
(6.11)

When hydrodynamics is considered, the local total mass density ρ is no longer spatially homogeneous anymore. However, 
phase separation goes on as shown in Fig. 6.3 and Fig. 6.4. In Fig. 6.3, we observe that the total energy of the system is 
dissipative and the total mass of component 1 and 2 are conserved in the domain globally. The velocity field in the domain 
is plotted at the selected times. Vorticities form and disperse eventually as the phase morphology approaches a steady 
state. The induced nontrivial velocity field promotes the transport of materials across the domain leading to a two-band 
phase morphology, which is a global energy stable state. In contrast, the final phase morphology developed in the phase 
separation without hydrodynamics is only a local energy stable state, which can be explained by the comparison of the 
total energy evolutions shown in Fig. 6.2-e and Fig. 6.3-i, respectively. This tells us that hydrodynamics indeed changes local 
densities, the path of phase evolution and even the final energy steady states of fluid mixtures. This is alarming, indicating 
that hydrodynamic effects are instrumental in determining the correct spatial phase diagram for the binary fluid mixture.

Fig. 6.5-(a) depicts the total free energy of the phase separation without hydrodynamics calculated using the original 
formula

En
h = (h(ρn

1 ,ρn
2 , T ),1)2

+ 1κ (∇ρn,∇ρn) + 1κ (∇ρn,∇ρn) + κ (∇ρn,∇ρn) ,
(6.12)
2 ρ1ρ1 1 1 h 2 ρ2ρ2 2 2 h ρ1ρ2 1 2 h
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Fig. 6.4. (a-h) Snapshots of ρ2 at different times as a solution of system (3.2) with the Flory-Huggins mixing energy (6.3) and hydrodynamic interaction. 
(i-p) Snapshots for velocity field v = (v1, v2) at different times. Weak flows are present due to hydrodynamic effect during the phase evolution. The 
nontrivial velocity leads to different phase morphology in the end compared to the case without hydrodynamic interaction.

where h(ρ1, ρ2, T ) is defined in (6.3), and the reformulated, quadratized energy formula as follows

En
h = (qn

1,qn
1)2 + α1

2 (ρn
1 ,ρn

1)2 + α2
2 (ρn

2 ,ρn
2)2 − (A,1)2

+ 1
2κρ1ρ1(∇ρn

1 ,∇ρn
1)h + 1

2κρ2ρ2(∇ρn
2 ,∇ρn

2)h + κρ1ρ2(∇ρn
1 ,∇ρn

2 )h.
(6.13)

Fig. 6.5-(b) depicts the total free energy of the phase separation with hydrodynamics calculated using the original formula

En
h = 1

2 [un, un]ew + 1
2 [vn, vn]ns + (h(ρn

1 ,ρn
2 , T ),1)2

+ 1
2κρ1ρ1(∇ρn

1 ,∇ρn
1)h + 1

2κρ2ρ2(∇ρn
2 ,∇ρn

2)h + κρ1ρ2(∇ρn
1 ,∇ρn

2 )h,
(6.14)

where h(ρ1, ρ2, T ) is defined in (6.3), and the reformulated, quadratized energy formula as follows
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Fig. 6.5. (a) Comparison of the total energy given by (6.12) and the one by (6.13), respectively, in phase separation processes without hydrodynamics. 
(b) Comparison of the total energy given by (6.14) and the one by (6.15) in phase separation processes with hydrodynamics. α1 = α2 = 0 is used in the 
simulations. The energy profiles are indistinguishable visually.

En
h = 1

2 [un, un]ew + 1
2 [vn, vn]ns + (qn

1,qn
1)2 + α1

2 (ρn
1 ,ρn

1)2 + α2
2 (ρn

2 ,ρn
2)2 − (A,1)2

+ 1
2κρ1ρ1(∇ρn

1 ,∇ρn
1 )h + 1

2κρ2ρ2(∇ρn
2 ,∇ρn

2)h + κρ1ρ2(∇ρn
1 ,∇ρn

2 )h.
(6.15)

The results are nearly indistinguishable. This attests the accuracy of the scheme developed using the EQ method.

6.3. Dynamics of gas-liquid mixtures

The compressible fluid model has many applications in the petroleum industry, where mixtures of non-hydrocarbons and 
hydrocarbons are abundant, such as in petroleum reservoirs or natural gas pipelines. Understanding their thermodynamic 
and hydrodynamic properties can help one to improve petroleum quality and yield significantly.

In the past, several equations of state had been developed to describe the relation among state variables (e.g. the volume, 
pressure and temperature) under a given set of physical conditions for compressible fluids. The Peng-Robinson equation of 
state (PR EOS) [41] is one of the popular ones, which has been successfully applied to thermodynamic and volumetric 
calculations in both industries and academics. Specifically, PR EOS provides reasonable accuracy near the critical point, 
which makes it a good choice for gas-condensate systems in the petroleum industry. For this reason, we adopt it in a 
hydrocarbon mixture of methane and n-decane to show the performance of our model in simulating hydrodynamics of the 
hydrocarbon mixtures. Many properties of mixtures can be studied by our mathematical model, such as mass adsorption of 
one component in the mixture on the interface between two phases near the equilibrium state, surface tension and even 
verification of mixing rules in the mixture. In this example, we will focus on hydrodynamics of a hydrocarbon mixture with 
an unstable gas-liquid interface and study the mass adsorption phenomena at the interface from the point of view of the 
free energy near an equilibrium state.

The free energy density function derived from PR EOS reads

f = fb + h(n, T ), (6.16)

where fb = 1
2

∑N
i, j=1 ci, j∇ni · ∇n j is the conformational energy with coefficients ci, j . The bulk free energy density function 

h(n, T ) is given in (2.22).

Remark 6.1. Since f ideal changes rapidly near the origin which may introduce singularity in numerical simulations, we 
regularize this term near the origin as follows

f ideal =
{

RT ni(ln(ε) − 1) + RT ( 1
2ε n2

i − ε
2 ), if ni < ε,

RT ni(ln(ni) − 1), otherwise,
(6.17)

where ε > 0. Corresponding to the modification, the chemical potential is changed to

μideal =
{

RT (ln(ε) − 1) + RT ( 1
ε ni), if ni < ε,

RT ln(ni), otherwise.
(6.18)
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Table 6.3
Dimensional critical parameters.

Symbol Tc (K) Pc (MPa) w m (kg·mol−1)

n-decane (C10 H22) 617.7 2.103 0.4884 0.14228
Methane (C H4) 190.564 4.5992 0.01142 0.0160428

Table 6.4
Dimensionless critical parameters.

Symbol Tc Pc w m

n-decane (C10 H22) 2.2626 1.3495 0.4884 8.8688
methane (C H4) 0.6980 2.9513 0.01142 1

We consider a mixture of methane and n-decane in a square domain with the length of 80 nm on each side. We denote 
the molar density of n-decane as n1 and that of methane as n2, respectively. In Table 6.3, we list the dimensional parameters 
related to these two components. Other parameter values [12] are chosen as follows

η1 = η2 = 1 × 10−4 Pa·s, η1 = η2 = 0.33 × 10−4 Pa·s, M1 = 1 × 10−12 m2·s−1,

κn1n1 = 1.1246 × 10−18, κn2n2 = 2.8649 × 10−20, κn1n2 = 8.9748 × 10−20.
(6.19)

The gas constant is R = 8.3144598 J·mol−1·K−1, the temperature T = 330 K.
The initial conditions are given by

ni =
{

nliquid
i , (x2 + y2) ≤ (r1 + r2 × cos(n × arctan( x

y )))2 in [−4 × 10−8 m, 4 × 10−8 m]2,

ngas
i , otherwise in [−4 × 10−8 m, 4 × 10−8 m]2,

(6.20)

where r1 = 1, r2 = 0.2, n = 8 and

nliquid
1 = 3814.6 mol·m−3, ngas

1 = 26.5 mol·m−3,

nliquid
2 = 3513.2 mol·m−3, ngas

2 = 7133.9 mol·m−3.
(6.21)

If we take characteristic molar density n0 = 103 mol·m−3, characteristic density ρ0 = n0m2 = 16.0428kg·m−3, characteristic 
length h = 2 × 10−8 m, characteristic time t0 = 6.4171 × 10−11 s, and characteristic temperature T0 = 273 K, we obtain 
dimensionless parameter values as follows

Re1s = Re2s = 1, Re1v = Re2v = 3, M1 = 9.7136 × 10−4,

κn1n1 = 0.0018, κn2n2 = 4.5961 × 10−5, κn1n2 = 1.4398 × 10−4.
(6.22)

Other dimensionless critical parameters of the methane and n-decane are given in Table 6.4. Through the non-
dimensionalization, the gas constant R results in a constant R0 = 1.4566, the dimensionless temperature T = 1.2088. The 
corresponding dimensionless initial conditions become

ni =
{

nliquid
i , (x2 + y2) ≤ (r1 + r2 × cos(n × arctan( x

y )))2 in [−2,2] × [−2,2],
ngas

i , otherwise in [−2,2] × [−2,2],
(6.23)

where r1 = 1, r2 = 0.2, n = 8 and

nliquid
1 = 3.8146, ngas

1 = 0.0265, nliquid
2 = 3.5132, ngas

2 = 7.1339. (6.24)

The governing system of equations is structurally identical to the one formulated using densities. Thus, the scheme works 
the same way on this model as on the one formulated using densities. Shown in Fig. 6.6, we perturb the initial condition 
with certain roughness on the interface, which is unstable due to the surface tension. As time elapses, the roughness 
vanishes, leading to a surface with the minimal surface tension on it (shown in Fig. 6.8-b). The corresponding time evolution 
of velocities are shown in Fig. 6.7, which demonstrates that hydrodynamics indeed speeds up evolution of the system to the 
steady states.

6.3.1. Density profiles and mass absorption at the interface in equilibrium
Near equilibrium (t = 6000), we show the density profiles of the two fluid components at y = 0 in Fig. 6.9-a and 

observe mass absorption of methane at the interface. At the equilibrium states of a phase co-existing system, two (or 
more) bulk phases have equivalent chemical potentials, i.e. they lie on the same tangent line (or surface) of the bulk free 
energy function. For most of free energy functions, such as Peng-Robinson free energy, it is not straightforward to find the 
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Fig. 6.6. Initial conditions of two components in gas-liquid mixture.

Fig. 6.7. (a-d) Snapshots of n1 at t = 1, 3, 5, 6000. (e-h) Snapshots of n2. (i-l) The corresponding velocity fields.

equilibrium states by observing the graph of the free energy function directly. Following the work reported in [36,42], we 
subtract the tangent line (or surface) from the Helmholtz free energy density function to make the equilibrium states as the 
minimum points, which are easily observed, i.e. we modify the bulk free energy as follows

hm(n, T ) = h(n, T ) − ∑2
i=1 μ0

i ni, (6.25)

where μ0
i , i = 1, 2 represents the chemical potential of the ith component at the bulk equilibrium state, respectively. We 

show the modified free energy contour in Fig. 6.9-b. The red line is the energy path of density profiles at the equilibrium 
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Fig. 6.8. (a) Total energy of the system (3.5) with the Peng-Robinson bulk free energy (6.16); (b) Surface tension of the mixture; (c, d) Total mass of the 
component 1 and 2 on the rectangular domain � = [−2, 2] ×[−2, 2], solved in the system (3.5) with the Peng-Robinson bulk free energy (6.16). (e) Density 
profiles of n-decane and methane (y = 0) at the equilibrium state; (f) Free energy contour. Green points represent the densities of n-decane and methane 
at bulk area and red circles represent their densities on the interface at equilibrium state.

Fig. 6.9. (a) Density profiles of n-decane and methane (y = 0) at the equilibrium state; (b) Free energy contour. Green points represent the densities of 
n-decane and methane at bulk area and red circles represent their densities on the interface at equilibrium state.
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state. To avoid high free energy, n-decane and methane change from one equilibrium state (Gas) to another equilibrium 
state (Liquid) through the saddle point of the free energy surface. Thus, the methane has a higher density on the interface 
than the bulk states, leading to the mass absorption phenomena on the interface.

The total energy and total mass difference with the initial condition for each component are shown in Fig. 6.8, which 
verifies energy stability and mass conservation of our numerical scheme.

This experiment not only shows that our mathematical model can be applied to study thermodynamic and hydrodynamic 
properties of the fluid mixtures in an application relevant to the petroleum industry, but also reflects that our numerical 
scheme can handle the Navier-Stokes-Cahn-Hilliard equation system with a highly nonlinear free energy such as the one 
given by (6.16).

7. Conclusion

In this paper, we have presented a second order, fully-discrete, linear and unconditionally energy stable numerical 
scheme for the hydrodynamic phase field model of binary compressible fluid flows. Firstly, we reformulate the model by 
introducing a couple of intermediate variables following the Energy Quadratization strategy. Using the reformulated model 
equations, we develop a second order, energy stable, semi-discrete numerical scheme in time. Then, we obtain a fully dis-
crete numerical scheme by applying the finite difference method on the staggered grid in space, which preserves a fully 
discrete energy dissipation law. In addition, the solution uniqueness of the linear system resulting from the numerical 
scheme is proved rigorously. Several numerical experiments are presented to verify the accuracy, stability and efficiency of 
our numerical scheme. The comparison between the simulations with and without hydrodynamics is used to demonstrate 
effects of hydrodynamics in phase separation phenomena in binary compressible fluid flows. The scheme can be readily 
extended to models of N-component compressible fluid flows with N > 2.
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Appendix A. Linear system resulting from the numerical scheme

For simplicity, we drop the superscript n + 1 on the unknowns and superscript n on the right hand side terms while 
retaining the superscripts on the extrapolated terms. We summarize the linear system resulting from the fully discrete 
numerical scheme in section 5.3 as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

{
2 ρ1

�t + dx(Ax(ρ
n+1/2
1

1√
ρ

n+1/2
)u) + dy(A y(ρ

n+1/2
1

1√
ρ

n+1/2
)v) =

M1�hμ1 − M1�hμ2 + g1
}|i, j, i = 1, · · · , Nx, j = 1, · · · , N y,{

2 ρ2
�t + dx(Ax(ρ

n+1/2
2

1√
ρ

n+1/2
)u) + dy(A y(ρ

n+1/2
2

1√
ρ

n+1/2
)v) =

−M1�hμ1 + M1�hμ2 + g2
}|i, j, i = 1, · · · , Nx, j = 1, · · · , N y,{

2 u
�t + 1

2 (un+1/2 Dx(
1√
ρ

n+1/2
axu) + Ax(

1√
ρ

n+1/2
dx(un+1/2u)))

+ 1
2 (ax(Ax vn+1/2 D y(Ax(

1√
ρ

n+1/2
)u)) + Ax(

1√
ρ

n+1/2
)dy(A yu Ax(vn+1/2))

= T1(u, v,μ1,μ2) + g3
}|i+ 1

2 , j, i = 1, · · · , Nx − 1, j = 1, · · · , N y,{
2 v

�t + 1
2 (ax(A yun+1/2 Dx(A y(

1√
ρ

n+1/2
)v)) + A y(

1√
ρ

n+1/2
)dx(A yun+1/2 Ax v))

+ 1
2 (vn+1/2 D y(

1√
ρ

n+1/2
ay v) + A y(

1√
ρ

n+1/2
dy(vn+1/2 v)))

= T2(u, v,μ1,μ2) + g4
}|i, j+ 1

2
, i = 1, · · · , Nx, j = 1, · · · , N y − 1.

{
4 q1

�t = 4 ∂q1
∂ρ1

n+1/2
ρ1
�t + 4 ∂q1

∂ρ2

n+1/2
ρ2
�t + g5

}|i, j, i = 1, · · · , Nx, j = 1, · · · , N y,{ − 2
�t μ1 = −4q1

1
�t

∂q1
∂ρ1

n+1/2 + 2
�t κρ1ρ1�hρ1 + 2

�t κρ1ρ2�hρ2 − 2α1ρ1
�t + g6

}|i, j,

i = 1, · · · , Nx, j = 1, · · · , N y,{ − 2
�t μ2 = −4q1

1
�t

∂q1
∂ρ2

n+1/2 + 2
�t κρ2ρ2�hρ2 + 2

�t κρ1ρ2�hρ1 − 2α2ρ1
�t + g7

}|i, j,

i = 1, · · · , N , j = 1, · · · , N ,

(A.1)
x y
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where μ1, μ2, u, v, q1, ρ1, ρ2 are the unknowns of the linear system, g1, g2, g3, g4, g5, g6, g7 represent all the terms at the 
nth time steps on the right hand side. We assume that ρi, μi, i = 1, 2 satisfy discrete homogeneous Neumann boundary 
conditions (5.8), u, v the discrete homogeneous Dirichlet boundary conditions (5.9). We define Dh as

⎛
⎜⎝ dx(Ax(

1√
ρ

n+1/2
)u)) 1

2 S

1
2 S dy(A y(

1√
ρ

n+1/2
)v))

⎞
⎟⎠ , (A.2)

where S = Dx(A y(
1√
ρ

n+1/2
)v) + D y(Ax(

1√
ρ

n+1/2
)u)). We denote T1(u, v, μ1, μ2) and T2(u, v, μ1, μ2) as the functions of u, 

v, μ1 and μ2 as follows:
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1√
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1√
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1√
ρ

n+1/2
)Dx(

1
Res

dx(Ax(
1√
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(A.3)

T2(u, v,μ1,μ2) = A y(
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(A.4)

We then rewrite system (A.9) as follows

A · X = G, (A.5)

where X = (μ1, μ2, u, v, q1, ρ1, ρ2) and G = (g1, g2, g3, g4, g5, g6, g7)
T . The coefficient matrix A is given as follows

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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−T2μ1 −T2μ2 −T2u A4v 0 0 0

0 0 0 0 4 (·)
�t −4 ∂q1

∂ρ1

n+1/2
(·)
�t −4 ∂q1

∂ρ2

n+1/2
(·)
�t

− 2
�t (·) 0 0 0 4 1

�t
∂q1
∂ρ1

n+1/2
(·) − 2κρ1ρ1

�t �h(·) + 2α1
�t − 2κρ1ρ2

�t �h(·)

0 − 2
�t (·) 0 0 4 1

�t
∂q1
∂ρ2

n+1/2
(·) − 2κρ1ρ2

�t �h(·) − 2κρ2ρ2
�t �h(·) + 2α2

�t

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A.6)

where
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A1u = dx(Ax(ρ
n+1/2
1

1√
ρ

n+1/2
)(·)), A1v = dy(A y(ρ

n+1/2
1

1√
ρ

n+1/2
)(·)),

A2u = dx(Ax(ρ
n+1/2
2

1√
ρ

n+1/2
)(·)), A2v = dy(A y(ρ

n+1/2
2

1√
ρ

n+1/2
)(·)),

A3u = 2 (·)
�t + 1

2 (un+1/2 Dx(
1√
ρ

n+1/2
ax(·)) + Ax(

1√
ρ

n+1/2
dx(un+1/2(·))))

+ 1
2 (ax(Ax vn+1/2 D y(Ax(

1√
ρ

n+1/2
)(·))) + Ax(

1√
ρ

n+1/2
)dy(A y(·)Ax(vn+1/2)) − T1u,

A4v = 2 (·)
�t + 1

2 (ax(A y
n+1/2 Dx(A y(

1√
ρ

n+1/2
)(·)))

+A y(
1√
ρ

n+1/2
)dx(A yun+1/2 Ax(·)))

+ 1
2 (vn+1/2 D y(

1√
ρ

n+1/2
ay(·)) + A y(

1√
ρ

n+1/2
dy(vn+1/2(·)))) − T2v ,

T1u = Ax(
1√
ρ

n+1/2
)(Dx(

1
Res

dx(Ax(
1√
ρ

n+1/2
)(·)))

+dy(Ax(A y
1

Res
)D y(Ax(

1√
ρ

n+1/2
)(·))))

+Ax(
1√
ρ

n+1/2
)Dx(

1
Res

dx(Ax(
1√
ρ

n+1/2
)(·)))

+Ax(
1√
ρ

n+1/2
)Dx(

1
Rev

dx(Ax(
1√
ρ

n+1/2
)(·))),

T1v = +Ax(
1√
ρ

n+1/2
)dy(Ax(A y

1
Res

)Dx(A y(
1√
ρ

n+1/2
)(·)))

+Ax(
1√
ρ

n+1/2
)Dx(

1
Rev

dy(A y(
1√
ρ

n+1/2
)(·))),

(A.7)

T1μ1 = −Ax(ρ1
n+1/2 1√

ρ

n+1/2
)Dx(·), T2μ2 = −Ax(ρ2

n+1/2 1√
ρ

n+1/2
)Dx(·),

T2v = A y(
1√
ρ

n+1/2
)(dx(Ax(A y

1
Res

)Dx(A y(
1√
ρ

n+1/2
)(·))) + D y(

1
Res

dy(A y(
1√
ρ

n+1/2
)(·))))

+A y(
1√
ρ

n+1/2
)D y(

1
Res

dy(A y(
1√
ρ

n+1/2
)(·))) + A y(

1√
ρ

n+1/2
)D y(

1
Rev

dy(A y(
1√
ρ

n+1/2
)(·))),

T2u = +A y(
1√
ρ

n+1/2
)dx(Ax(A y

1
Res

)D y(Ax(
1√
ρ

n+1/2
)(·)))

+A y(
1√
ρ

n+1/2
)D y(

1
Rev

dx(Ax(
1√
ρ

n+1/2
)(·))),

T2μ1 = −A y(ρ1
n+1/2 1√

ρ

n+1/2
)D y(·), T2μ2 = −A y(ρ2

n+1/2 1√
ρ

n+1/2
)D y(·).

(A.8)

The corresponding homogeneous system is given by

A · X = 0. (A.9)

Appendix B. Supplementary material

Supplementary material related to this article can be found online at https://doi .org /10 .1016 /j .jcp .2019 .06 .030.
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